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A B S T R A C T

This work presents a general framework for the advanced control of a common class of activated sludge plants
(ASPs). Based on a dynamic model of the process and plant sensors and actuators, we design and configure
a highly customisable Output Model-Predictive Controller (Output MPC) for the flexible operation of ASPs as
water resource recovery facilities. The controller consists of a i) Moving-Horizon Estimator for determining the
state of the process, from plant measurements, and ii) a Model-Predictive Controller for determining the optimal
actions to attain high-level operational goals. The Output MPC can be configured to satisfy the technological
limits of the plant equipment, as well as operational desiderata defined by plant personnel. We consider
exemplary problems and show that the framework is able to control ASPs for tasks of practical relevance,
ranging from wastewater treatment subject to normative limits, to the production of an effluent with varying
nitrogen content, and energy recovery.

1. Introduction

The conventional purpose of a municipal wastewater treatment
plant (WWTP) is to depurate an influent sewage or wastewater stream,
before it can be safely discharged into the environment. Central to
conventional WWTPs is the biological treatment of wastewater through
an activated sludge process and activated sludge plants (ASPs) have
become a widely diffused technology, with clear societal importance. At
the same time, the interest in recovering valuable resources existing in
wastewater has become pervasive. To refer to the wealth technologies
aiming at capturing such resources from otherwise unused wastewater
streams, the notion of a WWTP as a water resource recovery facility
(WRRF) has emerged.

Chemicals containing nitrogen and phosphorus, abundant in wastew-
ater, are main contributors to crop growth [1,2]. Disposed sludge can
be harvested for materials and used to generate electricity, potentially
allowing treatment plants to be self-sufficient, if not producers of
energy [3]. Water reuse, the use of raw, or partially treated, wastewater
for beneficial purposes, is a related practice which alleviates the need
for freshwater [4]. Current efforts have focused on the design of new,
or the adaptation of existing, treatment processes to include resource
recovery functionalities [5–11]. Despite the remarkable results, these
solutions are undeniably costly, because of the capital and maintenance
investments needed to revamp and operate these modernised facilities.
Conversely, too feeble is the effort to understand how the operation
of the existing wastewater treatment infrastructure can be rendered
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flexible enough to sustain both changing quality standards and resource
recovery objectives.

The complexity of these bioprocesses is overwhelming. How to
determine and adapt in real-time the operational policies for activated
sludge plants is a daunting task to be handled manually by plant
operators and engineers. From this perspective, the arising paradigm
of perceiving wastewater as a sustainable source of water of different
grades, of nutrients, and energy, together with stricter regulations [12,
13], demands for soft and automatic technology aiming at an optimised
operation of existing treatment facilities.

Automatic control provides the mathematical framework for the de-
sign of control policies capable of steering in real-time activated sludge
plants towards desired objectives. Model predictive control (MPC),
specifically, has been the technology of choice in many industrial
applications [14]. In this model-based approach, optimal actions to the
plant actuators are recursively computed based on measurements and
a dynamical model representation of the plant [15]. Aligned with the
emerging Measurement-Analysis-Decision concept for wastewater treat-
ment (M-A-D, [16]), this control methodology is a promising frame-
work for the automation of wastewater treatment facilities of the
future.

The availability of support tools [17] that provide protocols for
simulating activated sludge plants has initiated the computer-assisted
design of automatic control solutions for efficiently operating real-
world facilities. The most advanced strategies use dynamic process
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Fig. 1. Model-based control of activated sludge plants.

models as their core technology, starting from [18,19] who both in-
vestigated model-based approaches for controlling high peaks in ef-
fluent ammonia. The classic technique of dynamic-matrix control was
used by [20] to maintain effluent’s quality within regulation-specified
limits. For nitrogen removal, nonlinear MPC was shown to outper-
form traditional model-free controllers during peaks in the influent
load [21]. For the same task, [22,23] augmented the actuation layout
and designed MPCs that improve effluent quality at the expense of
increased energy costs. In [24], a predictive controller is designed for
a neural-network model of an activated sludge process with plant-wide
actuation. Similarly, various approaches to predictive control were
investigated in different types of activated sludge processes [25–28].
A self-optimising procedure to select the best controlled variables to be
used in optimal control strategies was proposed by [29]. The problem
has also been tackled using economic model-predictive controllers:
Several works report cost-effective control of ASPs under different
technological assumptions [30–34]. Recently, the technological scope
has been extended to the design of several centralised and distributed
strategies in which predictive models are used not only for control,
but also for estimation [35–37]. Importantly, while these contributions
show the potential of model-based strategies, they are ad hoc designs
centred on a specific goal: Removal of effluent nitrogen to comply with
normative limits. As such, they do not provide a unified control frame-
work which is valid at system-level and general enough to incorporate
resource recovery operations.

In this study, we present a general framework for operating an
important class of activated sludge plants with model predictive con-
trollers (Fig. 1). Specifically, we

i. formulate an Output MPC for conventional ASPs and show how
to configure it to operate a full-scale plant according to high-
level and yet practical objectives;

ii. consider the objective of operating ASPs as WRRFs that produce
an effluent water whose quality varies in time, in response to a
downstream demand;

iii. demonstrate how the controller is able to dynamically operate
an ASP to achieve these objectives, while satisfying legislative
and technological limits, rejecting influent disturbances, and
maximising energetic autonomy by modulating the production
of sludge.

Due to its generality, our framework accommodates any control ob-
jective of operational, environmental, and/or economic nature. They
are assumed to be planned by plant management and given to the
controller as reference trajectories for the plant to follow. Their attain-
ment is based on the recursive solution of an optimal control problem
to compute the control actions which best track the reference over
a future horizon. Importantly, the control actions are determined to
satisfy any constraints that managers and engineers have requested
to be enforced. The optimal control element (MPC) of the controller
operates in conjunction with a moving-horizon state estimator (MHE),
their functioning depends on a dynamic model of the process and their

operation relies on the exchange of data with plants’ actuators (the
control actions) and measurements (the process sensors and laboratory
analysis).

Our study is presented as follows. Section 2 overviews a con-
ventional activated sludge plant and the reference benchmark model
commonly used to describe its main dynamics. The complete reference
benchmark will be used as an experimental ASP. In Section 3, the
general framework of model-based predictive control is presented in
detail. In Section 4, the controller is customised with linearised models
of the activated sludge process and configured to operate the ASP to-
wards the attainment of pre-assigned objectives. Section 5 discusses the
aforementioned applications designed to show how the controller can
autonomously operate an activated sludge plant to produce water of
varying quality. We discuss two high-level tasks of practical relevance:
(i) production of effluent water whose quality satisfies conventional
treatment limits and (ii) production of reuse effluent water with varying
nitrogen content. For completeness, models, additional experiments,
and discussions are reported in the Supplementary Material.

2. The activated sludge plant

We consider the activated sludge process in a conventional bi-
ological wastewater treatment plant [38]. Based on denitrification-
nitrification processes, microorganisms are used to reduce the nitrogen
present in the form of ammonia in the influent wastewater into nitrate,
which is then further reduced into nitrogen gas and released into the
atmosphere. A typical process (Fig. 2) comprises two reacting sections
and a settler. Each reacting section may consist of several tanks for the
oxidation of organic matter. In the settler, the water is clarified from
suspended solids and flocculated particles before it is further processed
or disposed.

Fig. 2. Activated sludge plant: Conventional process layout equipped with a basic setup
for measurement and control.

The treatment begins in the first, anoxic, reacting section where
influent wastewater from primary sedimentation, return sludge from
secondary sedimentation, and internal recycle sludge are fed to the
bioreactors where denitrification is performed. The outflow from the
anoxic section is then fed to the second, aerated, reactors and, even-
tually, to the secondary settler. In the aerated section, ammonium
nitrogen (NH4–N) in the wastewater is oxidised into nitrate nitrogen
(NO3–N), which is in turn reduced into molecular nitrogen (N2) in the
anoxic section. This is achieved by recirculating mixed-liquor from the
aerated section and recycle sludge from secondary sedimentation into
the anoxic section. The oxygen used for oxidation is added by insufflat-
ing air to the bioreactors and a large part of the biodegradable organic
matter is removed in the denitrification process. While supplementary
carbon sources can be added to the reactors, no other major chemicals
are used in the wastewater treatment process. Excess sludge from the
settler is either removed from the plant or directed towards dedicated
processes for sludge treatment.

The quality of the water from the top of the settler is routinely
evaluated in terms of suspended solids (SS), nitrogen (N, in the form of
ammonia/ammonium, and nitrates), and organic matter as quantified
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Fig. 3. Benchmark simulation model No. 1: Process layout equipped with a selection of measurement and actionable variables.

by oxygen demand (OD). Other characterisations, for instance in terms
of phosphorous (P, mainly phosphates) and alkalinity (pH), are also
common. Importantly, when no further processes exist downstream,
water from the settler must satisfy the disposal permits in force.

To produce an effluent water of consistent grade in spite of the
variability of the influent, activated sludge plants use a combination
of solutions from automatic control [39]. Simple and yet effective
strategies built upon two controllers for two key and readily measurable
quantities:

⇝ Nitrate nitrogen (NO3–N) in the anoxic section is controlled by
manipulating the internal recirculation;

⇝ Dissolved oxygen (O2) in the aerated section is controlled by
manipulating the air flow-rate.

Nitrates in the anoxic zone and dissolved oxygen in the aerated zone are
regulated using low-level controllers (Fig. 2). Proportional–integral–
derivative (PID) controllers, with set-points configured in such a way
that the plant produces a water of desired quality, are the technology
of choice. We refer to this scheme (Fig. 2) as the default control strategy.

More advanced, though less common, strategies can and have been
developed. In Sections 3 and 4, we present a general framework for
model-based control of activated sludge plants. We use the Benchmark
Simulation Model no. 1 (BSM1, [40]) as a reference process represen-
tative of a wide class of ASPs. The BSM1 is a well-established platform
for simulation and control design [31,33,37,39]. The model and its
parameters can be calibrated to represent specific real-world processes.
The main elements of the BSM1 are reviewed in this section.

2.1. Benchmark simulation model no. 1

The Benchmark Simulation Model no. 1 describes a conventional
activated sludge plant in which the anoxic and aerated sections consist
of two and three bioreactors, respectively, and one settler with ten
non-reacting layers. The dynamics of the bioreactors are described by
the Activated Sludge Model no. 1 [41], while the model by Takács
et al. [42] is used for the settler. These are widely accepted models that
were empirically validated in several studies [43–47]. Their dynamics
and control properties are thoroughly studied by [48].

This section briefly overviews the main components of the BSM1.
We present the set of BSM1’s variables which are endowed with dy-
namics, the state variables, and highlight the set-up of measurement
and control variables chosen for this study. The process layout is shown
in Fig. 3 and the variables are overviewed in Table 1. In this section,
we also overview the stormy-weather scenario chosen for the influent
wastewater used for the experiments. For completeness, the detailed
model is reproduced in the Supplementary Material.

2.1.1. Model dynamics, measurements, and control
The dynamics of each reactor 𝐴(𝑟), with 𝑟 = 1,… , 5, are described

by the evolution of the concentration of 13 species

𝑆𝐴(𝑟)
𝐼 , 𝑆𝐴(𝑟)

𝑆 , 𝑋𝐴(𝑟)
𝐼 , 𝑋𝐴(𝑟)

𝑆 , 𝑋𝐴(𝑟)
𝐵𝐻 , 𝑋𝐴(𝑟)

𝐵𝐴 , 𝑋𝐴(𝑟)
𝑃 ,

𝑆𝐴(𝑟)
𝑂 , 𝑆𝐴(𝑟)

𝑁𝑂 , 𝑆𝐴(𝑟)
𝑁𝐻 , 𝑆𝐴(𝑟)

𝑁𝐷 , 𝑋𝐴(𝑟)
𝑁𝐷 , 𝑆𝐴(𝑟)

𝐴𝐿𝐾 . (1)

The oxygen transfer coefficient 𝐾𝐿𝑎(𝑟), a proxy quantity for character-
ising the degree of aeration of the reactor, and the flow-rate 𝑄(𝑟)

𝐸𝐶 of
external carbon are used as actionable quantities that can be manipu-
lated to control the operating conditions of the 𝑟th reactor. For each
reactor, we assume that the concentration of dissolved oxygen (𝑆𝐴(𝑟)

𝑂 )
and nitrate- and nitrite-nitrogen (𝑆𝐴(𝑟)

𝑁𝑂 ) can be measured with online
sensors.

As for the settler, the dynamics of each layer 𝑆(𝑙), with 𝑙 = 1,… , 10,
is described by concentration of eight species

𝑋𝑆(𝑙)
𝑆𝑆 , 𝑆𝑆(𝑙)

𝐼 , 𝑆𝑆(𝑙)
𝑆 , 𝑆𝑆(𝑙)

𝑂 , 𝑆𝑆(𝑙)
𝑁𝑂 , 𝑆𝑆(𝑙)

𝑁𝐻 , 𝑆𝑆(𝑙)
𝑁𝐷 , 𝑆𝑆(𝑙)

𝐴𝐿𝐾 . (2)

We assume that the quality of clarified water is measured with online
analysers in terms of concentrations 𝑋𝑆(10)

𝑆𝑆 , 𝑆𝑆(10)
𝑁𝐻 , and 𝑁𝑆(10)

𝑇𝑂𝑇 , whereas
oxygen demand (𝐵𝑂𝐷𝑆(10)

5 and 𝐶𝑂𝐷𝑆(10)) is only available from offline
laboratory analysis.

The internal and external recycle flow-rates (𝑄𝐴 and 𝑄𝑅, respec-
tively) and the wastage flow-rate (𝑄𝑊 ) are the other actionable quan-
tities that can be used to manipulate the operating conditions of the
treatment plant. As for the quality of these streams, we assume that
concentrations in the internal recycle are equal to the concentrations
in the fifth reactor 𝐴(5), whereas the external recycle and wastage have
properties equal to those at the bottom layer 𝑆(1) of the settler.

2.1.2. Characterisation of the influent wastewater
The BSM1 is accompanied by influent wastewater data correspond-

ing to (i) dry-, (ii) rainy-, and (iii) stormy-weather scenarios. For
each scenario, the wastewater from the primary settler entering the
activated sludge plant is characterised in terms of flow-rate (𝑄𝐼𝑁 ) and
concentration of 13 compounds,

𝑆𝐼𝑁
𝐼 , 𝑆𝐼𝑁

𝑆 , 𝑋𝐼𝑁
𝐼 , 𝑋𝐼𝑁

𝑆 , 𝑋𝐼𝑁
𝐵𝐻 , 𝑋𝐼𝑁

𝐵𝐴 , 𝑋
𝐼𝑁
𝑃 ,

𝑆𝐼𝑁
𝑂 , 𝑆𝐼𝑁

𝑁𝑂 , 𝑆
𝐼𝑁
𝑁𝐻 , 𝑆𝐼𝑁

𝑁𝐷, 𝑋
𝐼𝑁
𝑁𝐷, 𝑆

𝐼𝑁
𝐴𝐿𝐾 . (3)

The influent is always of the municipal kind and non-actionable: Its
properties are treated as process disturbances.

We focus on the problem of controlling ASPs subjected to a stormy
weather. In the BSM1, this scenario lasts 𝑇 = 14 days and it generates
an incoming wastewater according to a model of urban activity which
follows daily and weekly patterns of wastewater production, plus two
high-intensity stormy events in week two [40]. Due to the extreme
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Table 1
Activated sludge plant: Process variables by location (‘𝐴(𝑟)’, 𝑟 = 1,… , 5, in the 𝑟th bioreactor, or ‘𝐼𝑁 ’ in the influent wastewater;
‘𝑆(𝑙)’, 𝑙 = 1,… , 10, in the 𝑙th settler layer) and type (‘𝐷’, disturbance; ‘𝑆’, state variable; ‘𝑀 ’ measurement; and ‘𝐶 ’, control).
Variable Description Units Type

𝑆𝐼𝑁
𝐼 , 𝑆𝐴(𝑟)

𝐼 , 𝑆𝑆(𝑙)
𝐼 Soluble inert organic matter g COD m−3 D, S, S

𝑆𝐼𝑁
𝑆 , 𝑆𝐴(𝑟)

𝑆 , 𝑆𝑆(𝑙)
𝑆 Readily biodegradable substrate g COD m−3 D, S, S

𝑋𝐼𝑁
𝐼 , 𝑋𝐴(𝑟)

𝐼 Particulate inert organic matter g COD m−3 D, S
𝑋𝐼𝑁

𝑆 , 𝑋𝐴(𝑟)
𝑆 Slowly biodegradable substrate g COD m−3 D, S

𝑋𝐼𝑁
𝐵𝐻 , 𝑋

𝐴(𝑟)
𝐵𝐻 Active heterotrophic biomass g COD m−3 D, S

𝑋𝐼𝑁
𝐵𝐴 , 𝑋

𝐴(𝑟)
𝐵𝐴 Active autotrophic biomass g COD m−3 D, S

𝑋𝐼𝑁
𝑃 , 𝑋𝐴(𝑟)

𝑃 Particulate products from biomass decay g COD m−3 D, S
𝑆𝐼𝑁
𝑂 , 𝑆𝐴(𝑟)

𝑂 , 𝑆𝑆(𝑙)
𝑂 Dissolved oxygen g O2 m−3 D, S/M, S

𝑆𝐼𝑁
𝑁𝑂 , 𝑆

𝐴(𝑟)
𝑁𝑂 , 𝑆

𝑆(𝑙)
𝑁𝑂 Nitrate and nitrite nitrogen g N m−3 D, S/M, S

𝑆𝐼𝑁
𝑁𝐻 , 𝑆

𝐴(𝑟)
𝑁𝐻 , 𝑆

𝑆(𝑙)
𝑁𝐻 Ammonium plus ammonia nitrogen g N m−3 D, S, S/M(𝑙 = 10)

𝑆𝐼𝑁
𝑁𝐷 , 𝑆

𝐴(𝑟)
𝑁𝐷 , 𝑆

𝑆(𝑙)
𝑁𝐷 Soluble biodegradable organic nitrogen g N m−3 D, S, S

𝑋𝐼𝑁
𝑁𝐷 , 𝑋

𝐴(𝑟)
𝑁𝐷 Particulate biodegradable organic nitrogen g N m−3 D, S

𝑆𝐼𝑁
𝐴𝐿𝐾 , 𝑆

𝐴(𝑟)
𝐴𝐿𝐾 , 𝑆

𝑆(𝑙)
𝐴𝐿𝐾 Alkalinity mol HCO−

3 m−3 D, S
𝑋𝑆(𝑙)

𝑆𝑆 Total suspended solids g COD m−3 S/M(𝑙 = 10)
𝑄𝐼𝑁 Influent flow-rate m3 d−1 D
𝑄𝐴 Internal recirculation flow-rate m3 d−1 C
𝑄𝑅 External recirculation flow-rate m3 d−1 C
𝑄𝑊 Wastage flow-rate m3 d−1 C
𝑄(𝑟)

𝐸𝐶 External carbon source flow-rate m3 d−1 C
𝐾𝐿𝑎(𝑟) Oxygen transfer coefficient d−1 C
𝐵𝑂𝐷𝑆(10)

5 Biochemical oxygen demand g COD m−3 M
𝐶𝑂𝐷𝑆(10) Chemical oxygen demand g COD m−3 M
𝑁𝑆(10)

𝑇𝑂𝑇 Total nitrogen g N m−3 M

Table 2
Influent wastewater: A selection of averaged conditions.
Variable Week 1 Week 2 Units

𝑄𝐼𝑁 18446 21039 m3 d−1
𝑆𝐼𝑁
𝐼 30 26.30 g COD m−3

𝑆𝐼𝑁
𝑆 69.5 60.93 g COD m−3

𝑋𝐼𝑁
𝐼 51.2 52.54 g COD m−3

𝑋𝐼𝑁
𝑆 202.32 185.45 g COD m−3

𝑋𝐼𝑁
𝐵𝐻 28.17 26.44 g COD m−3

𝑆𝐼𝑁
𝑁𝐻 31.56 27.66 g N m−3

𝑆𝐼𝑁
𝑁𝐷 6.95 6.09 g N m−3

𝑋𝐼𝑁
𝑁𝐷 10.59 9.94 g N m−3

events, this is the most challenging scenario from a control perspective.
The data is based on observations from real plants and adapted to
represent a 100 000 population-equivalent influent load, as described
in [49]. The main characteristics of the influent wastewater, in the
stormy-weather scenario, are in Table 2 in terms of average flow-rates
and flow-weighted average compositions. Moreover, we have 𝑋𝐼𝑁

𝐵𝐴 =
𝑋𝐼𝑁

𝑃 = 𝑆𝐼𝑁
𝑂 = 𝑆𝐼𝑁

𝑁𝑂 = 0 g m−3 and 𝑆𝐼𝑁
𝐴𝐿𝐾 = 7 mol HCO−

3 m
−3.

In Fig. 4, we visualise the influent wastewater during the second
week. To highlight the diurnal and weekly periodicities, we show flow-
rate (𝑄𝐼𝑁 ), chemical oxygen demand (𝐶𝑂𝐷𝐼𝑁 ), and total nitrogen
(𝑁𝐼𝑁

𝑇𝑂𝑇 ). The stormy events occur around the 9-th and 11-th day, when
the flow-rate peaks significantly and the concentrations of nitrogen and
organic matter either increase or decrease noticeably due to dilution.

3. Output model predictive control

Output model predictive control (Output MPC, [15]) is a systematic
approach to design and execute controllers to operate physical systems,
like an activated sludge plant, according to practical objectives. The
control actions deployed to the plant are computed as solution to an
optimisation problem based on a predictive model of the system and
the plant’s actuators and measurements, in our case the BSM1. As the
objectives can be set by the plant’s management, they explicitly reflect
certain technological, environmental, or economical targets.

An Output MPC (Fig. 5) consists of two main components: (i) a
model predictive controller (MPC) and (ii) a state estimator. The MPC
computes the control actions that drive the plant to satisfy as well as
possible a reference trajectory. The MPC actions optimise the plant’s

Fig. 4. Influent wastewater: Week 2, evolution of influent flow-rate 𝑄𝐼𝑁 , oxygen
demand 𝐶𝑂𝐷𝐼𝑁 , and nitrogen 𝑁𝐼𝑁

𝑇𝑂𝑇 .

evolution, as predicted by a dynamic model, from the knowledge of
its current state. Because the state is not known and, possibly, not
even measurable, the MPC relies on an estimator to reconstruct it
from measurement data: In our framework, we use the moving-horizon
estimator (MHE). MPC actions and MHE estimates are computed re-
cursively as solutions to independent optimisation problems, subjected
to the technological constraints and operational desiderata explicitly
set by the plant’s personnel. Once computed, the control actions are
deployed to the plant’s actuators as set-points to their low-level PIDs.

In the following, the Output MPC is overviewed for a general system
for which a dynamic model is available: The configuration for activated
sludge plants, like the BSM1, is presented in Section 4. Firstly, we
review the predictive model (Section 3.1) used by the Output MPC,
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Fig. 5. Output MPC: Main components. To follow a reference, the controller uses a
state-space model and measurement data (red) to determine the controls (blue) given
to the plant.

then overview the functioning of the controller (Section 3.2) and state
estimator (Section 3.3).

3.1. The predictive model

The Output MPC is based on a, possibly time-varying, representation
in state-space form of the system to be controlled,

𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) + 𝑓𝑡(𝑥(𝑡), 𝑢(𝑡), 𝑤(𝑡) ∣ 𝜃𝑥)𝑑𝑡 (4a)

𝑦(𝑡) = 𝑔𝑡(𝑥(𝑡) ∣ 𝜃𝑦) + 𝑣(𝑡). (4b)

The state Eq. (4a) models the evolution of the 𝑁𝑥 state variables,
given (i) their value 𝑥(𝑡) ∈ R𝑁𝑥 , (ii) the value 𝑢(𝑡) ∈ R𝑁𝑢 of 𝑁𝑢
actionable input or control variables, and (iii) 𝑁𝑤 disturbances 𝑤(𝑡) ∈
R𝑁𝑤 , at time 𝑡. The output Eq. (4b) models how the state 𝑥(𝑡) is emitted
as 𝑁𝑦 noisy output variables 𝑦(𝑡) ∈ R𝑁𝑦 . Vectors 𝜃𝑥 and 𝜃𝑦 collect the
parameters in the dynamics 𝑓𝑡 and in the output function 𝑔𝑡.

The controller is understood as a device which computes, at each
𝑡, all the actions 𝑢 that evolve the state 𝑥 in such a way that the
model output 𝑦(𝑥) follows, or tracks, a sequence of future reference
values 𝑦ref provided by the plant’s personnel. The assumption is that
the physical plant evolves as the model predicts, thus model output 𝑦
and plant’s measurements 𝑦data match to some degree. The calculation
of the control actions must be amenable to a computer implementation:
This can be achieved by adopting a discretise-then-optimise strategy [50],
according to which the continuous-time model (Eq. (4)) and the MPC
and MHE optimisations (Sections 3.2 and 3.3), are discretised in time
and then solved numerically.

In discrete-time, to evolve the model’s state (Eq. (4a)), we partition
the time axis in intervals of duration 𝛥𝑡 (Fig. 6). For state, controls,
and disturbances at time 𝑡𝑘 = 𝑘𝛥𝑡, we thus have 𝑥(𝑡𝑘) = 𝑥(𝑘𝛥𝑡) = 𝑥𝑘,
𝑢(𝑡𝑘) = 𝑢(𝑘𝛥𝑡) = 𝑢𝑘, and 𝑤(𝑡𝑘) = 𝑤(𝑘𝛥𝑡) = 𝑤𝑘. By keeping the inputs
constant between 𝑡𝑘 and 𝑡𝑘+1 (the common zero-order-hold setting in
which 𝑢(𝑡) = 𝑢𝑘 and 𝑤(𝑡) = 𝑤𝑘, for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1)), we have that the next
state 𝑥𝑘+1 = 𝑥((𝑘 + 1)𝛥𝑡) = 𝑥(𝑡𝑘+1) is given by

𝑥𝑘+1 = 𝑥𝑘 + ∫

𝑡𝑘+1

𝑡𝑘
𝑓𝑡(𝑥(𝑡), 𝑢𝑘, 𝑤𝑘 ∣ 𝜃𝑥)𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑓𝛥𝑡|𝑡𝑘 (𝑥𝑘 ,𝑢𝑘 ,𝑤𝑘 ∣𝜃𝑥)

. (5)

The integral in Eq. (5) cannot always be evaluated in closed-form
and the transition function 𝑓𝛥𝑡|𝑡𝑘 need be approximated using numerics
for integrating ordinary differential equations.

Fig. 6. Discrete-time model: Partitioning of the time axis.

Similarly, in discrete-time, the output 𝑦𝑘 = 𝑦(𝑘𝛥𝑡) at time 𝑡𝑘, when
in state 𝑥𝑘, with noise 𝑣𝑘 = 𝑣(𝑡𝑘), can be written as

𝑦𝑘 = 𝑔𝑡𝑘 (𝑥𝑘 ∣ 𝜃𝑦) + 𝑣𝑘. (6)

3.2. The model predictive controller (MPC)

A model predictive controller plans the control actions which opti-
mally evolve a system from its initial state 𝑥(𝑡𝑘), at time 𝑡𝑘, for a period
of time of duration 𝐻𝑐 , the control-horizon. The notion of optimality
is general and problem-specific: In this work, it is defined in terms of
closeness to a reference trajectory and of magnitude of the control effort.
The planning is done under the assumption that i) the actual system
evolves as the model predicts and that ii) future disturbances entering
the system are known beforehand. To account for disturbance and
model uncertainties, only the first planned action is actually deployed
to the system, then the planning is repeated, at time 𝑡𝑘+𝑑𝑡, for the next
horizon. After the first action is deployed, a new cycle is executed at
time 𝑡𝑘 + 2𝑑𝑡.

For a cycle starting at 𝑡𝑘, the sequence of optimal actions is the
function (of time) 𝑢∗ ∶ [𝑡𝑘, 𝑡𝑘 +𝐻𝑐] → R𝑁𝑢 which solves

min
𝑢(⋅)
𝑥(⋅)

∫

𝑡𝑘+𝐻𝑐

𝑡𝑘
𝐿𝑐
𝑡 (𝑥(𝑡), 𝑢(𝑡))𝑑𝑡 + 𝐿𝑓

𝑡𝑘
(𝑥(𝑡𝑘 +𝐻𝑐 )) (7a)

s.t.
∀𝑡∈[𝑡𝑘 ,𝑡𝑘+𝐻𝑐 ]

𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) + 𝑓𝑡(𝑥(𝑡), 𝑢(𝑡), �̂�(𝑡))𝑑𝑡, (7b)

𝑥(𝑡) ∈ 𝑐 (𝑡), 𝑢(𝑡) ∈  (𝑡), (7c)

𝑥(𝑡𝑘) = 𝑥(𝑡𝑘). (7d)

𝐿𝑐
𝑡 ∶ R𝑁𝑥 × R𝑁𝑢 → R and 𝐿𝑓

𝑡𝑘
∶ R𝑁𝑥 → R in Eq. (7a) denote stage

and terminal cost functions, respectively: In our case, they quantify how
well the state evolution would follow a reference trajectory. By solving
(7), we find the best sequence of control actions to keep the state as
close as possible to the reference: Should this sequence 𝑢∗ be applied,
the state evolution would be 𝑥∗ ∶ [𝑡𝑘, 𝑡𝑘 +𝐻𝑐] → R𝑁𝑥 .

At each time 𝑡 ∈ [𝑡𝑘, 𝑡𝑘 + 𝐻𝑐 ], the solution is constrained to satisfy
the dynamics (Eq. (7b)) and to be inside the constraint sets 𝑐 and
 (Eq. (7c)). 𝑐 and  are used to express technical conditions that
states 𝑥∗ and controls 𝑢∗ must satisfy at each 𝑡. Often, constraint sets
are stated as inequalities: 𝑐 (𝑡) = {𝑥(𝑡) ∶ ℎ𝑐𝑥|𝑡(𝑥(𝑡)) ≤ 0} and  (𝑡) =
{𝑢(𝑡) ∶ ℎ𝑢|𝑡(𝑢(𝑡)) ≤ 0}. To account for arbitrary relations that state and
control variables must satisfy, jointly across the control-horizon, the
formulation can be generalised to take the form (𝑥(⋅), 𝑢(⋅)) ∈ 𝑡𝑘 such
that 𝑡𝑘 = {(𝑢(⋅), 𝑥(⋅)) ∣ ℎ𝑥,𝑢|𝑡𝑘 (𝑥(⋅), 𝑢(⋅)) ≤ 0}.

Notice how, in problem (7), the initial and future disturbances and
the initial state, unknown quantities at 𝑡𝑘, are replaced by estimates
�̂�(𝑡) and 𝑥(𝑡𝑘). Before each cycle, initial state and disturbance are
reconstructed from data using the state estimator (Section 3.3), whereas
future disturbances can be assumed to remain constant and equal to
their initial value.

For computation, the continuous-time MPC (7) is transcribed into
discrete-time. This is done by firstly setting the interval 𝛥𝑡𝑐 at which
the controller is operated (Fig. 7). It is natural to cycle a MPC at
𝜅𝑐 ∈ {1, 2,…} times the model discretisation interval 𝛥𝑡 (Eq. (5)):
That is, the controller is executed at times 𝛥𝑡𝑐 = 𝜅𝑐𝛥𝑡. The control-
horizon 𝐻𝑐 = 𝑁𝑐 × 𝛥𝑡𝑐 is then partitioned accordingly in 𝑁𝑐 stages,
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Fig. 7. MPC: Partitioning of the time axis according to the interval 𝛥𝑡𝑐 at which the
controller is operated, in blue.

Fig. 8. MPC: One control cycle, with known initial state 𝑥𝑘 and disturbance 𝑤𝑘 and
constant future disturbances {𝑤𝑘}𝑛𝑐 .

corresponding to the number 𝑁𝑐 of 𝑁𝑢 actions to be computed in the
cycle. In the continuous-time MPC (7), the integration bounds are then
re-written to get 𝑡𝑘 = 𝑘𝛥𝑡 and 𝑡𝑘+𝐻𝑐 = 𝑘𝛥𝑡+𝑁𝑐 (𝜅𝑐𝛥𝑡) = (𝑘+𝑁𝑐𝜅𝑐 )𝛥𝑡, the
integral is approximated by a finite number of sums, and the constraints
are adapted, accordingly. The resulting discrete-time controller takes
the form of a constrained optimisation problem,

min
{𝑢𝑘+𝑛𝑐 𝜅𝑐 }

𝑁𝑐−1
𝑛𝑐=0

{𝑥𝑘+𝑛𝑐 𝜅𝑐 }
𝑁𝑐
𝑛𝑐=0

𝑁𝑐−1
∑

𝑛𝑐=0
𝐿𝑐
𝑘+𝑛𝑐𝜅𝑐

(𝑥𝑘+𝑛𝑐𝜅𝑐 , 𝑢𝑘+𝑛𝑐𝜅𝑐 ) + 𝐿𝑓
𝑘 (𝑥𝑘+𝑁𝑐𝜅𝑐 ) (8a)

s.t.
∀𝑛𝑐∈{0,…,𝑁𝑐−1}

𝑥𝑘+(𝑛𝑐+1)𝜅𝑐 = 𝑓𝛥𝑡𝑐 |𝑘+𝑛𝑐𝜅𝑐 (𝑥𝑘+𝑛𝑐𝜅𝑐 , 𝑢𝑘+𝑛𝑐𝜅𝑐 , �̂�𝑘+𝑛𝑐𝜅𝑐 ), (8b)

𝑥𝑘+𝑛𝑐𝜅𝑐 ∈ 𝑐
𝑘+𝑛𝑐𝜅𝑐

, 𝑢𝑘+𝑛𝑐𝜅𝑐 ∈ 𝑘+𝑛𝑐𝜅𝑐 , (8c)

𝑥𝑘 = 𝑥𝑘. (8d)

The sequence of optimal actions to be computed consists of the
collection (𝑢∗𝑘+𝑛𝑐𝜅𝑐 )

𝑁𝑐−1
𝑛𝑐=0

= 𝑢∗𝑘, 𝑢
∗
𝑘+𝜅𝑐

,… , 𝑢∗𝑘+(𝑁𝑐−1)𝜅𝑐
of 𝑁𝑐 controls to

be applied at times {𝑡𝑘+𝑛𝑐𝜅𝑐 }
𝑁𝑐−1
𝑛𝑐=0

and held constant between them. If
applied, the resulting evolution of the state would be (𝑥∗𝑘+𝑛𝑐𝜅𝑐 )

𝑁𝑐
𝑛𝑐=0

.
However, only the first action 𝑢∗𝑘 is deployed at 𝑡𝑘 and held constant
for a period 𝛥𝑡𝑐 , after which all actions are re-computed in a new MPC
cycle. The approach is shown in Fig. 8 for 𝜅𝑐 = 3 (for 𝛥𝑡𝑐 = 3𝛥𝑡), as-
suming that the disturbances remain constant over the control-horizon:
That is, for (�̂�𝑘+𝑛𝑐𝜅𝑐 = �̂�𝑘)

𝑁𝑐−1
𝑛𝑐=0

.

3.2.1. Cost functions for reference tracking
The notion of being close to a reference trajectory is encoded by the

stage and terminal cost functions. For a 𝐻𝑐 -long reference trajectory

(𝑥ref𝑘+𝑛𝑐𝜅𝑐
)𝑁𝑐
𝑛𝑐=0

, optimal tracking is achieved by minimising the (squared)
mismatch between the state of the system (𝑥𝑘+𝑛𝑐𝜅𝑐 , according to model)
and 𝑥ref𝑘+𝑛𝑐𝜅𝑐

: That is,

𝐿𝑐
𝑘+𝑛𝑐𝜅𝑐

(𝑥𝑘+𝑛𝑐𝜅𝑐 , 𝑢𝑘+𝑛𝑐𝜅𝑐 ) = ‖𝑥𝑘+𝑛𝑐𝜅𝑐 − 𝑥ref𝑘+𝑛𝑐𝜅𝑐
‖

2
𝑄𝑐|𝑘+𝑛𝑐 𝜅𝑐

+ (9a)

‖𝑢𝑘+𝑛𝑐𝜅𝑐 − 𝑢ref𝑘+𝑛𝑐𝜅𝑐
‖

2
𝑅𝑐|𝑘+𝑛𝑐 𝜅𝑐

;

𝐿𝑓
𝑘 (𝑥𝑘+𝑁𝑐𝜅𝑐 ) = ‖𝑥𝑘+𝑁𝑐𝜅𝑐 − 𝑥ref𝑘+𝑁𝑐𝜅𝑐

‖

2
𝑄𝑓 |𝑘

. (9b)

At each stage, we include an additional cost term quantifying the
magnitude of the controls (𝑢𝑘+𝑛𝑐𝜅𝑐 ) with respect to a reference value
𝑢ref𝑘+𝑛𝑐𝜅𝑐

. This is a customary practice aiming at limiting the selection of
large control actions. In Eqs. (9), the square matrices 𝑄𝑐|𝑘+𝑛𝑐𝜅𝑐 , 𝑄𝑓 |𝑘 ⪰ 0
and 𝑅𝑐|𝑘+𝑛𝑐𝜅𝑐 ≻ 0 are user-defined tuning parameters: At each stage,
they quantify the relative relevance of individual state and control
variables.

Reference trajectories of practical relevance are rarely formulated
in terms of state-variables, but rather in terms of easy-to-measure or to
compute quantities. From the model’s perspective, this can be a selec-
tion �̃� ⊆ 𝑦 of output variables for which an actual plant’s measurement
(or estimate) exists or, more generally, for some transformation �̃� = ℎ(𝑦)
that models an existing instrument. To allow the MPC to track such
references and thus effectively be an Output MPC, the �̃�ref-trajectory
must be converted into an equivalent (𝑥ref, 𝑢ref)-trajectory to be used in
the cost functions in Eq. (7) and (9).

⇝ Because the outputs are function of the state variables, Eq. (6),
the conversion can be done with a steady-state optimiser which
determines the pair (𝑥ref, 𝑢ref) of state and control variables that
stabilises the system at �̃�ref.

Steady-state optimiser
Because 𝑦𝑘 is the collection of the 𝑁𝑦 outputs returned by the

model (Eqs. (6) and (4b)) at time 𝑡𝑘, we let �̃�𝑘 = ℎ(𝑔(𝑥𝑘)) be the
𝑁�̃� key performance indicators for which a trajectory to be tracked is
given. At time 𝑡𝑘, the state and control values that keep the model in
equilibrium around the reference value �̃�ref𝑘+𝑛𝑐𝜅𝑐

correspond to the pair
(𝑥ref𝑘+𝑛𝑐𝜅𝑐

, 𝑢ref𝑘+𝑛𝑐𝜅𝑐
) which solves

min
𝑥ref𝑘+𝑛𝑐 𝜅𝑐

,𝑢ref𝑘+𝑛𝑐 𝜅𝑐

‖ℎ(𝑔(𝑥ref𝑘+𝑛𝑐𝜅𝑐
)) − �̃�ref𝑘+𝑛𝑐𝜅𝑐

‖

2
𝑊𝑦|𝑘+𝑛𝑐 𝜅𝑐

+ (10a)

‖𝑢ref𝑘+𝑛𝑐𝜅𝑐
− �̃�ref𝑘+𝑛𝑐𝜅𝑐

‖

2
𝑊𝑢|𝑘+𝑛𝑐 𝜅𝑐

s.t. 0 = 𝑓 (𝑥ref𝑘+𝑛𝑐𝜅𝑐
, 𝑢ref𝑘+𝑛𝑐𝜅𝑐

, 𝑤ref
𝑘+𝑛𝑐𝜅𝑐

|𝜃𝑥), (10b)

𝑥ref𝑘+𝑛𝑐𝜅𝑐
∈  ref

𝑘+𝑛𝑐𝜅𝑐
, 𝑢ref𝑘+𝑛𝑐𝜅𝑐

∈  ref
𝑘+𝑛𝑐𝜅𝑐

. (10c)

The matrices 𝑊𝑦|𝑘+𝑛𝑐𝜅𝑐 ,𝑊𝑢|𝑘+𝑛𝑐𝜅𝑐 ⪰ 0 are used to quantify the trade-
off between matching the reference �̃�ref𝑘+𝑛𝑐𝜅𝑐

and limiting the control
effort 𝑢ref𝑘+𝑛𝑐𝜅𝑐

: Setting 𝑊𝑢|𝑘+𝑛𝑐𝜅𝑐 = 0 leads to solutions that only aim at
matching �̃�ref𝑘+𝑛𝑐𝜅𝑐

, whereas 𝑊𝑢|𝑘+𝑛𝑐𝜅𝑐 ≻ 0 and �̃�ref𝑘+𝑛𝑐𝜅𝑐
= 0 leads to solu-

tions of minimum control.  ref
𝑘+𝑛𝑐𝜅𝑐

and  ref
𝑘+𝑛𝑐𝜅𝑐

are sets of constraints,
they can, but need not, be equal to sets 𝑐

𝑘+𝑛𝑐𝜅𝑐
and 𝑘+𝑛𝑐𝜅𝑐 in Eq. (8).

Steady-state conditions are enforced by an equality constraint that sets
the model dynamics to be equal to zero, Eq. (10b).

3.2.2. A constrained linear-quadratic MPC
Solutions of the MPC in Eq. (8) are computationally demanding.

While considering quadratic costs as in Eq. (9) sets the right path
towards improvements, a substantial reduction of the load can be
obtained when the static constraints (Eq. (8c)) are given as linear
inequalities (for example, when they define minimum and maximum
values that control and state variables can take) and the dynamic con-
straints (Eq. (8b)) are linear equalities, corresponding to linear-affine
dynamics,

𝑥𝑘+(𝑛𝑐+1)𝜅𝑐 = 𝑓𝛥𝑡𝑐 (𝑥𝑘+𝑛𝑐𝜅𝑐 , 𝑢𝑘+𝑛𝑐𝜅𝑐 , �̂�𝑘+𝑛𝑐𝜅𝑐 )
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≈ 𝐴𝛥𝑡𝑐 |𝑘+𝑛𝑐𝜅𝑐𝑥𝑘+𝑛𝑐𝜅𝑐 + 𝐵𝛥𝑡𝑐 |𝑘+𝑛𝑐𝜅𝑐 𝑢𝑘+𝑛𝑐𝜅𝑐+

𝐺𝛥𝑡𝑐 |𝑘+𝑛𝑐𝜅𝑐 �̂�𝑘+𝑛𝑐𝜅𝑐 + 𝑧𝛥𝑡𝑐 |𝑘+𝑛𝑐𝜅𝑐 . (11a)

An MPC with quadratic costs, linear inequality constraints, and
linear-affine dynamics, though still nonlinear, becomes a convex pro-
gram and can be solved efficiently [51].

Convenient linearisations of the plant’s dynamics can be obtained
by evaluating the model 𝑓 and its Jacobian matrices (𝜕𝑓∕𝜕𝑥, 𝜕𝑓∕𝜕𝑢
and 𝜕𝑓∕𝜕𝑤) at the reference points 𝑝𝑘+𝑛𝑐𝜅𝑐 = (𝑥ref𝑘+𝑛𝑐𝜅𝑐

, 𝑢ref𝑘+𝑛𝑐𝜅𝑐
, 𝑤ref

𝑘+𝑛𝑐𝜅𝑐
,

𝑦ref𝑘+𝑛𝑐𝜅𝑐
), with 𝑛𝑐 = 0,… , 𝑁𝑐 . As a result, we get the offset vectors

𝑧𝛥𝑡𝑐 ∈ R𝑁𝑥 and the matrices 𝐴𝛥𝑡𝑐 ∈ R𝑁𝑥×𝑁𝑥 , 𝐵𝛥𝑡𝑐 ∈ R𝑁𝑥×𝑁𝑢 , and 𝐺𝛥𝑡𝑐 ∈
R𝑁𝑥×𝑁𝑤 for the linear-affine dynamics in Eq. (11). Importantly, note
that the Jacobian 𝜕𝑔∕𝜕𝑥 resulting from linearising the measurement
equation at 𝑝𝑘+𝑛𝑐𝜅𝑐 yields the output matrices 𝐶𝑘+𝑛𝑐𝜅𝑐 ∈ R𝑁𝑦×𝑁𝑥 . Such
output matrices 𝐶 can be used to ensure the closed-loop stability of the
resulting constrained linear-quadratic MPC [52].

⇝ Because of its computational efficiency, while retaining accurate
dynamics, a constrained linear-quadratic MPC is the method of
choice in our application (Section 4).

3.3. The moving-horizon state estimator (MHE)

The estimates 𝑥(𝑡𝑘) and �̂�(𝑡𝑘) used in the continuous-time MPC (7)
can be obtained as terminal values of the state trajectory 𝑥 ∶ [𝑡𝑘 −
𝐻𝑒, 𝑡𝑘] → R𝑁𝑥 and the disturbance trajectory �̂� ∶ [𝑡𝑘 − 𝐻𝑒, 𝑡𝑘] → R𝑁𝑤

that solve an optimal state estimation problem, over a past period of
duration 𝐻𝑒, the estimation-horizon. Optimality is defined in terms of
closeness between the past model outputs and plant’s measurements, and
of the magnitude of the disturbances, under the controls deployed to the
plant over the estimation-horizon.

For a controller’s cycle starting at 𝑡𝑘, the associated moving-horizon
estimator determines the trajectories 𝑥 and �̂� from

min
𝑤(⋅)
𝑥(⋅)

𝐿𝑖
𝑡𝑘
(𝑥(𝑡𝑘 −𝐻𝑒)) + ∫

𝑡𝑘

𝑡𝑘−𝐻𝑒

𝐿𝑒
𝑡 (𝑥(𝑡), 𝑤(𝑡))𝑑𝑡 (12a)

s.t.
∀𝑡∈[𝑡𝑘−𝐻𝑒 ,𝑡𝑘]

𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) + 𝑓𝑡(𝑥(𝑡), 𝑢∗(𝑡), 𝑤(𝑡))𝑑𝑡, (12b)

𝑥(𝑡) ∈ 𝑒(𝑡), 𝑤(𝑡) ∈ (𝑡). (12c)

𝐿𝑖
𝑡𝑘

∶ R𝑁𝑥 → R and 𝐿𝑒
𝑡 ∶ R𝑁𝑥 × R𝑁𝑢 → R denote initial and

stage cost functions, Eq. (12a): They are used to quantify how well the
estimated states and disturbances determine model outputs from their
match to plant’s data. Similarly to (7), at each time 𝑡, the solution is
constrained to satisfy the dynamics (Eq. (12b)) and the constraint sets
𝑒(𝑡) = {𝑥(𝑡) ∶ ℎ𝑒𝑥|𝑡(𝑥(𝑡)) ≤ 0} and (𝑡) = {𝑤(𝑡) ∶ ℎ𝑤|𝑡(𝑤(𝑡)) ≤ 0},
which now encode restrictions on state and disturbances, Eq. (12c).
Should the optimal estimates (�̂�(𝑡))𝑡𝑘𝑡=𝑡𝑘−𝐻𝑒

of the disturbances and the
past optimal controls (𝑢∗(𝑡))𝑡𝑘𝑡=𝑡𝑘−𝐻𝑒

be used to evolve model (4), the
resulting state estimates (𝑥(𝑡))𝑡𝑘𝑡=𝑡𝑘−𝐻𝑒

would emit the sequence of output
variables (𝑦(𝑡) = 𝑔𝑡(𝑥(𝑡)))

𝑡𝑘
𝑡=𝑡𝑘−𝐻𝑒

that best match the actual plant’s data
(𝑦data(𝑡))𝑡𝑘𝑡=𝑡𝑘−𝐻𝑒

measured over the estimation-horizon.

Fig. 9. MHE: Partitioning of the time axis according to the interval 𝛥𝑡𝑒 at which data
are collected, in red.

To account for plant’s measurements that may be collected at differ-
ent points in time, as well as for permitting practical computations, also

the MHE (12) is transcribed into a constrained optimisation problem.
Following a discretise-then-optimise strategy, firstly the interval 𝛥𝑡𝑒 =
𝜅𝑒𝛥𝑡 at which data are collected is set and the estimation-horizon 𝐻𝑒 =
𝑁𝑒×𝛥𝑡𝑒 is partitioned in 𝑁𝑒 intervals (Fig. 9). Secondly, the integration
limits in Eq. (12) are re-written to get 𝑡𝑘 −𝐻𝑒 = 𝑘𝛥𝑡 −𝑁𝑒(𝜅𝑒𝛥𝑡) = (𝑘 −
𝑁𝑒𝜅𝑒)𝛥𝑡 and 𝑡𝑘 = 𝑘𝛥𝑡 and the constraint sets are adapted, accordingly.
After approximating the integral, the discrete-time MHE is

min
{𝑤𝑘−𝑛𝑒𝜅𝑒 }

𝑁𝑒
𝑛𝑒=0

{𝑥𝑘−𝑛𝑒𝜅𝑒 }
𝑁𝑒
𝑛𝑒=0

𝐿𝑖
𝑘(𝑥𝑘−𝑁𝑒𝜅𝑒 ) +

𝑁𝑒
∑

𝑛𝑒=0
𝐿𝑒
𝑘−𝑛𝑒𝜅𝑒

(𝑥𝑘−𝑛𝑒𝜅𝑒 , 𝑤𝑘−𝑛𝑒𝜅𝑒 ) (13a)

s.t.
∀𝑛𝑒∈{0,…,𝑁𝑒}

𝑥𝑘−(𝑛𝑒−1)𝜅𝑒 = 𝑓𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒 (𝑥𝑘−𝑛𝑒𝜅𝑒 , 𝑢
∗
𝑘−𝑛𝑒𝜅𝑒

, 𝑤𝑘−𝑛𝑒𝜅𝑒 ), (13b)

𝑥𝑘−𝑛𝑒𝜅𝑒 ∈ 𝑒
𝑘−𝑛𝑒𝜅𝑒 , 𝑤𝑘−𝑛𝑒𝜅𝑒 ∈ 𝑘−𝑛𝑒𝜅𝑒 . (13c)

The sequence (�̂�𝑘−𝑛𝑒𝜅𝑒 )
𝑁𝑒
𝑛𝑒=0

= �̂�𝑘, �̂�𝑘−𝜅𝑒 ,… , �̂�𝑘−𝑁𝑒𝜅𝑒 of 𝑁𝑒+1 es-
timated disturbances, together with the sequence of past controls
(𝑢∗𝑘−𝑛𝑒𝜅𝑒 )

𝑁𝑒
𝑛𝑒=0

deployed to the plant at times {𝑡𝑘−𝑛𝑒𝜅𝑒}
𝑁𝑒
𝑛𝑒=0

, result in a
sequence (𝑥𝑘−𝑛𝑒𝜅𝑒 )

𝑁𝑒
𝑛𝑒=0

of state variables and associated output estimates
(𝑦(𝑥𝑘−𝑛𝑒𝜅𝑒 ))

𝑁𝑒
𝑛𝑒=0

. Only the estimates (�̂�𝑘, 𝑥𝑘) at time 𝑡𝑘, at the end of the
estimation-horizon, are used by the MPC (8). The computation (13) is
repeated anew at the next controller’s cycle. The approach is illustrated
in Fig. 10, where we set 𝜅𝑒 = 2 and 𝛥𝑡𝑒 = 2𝛥𝑡.

Fig. 10. MHE: Illustration for a single estimation horizon.

3.3.1. A constrained linear-quadratic MHE
To define meaningful criteria and computationally viable solutions

also for estimation, we resort again to quadratic cost functions that aim
at encoding a notion of closeness between model output estimates and
measurement data. Thus, we set

𝐿𝑒
𝑘−𝑛𝑒𝜅𝑒

(𝑥𝑘−𝑛𝑒𝜅𝑒 , 𝑤𝑘−𝑛𝑒𝜅𝑒 ) = ‖𝑔(𝑥𝑘−𝑛𝑒𝜅𝑒 )−𝑦
data
𝑘−𝑛𝑒𝜅𝑒

‖

2
𝑄−1
𝑣|𝑘−𝑛𝑒𝜅𝑒

+

‖𝑤𝑘−𝑛𝑒𝜅𝑒 −𝑤𝑘−𝑛𝑒𝜅𝑒‖
2
𝑅−1
𝑤|𝑘−𝑛𝑒𝜅𝑒

; (14a)

𝐿𝑖
𝑘(𝑥𝑘−𝑁𝑒𝜅𝑒 ) = ‖𝑥𝑘−𝑁𝑒𝜅𝑒 − 𝑥𝑘−𝑁𝑒𝜅𝑒‖

2
𝑄−1
𝑥0|𝑘

. (14b)

When adopted in (13), this choice of stage and initial costs corre-
sponds to assuming that initial state, disturbances and measurements
are Gaussian variables, estimated as

𝑥𝑘−𝑁𝑒𝜅𝑒 ∼  (𝑥𝑘−𝑁𝑒𝜅𝑒 , 𝑄𝑥0|𝑘); (15a)

𝑤𝑘−𝑛𝑒𝜅𝑒 ∼  (𝑤𝑘−𝑛𝑒𝜅𝑒 , 𝑅𝑤|𝑘−𝑛𝑒𝜅𝑒 ); (15b)
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𝑣𝑘−𝑛𝑒𝜅𝑒 ∼  (0, 𝑄𝑣|𝑘−𝑛𝑒𝜅𝑒 ). (15c)

The estimates can be interpreted as maximum a posteriori solutions
to an equivalent inference problem [53]. Mean vectors 𝑥𝑘−𝑁𝑒𝜅𝑒 and
(𝑤𝑘−𝑛𝑒𝜅𝑒 )

𝑁𝑒
𝑛𝑒=0

can be set recursively: 𝑥𝑘−𝑁𝑒𝜅𝑒 = 𝑥𝑘−𝑁𝑒𝜅𝑒 and (𝑤𝑘−𝑛𝑒𝜅𝑒 =

�̂�𝑘−𝑛𝑒𝜅𝑒 )
𝑁𝑒
𝑛𝑒=0

. The covariance matrices 𝑄𝑥0|𝑘, 𝑄𝑣|𝑘−𝑛𝑒𝜅𝑒 , 𝑅𝑤|𝑘−𝑛𝑒𝜅𝑒 ≻ 0 can
be set based on process knowledge and/or historic data.

If the static constraints (Eq. (13c)) are linear inequalities and the
dynamic constraints (Eq. (13b)) are linear equalities, for example from
an affine (approximation of the) dynamics,

𝑥𝑘−(𝑛𝑒−1)𝜅𝑒 = 𝑓𝛥𝑡𝑒 (𝑥𝑘−𝑛𝑒𝜅𝑒 , 𝑢
∗
𝑘−𝑛𝑒𝜅𝑒

, 𝑤𝑘−𝑛𝑒𝜅𝑒 )

≈ 𝐴𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒𝑥𝑘−𝑛𝑒𝜅𝑒 + 𝐵𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒𝑢
∗
𝑘−𝑛𝑒𝜅𝑒

+

𝐺𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒𝑤𝑘−𝑛𝑒𝜅𝑒 + 𝑧𝑓 |𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒 . (16a)

then also the MHE can be specialised into a convex program. Simi-
larly, the output function in cost Eq. (14a) can be approximated as
𝑔(𝑥𝑘−𝑛𝑒𝜅𝑒 ) ≈ 𝑧𝑔|𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒 + 𝐶𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒𝑥𝑘−𝑛𝑒𝜅𝑒 .

Convenient linearisations of the dynamics and output equations
can be obtained by evaluating the functions (𝑓, 𝑔) and their Jacobians
(𝜕𝑓∕𝜕𝑥, 𝜕𝑓∕𝜕𝑢, 𝜕𝑓∕𝜕𝑤, and 𝜕𝑔∕𝜕𝑥) at previous optimal points �̂�𝑘−𝑛𝑒𝜅𝑒 =
(𝑥𝑘−𝑛𝑒𝜅𝑒 , 𝑢

∗
𝑘−𝑛𝑒𝜅𝑒

, �̂�𝑘−𝑛𝑒𝜅𝑒 , 𝑦𝑘−𝑛𝑒𝜅𝑒 ). As a result, we get the offset vectors
𝑧𝑓 |𝛥𝑡𝑒 ∈ R𝑁𝑥 and 𝑧𝑔|𝛥𝑡𝑒 ∈ R𝑁𝑦 , and the system matrices 𝐴𝛥𝑡𝑒 ∈ R𝑁𝑥×𝑁𝑥 ,
𝐵𝛥𝑡𝑒 ∈ R𝑁𝑥×𝑁𝑢 , 𝐺𝛥𝑡𝑒 ∈ R𝑁𝑥×𝑁𝑤 , and 𝐶𝛥𝑡𝑒 ∈ R𝑁𝑦×𝑁𝑥 .

A constrained linear-quadratic MHE with affine dynamics is the
method of choice used in the application (Section 4).

4. Model-based control of ASPs

This section shows how the Output MPC can be configured to
autonomously operate conventional activated sludge plants:

• We consider an ASP corresponding to the BSM1 and assume that
all of its handles for measurement and control exist as actual
instruments and actuators.

• We assume the availability of a predictive model of the plant’s
dynamics and of its measuring equipment. We consider the case in
which only an approximation of the BSM1 dynamics is available:
This simplified model is used by both the controller and state
estimator.

We focus on a scenario in which the ASP must adapt its operations
to produce an effluent whose quality varies according to a high-level
demand. The task is reminiscent of the contemporary objective of actu-
ating the ASP as a resource-recovery facility. The controller is asked to
autonomously drive the plant to produce a water whose specifications
change in time, while satisfying technical constraints, and in spite of
the quantity and quality of the influent wastewater. We emphasise the
task of tracking references that are of practical relevance:

⇝ We consider an exemplary reference trajectory for the effluent in
terms of total nitrogen, ammonium and ammonia nitrogen, and
suspended solids: These quantities can be readily measured and
correspond to model outputs 𝑁𝑆(10)

𝑇𝑂𝑇 , 𝑆
𝑆(10)
𝑁𝐻 , and 𝑋𝑆(10)

𝑆𝑆 , at the
settler’s top.

From an illustrative standpoint, this objective is rich enough and it
is also challenging from a control perspective. Yet, our framework is
general and other control objectives expressed in terms of measurable
quantities could be defined, instead.

The architecture of the control framework is shown in Fig. 11. The
control actions computed by the Output MPC are given as the model
inputs 𝑄𝐴, 𝑄𝑅, and 𝑄𝑊 , 𝐾𝐿𝑎(1),… , 𝐾𝐿𝑎(5), and 𝑄(1)

𝐸𝐶 ,… , 𝑄(5)
𝐸𝐶 . They are

deployed as recycle flow-rates, aeration intensities, and dosages of extra
carbon. As in reality it is impossible to set process quantities directly,
we assume that, for each of them, there exists an ideal PID controller
whose set-point is changed in time to be equal to the control values
computed by the Output MPC.

⇝ Thus, the Output MPC defines a supervisory control layer that
operates above low-level regulatory PID controllers. By the same
token, the reference trajectories are seen as generated by a plan-
ning layer that operates above the Output MPC and produces its
‘set-points’.

The Output MPC receives the sequence of reference values (�̃�ref =
𝑁𝑆(10)

𝑇𝑂𝑇 , 𝑆𝑆(10)
𝑁𝐻 , 𝑋𝑆(10)

𝑆𝑆 ) to be tracked over the next control-horizon (𝐻𝑐 =
1∕2 [days]) and it computes the control actions (𝑢∗ = 𝑄𝐴, 𝑄𝑅, 𝑄𝑊 ,
𝐾𝐿𝑎(1),… , 𝐾𝐿𝑎(5), 𝑄

(1)
𝐸𝐶 ,… , 𝑄(5)

𝐸𝐶 ) that produce the sequence of selected
model outputs (�̃� = 𝑁𝑆(10)

𝑇𝑂𝑇 , 𝑆𝑆(10)
𝑁𝐻 , 𝑋𝑆(10)

𝑆𝑆 ) that best matches �̃�ref:

• To compute the controls 𝑢∗ with the MPC (Eqs. (8) and (9)),
the output references �̃�ref are firstly converted into an equivalent
sequence of state and control pairs (𝑥ref, 𝑢ref) by the steady-state
optimiser (Eq. (10)).

• The current state and disturbances used by the MPC are estimated
by the MHE (Eqs. (13) and (15)), from the sequence of plant’s
measurements (𝑦data = 𝑆𝐴(1)

𝑂 ,… , 𝑆𝐴(5)
𝑂 , 𝑆𝐴(1)

𝑁𝑂 ,… , 𝑆𝐴(5)
𝑁𝑂 , 𝑋𝑆(10)

𝑆𝑆 ,
𝑆𝑆(10)
𝑁𝐻 , 𝑁𝑆(10)

𝑇𝑂𝑇 ) from the past estimation-horizon (𝐻𝑒 = 1∕8 [days]).

The control actions 𝑢∗ are computed to satisfy various constraints.
As an essential requirement, here we always include constraints on
the controls that guarantee compatibility with plant’s equipment and
satisfy its technological limits. Specifically, we require each control
variable to be between a minimum and maximum value, at all times.
Again, the understanding is that the framework is general and we show
that it can accommodate sophisticated formulations of the constraints.

In the following, the setup of the individual components of the Out-
put MPC is discussed, starting from the predictive model (Section 4.1)
in the MPC (Section 4.2) and the MHE (Section 4.3). We present the
discretisation interval used for the dynamics (𝛥𝑡), the operating periods
for the controller (𝛥𝑡𝑐 = 𝜅𝑐𝛥𝑡), and for the estimator (𝛥𝑡𝑒 = 𝜅𝑒𝛥𝑡). The
control- and estimation-horizon (𝐻𝑐 = 𝑁𝑐𝛥𝑡𝑐 and 𝐻𝑒 = 𝑁𝑒𝛥𝑡𝑒) are
then written, accordingly, in terms of number 𝑁𝑐 and 𝑁𝑒 of control
actions and estimates at each cycle. The constraint sets for state (𝑐

and 𝑒), control ( ), disturbance (), and joint variables () are
also presented. Details about the tuning parameters of the controller,
steady-state optimiser, and estimator are given in the Supplementary
Material.

4.1. The model

We configure the Output MPC to use two linear-affine approxima-
tions of the plant, one for the MPC and one for the MHE. Though
formally equal, both approximations are derived from the BSM1, they
are different because obtained at different points in time and about
distinct process conditions

𝑥𝑘+𝛿𝑡 ≈ 𝐴𝛿𝑡|𝑘𝑥𝑘 + 𝐵𝛿𝑡|𝑘𝑢𝑘 + 𝐺𝛿𝑡|𝑘𝑤𝑘 + 𝑧𝑓 |𝛿𝑡|𝑘 (17a)

𝑦𝑘 ≈ 𝐶𝛿𝑡|𝑘𝑥𝑘 + 𝑧𝑔|𝛿𝑡|𝑘 (17b)

where 𝛿𝑡 either equals 𝛥𝑡𝑐 (controller) or 𝛥𝑡𝑒 (state estimator). Ma-
trices 𝐴𝛿𝑡|𝑘, 𝐵𝛿𝑡|𝑘, 𝐺𝛿𝑡|𝑘, 𝐶𝛿𝑡|𝑘, and affine terms 𝑧𝑓 |𝛿𝑡|𝑘 and 𝑧𝑔|𝛿𝑡|𝑘 in
Eq. (17) are re-evaluated before each controller’s cycle, by linearising
the discrete-time form of the BSM1:

𝑥𝑘+𝛿𝑡 = 𝑓𝛿𝑡(𝑥𝑘, 𝑢𝑘, 𝑤𝑘|𝜃𝑥); (18a)

𝑦𝑘 = 𝑔(𝑥𝑘|𝜃𝑦), (18b)

where 𝑥(𝑡) = (𝑥𝐴(1),… , 𝑥𝐴(5), 𝑥𝑆(1),… , 𝑥𝑆(10)) ∈ R𝑁𝑥
≥0 are the 𝑁𝑥 =

(13 × 5) + (8 × 10) = 145 state variables with

𝑥𝐴(𝑟) =
(

𝑆𝐴(𝑟)
𝐼 , 𝑆𝐴(𝑟)

𝑆 , 𝑋𝐴(𝑟)
𝐼 , 𝑋𝐴(𝑟)

𝑆 , 𝑋𝐴(𝑟)
𝐵𝐻 , 𝑋𝐴(𝑟)

𝐵𝐴 , 𝑋𝐴(𝑟)
𝑃 ,

𝑆𝐴(𝑟)
𝑂 , 𝑆𝐴(𝑟)

𝑁𝑂 , 𝑆𝐴(𝑟)
𝑁𝐻 , 𝑆𝐴(𝑟)

𝑁𝐷 , 𝑋𝐴(𝑟)
𝑁𝐷 , 𝑆𝐴(𝑟)

𝐴𝐿𝐾
)

(𝑟 = 1,… , 5);

𝑥𝑆(𝑙) =
(

𝑋𝑆(𝑙)
𝑆𝑆 , 𝑆𝑆(𝑙)

𝐼 , 𝑆𝑆(𝑙)
𝑆 , 𝑆𝑆(𝑙)

𝑂 , 𝑆𝑆(𝑙)
𝑁𝑂 , 𝑆𝑆(𝑙)

𝑁𝐻 , 𝑆𝑆(𝑙)
𝑁𝐷 , 𝑆𝑆(𝑙)

𝐴𝐿𝐾
)
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Fig. 11. Model-based predictive control of an activated sludge plant: The controller receives (i) an external reference trajectory (black) and (ii) measurement data (red) from
sensors/laboratory in the plant. These quantities, together with a state-space model of the plant dynamics and instruments, are used by a MPC and associated MHE to compute
the control actions that best track the reference. The optimal actions (blue) are deployed to the plant actuators as set-points to their low-level (PID) controllers.

(𝑙 = 1,… , 10).

𝑢(𝑡) =
(

𝑄𝐴, 𝑄𝑅, 𝑄𝑊 , 𝐾𝐿𝑎(1),… , 𝐾𝐿𝑎(5), 𝑄
(1)
𝐸𝐶 ,… , 𝑄(5)

𝐸𝐶
)

∈ R𝑁𝑢
≥0 , are the

𝑁𝑢 = 3 + (2 × 5) = 13 control variables, corresponding to the control
handles of the BSM1, and 𝑤(𝑡) = (𝑄𝐼𝑁 , 𝑥𝐴(𝐼𝑁)) ∈ R𝑁𝑤

≥0 are the 𝑁𝑤 =
1+13 = 14 disturbances including the properties of influent wastewater

𝑥𝐴(𝐼𝑁) =
(

𝑆𝐴(𝐼𝑁)
𝐼 , 𝑆𝐴(𝐼𝑁)

𝑆 , 𝑋𝐴(𝐼𝑁)
𝐼 , 𝑋𝐴(𝐼𝑁)

𝑆 , 𝑋𝐴(𝐼𝑁)
𝐵𝐻 ,

𝑋𝐴(𝐼𝑁)
𝐵𝐴 , 𝑋𝐴(𝐼𝑁)

𝑃 , 𝑆𝐴(𝐼𝑁)
𝑂 , 𝑆𝐴(𝐼𝑁)

𝑁𝑂 , 𝑆𝐴(𝐼𝑁)
𝑁𝐻 ,

𝑆𝐴(𝐼𝑁)
𝑁𝐷 , 𝑋𝐴(𝐼𝑁)

𝑁𝐷 , 𝑆𝐴(𝐼𝑁)
𝐴𝐿𝐾

)

.

All disturbances, except for the flow-rate 𝑄𝐼𝑁 , are not measured: That
is, no actual instrument or laboratory analysis is available in the plant
to measure them. As for the 𝑁𝑦 = (2 × 5) + 3 = 13 output variables
𝑦(𝑡) ∈ R𝑁𝑦

≥0 , in which

𝑦(𝑡) =
(

𝑆𝐴(1)
𝑂 ,… , 𝑆𝐴(5)

𝑂 , 𝑆𝐴(1)
𝑁𝑂 ,… , 𝑆𝐴(5)

𝑁𝑂 , 𝑋𝑆(10)
𝑆𝑆 ,

𝑆𝑆(10)
𝑁𝐻 , 𝑋𝑆(10)

𝑆𝑆 , 𝑆𝑆(10)
𝑁𝐻 , 𝑁𝑆(10)

𝑇𝑂𝑇
)

,

we assume the existence of plant’s sensors, corresponding to the mea-
surement handles of the BSM1: That is, it assumed that dissolved
oxygen and nitrate- and nitrite-nitrogen in the reactors, and total
suspended solids and nitrogen at the top of the settler, the effluent,
are available as measurements 𝑦data.

The vectors 𝜃𝑥 and 𝜃𝑦 in the model Eqs. (18) collect all the stoichio-
metric and kinetic parameters in the BSM1.

4.2. The MPC

The MPC is operated once every hour (𝛥𝑡𝑐 = 1∕24 [days]) to plan
over a half-day long control-horizon (𝐻𝑐 = 1∕2 [days])

• At each cycle, a sequence of 𝑁𝑐 = 12 control actions is computed,
for each of the 𝑁𝑢 = 13 control variables

– 12×13 = 156 optimal actions (𝑢∗𝑘+𝑛𝑐𝜅𝑐 )
𝑁𝑐−1
𝑛𝑐=0

are calculated, of
which only the first ones (13 values 𝑢∗𝑘) are sent as set-points
to the low-level PIDs;

– The set-points are held constant during the cycle;

• The rest (143 values) of the control actions is discarded;
• After one hour, the control cycle is repeated anew.

Tracking reference trajectories
At each cycle, the MPC control actions track the reference (𝑥ref𝑘+𝑛𝑐𝜅𝑐

,

𝑢ref𝑘+𝑛𝑐𝜅𝑐
)𝑁𝑐
𝑛𝑐=1

, in which each pair (𝑥ref𝑘+𝑛𝑐𝜅𝑐
, 𝑢ref𝑘+𝑛𝑐𝜅𝑐

) solves a steady-state
optimisation problem (10): That is,

⇝ each pair of the sequence corresponds to the stationary values
of state and control variables that associate to the corresponding
term in the reference output sequence (�̃�ref𝑘+𝑛𝑐𝜅𝑐

)𝑁𝑐
𝑛𝑐=1

, the quality as
(𝑋𝑆(10)

𝑆𝑆 , 𝑆𝑆(10)
𝑁𝐻 , 𝑁𝑆(10)

𝑇𝑂𝑇 ).
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Table 3
Activated sludge plant: Actuator limits.
Variable Lower limit Upper limit Unit

𝑄𝐴 𝑢1 0 92230 m3 d−1
𝑄𝑅 𝑢2 0 36892 m3 d−1
𝑄𝑊 𝑢3 0 1844.6 m3 d−1
𝐾𝐿𝑎(1⇝5) 𝑢4⇝8 0 360 d−1
𝑄(1⇝5)

𝐸𝐶 𝑢9⇝13 0 5 m3 d−1

The optimality of reference tracking is determined in terms of the
quadratic functions 𝐿𝑐(⋅) and 𝐿𝑓 (⋅) defined in Eq. (9).

Dynamic and static constraints and desiderata
The MPC actions are computed to satisfy the dynamic constraints,

the plant’s dynamics approximated over the control-horizon by
{(𝑧𝑓 |𝛥𝑡𝑐 |𝑘+𝑛𝑐𝜅𝑐 , 𝐴𝛥𝑡𝑐 |𝑘+𝑛𝑐𝜅𝑐 , 𝐵𝛥𝑡𝑐 |𝑘+𝑛𝑐𝜅𝑐 , 𝐺𝛥𝑡𝑐 |𝑘+𝑛𝑐𝜅𝑐 , 𝐶𝛥𝑡𝑐 |𝑘+𝑛𝑐𝜅𝑐 )}

𝑁𝑐
𝑛𝑐=0

and
evaluated in time at reference points 𝑝𝑘+𝑛𝑐𝜅𝑐 = (𝑥ref𝑘+𝑛𝑐𝜅𝑐

, 𝑢ref𝑘+𝑛𝑐𝜅𝑐
, �̂�𝑘+𝑛𝑐𝜅𝑐 ,

𝑦ref𝑘+𝑛𝑐𝜅𝑐
). No other constraints are imposed to the state variables, thus

𝑐 = R𝑁𝑥 .

On the other hand, the actions are also constrained to take values
within the limits of the BSM1 actuators (Table 3),

 = {𝑢 ∈ R𝑁𝑢 ∶ 𝑢1 ∈ [0, 92230], 𝑢2 ∈ [0, 36892],

𝑢3 ∈ [0, 1844.6], 𝑢4,…,8 ∈ [0, 360], 𝑢9,…,13 ∈ [0, 5]}. (19)

To demonstrate the flexibility in the definition of the constraints,
we formulate the requirement that a portion 𝜂 ∈ [0, 1] of the energy
demand of the process must be recovered from the energy produced by
the digestion of wastage sludge:

⇝ Such operational desiderata can be explicitly stated as a constraint
that regards both state and control variables

By letting the Operational Cost Index (OCIkWh) express the energy
demand and RE denote the amount of energy generated from wastage
sludge, we define the energy constraint

 =
{

(𝑥𝑛, 𝑢𝑛)𝑁−1
𝑛=0 ∶ 𝜂OCIkWh(𝑢𝑛) ≤ RE(𝑥𝑛, 𝑢𝑛)

}

(20)

Under the assumption that wastage sludge is anaerobically digested
into methane gas which is in turn used to generate electricity, we
quantify energy generation from sludge

RE = 𝜂𝐷 𝑄𝑊
⏟⏟⏟

𝑢3

( 1
0.75

𝑋𝑆(1)
𝑆𝑆

⏟⏟⏟
𝑥66

+ 𝑆𝑆(1)
𝐼

⏟⏟⏟
𝑥76

+ 𝑆𝑆(1)
𝑆

⏟⏟⏟
𝑥77

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐶𝑂𝐷𝑆(1)

)

. (21)

The generation efficiency 𝜂𝐷 = 0.35 × (4.865∕3600) kWh/g corresponds
to 35% of excess sludge being converted to methane gas, from which
4.865 kJ/g can be generated [8]. Note that the RE only considers
wastage sludge as the sole source of energy and it ignores sludge fluxes
from the primary settler. For compactness, the quantification of the
OCIkWh is fully detailed in the Supplementary Material.

4.3. The MHE

At each cycle, the MPC requires the current state 𝑥𝑡𝑘 = 𝑥𝑡𝑘 and plans
its actions assuming that the disturbances �̂�𝑡𝑘 will remain constant
and equal to their current value. These quantities are unknown and
are estimated by an MHE operating at 15-minute (𝛥𝑡𝑒 = 1∕96 [days])
intervals, over a 3-hour estimation-horizon (𝐻𝑒 = 1∕8 [days]) during
which 𝑁𝑒 = 12 plant measurements were acquired. Thus, at each MHE
cycle

• 13 × (145 + 14) = 2067 past values of state and disturbance vari-
ables (𝑥𝑡𝑘−𝑛𝑒𝜅𝑒 , �̂�𝑡𝑘−𝑛𝑒𝜅𝑒 )

𝑁𝑒
𝑛𝑒=0

are calculated. The last (most recent)
estimates are used by the MPC;

• The rest (1749) of the estimates is discarded.

Table 4
Case-study I: Quality limits and corresponding reference values.
Variable Reference Limits Units

𝑋𝑆(10)
𝑆𝑆 12.5 30 g COD m−3

𝑆𝑆(10)
𝑁𝐻 1.7 4 g N m−3

𝑁𝑆(10)
𝑇𝑂𝑇 14.0 18 g N m−3

Fitting plant data
Over the estimation-horizon, the MHE estimates the state and dis-

turbance variables that would correspond to model outputs that best
fit plant data (𝑦data𝑘−𝑛𝑒𝜅𝑒

)𝑁𝑒
𝑛𝑒=0

. Estimation accuracy is quantified by the
quadratic costs 𝐿𝑒(⋅) and 𝐿𝑖(⋅), in Eq. (15).

Dynamic and static constraints
The MHE estimates of the state satisfy the dynamic constraints, the

linear-affine approximations {(𝑧𝑔|𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒 , 𝐴𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒 , 𝐵𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒 ,
𝐺𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒 , 𝐶𝛥𝑡𝑒|𝑘−𝑛𝑒𝜅𝑒 )}

𝑁𝑒
𝑛𝑒=0

of the dynamics at 𝑝𝑘−𝑛𝑒𝜅𝑒 = (𝑥𝑘−𝑛𝑒𝜅𝑒 , 𝑢
∗
𝑘−𝑛𝑒𝜅𝑒

,
�̂�𝑘−𝑛𝑒𝜅𝑒 , 𝑦𝑘−𝑛𝑒𝜅𝑒 ). The estimates of the disturbances are constrained to
take on non-negative values ( = R𝑁𝑤

≥0 ), as they refer to positive
quantities: influent’s flow-rate and composition. Moreover,

• the concentrations 𝑋𝐼𝑁
𝐵𝐴 = 𝑋𝐼𝑁

𝑃 = 𝑆𝐼𝑁
𝑂 = 𝑆𝐼𝑁

𝑁𝑂 = 0 g m−3 and
𝑆𝐼𝑁
𝐴𝐿𝐾 = 7 mol HCO−

3 m
−3 are constrained to remain constant over

the chosen influent scenario;
• the influent flow-rate 𝑄𝐼𝑁 is measured at each 𝛥𝑡𝑒.

5. Case-studies

We demonstrate the potential of the control framework for activated
sludge plants on two different operational tasks:

1. Conventional treatment of wastewater (Section 5.1) - The ASP
is requested to produce effluent water whose quality satisfies
normative constraints;

2. Nitrogen on-demand (Section 5.2) - The ASP is requested to
produce a water whose nitrogen content varies according to an
external demand.

We discuss the results obtained by the Output MPC (Fig. 11) under
the two-week scenario of stormy weather (Section 2.1.2). For reference,
the performances are compared to the default control strategy (Fig. 3)
consisting of two PIDs:

⇝ Nitrate and nitrite nitrogen in the second reactor, 𝑆𝐴(2)
𝑁𝑂 , is con-

trolled by manipulating the internal recycle 𝑄𝐴;
⇝ Dissolved oxygen in the fifth reactor, 𝑆𝐴(5)

𝑂 , is controlled by
manipulating the oxygen mass transfer coefficient 𝐾𝐿𝑎(5), a proxy
variable to the air flow-rate.

The performance of the Output MPC is also compared to open-loop
operations in which the ASP is run with no regulation. This is inter-
esting, as this mode highlights the treatment potential of the ASP as
such, without automatic control.

5.1. Case-study 1: Wastewater treatment

To operate the activated sludge plant to meet standard disposal
regulations, the output MPC must track a constant-in-time trajectory
corresponding to the effluent restrictions (Table 4, for the BSM1 [40]).
This is achieved by continuously determining the best actions and using
them dynamically as set-point values for the 13 PIDs (Fig. 11).

We show the treatment performance with two configurations:

1a. With technological constraints only, Eq. (19);
1b. With extra constraints on recovered energy, Eq. (20).

When the controller is not asked to recover energy to sustain operations
(𝜂 = 0, in Eq. (20)), the configurations are equal.
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Wastewater treatment
Firstly, we analyse the treatment performance when the Output

MPC operates the ASP only with actions that respect its equipment’s
limits. We present results (Fig. 12) in terms of quality of effluent
water and violations of the specifications. Then, we look at the actions
commanded by the controller and at the overall plant’s behaviour
(Fig. 13 and Table 5).

Fig. 12. Case-study 1: Influent flow-rate, 𝑄𝐼𝑁 (top panel) and concentration of 𝑆𝑆(10)
𝑁𝐻

and 𝑁𝑆(10)
𝑇𝑂𝑇 in the effluent (bottom panels). The grey shade denotes regions above

treatment limits.
When treating the stormy-weather wastewater (its flow-rate 𝑄𝐼𝑁 is

shown in Fig. 12, top panel), the Output MPC autonomously operates
the plant to produce an effluent whose concentrations 𝑆𝑆(10)

𝑁𝐻 and 𝑁𝑆(10)
𝑇𝑂𝑇

(middle and bottom panels in Fig. 12: the black lines, as state variables,
and green dots, as plant measurements) closely follow the reference
values (Table 5 and red lines in Fig. 12). By rejecting the variations in
typical municipal influents, as well as the upsets induced by the two
storm events, the controller almost completely eliminates i) violations
of the specifications (Table 5 and the grey-shaded area in Fig. 12) and
ii) the time in off-specification operations. In the figure, this can be
appreciated when comparing the performance of the Output MPC to
the open-loop setup (grey lines). Note that Fig. 12 does not show the
evolution of 𝑋𝑆(10)

𝑆𝑆 , as its limits are never violated.
To understand how the tracking is achieved, in Fig. 13 we look

closely at a selection of control actions deployed by the Output MPC.
For clarity, we zoom into a shorter period of time (𝑡 ∈ [8.4, 12] days)
which includes the storm events, and we analyse how the controller
operates the denitrification-nitrification process across reactors 𝐴(1⇝5),
and the settler. Complete results are given in the Supplementary Mate-
rial.

The tracking of the treatment reference is achieved by automatically
adjusting the aeration intensities (via 𝐾𝐿𝑎(1⇝5)) and the sludge flow-
rates (𝑄𝐴, 𝑄𝑅 and 𝑄𝑊 , Figure 1 of the Supplementary Material). To
vary the aerated volume by changing the number of aerated zones in
a systematic way is a consolidated strategy based on modifying the
usual two-anoxic and three-aerated configuration of the bioreactors (as in
Fig. 3). The Output MPC, on the other hand, utilises aeration of reactor
𝐴(5) (𝐾𝐿𝑎(5)) as its primary control lever by switching between aerated
and non-aerated modes, in response to the variations in influent load.
Moreover, we have

Fig. 13. Case-study 1, 𝑡 ∈ [8.4, 12]: Air flow-rate 𝐾𝐿𝑎(1⇝5) and dissolved oxygen 𝑆𝐴(1⇝5)
𝑂

(top panels) and nitrogen form 𝑆𝐴(1⇝5)
𝑁𝑂 and effluent suspended solids 𝑋𝑆(10)

𝑆𝑆 (bottom
panels).

• Aeration to the second most downstream reactors (𝐴(4) and 𝐴(3))
is kept strong and it is further increased whenever influent flow-
rates increase, to favour nitrification, whereas less intense aer-
ation is enforced whenever the flow-rates decrease, to favour
denitrification;

• In the same fashion, the most upstream reactors (𝐴(1) and 𝐴(2))
are kept in virtually anoxic conditions and aeration slightly ad-
justed, to meet the incoming loads.

In addition to aeration control, the other actions applied to the biore-
actors are associated with the addition of carbon, via 𝑄(1⇝5)

𝐸𝐶 (Figure 1,
in the Supplementary Material). As overall effect, the concentrations
of 𝑆𝐴(1⇝5)

𝑁𝑂 (and 𝑆𝐴(1⇝5)
𝑁𝐻 , Figure 1 in the Supplementary Material) are

smoothed out and follow the periodicities in the influent nitrogen
load (𝑁𝐼𝑁

𝑇𝑂𝑇 in Figure 4 and 𝑆𝐴(𝐼𝑁)
𝑁𝐻 in Figure 6 of the Supplementary

Material).
In the secondary settler, the changes in feed characteristics are

reflected by the changes in the effluent concentrations 𝑆𝑆(10)
𝑁𝐻 and 𝑆𝑆(10)

𝑁𝑂 ,
and 𝑁𝑆(10)

𝑇𝑂𝑇 , as well as in the spatial distribution of suspended solids
𝑋(1⇝10)

𝑆𝑆 and the high of the sludge blanket.

⇝ It is natural to associate the changes in these variables mainly to
the adjustment actions computed by the Output MPC for external
recycle 𝑄𝑅 and wastage 𝑄𝑊 fluxes and to a lesser extent, to the
internal recycle 𝑄𝐴.

The controller reacts to the storm-events (at day 𝑡 ≈ 8.8 and 𝑡 ≈ 11)
by increasing aeration in all reactors, thus raising the oxygen levels
𝑆(1⇝5)
𝑂 and favouring nitrification throughout.
The performance of the control framework on this case-study is in

Table 5 with respect to the conventional evaluation criteria used to
assess the effluent quality [40].

• In comparison with the open-loop operation (respectively, the
default PID control strategy), our control strategy resulted in
roughly 18% (roughly 11%) improvement in the effluent quality
index (EQI).

• Moreover, the controller was able to significantly decrease the
percentage of time in which effluent ammonium (𝑆𝑆(10)

𝑁𝐻 ) and total
(𝑁𝑆(10)

𝑇𝑂𝑇 ) nitrogen are in violation of their respective quality limits.

As expected, this improvement follows an increase in the average
operational cost index (OCIkWh) associated with the control actions.
However, the process operation based on our framework still results in
an effluent quality with almost no violations of regulatory constraints,
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Table 5
Case-study 1: Performance of each control strategies in terms of effluent quality
index (EQI, kg PU d−1), average operational cost index (OCIkWh, kWh d−1),
number of quality limit crossings, and percentage of time in violation of the
effluent restrictions (#Crossings and %Violation, respectively).

Open-loop PID Out-MPC

EQI 7246.1 6636.0 5915.2
(avg.) OCIkWh 3969.6 4202.1 4558.3
#Crossings (𝑆𝑁𝐻 ) 14 12 10
#Crossings (𝑁𝑇𝑂𝑇 ) 8 13 0
%Violation (𝑆𝑁𝐻 ) 62% 22% 6%
%Violation (𝑁𝑇𝑂𝑇 ) 7% 16% 0%

as opposed to the results obtained by the control strategy proposed in
the benchmark.

In conclusion, this case-study demonstrates that the controller is
able to operate the process to comply with quality restrictions by
tracking a constant reference profile for the effluent.

Wastewater treatment, with energy recovery
We expand upon the treatment results by studying the case in which

the Output MPC is asked not only to satisfy the effluent regulations,
but also to operate the ASP in a such way that partial or total energy
recovery from sludge disposal is enforced (that is, for cases in which
𝜂 ∈ (0, 1] in Eq. (20)).

For the task, we analysed the treatment performance of the con-
troller under different levels of energy recovery, individually: 𝜂 ∈
{0.05, 0.1, 0.15,… , 0.90, 0.95, 1}. As expected, the treatment quality,
shown in Fig. 14, worsens as larger portions of energetic demand are
asked to be recovered:

• Specifically, tracking effluent ammonium nitrogen 𝑆𝑆(10)
𝑁𝐻 becomes

unfeasible when operations are also constrained to recover, from
wastage sludge, 60% or more of the energetic demand;

• Conversely, the performance when tracking the effluent 𝑁𝑆(10)
𝑇𝑂𝑇

reference is not significantly affected as the recovery constraints
are enforced.

Fig. 14. Case-study 1: Treatment of effluent nitrogen 𝑆𝑆(10)
𝑁𝐻 and 𝑁𝑆(10)

𝑇𝑂𝑇 for different
values of energy efficiency 𝜂.

In Fig. 15, we show a comparison between the effluent quality
index (EQI), under different energy-recovery levels, and against open-
loop and PID operations. As mentioned, the Output MPC is capable to
operate the ASP to produce a consistently excellent effluent profile,
while recovering up to 60% of its energetic demand. The effluent
quality degrades as higher recovery levels are requested (𝜂 ≥ 65%).
Moreover,

• the Output MPC is able to recover 80% of the energy costs, while
still producing effluents whose quality matches those obtained by
the default PID strategy.

• effluents whose quality is to those obtained from the open-loop
operation can still be produced, while operating the ASP with
90% energy recovery efficiency.

Fig. 15. Case-study 1: Effluent quality index (EQI) for different energy-recovery levels
𝜂 ∈ [0, 1]. The grey lines refer to the EQI from the open-loop and default PID control
operations.

The cumulative operational cost index (OCI𝑘𝑊 ℎ) and external car-
bon (ECA) required for implementing zero-recovery (𝜂 = 0) and full-
recovery (𝜂 = 1) treatment operations are illustrated in Fig. 16, for
the two-week period under study. The daily-average of the resulting
nitrogen removal efficiency (that is, 𝜂𝑁𝑂 = (𝑁𝐼𝑁

𝑇𝑂𝑇 − 𝑁𝑆(10)
𝑇𝑂𝑇 )∕𝑁𝐼𝑁

𝑇𝑂𝑇 ) is
also reported.

• The Output MPC can operate the plant without energy-related
constraints (𝜂 = 0) and achieve a cumulative potential production
of electricity (RE) equivalent to roughly 45% of its operational
costs.

• The Output MPC can operate the plant with full energy-related
constraints (𝜂 = 1) and achieve a cumulative potential energy pro-
duction of electricity capable to satisfy its total energy demands.

The results also show an increased need for external carbon to im-
plement the optimal actions from this controller. Interestingly, both
controllers obtain similar nitrogen removal performance. This reflects
the already mentioned fact that the Output MPC operating under
full-recovery constraints still provides good tracking accuracy for ef-
fluent 𝑁𝑆(10)

𝑇𝑂𝑇 , despite failing to generate the desired effluent 𝑆𝑆(10)
𝑁𝐻

concentrations.

Fig. 16. Case-study 1, 𝜂 = 1: Control performance in terms of operational energy cost
index, OCIkWh, external carbon addition, ECA, and daily-averaged nitrogen removal
efficiency, 𝜂𝑁𝑂 . Dashed lines refer to the results with efficiency 𝜂 = 0.
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We conclude that our model-based control framework can operate
the activated sludge plant to comply with quality restrictions while
ensuring that at least 60% of its operational costs can be recovered
from treating the wastage sludge. While the controller is able to enforce
an operation which fully recovers the energy costs from actuators,
the resulting control strategy leads to undesirable effluent qualities.
Nevertheless, we remind that the results assume an anaerobic digester
which is fed only by the sludge from the secondary settler: In full-
scale treatment facilities, excess sludge from a primary clarifier is an
additional raw material available for biogas production.

5.2. Case-study 2: Nitrogen on-demand

In this section, we present the results when the Output MPC is
configured to operate the activated sludge plant to perform tasks of a
water resource recovery facility. As an exemplary problem, we consider
tracking a reference trajectory for the total nitrogen 𝑁𝑆(10)

𝑇𝑂𝑇 in the
effluent. Specifically, we have

𝑁𝑟𝑒𝑓
𝑇𝑂𝑇 (𝑡) =

⎧

⎪

⎨

⎪

⎩

(5∕3) 𝑁𝑆𝑆
𝑇𝑂𝑇 , 𝑡 ∈ [2.8, 5.6) d

(2∕3) 𝑁𝑆𝑆
𝑇𝑂𝑇 , 𝑡 ∈ [8.4, 11.2) d

𝑁𝑆𝑆
𝑇𝑂𝑇 , otherwise,

(22)

with 𝑁𝑆𝑆
𝑇𝑂𝑇 ≈ 14 g m−3 being the benchmark’s steady-state concentra-

tion. Tracking the reference in Eq. (22) equals to

• operate the ASP to produce a water rich in nitrogen (for example,
reusable for fertigation), 𝑡 ∈ [2.8, 5.6);

• operate the ASP to produce a water with low nitrogen (for exam-
ple, due to stricter limits), 𝑡 ∈ [8.4, 11.2);

• operate the ASP to keep 𝑁𝑆(10)
𝑇𝑂𝑇 constant at 𝑁𝑆𝑆

𝑇𝑂𝑇 in the other
intervals (𝑡 ∈ [0, 2.8) ∪ [5.6, 8.4) ∪ [11.2, 14]).

During the period, the Output MPC is also asked to maintain (𝑋𝑆(10)
𝑆𝑆 ,

𝑆𝑆(10)
𝑁𝐻 ) at the reference treatment values in Table 4.
We firstly analyse the results when tracking the effluent trajectory

without energy constraints (𝜂 = 0), then we extend the analysis
when we enforce increasingly larger levels of energy recovery (𝜂 ∈
{0.05, 0.1, 0.15,… , 0.90, 0.95, 1}). Note that the usual technological con-
straints (Eq. (19)) must always be satisfied in both scenarios. We
present two critical reference changes and refer the reader to Section
B.4 of the Supplementary Material for a complete analysis of this
case-study.

Nitrogen on-demand
The results (Fig. 17) show how the Output MPC can operate the

plant to track the reference trajectory in effluent nitrogen 𝑁𝑆(10)
𝑇𝑂𝑇 (bot-

tom panel), while rejecting the disturbances of the influent scenario
(top panel). The tracking performance is consistently very good and it
is only slightly degraded about the last change (𝑡 = 11.2 days), high-
lighting the challenges associated with requesting a reconfiguration of
a large-scale facility whenever an extreme storm is occurring.

We analyse a selection of actions/responses that the Output MPC
computes to perform the tracking (Figs. 18 and 19).

At the first reference change (𝑡 = 2.8 days), the ASP serves the
requested effluent total nitrogen, 𝑁𝑆(10)

𝑇𝑂𝑇 , by mainly producing 𝑆𝑆(10)
𝑁𝑂

nitrogen (Fig. 18). This is done by increasing aeration in all reactors via
𝐾𝐿𝑎(1⇝5), favouring nitrification. As a result, the concentrations 𝑆𝐴(1⇝5)

𝑁𝑂
quickly increase, too.

⇝ The reference is then maintained by instating a standard
nitrification–denitrification layout, where reactors 𝐴(1, 2) are kept
anoxic by reducing aeration (𝐾𝐿𝑎(1,2)), whereas reactors 𝐴(3⇝5)
are kept aerated (𝐾𝐿𝑎(3⇝5)).

Fig. 17. Case-study 2: Influent flow-rate 𝑄𝐼𝑁 , top, and reference tracking of effluent
total nitrogen 𝑁𝑆(10)

𝑇𝑂𝑇 , bottom. The shaded periods are analysed in detail (Figs. 18 and
19).

Fig. 18. Case-study 2, 𝑡 ∈ [2.5, 4]: Oxygen transfer coefficients 𝐾𝐿𝑎(1⇝5) and dissolved
oxygen 𝑆𝐴(1⇝5)

𝑂 (top panels) and nitrogen 𝑆𝐴(1⇝5)
𝑁𝑂 and effluent suspended solids 𝑋𝑆(10)

𝑆𝑆
(bottom panels). The vertical dashed line indicates a reference change.

In the settler, changes in 𝑆𝐴(5)
𝑁𝑂 in the stream from the bioreactors are

reflected in the effluent 𝑆𝑆(10)
𝑁𝑂 and thus 𝑁𝑆(10)

𝑇𝑂𝑇 . Moreover, the Output
MPC closely tracks the reference for suspended solids (Figure 3 of the
Supplementary Material).

At the third reference change (𝑡 = 8.4 days), the aeration to the reac-
tors 𝐴(1⇝5) is maintained in standard nitrification–denitrification lay-
out via 𝐾𝐿𝑎(1⇝5) (Fig. 19). The addition of external carbon is increased
in all reactors via 𝑄(1⇝5)

𝐸𝐶 .

⇝ The concentrations 𝑆𝐴(1⇝5)
𝑁𝐻 are kept at desirable levels while

decreasing the concentration of 𝑆𝐴(1⇝5)
𝑁𝑂 . As a result, the total

nitrogen across the process is decreased.

The changes in the feed are reflected in the settler by effluent 𝑆𝑆(10)
𝑁𝑂

and 𝑆𝑆(10)
𝑁𝐻 , and 𝑁𝑆(10)

𝑇𝑂𝑇 . We point out that, while the Output MPC cannot
closely track suspended solids, the limits are never violated (Figure 3
of the Supplementary Material).

The performance of the Output MPC is summarised in Fig. 20 in
terms of the cumulative operational cost index (OCIkWh) and external
carbon addition (ECA). The resulting nitrogen removal efficiency (𝜂𝑁𝑂,
a daily-average) is reported, as well.
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Fig. 19. Case-study 2, 𝑡 ∈ [8, 9.5]: Extra carbon flow-rates 𝑄(1⇝5)
𝐸𝐶 and dissolved oxygen

𝑆𝐴(1⇝5)
𝑂 (top panels) and nitrogen 𝑆𝐴(1⇝5)

𝑁𝐻 and effluent suspended solids 𝑋𝑆(10)
𝑆𝑆 (bottom

panels). The vertical dashed line indicates the time of a reference change.

• The metrics indicate that the operational cost OCIkWh is not
affected significantly during the period, except for the first (𝑡 =
2.8) and last (𝑡 = 11.2) reference change.

• The potential production of electricity RE indicates that approxi-
mately 44% of the operational costs could be recycled even when
the controller is not explicitly restricted to recover its energy
demands from the waste.

Fig. 20. Case-study 2: Control performance in terms of operational cost index, OCIkWh,
external carbon addition, ECA, and daily-averaged nitrogen removal efficiency, 𝜂𝑁𝑂 .

The results also show that a large quantity of external carbon is
required to implement the actions obtained by the optimal controller.
This is mainly due to the control strategy taken during the stricter
nitrogen removal task, when the external carbon source flow-rate, 𝑄(𝑟)

𝐸𝐶 ,
is increased in all reactors.

⇝ The efficiency in nitrogen removal reflects the expected perfor-
mance for each task: Around 70% of influent total nitrogen is
removed during the conventional treatment, whereas 53% and
77% efficiencies are achieved for the reuse and nitrogen removal
tasks, respectively.

In conclusion, the Output MPC can operate the activated sludge
plant to produce distinct nitrogen profiles, while satisfying the tech-
nological constraints of the equipment and keeping the other effluent
concentrations at reference values.

Nitrogen on-demand, with energy recovery
We expand upon the previous results by considering an Output MPC

which, in addition to tracking the reference trajectory, must operate
the ASP to recover energy from disposed sludge (that is, for cases with
𝜂 ∈ (0, 1] in Eq. (20)). We analyse the performance for increasing levels
of energetic self-sufficiency for 𝜂 ∈ {0.05, 0.1, 0.15,… , 0.90, 0.95, 1},
individually.

The results, in Fig. 21, show that the tracking accuracy slowly
degrades as the Output MPC is requested to recover increasingly larger
portions of its energetic demand from the wastage sludge. The tracking
performance degrades when operating the ASP to perform extreme
nitrogen removal (𝑡 ∈ [8.4, 11.2)) while still attempting to recover 60%,
or more, of the total energy needs.

⇝ Remarkably, excellent tracking is achieved before the occurrence
of the extreme events (𝑡 < 6), almost regardless of the degree of
energetic self-sustenance.

⇝ This is an important result, as it highlights the flexibility potential
of ASPs when efficiently controlled.

Fig. 21. Case-study 2: Reference tracking of effluent total nitrogen 𝑁𝑆(10)
𝑇𝑂𝑇 for different

values of energy efficiency 𝜂.
The controller performance in reference tracking is presented in

Fig. 22 in terms of the root-mean-squared-error (RMSE),

RMSE =

√

1
14 ∫

14

0

(

𝑁𝑟𝑒𝑓
𝑇𝑂𝑇 (𝑡) −𝑁𝑆(10)

𝑇𝑂𝑇 (𝑡)
)2

𝑑𝑡.

The results indicate that the controller is able to recover up to 60% of
the plant’s energy demand, while still providing satisfactory tracking
accuracy. The prevailing control strategy computed by the Output MPC
leads to lower the aeration levels (to reduce operational costs) and to
increase the wastage flow-rate (to biogas production and thus energy
generation). When the controller is requested to operate the plant under
full energy recovery (𝜂 = 1), the tracking accuracy worsens:

⇝ These results can be understood from an undesired effect of the
aforementioned control strategy when the constraints lead to low
levels of oxygen in all reactors.

The cumulative operational cost index (OCI𝑘𝑊 ℎ) and external car-
bon (𝐸𝐶𝐴) needed to enforce a full energy recovery control strategy
(𝜂 = 1) and the nitrogen conversion efficiency 𝜂𝑁𝑂 (as daily averages)
are shown in Fig. 23. As the electricity production (RE) matches
the operating costs, we fully exploited the margins for achieving en-
ergetic self-sustenance. When compared to the performance for the
controller without energy-recovery constraints (𝜂 = 0), the results also
show an increased need for external carbon and a decrease in the
nitrogen conversion efficiency during the nitrogen removal task (𝑡 ∈
(8.4, 11.2] days). This reflects how the Output MPC preferred to improve
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Fig. 22. Case-study 2: Accuracy of reference tracking (RMSE), under different
energy-recovery levels 𝜂 ∈ [0, 1].

Fig. 23. Case-study 2: Control performance in terms of operational cost index, OCIkWh,
external carbon addition, ECA, and daily-averaged nitrogen removal efficiency, 𝜂𝑁𝑂 ,
under full energy recovery (𝜂 = 1). The dashed lines refer to the performance obtained
when o energy recovery 𝜂 = 0 is enforced.

the denitrification-nitrification process by adding carbon rather than
increasing aeration in the reactors.

In conclusion, the Output MPC can operate the activated sludge
plant to produce distinct nitrogen profiles while ensuring that 60% of
its operational costs can be recovered from converting wastage sludge
into electricity. While the controller is also capable to enforce an oper-
ation which fully recovers the energy costs, the desired effluent quality
profiles may be compromised. Again, we remind that only sludge from
the secondary settler is used as a source for biogas production.

6. Concluding remarks

This work presents a general framework for the advanced control of
a common class of activated sludge plants. The framework is based on a
dynamic model of the plant and its sensors and actuators. We designed
and configured a highly customisable Output Model-Predictive Con-
troller for the operation of ASPs as facilities for conventional treatment
of wastewater, as well as the recovery of materials and energy.

The controller consists of a Moving-Horizon Estimator used to deter-
mine the state of the process, from plant data, and of a Model-Predictive
Controller used for computing the optimal actions that drive the plant
to attain high-level operational goals. By design, the Output MPC is
configurable to satisfy all the technological constraints relative to the
plant equipment. After overviewing the foundations of the control
framework, we discuss the performance of the controller in tasks of

practical relevance, ranging from depuration, to production of nitrogen
on-demand and energy recovery.
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