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A B S T R A C T   

Fiber-reinforced polymer (FRP) materials are integral to various industries, from automotive and aerospace to 
infrastructure and construction. While FRP composite design guidelines have been established, the process of 
obtaining the desired strength of an FRP composite demands considerable time and resources. Despite recent 
advancements in Machine Learning (ML) models which are commonly used as predictive models, the inherent 
’black box’ nature of those models poses challenges in understanding the relationship between input design 
parameters and output strength of the composite. Moreover, these models do not provide tools to facilitate the 
designing process of the composite. The current study introduces an explainable Artificial Intelligence (XAI) 
framework that will provide understanding for the input–output relationships of the model through SHapley 
Additive exPlanations (SHAP) and Partial Dependence Plots (PDPs). In addition, the framework provides for the 
first time a designing approach for adjusting the important design parameters to obtain the desired composite 
strength by the designer through utilizing an explainability technique called Counterfactual (CF). The framework 
is evaluated through the design of a 14-ply composite, successfully identifying critical design parameters, and 
specifying necessary adjustments to meet strength requirements.   

1. Introduction 

Fiber-reinforced polymer (FRP) materials have gained attention in 
the last few decades due to their high strength, non-corrosive behavior, 
and easy manufacturing. FRP materials are essential to many industries, 
including automotive, aerospace, and construction industries. Design for 
FRP composites has been developed through the years to include all size 
aspects (Fig. 1), starting from microscale, which includes ply behavior 
and the interaction between fiber and the surrounding matrix, then 
mesoscale, which is focused on the interaction between different lam
inas, and finally with the composite structure scale which is applied for 
structures such as sandwich panels [1–5], wind blades [6–8], and ma
rine structures [9–11]. To achieve certain strengths, designers have to 
choose between selective materials, lamina orientation, and layer 
arrangement to come up with the best possible combination. 

With the growing number of materials and unlimited configuration 
possibilities, the need for automated processes is growing more than 
ever. Researchers developed optimization tools to automate the design 
process such as Genetic Algorisms (GA) [13,14]. However, using opti
mization tools such as GA is not practical for everyday design use since it 
has high computational cost and can sometimes results in local 

optimization results which can be considered time consuming for 
designers. 

In recent years, Machine Learning (ML) models have emerged as 
powerful tools in many engineering fields and applications [15–20] such 
as design and characterization of microstructures of materials [21–23], 
carbon nanotube composites [24,25], and resilient structures [26–29]. 
These models are trained on a subset of available data to make accurate 
predictions for the required output response quantity. They serve as 
efficient alternatives to traditional methods like experimental testing 
and Finite Element (FE) analysis, offering substantial time and cost 
savings. The efficacy of ML models is typically evaluated based on their 
accuracy in predicting the behavior under study. 

The implementation of ML in composites has been boosted in the last 
decade [30–32]. For example, a ML model using a genetic algorithm 
(GA) and optimized back propagation (BP) neural network are used to 
predict the transverse mechanical properties considering micro voids 
between fibers and matrix [33]. Artificial neural network (ANN) and 
particle swarm optimization (PSO) are applied to estimate the rela
tionship between input parameters, including the thermal conductivity 
of fiber and matrix and volume fraction, and the thermal conductivity of 
the composite as an output parameter [34]. ANN is the one of the 
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commonly used ML models for constitutive modeling of composite 
materials [35,36]. 

The prediction of laminate behavior in the mesoscale is carried out 
by using different ML algorithms, including convolutional neural net
works (CNN) [37,38], minimax probability machine regression 
(MPMR), and multivariate adaptive regression spline (MARS) [39], 
XGBoost, Random Forests, Gaussian Processes and Artificial Neural 
Networks [40]. A combination of ANN and analytical models are used to 
predict the shear modulus (G12) and longitudinal ultimate tensile 
strength (XT) of unidirectional composites [41]. Lui et al proposed a 
framework based on XGBoost to study the pultruded FRP composites 
exposed to water and humidity [42]. XGBoost has recently gained 
attention due its excellent capabilities of solving nonlinear regression 
problems, thus providing a high level of accuracy compared to other 
models [43]. Recent advances in composites using ML models are listed 
in detail in the literature [32,44]. 

Most of the applied machine learning models [45,46] are used for the 
prediction of the ply and laminate behavior (by using fixed input 
parameter values) rather than being used as a design tool (by changing 
the input parameters) for obtaining the required output (for example, 
strength). The designer’s grasp of the relationship between input ma
terial parameters and output strength is paramount. Traditional ML 
models, often viewed as ’black boxes’, fall short in providing this critical 
insight and lack interpretability. This is where the advent of explainable 
AI (XAI) tools [45,47,48] steps in, prioritizing interpretability. These 
tools bridge the gap, offering designers a clearer understanding of how 
input factors influence output responses, empowering them to make 
more informed decisions in the design process. For example, an 
Explainable AI (XAI) approach employing the SHapley Additive exPla
nations (SHAP) model has been applied to investigate the significance of 
material properties, geometrical dimensions, and environmental factors 
in bistable composite laminates [49]. The findings highlight that the 
transverse thermal expansion coefficient and moisture variation exert 
the most significant influence on the transverse curvature. In recent 
studies, XAI has been utilized to gain insight into the behavior of com
posites with edge cracks [50]. Additionally, researchers have acknowl
edged SHAP as a valuable method for examining crucial parameters in 
composites subjected to impact [51]. Beyond composites, XAI has found 

widespread application in comprehending the role of input parameters 
in various structural contexts [52–54]. 

Despite the aforementioned studies show the capability of the XAI in 
understanding the role of input features and their effect on the overall 
output, they fall short in actively manipulating these features to attain a 
desired output response. In other words, the previous studies merely use 
XAI technique as a descriptive approach for revealing the input–output 
parameters relationship without offering a systematic approach to 
adjust inputs for achieving the necessary output, which is important for 
the composite design process. In the current study, a novel XAI frame
work is introduced using SHapley Additive exPlanations (SHAP), Partial 
Dependence Plots (PDPs), and Counterfactual (CF) concepts to provide a 
design tool for FRP composites. The framework highlights the crucial 
design input parameters and then provide a strategy for finetuning those 
parameters to achieve the required strength of the composite. 

2. The proposed framework 

This study proposes an explainable ML framework that can help 
designers understand the most influential input parameter and its rela
tionship with the desired strength parameter. In addition, it allows the 
designer to control main design parameters to achieve the required 
strength of the composites. The framework is based on several as
sumptions as follows: 

1. The laminate consists of 14 plies to increase the number of permu
tations, where manual design techniques are hard to apply [55].  

2. Bending is the main straining action in the longitudinal direction of 
the laminate, which is assumed as the same direction as the longi
tudinal modulus (E1). Therefore, the transverse direction is negli
gible due to the nature of the application, i.e., bending of the FRP 
bridge deck panel.  

3. Some layers are independent of orientation (chopped mat strands) 
based on an optimization study of the optimal lamina arrangement 
conducted for obtaining maximum laminate strength.  

4. Symmetric laminate is adopted to avoid warping due to thermal 
loading. 

Fig. 1. Schematic of bottom-up multi-scale modeling of engineering composite structures [12].  
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5. The orientation of the laminate is fixed while the same material is not 
stacked consecutively to avoid unidirectional laminates and reduce 
computational cost during optimization. 

The stages of the proposed framework are shown in Fig. 2. The 
framework consists of five main stages: 1. selecting the optimal lamina 
arrangement, 2. dataset generation using design of experiments and 
Latin Hypercube Sampling (LHS) technique, 3. machine learning 
training for predicting composite strength, 4. explainable artificial in
telligence (XAI) techniques are modeled to highlight the most important 
design parameters, and finally 5. the design stage is performed using 
Counterfactual (CF), where the model chooses the best path to achieve 
the desired design strength by varying the important design parameters. 

The details of each step of the proposed framework are described as 
follows: 

Stage 1, Selecting optimal lamina arrangement: 
In this stage, the optimal stacking arrangement is investigated using 

Brute Force optimization technique, to obtain the maximum possible 
strength of the composite. Brute Force optimization is a straightforward, 
exhaustive search method that explores all possible solutions within a 
defined parameter space. It systematically evaluates each candidate 
solution to find the one that optimizes the objective function. This is 
done by discretizing the parameter space into a grid or set of discrete 
points. Each point represents a potential solution, and the objective 
function is computed for each of these points. The solution with the 
highest objective function value (i.e., composite strength) is considered 
the optimal solution. This method guarantees finding the global opti
mum within the search space. In each trial, the lamina is stacked in a 
different arrangement and the corresponding strength of the composite 
is calculated using a high-performance computer with several cores to 

Fig. 2. Schematic diagram showing the proposed framework, E1 is longitudinal modulus, E2 is transverse modulus, G12 are the shear modulus associated with 12 and 
23 planes, respectively, and ν12 is Poisson’s ratio. 
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reduce the computational time. After that, the most influential ply ma
terial is identified according to the position of the layers. The top and 
bottom layers are often considered the most influential layers when the 
laminate is subjected to bending. The configuration is assumed to be 
symmetric, leading to the same ply material assigned to the top and 
bottom layers, which is then selected as the most influential ply 
material. 

Stage 2, Dataset generation: 
The material characteristics of the dominant lamina are allocated 

within specified practical upper and lower limits considering for 
commercially available plies. The studied input parameters (material 
characteristics, where 1 and 2 defines longitudinal and transverse axes 
of the ply, respectively) are longitudinal modulus (E1), transverse 
modulus (E2), shear modulus associated with 12 plane (G12), shear 
modulus associated with 23 plane (G23) and Poisson’s ratio (ν12). This 
allocation ensures that the longitudinal stiffness is greater than or equal 
to the transverse stiffness (Constraints: E1 ≥ E2, G12 ≥ G23). This is 
basically related to the use of the composite in engineering applications 
(e.g., bridge deck) where loading in the longitudinal direction is ex
pected to be the dominant loading condition compared to the transverse 
direction. 

In this present investigation, the Latin Hypercube Sampling (LHS) 
technique is utilized, which involves the stratification of the probability 
distribution function of the random variables. These variables are the 
material characteristics (E1, E2, G12, G23, ν12). This approach leads to a 
notable reduction in the number of required simulations compared to 
the conventional Monte Carlo simulation method. LHS technique en
sures a more efficient and even exploration of the input parameter space 
by dividing it into equally probable intervals. Unlike traditional random 
sampling, LHS reduces the number of simulations needed while main
taining accuracy in estimating outcomes. This makes it particularly 
valuable in complex computational experiments. LHS ensures that there 
are no significant correlations between variables through utilizing a 
stochastic optimization method in which the difference between the 
initial and final correlation matrices can be minimized by the permu
tation of elements of the variables sample matrix. 

By employing LHS, the generated dataset becomes a highly repre
sentative sample of the material characteristics within the input space. 
This ensures that the subsequent training of the machine learning model 
in the framework will be based on a comprehensive and accurate rep
resentation of the underlying data. This, in turn, enhances the model’s 
ability to make reliable predictions and analyses. 

After that, a Finite Element (FE) model of the composite is con
structed, and multiple FE analyses are conducted to obtain the corre
sponding maximum stress of each composite candidate of the input 
space obtained from the generated LHS samples. Each sample has 
unique material properties for the most influential ply. It is a common 
practice to consider the top layer as the most influential ply (as indicated 
before) since it resists the highest normal straining actions during the 
bending of the entire composite. 

At the end of this stage, the training dataset required for the next 
stage is ready. The input features (input design variables) of the dataset 
are the material characteristics (E1, E2, G12, G23, ν12) of the most influ
ential ply material; and the output is the maximum stress (the response 
quantity of interest). 

Stage 3, Machine learning model training: 
In the subsequent stage, the focus shifts to training a machine 

learning model. This process involves several steps: 
Preparing the Dataset: This step involves organizing the data collected 

from the previous stage into a format suitable for training the machine 
learning model. It ensures that the input features (material character
istics) and the corresponding output (strength) are appropriately 
structured. 

Dataset Normalization: Normalization is a crucial preprocessing step. 
It involves scaling the input features to a similar range, typically be
tween 0 and 1. This ensures that all features contribute proportionally to 

the model’s learning process, preventing any single variable from 
dominating the learning process due to differences in scale. 

Random Splitting of Dataset: The dataset is divided into two subsets: a 
training set (70 %) and a testing set (30 %). The training set is used to 
train the model, while the testing set is reserved for evaluating its per
formance. Random splitting ensures that the two subsets are represen
tative of the overall dataset and helps prevent overfitting. 

Using the Dataset for training XGBoost model: XGBoost is a powerful 
machine-learning algorithm particularly suited for regression tasks [56]. 
XGBoost is an ensemble learning algorithm that combines the pre
dictions of multiple decision trees. It is known for its high predictive 
accuracy and computational efficiency. It works by sequentially training 
an ensemble of weak learners (typically decision trees) and combining 
their predictions. The objective function L (θ) to be minimized by 
XGBoost is as follows: 

L (θ) =
∑n

i=1
l(Y i, Ŷ i) +

∑k

i=1
Ω(fi) 1  

Where n is the number of training examples, k is the number of trees in 
the ensemble, Y i is the true output for the i-th example, Ŷ i is the 
predicted output for the i-th example, l is the loss function that measures 
the difference between true and predicted values, Ω

(
fi

)
is the regulari

zation term that penalizes the complexity of each tree. 
The loss function l, which measures the squared difference between 

the true and predicted strength values is given as follows: 

l(Y i, Ŷ i) = (Y i − Ŷ i)
2 2  

The regularization term Ω
(
fi

)
discourages overfitting by penalizing 

complex trees and is given by: 

Ω(fi) = γT +
1
2

λ
∑T

j=1
wj

2 3  

Where T is the number of leaves in the tree fi, wj are the weights asso
ciated with the leaves, γ and λ are hyperparameters controlling the 
strength of the regularization. 

During training, XGBoost calculates the first and second derivatives 
of the loss function with respect to the predicted values. These are 
referred to as the gradient (gi) and the Hessian (hi): 

gi =
∂

∂Ŷ i
l(Y i, Ŷ i) 4  

hi =
∂2

∂(Ŷ i)
2 l(Y i, Ŷ i) 5  

and these quantities guide the optimization process. By optimizing the 
objective function using techniques like gradient boosting, XGBoost 
efficiently constructs an ensemble of trees that collectively provide ac
curate predictions for the strength of based on the main input parame
ters. In addition, the regularization terms ensure that the model remains 
robust and avoids overfitting. 

Stage 4, XAI techniques to highlight the most important design 
parameters: 

In this stage, the most important input features affecting the strength 
of the composite (the output response quantity) are investigated using 
SHapley Additive exPlanations (SHAP) technique and Partial depen
dence plots (PDPs). 

SHAP is a mathematical technique based on game theory to describe 
the performance of a machine-learning model. It offers a profound un
derstanding of the influence and significance of each input feature (E1, 
E2, G12, G23, ν12) on the resulting composite strength. Furthermore, 
SHAP shows whether a feature positively or negatively impacts the 
composite’s strength. This knowledge is pivotal for designers in pin
pointing the most influential design variables that predominantly affect 
composite strength. It not only offers a global perspective on how input 
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features affect the model, but also equips designers with a strategic 
approach to selecting and manipulating key parameters to exert a sub
stantial impact on composite strength. 

The mathematical representation of a Shapley value (ϕi) for a feature 
(xi) in a cooperative game is defined as the average marginal contri
bution of that feature across all possible coalitions [57]: 

ϕi(f) =
∑

S⊆N\{i}

|S|! • (|N| − |S| − 1 )!

|N|!
[f(S ∪ {i} ) − f(S) ] 6  

Where N is the set of all features, S is a coalition of features that does not 
contain xi, f(S) is the model’s prediction when considering only the 
features in S, f(S ∪ {i} ) is the model’s prediction when adding xi to S. 

SHAP values provide a way to allocate the contribution of each input 
feature to the final prediction. They offer insights into the impact of 
individual features on a specific prediction. Positive SHAP values indi
cate a feature’s positive contribution, while negative values indicate a 
negative contribution. This provides valuable insights for model inter
pretability and decision support that is highly required for the design 
process of the composite. 

Contrarily, while SHAP excels at quantifying feature importance, it 
lacks the visual clarity of direct input–output relationships and struggles 
with identifying critical thresholds. To address these limitations, our 
proposed framework integrates Partial Dependence Plots (PDPs) 
alongside SHAP. PDPs provide an intuitive graphical overview of how 
individual features influence the response, facilitating straightforward 
interpretation and revealing interactions between features. They also 
offer insights into feature importance trends across their entire range 
and allow for efficient model comparison. This ensures a more 
comprehensive understanding of the model’s behavior. 

In PDP, a graphical relationship between a specific input feature and 
the output of a machine learning model is established while keeping all 
other features constant. They provide valuable insights into how 
changes in a single variable influence the model’s predictions. Mathe
matically, PDP for a single input feature (xi) can be expressed as follows 
[58]: 

PDP(xi) =
1
N

∑N

j=1
f(x−i, xj

i) 7  

Where xi is input feature of interest (one of material characteristics (E1, 
E2, G12, G23, ν12)), x−i represents all the other features except xi, xj

i de
notes the j-th value of feature xi in the dataset, N is the total number of 
instances in the dataset, f(x) is the machine learning model’s prediction 
function. 

The PDP(xi) at a given point xi is computed by averaging the model’s 
predicitions f(x−i, xj

i) over all instances in the dataset, while keeping the 
feature xi fixed at xj

i. 
By employing SHAP and PDPs, designers gain a valuable tool for 

understanding the individual effects of features on the model’s pre
dictions, aiding in model interpretation and decision-making. By the end 
of this stage, the designer will have a valuable insight on what are the 
impact of the each of material input parameters (E1, E2, G12, G23, ν12) on 
the strength of the composite and which input parameter has the most 
dominant effect. But there is no information about how much change is 
required to happen in this dominant input feature to increase the com
posite strength to the required level. This is what will be discussed in the 
next stage. 

Stage 5, Design stage using Counterfactual technique: 
In this stage, the values of the crucial features identified in the pre

ceding stage are adjusted to attain the desired strength for the com
posite. This is achieved by using the Counterfactual (CF) technique. 
Counterfactuals are hypothetical scenarios that represent what might 
have happened if a different set of conditions or actions were in place (i. 
e., changing the value of one of the input features). In the context of 
machine learning, counterfactual explanations provide insights into 

how changes in input features would have altered the model’s 
prediction. 

Let’s assume that the following loss function needs minimizing 
[59,60]: 

L(x, xʹ, yʹ, λ) = λ • ( f̂ (xʹ) − yʹ )
2

+ d(x, xʹ) 8  

The initial component (in the right-hand side) represents the quadratic 
discrepancy between the model’s forecast for the counterfactual x′, 
which is f̂ (x́ ), and the specified target y′, as predetermined by the 
designer. The parameter λ balances the distance in prediction (first term) 
against the distance in feature values (second term). The subsequent 
component, denoted as d, quantifies the separation between the 
instance x under examination and the counterfactual x′ (one of the input 
parameters). This loss function gauges both the deviation of the pro
jected counterfactual outcome from the predefined target and the 
proximity of the counterfactual to the pertinent instance. The distance 
metric d is characterized as the Manhattan distance, with weighting 
factors determined by the inverse Median Absolute Deviation (MAD) for 

each feature, which can be represented as,d(x, x́ ) =
∑p

j=1

⃒
⃒xj−xʹ

j

⃒
⃒

MADj 

The overall distance is computed as the aggregate of p individual 
feature-wise distances, representing the absolute disparities in feature 
values between the given instance x and the counterfactual x′. These 
feature-specific distances are normalized by the reciprocal of the median 
absolute deviation (MAD) for feature j across the dataset, as stipulated 
by the formula: 

MADj = mediani∈{1,⋯,n}

(⃒
⃒xi,j − medianl∈{1,⋯,n}

(
xl,j

) ⃒
⃒
)

9  

The median of a vector marks the point at which half of the values are 
higher and the remaining half are lower. In contrast to the variance, 
MAD focuses on absolute differences, utilizing the median as the central 
measure. This method proves more resilient to outliers compared to the 
traditional Euclidean distance. The scaling operation with MAD is 
essential for standardizing features, ensuring consistency regardless of 
the measurement units. 

The loss function is determined by a given parameter λ and yields a 
counterfactual x′. A higher λ indicates a preference for counterfactuals 
with predictions closely aligned to the desired outcome y′, whereas a 
lower λ indicates a preference for counterfactuals x′ that closely 
resemble the original instance x in terms of feature values. In cases 
where λ is exceedingly large, the instance with the prediction nearest to 
y′ is selected, regardless of its distance from x. Ultimately, it falls upon 
the user to strike a balance between the requirement for the counter
factual’s prediction to match the desired outcome (composite strength) 
and the requirement for the counterfactual to be similar to x. As an 
alternative to selecting a value for λ, a tolerance ε to specify how much 
deviation from y′ (i.e., from the required strength) is permissible for the 
prediction of the counterfactual instance. This constraint can be repre
sented as: | f̂ (x́ ) −ý | ≤ ∊. 

To minimize this loss function, various optimization algorithms can 
be employed, including methods like Nelder-Mead for cases without 
gradient information. If gradients of the machine learning model are 
available, more efficient gradient-based methods like ADAM can be 
utilized (which is used in the current study). Prior to the optimization 
process, the instance x (the input features of interest) to be explained, 
the desired output y′ (composite strength), and the predefined tolerance 
parameter ε (tolerance from the desired strength by the designer) must 
be specified. The loss function is iteratively minimized for x′, gradually 
increasing the λ parameter, until a sufficiently close solution is achieved, 
falling within the specified tolerance limit: arg min

xʹ
max
λ L(x, x́ , ý , λ)

In summary, the algorithm for generating counterfactuals can be 
summarized as follows: 
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1. Choose the instance x to be explained (all material input parameters 
(E1, E2, G12, G23, ν12)), specify the desired outcome y′ (composite 
strength), set a tolerance level ε (the difference between the required 
strength and the actual strength), and initialize λ with a low value.  

2. Begin with an initial counterfactual obtained by randomly sampling 
an instance.  

3. Optimize the loss function, starting from this initial counterfactual.  
4. While | f̂ (xʹ) −ý | ≤ ∊, do the following:  

a. Increase λ.  
b. Optimize the loss function using the current counterfactual as the 

starting point.  
c. Select the counterfactual that minimizes the loss. 

5. Iterate through steps 2 to 4 and return the counterfactual that ach
ieves the lowest loss. 

It worth mentioning here that XAI techniques offer notable advan
tages over common statistical methods like, for example, Response 
Surface Method (RSM). While RSM typically relies on fitting experi
mental data to polynomial models [61,62], often at the second level, XAI 
methods, such as counterfactuals, provide greater flexibility in capturing 
complex relationships without rigid assumptions about data distribu
tion. Unlike RSM, which may face limitations in testing model suitability 
when the number of variables equals the number of experiments [63], 
XAI models excel in handling high-dimensional data and can offer in
sights even in scenarios with numerous variables. Additionally, while 
RSM may be susceptible to underfitting and struggle to capture intricate 
features of the response surface [62], XAI models aim to capture both 
global and local patterns, thereby mitigating underfitting and offering 
more comprehensive insights. 

3. Validation of the proposed framework 

The framework is validated using existing literature related to bridge 
decks [64]. FRP bridge decks are composed of upper and lower face
sheets and sinusoidal core. The FRP decks shown in Fig. 3, which are 
often referred to as sandwich panels, are subjected to bending load in the 
direction of the loading, with negligible forces acting in the transverse 
direction (opposite to the traffic direction). 

3.1. Finite Element (FE) model validation 

Chen and Davalos [64] carried out a parametric study using exper
imental testing and FE analysis to optimize a selection of several lami
nates for the honeycomb sandwich panel’s facesheet. The authors listed 
five different materials; material properties are shown in Table 1, and 
strength properties are shown in Table 2. The five materials are 

optimized into three laminates: 1, 2, and 3. Laminate 1 was considered 
unbalanced and tested in both longitudinal (L) and transverse (T) di
rections, while laminates 2 and 3 were balanced and only tested in one 
direction. 

For validation purposes, a Finite Element model is constructed using 
commercial software ABAQUS [66]. Shell elements (S4R) are used to 
construct a 381 mm length by 50.8 mm width plate subjected to three- 
point bending with a 305 mm span. For each material, elastic properties 
are assigned according to Table 1, while strength parameters, shown in 
Table 2, are defined as a part of Hashin damage in ABAQUS. Hashin 
damage contains strength parameters, damage evolution, and damage 
stabilization to avoid convergence problems. In this model, an energy- 
softening damage type is selected. Longitudinal tensile and compres
sive fracture energy are assumed 40 N/mm, while transverse tensile and 
compressive fracture energy are assumed 4 N/mm. The viscosity 
parameter for the damage stabilization is assumed to be 0.0001. The 
stacking sequence followed the laminates 1, 2, and 3 presented in the 
literature [64]. 

The FE results shown in Fig. 4 show a good correlation between the 
FE results and experimental results (especially for the maximum 

Fig. 3. Sketch showing (a) FRP bridge deck components and (b) stacking sequence of facesheets laminates [65].  

Table 1 
Material properties for different plies [64].  

Ply 
name 

Commercial 
name 

E1 

(GPa) 
E2 

(GPa) 
G12 

(GPa) 
G23 

(GPa) 
ν12 ν23 

M1 CM 3205 UD  27.75  8.00  3.08  2.88  0.295  0.39 
M2 CM 3205 

CSM  
11.79  11.79  4.21  2.36  0.402  0.4 

M3 UM 1810 UD  30.06  8.55  3.30  3.08  0.293  0.386 
M4 UM 1810 

CSM  
15.93  15.93  5.65  2.96  0.409  0.388 

M5 Bond layer 
CSM  

9.72  9.72  3.50  2.12  0.394  0.401 

UD: Unidirectional, CSM: Chopped strand mat. 

Table 2 
Strength properties for different plies (MPa) [64].  

Ply name XT XC YT YC S12 S23 

M1 1341 404 46 66 46 46 
M2 152 152 152 152 76 83 
M3 1452 409 46 65 46 46 
M4 159 159 159 159 79 83 
M5 147 147 147 147 73 83 

XT: longitudinal tensile failure stress, XC: longitudinal compressive failure stress, 
YT: transversal tensile failure stress, YC: transversal compressive failure stress, 
S12: axial failure stress, and S23: transverse failure stress. 
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strength) for the three laminates. Therefore, the FE model is used for 
further analysis. 

3.2. Stacking sequence optimization 

In this study, maximum strength is selected as an objective function 
output. The number of the plies is reduced to 14 plies with a symmetric 
configuration. The brute force optimization is performed by employing a 
Python script within ABAQUS CAE module to change the stacking 
arrangement of the top 7 plies according to the available 5 materials 
while avoiding repeating the same material consecutively. 

The optimization is carried out using High Performance Computing 
(HPC) (CSC, Finland) on 1 CPU node with two Intel Xeon processors, 
where each includes 20 cores running at 2.1 GHz. The optimization 
yields to global optimal strength of 809 MPa, and the stacking 
arrangement is [M1, M5, M1, M3, M5, M2, M5]. Based on the optimi
zation result, M1 is selected as the most influential ply material as it is 
placed at the top layer. 

3.3. Dataset generation 

Dataset generation is performed using the design of experiments. The 
number of samples is reduced from 3000 samples to 1000 samples and 
distributed using Latin Hypercube Sampling (LHS). The higher and 
lower bounds for each material property (i.e., E1, E2, etc.) are selected as 
a sampling boundary based on Table 1 while satisfying the constraints 
that stiffness in the longitudinal direction is larger or equal than the 
transversal direction. The generated data from LHS are used as input 
data for FE analysis. 

To run the FE analysis, first, the material parameters for material M1 
are modified according to the LHS-generated data. It is worth noting that 
the material M1 is reflected in four plies out of 14 plies, including the 
most top and bottom plies. ABAQUS input files for the 1000 samples are 
first created, and then each 200 input files are run simultaneously on 
HPC. After the analysis, the maximum mises stress is extracted for the 
samples. Fig. 5 shows a stress output for one of the configurations. 

3.4. Machine learning training 

The generated data from LHS are used as input data for training with 
input parameters defined as (E1, E2, G12, G23, ν12). The output parameter 
for the ML training is assigned as maximum stress. The data is trained 
using XGBoost Random Forest Regressor, yielding to mean R2 value of 
0.95 which falls within acceptable prediction region. Fig. 6 shows the 
residuals and prediction errors plots of the XGBoost Random Forest 
Regressor. 

Fig. 7 shows the histograms of the generated data set. Each histogram 
represents the frequency distribution of a single feature. The x-axis of 
each histogram represents the range of values for the feature, and the y- 
axis represents the number of data points that fall within each range. 
Histograms shows that the LHS has successfully distributed the input 
parameters across the bounds. 

3.5. Explainable Machine learning (XAI) 

The input and output parameters are further analyzed using partial 
dependence plot (PDP) and SHapley Additive exPlanations (SHAP) [67]. 
Fig. 8 shows the PDP plots for the input parameters, which illustrates the 

Fig. 4. Validation of FE results versus experimental results for (a) laminate 1 and (b) laminates 2 and 3.  

Fig. 5. FE model of facesheet subjected to flexural loading.  
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correlation between the partial dependency of the average response 
parameter and the variations in the input feature values. The plots show 
that the variation in E1 from 12500 MPa to 22500 MPa will result in a 
direct change in the output strength. Increasing E1 beyond 22,500 will 
result in insignificant changes in the output strength. The other input 
parameters are showing a limited partial dependence which implies that 
they have marginal effect on the output strength. 

Fig. 9 shows the SHAP value for each input parameter. As shown, E1 
has the highest impact on the overall behavior of the strength. The red 
region, which indicates the high impact of the input parameter for E1 is 
located on the positive side, which implies that the E1 is directly pro
portional to the output strength. Other input parameters are located 
around SHAP value of zero, which agrees with the PDP results as E1 
directly impact the flexural stress results. Based on the XAI models (i.e., 
PDP and SHAP), we can conclude that the E1 is the most important 
parameter. 

Fig. 10 is a correlation matrix visualization, where each cell repre
sents the correlation coefficient between two features from the dataset. 

The correlation coefficient is a statistical measure that indicates the 
strength and direction of the linear relationship between two variables. 
It ranges from −1 to 1, where: “1″ indicates a perfect positive correla
tion, meaning as one variable increases, the other variable also increases 
proportionally. “-1” indicates a perfect negative correlation, meaning as 
one variable increases, the other variable decreases proportionally. “0” 
indicates no linear correlation between the variables. The figure shows 
that there is a strong positive correlation between E1 and stress (0.89), 
and weaker correlation between E1 and E2 (0.19) and E2 and stress 
(0.19). Correlation (by heatmap) does not imply causation. In other 
words, if two features are correlated does not necessarily mean that one 
causes the other. The heatmap only shows linear correlations. It is 
possible for features to have non-linear relationships that are not 
captured by the correlation coefficient. 

The correlation in the heat map has successfully indicated that stress 
relays mostly in E1, which correlates well with the design of the exper
iment where the laminate is subjected to bending which translates into 
longitudinal stresses. Therefore, based on the engineering designers 

Fig. 6. Accuracy of the XGBoost model.  
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intuition, stress is expected to depend on E1 more than any other input, 
which is pointed out from the heat map. However, it worth mentioning 
that heat map does not provide the relation between the inputs and 
output neither it provides the amount of change needed for to achieve 
the desired output space. 

3.6. Design stage using counterfactual (CF) 

After knowing the most important design parameters affecting the 
composite strength from section 3.5, the next step is to adjust these 
parameters to achieve the desired composite strength. Adjusting the 

design parameters will be conducted in this section through the Coun
terfactual (CF) technique. Based on SHAP and PDP plots explained in the 
previous section, E1 is found the most influential design parameters. So, 
the main change will be in E1 while other parameters will be affected by 
this change in E1 because of the inherent correlation among the input 
features as shown in the heat map plot in the previous section. Designing 
using CF is performed by defining the Current State (CS) stress and the 
desired design range. It worth mentioning that for generating the 
counterfactuals, the same algorithm explained in stage 5 (under section 
2) is used. The desired outcome y′ (composite strength) is a class range of 
600 MPa and 800 MPa. The tolerance level ε (the difference between the 

Fig. 7. Histograms for (a) E1, (b) E2, (c) G12, (d) G23, (e) ν12 and (f) stress.  
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required strength and the actual strength) is set to approximately 5 %. 
The initial counterfactual is the original value of E1 in the instance 
selected for design. In this study, the current state is varied depending on 

any configuration, while the design stress range is defined between 600 
MPa and 800 MPa, which represents the highest 25 % of the brute force 
optimization results. Two examples are shown in Table 3, showing the 

Fig. 8. PD plots for (a) E1, (b) E2, (c) G12, (d) G23, (e) ν12.  

Fig. 9. SHAP plot for different input parameters.  
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current state and the design states suggested by the CF model. In the first 
case, the first option suggests that E1 should increase from 29703 MPa to 
30018 MPa to increase the output stress from 554.7 MPa to 642.8 MPa, 
while the second option proposes that E1, E2, and G12 increase to in
crease the stress to 625.2 MPa, as shown in the table. Based on suggested 
options, the engineer can then choose which option fits the available 
plies. Another case is presented, showing similar results to the first case, 
where E1 is the dominant input parameter. Generating these results 
took, on average, 1 min on a desktop computer with Intel Xeon 8 cores, 
which shows that using the CF can ultimately enhance the design pro
cess and significantly reduce the computational cost compared to 
traditional design methods and FE analysis. 

4. Conclusions 

An explainable artificial intelligence (XAI) technique is used for the 
first time as a design tool for composite design. Stacking sequence is 
varied using brute force optimization to achieve global output strength 
for laminate. Based on optimization results and expert view, a selection 
for the most important ply material is further analyzed. The ply material 
properties are distributed using Latin Hypercube Sampling (LHS) to 
generate input parameters and output strength is predicted using Finite 
Element (FE) analysis. The ply material properties are distributed using 
LHS to generate a representative sample of the entire input space. FE 
analyses are conducted to calculate output strengths of samples. The 
input and output parameters are further used to train a machine learning 
(ML) model and the interpretability of the model is further investigated 
using XAI to highlight the most influential input features on the com
posite strength. The testing and training accuracies of the ML model 
reached 91.02 %, and 97.44 %, respectively, indicating its ability to 
predict outcomes with high precision. The results showed that the lon
gitudinal modulus of the ply material (E1) has a dominant effect on the 
composite strength compared to other input features. 

After that, a counterfactual (CF) technique is used as a design tool to 
adjust values of the input features to obtain the required composite 
strength. It is found that the CF technique can provide the design values 
of the input features to obtain the required composite strength. As an 
example, to elevate the output strength from 554.7 MPa to 642.8 MPa, a 
targeted increase in the E1 value, from 29703 MPa to 30018 MPa, is 
necessary. The strength results of the CF techniques founded to be in a 
very good agreement of those obtained using FE analysis for the same 
tested samples. Based on these results, employing the proposed frame
work will empower designers to efficiently pinpoint the most direct 
route to attain the desired composite design, leading to substantial 

Fig. 10. Heat map of the correlation among all features of the dataset.  

Table 3 
Different values for Current and Design States.  

State E1 

(MPa) 
E2 

(MPa) 
G12 

(MPa) 
G23 

(MPa) 
ν12 Stress 

(MPa)* 

Current 
State 1 

29,703 11,031 3434 2896  0.336  554.7 

Design 
State 1A 

30,018 8570 3284 2618  0.342  642.8 

Design 
State 1B 

30,032 14,754 4204 2730  0.326  625.2 

Current 
State 2 

12,720 8488 4245 2878  0.384  255.1 

Design 
State 2A 

29,990 12,338 4435 2772  0.384  631.7 

Design 
State 2B 

30,018 8001 3284 2635  0.384  636.1  

* The results obtained are found to have discrepancy less than 3% compared to 
FE analysis results. 
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reductions in computational expenses and streamlining the lamina se
lection process. 

However, this study acknowledges certain limitations, such as the 
need for further validation across diverse composite configurations and 
material systems. Additionally, while the proposed framework demon
strates promise in streamlining design processes and reducing compu
tational burdens, its applicability to real-world scenarios warrants 
additional investigation. 

Looking ahead, future research avenues may include refining XAI 
techniques for deeper insights into complex material behaviors, 
exploring alternative optimization algorithms to enhance efficiency, and 
extending the framework to account for multi-objective optimization 
objectives. Ultimately, the proposed methodology holds substantial 
potential to empower designers with efficient tools for achieving 
optimal composite designs, thereby facilitating advancements in various 
engineering applications. 
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[45] Kibrete F, Trzepieciński T, Gebremedhen HS, Woldemichael DE. Artificial 
intelligence in predicting mechanical properties of composite materials. J Compos 
Sci 2023;7:364. https://doi.org/10.3390/jcs7090364. 

[46] Das PP, Elenchezhian M, Vadlamudi V, Raihan R. Artificial Intelligence Assisted 
Residual Strength and Life Prediction of Fiber Reinforced Polymer Composites. 
AIAA SCITECH 2023 Forum, Reston, Virginia: American Institute of Aeronautics 
and Astronautics; 2023. https://doi.org/10.2514/6.2023-0773. 

[47] Kulasooriya WKVJB, Ranasinghe RSS, Perera US, Thisovithan P, Ekanayake IU, 
Meddage DPP. Modeling strength characteristics of basalt fiber reinforced concrete 
using multiple explainable machine learning with a graphical user interface. Sci 
Rep 2023;13:13138. https://doi.org/10.1038/s41598-023-40513-x. 

[48] Meister S, Wermes M, Stüve J, Groves RM. Investigations on explainable artificial 
intelligence methods for the deep learning classification of fibre layup defect in the 
automated composite manufacturing. Compos B Eng 2021;224:109160. https:// 
doi.org/10.1016/j.compositesb.2021.109160. 

[49] Saberi S, Nasiri H, Ghorbani O, Friswell MI, Castro SGP. Explainable artificial 
intelligence to investigate the contribution of design variables to the static 
characteristics of bistable composite laminates. Materials 2023;16. https://doi. 
org/10.3390/ma16155381. 

[50] Chiu YH, Liao YH, Juang JY. Designing bioinspired composite structures via 
genetic algorithm and conditional variational autoencoder. Polymers (Basel) 2023; 
15. https://doi.org/10.3390/polym15020281. 

[51] Zhao J, Wang B, Lyu Q, Xie W, Guo Z, Wang B. Compression after multiple impact 
strength of composite laminates prediction method based on machine learning 
approach. Aerosp Sci Technol 2023;136:108243. https://doi.org/10.1016/j. 
ast.2023.108243. 

[52] Liang S, Shen Y, Ren X. Comparative study of influential factors for punching shear 
resistance/failure of RC slab-column joints using machine-learning models. 
Structures 2022;45:1333–49. https://doi.org/10.1016/j.istruc.2022.09.110. 

[53] Bakouregui AS, Mohamed HM, Yahia A, Benmokrane B. Explainable extreme 
gradient boosting tree-based prediction of load-carrying capacity of FRP-RC 
columns. Eng Struct 2021;245. https://doi.org/10.1016/j.engstruct.2021.112836. 

[54] Naser MZ. An engineer’s guide to eXplainable artificial intelligence and 
interpretable machine learning: navigating causality, forced goodness, and the 
false perception of inference. Autom Constr 2021;129. https://doi.org/10.1016/j. 
autcon.2021.103821. 

[55] Tsai SW. Double–double: new family of composite laminates. AIAA J 2021;59: 
4293–305. https://doi.org/10.2514/1.J060659. 

[56] Chen T, Guestrin C. In: XGBoost. New York, NY, USA: ACM; 2016. p. 785–94. 
https://doi.org/10.1145/2939672.2939785. 

[57] Lundberg S, Lee S-I. A Unified Approach to Interpreting Model Predictions. 31st 
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 
2017. 

[58] Noureldin M, Abuhmed T, Saygi M, Kim J. Explainable probabilistic deep learning 
framework for seismic assessment of structures using distribution-free prediction 
intervals. Comput Aided Civ Inf Eng 2023;38:1677–98. https://doi.org/10.1111/ 
mice.13015. 

[59] Wachter S, Mittelstadt B, Russell C. Counterfactual explanations without opening 
the black box: automated decisions and the GDPR. Harv J Law Technol 2018;31: 
841–87. 

[60] Molnar C. Interpretable machine learning. 2022. 
[61] Aydar AY. Utilization of Response Surface Methodology in Optimization of 

Extraction of Plant Materials. In: Statistical Approaches With Emphasis on Design 
of Experiments Applied to Chemical Processes. InTech; 2018. https://doi.org/ 
10.5772/intechopen.73690. 

[62] Khuri AI, Cornell JA. Response surfaces: designs and analyses. CRC press; 2018. 
https://doi.org/10.1201/9780203740774. 

[63] David Harvey. Using R to Model a Response Surface (Multiple Regression). 
Chemometrics Using R, DePauw University; 2021. 

[64] Chen A, Davalos JF. Development of facesheet for honeycomb FRP sandwich 
panels. J Compos Mater 2012. https://doi.org/10.1177/0021998312437432. 

[65] Chen A, Davalos JF. Design Equations and Example for FRP Deck–Steel Girder 
Bridge System. Practice Periodical on Structural Design and Construction 2014;19. 
https://doi.org/10.1061/(asce)sc.1943-5576.0000173. 

[66] ABAQUS. ABAQUS Documentation 2022. 
[67] Python 3.12 Contributors. Python 3.12 2023. 

M. Yossef et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.compstruct.2021.114269
https://doi.org/10.1016/j.compstruct.2021.114269
https://doi.org/10.1016/j.compositesb.2021.109152
https://doi.org/10.1016/j.compositesb.2021.109152
https://doi.org/10.1016/j.compstruct.2023.117473
https://doi.org/10.1016/j.eml.2017.10.001
https://doi.org/10.1016/j.eml.2017.10.001
https://doi.org/10.1016/j.matdes.2020.108509
https://doi.org/10.1016/j.matdes.2020.108509
https://doi.org/10.1108/EC-08-2019-0346
https://doi.org/10.1016/j.ijsolstr.2021.111095
https://doi.org/10.1016/j.ijsolstr.2021.111095
https://doi.org/10.1016/j.compositesb.2019.107171
https://doi.org/10.1016/j.compstruct.2022.115184
https://doi.org/10.1016/j.compstruct.2022.115184
https://doi.org/10.1007/s00366-020-01003-0
https://doi.org/10.1007/s00366-020-01003-0
https://doi.org/10.1007/s11831-021-09700-9
https://doi.org/10.3390/jcs7090364
https://doi.org/10.2514/6.2023-0773
https://doi.org/10.1038/s41598-023-40513-x
https://doi.org/10.1016/j.compositesb.2021.109160
https://doi.org/10.1016/j.compositesb.2021.109160
https://doi.org/10.3390/ma16155381
https://doi.org/10.3390/ma16155381
https://doi.org/10.3390/polym15020281
https://doi.org/10.1016/j.ast.2023.108243
https://doi.org/10.1016/j.ast.2023.108243
https://doi.org/10.1016/j.istruc.2022.09.110
https://doi.org/10.1016/j.engstruct.2021.112836
https://doi.org/10.1016/j.autcon.2021.103821
https://doi.org/10.1016/j.autcon.2021.103821
https://doi.org/10.2514/1.J060659
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1111/mice.13015
https://doi.org/10.1111/mice.13015
http://refhub.elsevier.com/S0263-8223(24)00318-0/h0295
http://refhub.elsevier.com/S0263-8223(24)00318-0/h0295
http://refhub.elsevier.com/S0263-8223(24)00318-0/h0295
https://doi.org/10.5772/intechopen.73690
https://doi.org/10.5772/intechopen.73690
https://doi.org/10.1201/9780203740774
https://doi.org/10.1177/0021998312437432
https://doi.org/10.1061/(asce)sc.1943-5576.0000173

