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Abstract—The Digital Twin (DT) paradigm has been largely
adopted for many smart systems in various domains. Due to
the heterogeneous and distributed nature of the physical twins,
these systems increasingly incorporate disparate security tools,
especially those based on service-based AI/ML capabilities. That
presents numerous challenges in achieving a comprehensive
understanding of security analytics and explainability in security
operations carried out by ML-based security services, which
require continuous monitoring and optimization to remain ef-
fective. This paper aims to support security service integration
and automated analyses with enhanced explainability in DTs.
We introduce a novel framework that unifies runtime contexts
to facilitate security services unification and operation inter-
pretation in security orchestration. We define a workflow and
provide necessary services for generating security reports across
physical and logical layers. Leveraging a centralized knowledge
service, we let security analysts incorporate domain knowledge
in automating incident reasoning and security enforcement at the
logical layer. We demonstrate our explainability framework on
a DT of an Industry 4.0 toy factory with two ML-based security
services detecting network anomalies. Our experiments show a
significant reduction in manual effort for orchestrating security
incident analysis and mitigation.

Index Terms—Security Orchestration, Digital Twin, Smart IoT
Systems, Machine Learning, Explainability

I. INTRODUCTION

Digital Twins (DTs) have made significant impacts on
various industries such as manufacturing, healthcare, energy,
transportation and logistics [1, 2]. With collaborative and
synchronized operations across distributed and heterogeneous
systems, their reliance on connectivity, real-time data, and
integration with critical systems make them attractive to cyber
attacks. Securing a DT-based smart system requires a holistic
security solution to cover its diverse attack surfaces (e.g.,
physical devices, network infrastructures, access interfaces, au-
thentication, and third-party integration). To date, this involves
incorporating ML-based security solutions to coordinate and
response to security incidents in real-time. That raises the
demand for explainability in automated security orchestration,
especially when integrating security technologies (e.g., frame-
works, protocols, and standards) tailored for DT [2, 3]). On
the other hand, existing security orchestration, automation and
response (SOAR) approaches, as reviewed in [4], have not
comprehensively leveraged the DT paradigm. While more and
more SOAR approaches strive for automation, explainability
remains an open research area.
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The main question for this paper is that given many existing
ML-based security tools and services for different security
aspects in DTs, how can we (1) enhance the explainability
of their outputs so that we can incorporate them appro-
priately, (2) facilitate explainable analyses for investigating
root causes/problems and (3) provide explainability-enhanced
security response/enforcement. Explainability is an essential
requirement for achieving a comprehensive understanding of
security orchestration. Such knowledge is crucial in continu-
ous optimization, especially when using multiple ML-based
security services in DTs. The explainability is shown in but
not limited to the following abilities: (1) providing holistic
insights into security operations/events in multiple security as-
pects; (2) interpreting and validating security operations/events
without intricate technical details that facilitate collaboration
between security teams, tools, and stakeholders; (3) enabling
knowledge incorporation (e.g., incorporating domain-specific
knowledge with knowledge of the system and multiple security
contexts in automating security analyses and optimization).

Despite significant research [1], security orchestration, au-
tomation and response in the context of DTs still face the
following challenges: (1) Diverse security tools from mul-
tiple vendors with different data structures pose numerous
challenges in integrating/connecting information (e.g., system
and security contexts) to build a unified runtime contextual
knowledge. Security tools (e.g., Darktrace and Vectra Al) can
detect security threats using AI/ML algorithms and provide
actionable insights that aid in understanding and responding to
security incidents effectively. However, their security analyses
have not supported and incorporated knowledge of the physical
systems, which is extremely complex and dynamic in DTs,
thereby limiting their ability to analyze certain security events
across DTs (e.g., cascading incidents). (2) Employing ML-
based security services raises other challenges in continuous
updating and re-training to adapt to evolving environments
(e.g., data quality and patterns), which potentially generate
computational burdens and lead to performance degradation
if not managed effectively. These ML-based services mainly
undergo fine-tuning and re-training based on observation and
feedback from security analysts, consuming significant human
effort. However, existing approaches have not yet leveraged the
potential of the DT’s contextual knowledge in evaluating and
optimizing such tuning.



We are developing an explainability framework with the
following contributions: (1) supporting continuous integration
and data unification by creating a unified runtime context
encompassing contextual knowledge of the DT and its ML-
based security system; (2) introducing a workflow and es-
sential services that utilize the unified runtime context to
support automated security analyses with enhanced explain-
ability. Our framework offers a comprehensive insight into
security operations/events and enables security analysis across
components/systems within DTs. It allows automated security
analyses to operate at the logical layer without resolving the
underlying systems and incorporate domain-specific knowl-
edge and the runtime context in evaluating and optimizing
performance for ML-based security systems.

The rest of this paper is organized as follows: Section II and
Section III provide the background and introduce our explain-
ability framework for supporting security orchestration. We
present experiments and discussion in Section IV. Section V
discusses the related work. We conclude the paper and outline
the future work in Section VI.

II. BACKGROUND
A. Security orchestration in Digital Twins

DTs can take various forms depending on applications and
the complexity of physical systems [5]. In this study, we aim to
support security orchestration for DTs whose physical entities
are distributed across multiple systems/locations, as shown
in Fig. 1. Such DTs can be found in, e.g., manufacturing
[6], smart city [7], oil & gas industry [8] that are built atop
interconnected systems, enabling, e.g., predictive maintenance
and real-time operations optimization and decision-making, as
discussed in [9]. In such DTs, physical entities are organized
into different zones based on functionality, location, or security
requirements. In each zone, physical entities are intercon-
nected through a private network managed by a controller.
Data from the physical entities is sent to the internet via
multiple IoT gateways, which support different communication
protocols such as MQTT, CoAP, and HTTP [10]. Within such
DT-based smart systems, many common/ML-based security
services are employed to address various security threats [1].
For example, Drarktrace and Vectra Al analyze network traffic;
Ping Identity and Okta analyze user behavior for authenti-
cation and access control [11]. Then, security orchestration,
which involves coordinating and managing security processes
and tools, becomes highly complex and requires sophisticated
solutions to effectively manage security policies, enforcement
mechanisms, and incident response procedures across hetero-
geneous systems, protocols, and vendors [2].

B. Knowledge graph and its application in cybersecurity

Knowledge Graph is a structured data model for captur-
ing the knowledge of objects, their attributes, and relations.
It is extensively used across multiple domains that require
knowledge representation and enrichment (e.g., Wikidata [12]
and YAGO [13]). Knowledge graphs have been utilized to
facilitate data integration and representation of DT models
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Fig. 1: Overview of a common deployment model for DT in
manufacturing.

(e.g., SINDIT [14] and SEDIT [15]). In cybersecurity, knowl-
edge graphs are used to model and represent the complex
relationships between users, devices, applications, vulnera-
bilities, threats, and security controls [16]. Since knowledge
graphs can provide contextualized views of complex security
operations, an increasing number of security systems leverage
knowledge graphs for multiple purposes, such as CSKG',
SEPSES [17], and UCO?. The knowledge-based approaches
also facilitate the development of proactive security mea-
sures, such as predictive analytics with AI/ML, automated
response, continuous learning, and adaptation. That reduces
human intervention in repetitive and error-prone tasks [16].
In this paper, we incorporate existing knowledge graphs from
multiple security aspects and extend ML-specific attributes to
improve explainability and address challenges in orchestrating
ML-based security systems for DTs.

ITII. EXPLAINABILITY FRAMEWORK FOR ORCHESTRATING
ML-BASED SECURITY IN DT

We are developing a framework to improve Runtime
eXplainability for Orchestrating ML-base Security system
(RXOMS) in DTs. RXOMS’s objectives include: (1) Unifying
knowledge of DT and its security system in multiple aspects
within a centralized knowledge service to enable seamless
integration of disparate security tools across DT environments
(Section III-A). (2) Supporting automated security analyses,
such as incident triage, investigation, and mitigation, to operate
on the logical layer with reduced human intervention and
errors, which ensures consistent and reliable execution of
security operations in DTs (Section III-B).

Thttps://github.com/HoloLen/CyberSecurity_Knowledge_graph
Zhttps://unifiedcyberontology.org/



TABLE I: Summarize the aspects of ML-based security services in Tool-specific Context for enhancing explainability.

Aspects Role in Explainability

Configuration Explain the effectiveness dependency between how a security service is configured and its behaviors (e.g., thresholds,

Settings rules, and policies), supporting operation adjustment based on specific use cases or environments.
o | Operational Pa- | Explain how a security service operates (e.g., scanning frequency, sampling rates, and data retention policies). They
E rameters directly impact the reliability and compliance of security measures at runtime.
g Functionality Explain the tasks and capabilities of the security service (e.g., anomaly detection, threat prevention). They help security

Metadata analysts understand the core functions and how they contribute to overall security operations.

Output Format | Explain how a service presents its findings or results (format of alerts, reports, or logs). Analyzing the output content

and Content helps security analysts interpret the conclusions and integrate findings into broader security analysis.
o | ML Model Explain the metadata of the embedded ML model (e.g., functionality, training data, feature extraction methods, and update
% mechanisms). They are essential for ensuring that ML-based security solutions remain explainable and trustworthy.
g | Input Metadata Explain types of input data, data sources, and data quality. That allows security analysts to assess the relevance and
3 patterns of input data, which influence the performance of the security service.
S | Performance & | Explain the service performance with ML-specific metrics, such as detection confidence, false positive rates, and average

Accuracy accuracy. They provide quantitative measures of effectiveness, reliability, and compliance.
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Fig. 2: A subgraph represents runtime knowledge consolidated from Environment, Tool-specific, and Security Context.

A. Unifying contexts in Knowledge Service

We view each entity in the DT as a subject in engineering
analytics, so-called analytic subject. To understand the subject
(e.g., security operations and events on the subject), we must
examine its relevant information from suitable contexts at
runtime. (1) Tool-specific Context: includes knowledge of the
security service related to the subject at a certain runtime, such
as functionality, performance, configuration, input source, and
input quality. (2) Environment Context: provides knowledge of
the associated entity within the DT, including the relationships
with other entities, e.g., direct network connections to other
entities or being operated by a specific user. (3) Security
Context: provides knowledge of the associated entity within
multiple security aspects, such as whether the entity is cur-
rently experiencing unauthorized access or has been detected
with malware infections. To access such contexts in real-time,
we develop a centralized knowledge service that incorporates
the contextual knowledge from DT and its security systems as
a unified Runtime Context.

1) Aspects of security services in Tool-specific Context:
We assume that ML-based security services (of a security
tool) operate as black boxes and we have limited control via

configurations, operational parameters, and interfaces. Based
on intensive analyses, we summarize a list of aspects for
constructing the Tool-specific Context in Table I. Security
services, especially ML-based services, must be configured
appropriately to ensure they function correctly with expected
outcomes. Their performance (e.g., accuracy and latency)
heavily relies on the quality of the data they receive and
how they process the data. Thus, all aspects affecting the
performance (manufacturer configurations, ML models, and
data quality) must be constantly updated, supporting security
analysts to explain the analytic subjects at runtime. We use
knowledge graphs to represent the complex and dynamic
relationships among aspects in the Tool-specific Context. All
security services share the same graph schema but do not
necessarily possess all the aspects (in Table I). As more
and more security services are integrated, new aspects from
emerging services will be incorporated to enrich the schema.

2) Integration of environment, tool-specific, and security
knowledge: We implement the Environment and Security
Contexts as knowledge graphs based on prior works. The
Environment Context is specific to individual DT, which has
been developed by the DT’s owner. For Security Context, we
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Fig. 3: Workflow and essential components in RXOMS for enhancing explainability in security orchestration and analysis.

build a graph that synthesizes existing knowledge graphs in
CSKG and SEPSES for multiple security aspects (e.g., net-
work, authentication, and physical security) and consolidates
the objects and their attributes.

In our work, the environment, tool-specific, and security
contextual knowledge provide comprehensive information for
analyzing the analytic subject (demonstrated in Section IV).
Integrating them into a unified knowledge service streamlines
and simplifies the process of accessing, managing, and utiliz-
ing relevant knowledge in security analysis and orchestration,
avoiding redundancy and inconsistencies, thereby enhancing
the efficiency of security operations. In the unified knowledge
graph, an object can represent a physical/logical entity in
DTs, a class (e.g., anomaly and incident) in the Security
Context, or a security tool/service. In different contexts, there
are objects with a subset of similar attributes within existing
knowledge graphs. As these objects show similarity across
multiple contexts, we define a new object in the unified context
that encapsulates all the common attributes. Then, those con-
sidered similar objects become subclasses of the newly created
object. For example, the SecurityTool in the Environment
Context is a subclass of Software&Tool in the unified Runtime
Context, or a PhysicalEntity in the Environment Context is
a subclass of CriticalAsset which is linked to the Security
Context. This way, information of the analytic subject is
linked to the Tool-specific Context (e.g., ProtectionService
and DetectionService), and Security Contexts corresponding
to multiple security aspects. Moreover, we define new objects
to capture ML-specific attributes, such as MLModel, which
encapsulate training aspects (e.g., training DataQuality) to
enrich the information of ML-based security services; and

Performance associated with ML-specificMetric(s) (e.g., aver-
age detection accuracy/confidence and false negative rate) to
support quantitative explainability of effectiveness, reliability,
and compliance. For graph storage and querying, we utilize
Stardog?, a state-of-the-art triplestore known for its commend-
able performance.

B. Utilizing Centralized Knowledge Service for orchestration

To leverage the Centralized Knowledge Service for enhanc-
ing explainability in security for DTs, RXOMS implements a
workflow with essential services, as depicted in Fig. 3, demon-
strating the important role of the Runtime Context in various
processes throughout security analysis and orchestration.

1) Consolidating and enriching anomaly reports: The de-
ployment and utilization of multiple security services for
DTs lead to the diversity of anomaly reports. Discrepancies
in data structure among different security reports hinder the
ability to correlate knowledge in multiple security aspects
and understand cross-zone/subsystem security problems. Thus,
RXOMS employs a Data Enrichment Pipeline (DEP) to enrich
the output of security (detection) services. The consolidated
anomalyReport follows the schema depicted in Fig. 4. The re-
port schema includes: monitoringInfo representing information
of input data (e.g., data source and quality); anomalyMetric(s)
representing outcomes of the security service (e.g., decisions
and ML-specific metrics); physicalEntitylnfo representing at-
tributes of the entity from the Environment Context; detection-
Info representing multiple aspects of the security service in the
Tool-specific Context, that include the current configuration
and performance of the ML models. DEP, as a streaming

3https://www.stardog.com/
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process, provides an API that allows security services to
forward their output, including detected anomalies, metrics,
attributes, and service identity. Based on that, the DEP queries
Runtime Context from the Knowledge Service to enrich the
anomaly report, which will be demonstrated in Section IV.

2) Supporting automated security analysis with enhanced
explainability: The Incident Analysis service is responsible for
analyzing the anomaly in its relation to other entities within the
Environment Context and other anomalies in different security
aspects within the Security Context. In RXOMS, the knowl-
edge service provides multiple APIs for automated security
analysis to query information related to the analytic subjects,
such as its relationships with others, relevant security tools,
and anomalies at runtime. Thereby, security analysts are able
to incorporate domain-specific knowledge into their analyses
to perform real-time incident identification and tracing. For
handling an anomaly (e.g., a sudden increase in network
traffic), an automated analysis is able to: (1) utilize the entity’s
relationships (e.g., network flow) to automatically trace the
source(s) causing the anomaly, the destination(s)/endpoint(s)
of the anomaly, and affected entities along the tracing path;
(2) assess the pattern, severity, and impact of the anomaly
on the related entities to identify the security incident (e.g.,
DDoS attack); (3) leverage the Security Context on the
anomaly source(s) to determine the root cause in real-time
(e.g., unauthorized user access, malware, or system fault); (4)
examine the Runtime Context to determine whether this is
a new or ongoing incident to update the Runtime Contexts
correspondingly.

Once a new incident is detected, the Incident Analysis
service generates an incidentReport following the schema
shown in Fig. 4. The report includes: incidentCause rep-
resenting the logical entity causing the incident (e.g., user,
software, or device) and attributes describing its anomaly
behavior; incidentConsequence representing related logical
entities with their attributes describing the impact on individual

entities; incidentInfo representing metadata that describes the
type of incident according to MITRE and attributes detected
at runtime (e.g., runtimePattern). Especially, it contains ag-
gregatedMLMetric, which presents the aggregation of ML-
specificMetric(s) from the analyzed anomalyReport(s). In other
words, an incident is concluded based on multiple anomalies
across the DT’s systems, detected by several ML-based se-
curity services with different reliability (e.g., confidence and
accuracy). For example, the aggregatedMLMetric, being the
average/minimum confidence, demonstrates the certainty of
a specific incident detection to support security analysts in
validating and making decisions. We use Environment Context
to link all physical objects to the corresponding logical objects
to omit their technical details in the report. For example,
instead of reporting an incident emerging from IP address
X, we report the incident associated with the logical entity
whose physical twin (physical entity) was attached to X at the
time of the incident. That enhances explainability for incident
analyses on dynamic underlying systems (e.g., physical entities
reconnect frequently and use different IP addresses). The
report is abstracted from technical details and only presents
incident knowledge with objects at the logical layer, which
will be illustrated in Section IV.

3) Enhancing explainability in incident validation and mit-
igation: Making decisions to handle an incident is a process
that requires the validation of the security analysts. Our Inci-
dent Validation & Decision-Making (IVDM) service provides
APIs allowing security analysts to query relevant information
of the analytic subject (e.g., runtime metrics from security
services and status of the entity at certain runtime). Thus,
security analysts can verify the condition of all analytic
subjects mentioned in the incident report. The service relies
on the detected incident type to automatically query incident
mitigation from the Knowledge Service to assist security
analysts in making decisions. In the current implementation,
we have just supported a basic incident-mitigation mapping



TABLE II: Sensor data collected from the Training Factory.

Physical Entity Sensors Gateway
. 14 Sensors for air quality, pressure, | MQTT
Condition Sensor temperature, and camera positions OPC-UA
Multi-Processing 2 Sensors for MPO status MQTT
Station
Sorting Line 2 Sensors for sorting line status MQTT
Highbay 6 Sensors for HWB status and MQTT
Warehouse - HWB | positions OPC-UA
Delivery And
Pickup - DPS 4 Sensors for DPS status MQTT
9 Sensors for VGR status and MQTT
Robot-VGR positions OPC-UA

according to MITRE’s public Cyber Threat Intelligence (CTI).
Incident mitigation can be added by security analysts or based
on historical incident solutions. Every mitigation as an abstract
strategy is mapped into a list of actionable tasks/workflows
known as a Security Plan. Since mapping incidents to mitiga-
tion and subsequently to security plans is a complex process,
it will be addressed in our future studies. Then, the IVDM
service uses the Environment and Tool-specific Contexts to
map the tasks to specific API calls to corresponding security
services. As a result, we obtain a security plan as a list of
API calls applied to the specific logical objects. At this point,
the responsibility of the Security Plan Enforcement service is
to execute these API calls with the parameters defined in the
Tool-specific Context. The values passed into these parameters
(e.g., IP address, ports, and devices) are physical attributes of
the associated objects in the Environment Context. Repetitive
tasks such as querying Runtime Contexts, mapping objects and
attributes, and calling APIs are automated to reduce human
efforts and the risk of errors. To ensure the correctness of the
Runtime Context, all changes in the physical system or digital
twin must be synchronized and timely updated.

IV. EXPERIMENTS
A. Experiment setup

In this study, we conduct experiments on SINDIT, a Digital
Twin of the Fischertechnik Training Factory [18]. The factory
includes 37 sensors belonging to six physical entities. The
entities (physical twin) constantly send sensor data to the
digital twin through MQTT and OPC-UA gateways. The list
of entities, sensors, and gateways is described in Table II. The
factory’s network comprises two zones. Zone 1 (Z1) includes
Switch S1, MQTT Gateway, Multi-Processing Station, Sorting
Line, and Delivery & Pickup, which only send out data via
the MQTT gateway. Zone 2 (Z2) includes Switch S2, OPC-
UA Gateway, Condition Sensor, Robot-VGR, and Highbay
Warehouse. Physical entities in Z2 communicate with MQTT
and OPC-UA gateways so they can have cross-zone access.

We use Mininet [19] to emulate the factory network, as
shown in Fig. 5. From the real dataset extracted from SINDIT,
we estimate the data volume and number of network packets
from each entity to individual gateways and vice versa. Based
on that, we used a Python simulation program to generate the
network traffic of 10 days scaled down within 30 minutes for
the experiments. We employ an SDN controller developed in
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Fig. 5: SINDIT’s Network Simulation.

the Ryu framework [20] to manage the network. The controller
monitors and reports network stats collected from switches
every second. The network stats on each switch include input
port (in_port), ethernet destination MAC address (eth_dst),
packet count (packetCount), and byte count (byteCount) on
individual network flows. The physical network is managed by
a firewall deployed on the SDN controller that offers common
APIs to add/update/remove the firewall’s rules. Besides, we
employ an OPA [21] engine for logical access control from
entities in SINDIT to the gateways.

We emulated two ML-based Security Detection Services
to detect anomalies in the two zones separately (Fig. 5).
These services embed Isolation Forest (ML-IF) and Local
Outlier Factor (ML-LOF) respectively. These ML models are
widely used in network traffic analysis [22, 23] and are chosen
due to the lack of access to industrial ML-based Security
Detection Services suitable for the factory. The ML-IF returns
the output as a data frame with a pre-defined schema, including
networkFlow(switch, in_port, eth_dst), prediction, confidence,
and anomalyScore. The ML-LOF returns a dictionary out-
put with different ML-specific metrics, networkFlow(switch,
in_port, eth_dst), prediction, nearestNeighbor, and distance.
These services detect anomalies in network traffic based on the
time-series of packetCount and byteCount of all network flows
in their zones. The ML models inside the services are trained
on historical network data to detect anomalies in the current
network traffic. Similar to real-world scenarios, we assumed
that the models must be constantly re-trained to adapt to the
evolving network patterns.

In our experiments, we simulated DDoS attacks by selecting
physical entities as attackers and gateways as attack targets.
We induce rapid surges in data packet transmission from
attackers to targets with configurable network traffic (byte and
packets) and time periods. The attacks resulted in anomalies
detected by the ML-based security services. Based on the
anomaly reports, the processes of tracing, identifying inci-
dents, and generating security plans are automated. Security
analysts only validate the incident reports and security plans
to trigger the security plan enforcement.
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B. Experiment 1: Runtime explainability in identifying and
mitigating security incident

In this experiment, we perform several attacks from the
Multi-Processing Station - MPO, Sorting Line - SLD, and
Delivery and Pickup - DPS to the MQTT Gateway. Fig. 6
shows the number of network packets generated by these
entities and the number of error responses observed on the
gateway. After the first 5 minutes, we increase the number of
packets generated from MPO at a certain level without causing
overflow on the MQTT Gateway. Every next 5 minutes, we
increase network traffic and the number of attackers to cause
disruptions on the MQTT Gateway".

Listing 1: Excerpt of an incident log from Vectra Al

detection (e.g., sample rate and consistency); anomalyMetric
including the detection confidence, anomaly score, and the
current anomaly value (byteCount); and physicalEntitylnfo to
support tracing in subsequent analyses.

To identify incidents by analyzing anomalies without a
unified runtime context, security analysts must query infor-
mation from various sources (logs and databases) based on
relationships among entities, posing challenges in tracing and
managing data consistency. Especially in dynamic environ-
ments like SINDIT, physical entities (factory assets) frequently
crash and restart with new attributes. Thus, automating these
analyses in real-time becomes extremely challenging. As long
as all changes from physical systems and SINDIT are timely
and accurately updated in the Knowledge Service, our Incident
Analysis service allows analysts to configure tracing rules
examining relationships (of related objects) from the runtime
contexts and define rule-based algorithms to identify incidents
with enhanced explainability and responsiveness.

Listing 2: Excerpt of anomalyReport when detecting abnormal
network flows in a DDoS attack.

"UTICTimeStart": "1701461667", "UICTimeEnd": "1701461852",
"dd dst_ip": "10.0.0.4",

"dd_proto": "TCP",

"category": "DDoS",

"certainty": 72,
..}

Without Runtime Context, security analysts only receive basic
information about anomalies. As shown in Listing 1 (based on
Vectra Al Syslog®), certainty represents the confidence level
of the ML-based detection. Thus, it is difficult to determine
whether the detected anomaly is reliable. For instance, if
the security service is misconfigured, making mistakes in
detection, or low-quality input data results in low detection
quality. Listing 2 shows an excerpt of our anomaly report con-
solidated by a data enrichment pipeline. Based on the Runtime
Context, we enrich the report with the following information:
detectionInfo including the ML model metadata and security
service configurations (e.g., threshold); monitoringInfo includ-
ing the source and quality of data inputted into the ML-based

4Note that in this study, our primary focus does not lie in evaluating the
performance or capabilities of detection services. Rather, our emphasis is
placed on enhancing explainability in security orchestration and analysis.

Shttps://support.vectra.ai/s/article/KB-VS-1233

"reportID": "276852de-744a",
"detectionInfo": {
"detectionTime":"1701462137",
"configuration": {"MLModel":{}, "threshold":{},...}
P i
"physicalEntityInfo": {
"0192eb5c-e33b": { # entityID
"attribute": {
"in port": 2,
"eth_dst": "10.0.0.4"
|
b
"anomalyMetric": {
"detectionConfidence": 0.72,
"anomalyScore": -0.95,
"byteCount": {
"value": [486565],
"unit": "Mbyte"}

RN

"monitoringInfo": {
"monitoringTime": "1701461667"},
"dataQuality": {"consistency": 100,...}
"sampleRate": 1,

Table III presents the number of interactions connecting
to the Knowledge Service every minute in different attack
scenarios. With more physical entities attacking the MQTT
Gateway, more entities are affected, and more anomalies are
reported in Z1. Up to 22 anomalies are detected every second.
This number increases as we perform cross-zone attacks
with more attackers (from Z2). The number of anomalies is
proportional to the complexity of the network and the size of
the affected area. Such overwhelming volume of anomalies is
a challenge for security analysts in incorporating information
from different sources (e.g., systems and security services)
and manually processing anomalies to identify attack sources,
impacts, and incident mitigation solutions. Developing an
automated analysis can be complex when the network is
changed in runtime (e.g., devices disconnect/re-connect and
change IP addresses or when adding/removing devices). Mean-




while, in our framework, the Incident Analysis service enables
individual anomaly processing as the tracing is performed
based on the Environment Context. In the case of 3 cross-zone
attackers, more than 2250 interactions with the Knowledge
Service are performed every minute. Although there will be
many duplicate traces because the Runtime Context remains
unchanged for a certain period of time, they ensure that
decisions are made in real-time with the most updated contexts
(including physical system changes). The redundancy issue
could be addressed using caches in our future work.

Listing 3: Excerpt of an incidentReport of a DDoS attack.

"reportID": "276852de-744a",
"incidentInfo": {
"incidentID": "T1498.002",
"incidentName": "Network_Denial_ of_ Service",
"runtimePattern": "HTTP Flood",
"aggregatedMLMetric": {"minConfidence": 0.6, ...},
ol
"incidentCause": {
"47cf8bd42-2eb4": | # entityID
"attribute": {
"name": "mpo",
"type": "factoryAsset"

o3l
"incidentConsequence": {
"96er8s42-w2e6": {

"attribute": {
"name": "mgttGateway",
"status": "disrupted",

RN Y
"0192eb5c-e33b": {

"attribute": {
llnamell: "Sl",
"type": "switch",
"port": [2,3,5],
"status": "overflow"}}

The incident report is presented entirely at the logical layer,
as shown in Listing 3. We report the DDoS attack caused by
the MPO using HTTP Flood, causing disruption in the MQTT
gateway and overflow in switch S1. The aggregatedMLMectric
allows security analysts to better assess the reliability and
effectiveness of the ML models deployed in detecting security
incidents. Without technical details (e.g., [P address and port),
the report can be used to communicate between security teams
with enhanced explainability. Security analysts can retrieve
information related to the entities to validate the incidents and
mitigation decisions After that, the Security Plan Enforcement
service maps the logical entities (in digital twin) to their
corresponding physical attributes in real-time (Section III-B3)
before calling the APIs of the firewall and OPA engine. When
an entity changes its IP address or port, these changes are
promptly updated in the Knowledge Service. Firewall rules
associated with the previous attributes are removed. New rules
apply to the new attributes based on the corresponding entity’s
policies (from OPA). The entire process can be automated,
thereby reducing human effort and errors.

TABLE III: Interaction with Knowledge Graph to obtain
runtime context in different attack scenarios.

Number of | Runtime Context | Runtime Context | Cross-Zone
Attackers Update Query Attack

1 886 630 No

2 1011 691 No

3 1170 760 No

1 1100 794 Yes

2 1220 846 Yes

3 1357 902 Yes

TABLE IV: Avg low-performance time of Frequent and
Context-based (CB) re-training.

Re-training Method | Time Interval | Low-Performance State
1 min 4.67 min

Frequent 2 min 5.52 min

Re-training 5 min 8.38 min
10 min 15.85 min

RXOMS Re-training Dynamic 4.21 min

C. Experiment 2: Incorporating domain-specific knowledge in
ML-based security optimization

Although security services, such as ML-based services of
Darktrace and Vectra Al, allow for re-training and fine-tuning
ML models of detection services on user data, these optimiza-
tions are manually performed by security analysts based on
their observation and feedback without considering runtime
contexts. In this experiment, we aim to use Runtime Contexts
combined with domain-specific knowledge to identify ML
models that suffer from low performance, thus enabling us
to re-train the models. We perform several attacks from the
Robot-VGR to the two gateways with the number of network
packets shown in Fig. 7. The amount of network traffic they
generate is sufficient to disrupt the gateways. In the first 20
minutes, the entity only attacks one of the two gateways, after
which it attacks both.

With a fixed number of network flows in SINDIT, each net-
work flow is analyzed by an ML model trained with data from
that flow. Without runtime context, we update all ML models
periodically following certain time intervals, as shown in Table
IV. With the unified Knowledge Service, the security analysts
develop an automated analysis that knows exactly when the
gateways are disrupted using the Environment Context, the
network flows passing through the gateways using the Security
Context, and the security services associated with such flows
using the Tool-specific Context in real-time. Therefore, we
are aware of which network flows will be affected by the
incidents. If the ML models analyzing these flows fail to
detect any anomalies, they are suffering from low performance.
We estimate the average time these models spend in a low-
performance state in Table IV. To address this issue, we
re-train the model whenever low-performance states persist
for more than 10 seconds. In both re-training methods, we
re-train ML models using data from the nearest 5 minutes.
With smaller time intervals, the average time spent in a low-
performance state decreases significantly, but this incurs a
heavier computational burden. Also, network flows in SINDIT
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Fig. 7: Network packets from Robot-VGR to the two gateways.

evolve with various frequencies and patterns. Updating the
ML models in all flows simultaneously more frequently does
not achieve significant improvement where the time interval
is smaller than 1 minute. Meanwhile, our re-training method
relies on runtime context to maintain the performance of ML
models for about 86% of the experiment time. The number of
model updates is also less than frequent re-training (1-minute
interval), approximately 4.2 times.

V. RELATED WORK
A. Cybersecurity knowledge graph

As discussed in [16], several cybersecurity knowledge
graphs have been developed to represent and visualize cyber-
security knowledge in a graphical format. For instance, the
SEPSES knowledge graph [17] is a general-purpose cyber-
knowledge graph that links and integrates vulnerabilities,
weaknesses, and attack patterns from a wide range of data
sources. CSKG is another example of a cybersecurity knowl-
edge graph incorporating data from vulnerability and threat
libraries. The Unified Cyber Ontology (UCO) is another graph
modeling individual cyber security subdomains (e.g., cyber
investigation, computer/network defense, threat intelligence,
malware analysis, vulnerability research, and offensive/hack-
back operations). However, these knowledge graphs still lack
comprehensive coverage of concepts related to DT and ML-
based security systems. To address this gap, our proposed
graph model extends existing graphs with these relevant con-
cepts. Our cybersecurity graph model is also enriched with
tool-specific and DT knowledge. The developed knowledge
graph is used to facilitate the cognitive processes of security
specialists, enabling the utilization of runtime context in the di-
agnosis of cyber incidents and planning for respective mitigat-
ing actions. This integration ensures a holistic understanding
of the cybersecurity landscape, enhancing explainability and
contributing to a more robust and effective security framework.

B. Security orchestration and automation

The approach presented in [24] promotes security manage-
ment and orchestration at an abstract level for software-defined
infrastructure. It focuses on a conceptual design of a SOAR
platform with its key dimensions but is generally applicable for
the IT domain (services), not really for [oT or CPS domains. In
[25], the authors propose a novel framework for automatic or-
chestration, configuration, and deployment of lightweight vir-
tual network security functions in Unmanned Aerial Vehicles.
The approach is applicable for the IoT domain, even though it

mainly uses Software Defined Network (SDN) and Network
Function Virtualization (NFV)-based security mechanisms, not
any other security mechanisms. In [26], the authors present a
semantic integration approach based on an ontological model
to formalize the security tools, their capabilities, and their
activities, enabling the automatic selection and integration of
security tools. However, the ontological model solely focuses
on security tools, lacking system context that could be pro-
vided by a DTs-based approach like ours. In [27], the proposed
framework leverages DTs of IoT device modeling and their
security features for security orchestration. For each IoT asset,
there is one DT. Our work is built on a more systematic digital
twin approach using knowledge graphs and DTDL. Moreover,
we support explainability in automated security analysis and
orchestration for DTs.

In general, these existing SOAR approaches do not leverage
DT or tool-specific knowledge, thus, explainability is not
comprehensively addressed. For complex systems, leveraging
the DT approach can provide more complete orchestration and
automation. Our approach allows security analysts to examine
security operations/events within multiple security aspects and
DT context, thereby enhancing explainability.

VI. CONCLUSION

In this paper, we have introduced a novel framework that
offers enhanced explainability for security orchestration and
analysis in DTs. Leveraging a centralized knowledge service,
we support security unification and enrich security reports with
insights derived from the DT and its security system. This
facilitates automated security analysis and enforcement at the
logical layer, thereby improving interoperability and communi-
cation between security teams and stakeholders. Additionally,
our framework enables security analysts to integrate domain-
specific knowledge in analyzing security operations/events and
evaluating the performance of ML-based security services. Our
framework has shown great potential in providing a holistic
understanding across multiple aspects for security orchestra-
tion and analysis, especially within complex and dynamic DT
environments. Future work can build on the centralized knowl-
edge service as a comprehensive source of contextual data for
developing ML-based security orchestration solutions.
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