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Enhanced robustness of 
evolving open systems by the 
bidirectionality of interactions 
between elements
Fumiko Ogushi1,2,5, János Kertész3,4,5, Kimmo Kaski5 & Takashi Shimada5,6

Living organisms, ecosystems, and social systems are examples of complex systems in which 
robustness against inclusion of new elements is an essential feature. A recently proposed simple model 
has revealed a general mechanism by which such systems can become robust against inclusion of 
elements with totally random interactions when the elements have a moderate number of links. The 
interaction is, however, in many systems often intrinsically bidirectional like for mutual symbiosis and 
competition in ecology. This study reports the strong reinforcement effect of the bidirectionality of the 
interactions on the robustness of evolving systems. We show that the system with purely bidirectional 
interactions can grow with twofold average degree, in comparison with the purely unidirectional 
system. This drastic shift of the transition point comes from the reinforcement of each node, not from 
a change in structure of the emergent system. For systems with partially bidirectional interactions we 
find that the regime of the growing phase gets expanded. In the dense interaction regime, there exists 
an optimum proportion of bidirectional interactions for the growth rate at around 1/3. In the sparsely 
connected systems, small but finite fraction of bidirectional links can change the system’s behaviour 
from non-growing to growing.

An important and universal feature of many social, economical, ecological, and biological systems is that they 
are open. In these complex systems the constituting elements are not fixed and the complexity emerges or at least 
persists under successive appearances or introductions of new elements and disappearances or eliminations of 
old elements. Those systems sometimes grow or are stationary, but also some other times they collapse or go 
extinct. Hence one can ask a fundamental question why and when, in general, can such open and complex sys-
tems exist1–13.

In the previous studies, we have revisited this classical problem using a very simple graph dynamics model14. 
In this model, the system is composed of a collection of nodes connected by unidirectional links with weights. 
The nodes may represent various kinds of constitutive elements of the system i.e. chemicals, genes, animals, indi-
viduals, or species of some sort as we will term them from now on. Here the links are assumed to describe differ-
ent types of directed influences between pairs of species. The strength of the influence of species j on species i is 
denoted by the weight of the unidirectional link from node j to node i, aij. The weights can be either positive or 
negative. Each species has only one property that determines the dynamics, namely “fitness”, which is simply 
given by the sum of its incoming interactions from other species in the system, i.e., = ∑f ai j

in
ij. A species can 

survive as long as its fitness is greater than zero; otherwise, it goes extinct. We calculate the fitness for each species 
and identify the species with minimum fitness and if it turns out to be non-positive, it will be deleted. Because 
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each extinction event will also modify the fitness of the other species, the fitness is re-calculated and the least-fit 
species is re-identified. The deletion of species is continued until the minimum fitness value of a species becomes 
positive, meaning that nothing more will happen in terms of the above process. After finding such a state, we 
proceed to the next time step by adding a new species into the system. The m interacting species are chosen ran-
domly from the resident species with equal probability and the directions are also determined randomly. The link 
weights are again assigned randomly using the standard normal distribution. Then, we re-calculate the fitness of 
each species to find the species that will become extinct.

The results of the model have shown that the repetition of this process gives rise either to continuous growth 
or stagnation for the system size, depending on the model’s unique parameter, namely the number of weighted 
unidirectional links per a new node, m. Furthermore it turns out that the system can grow only if the connections 
are moderately sparse, i.e. the average degree is within a rather narrow interval for 5 ≤ m ≤ 18. If the network 
becomes denser, there is a transition from growth to decay. It was shown that this transition originates from a 
balance between two effects, namely while on one hand the inclusion of species with more interactions makes 
each node more robust, on the other hand it also increases the impact of the loss of a node14, 15. This relation might 
be the origin of moderately sparse network structures ubiquitously found in real world cases, with the average 
degree of up to few tens16–19.

We should note that the approach of simple models we adopt here, for obtaining a new way to determine the 
system’s robustness, is quite different from the more standard and often used models of population dynamics. 
In our simple model, all the intrinsic dynamics of the systems is indirectly represented by the survival or fitness 
condition, i.e. fi > 0, which does not depend on the population of the species, as we have not introduced the pop-
ulation size as the degree of freedom. With the focus on robustness of the system while keeping the model general 
and “as simple as possible but not simpler”, we have ignored such details as the intensity of the flux of energy or 
nutrition (mass) in ecosystems, rates of chemical reactions, and trade volume in a company network, etc. Our aim 
with this general and simplified modelling approach is to study in addition to ecological systems even social and 
economic systems, in which it is hard to find precise equation of motion or evolution rule.

As a further support for this kind of universality seeking approach we mention that in several cases such mod-
elling has been very successful. For example, one can find good agreement between a simple model and a real eco-
logical system in the statistics such as the distribution of the lifetime of species20. Further examples of the power 
of a simplified modelling approach comes from looking neuronal and gene regulatory networks that have quite 
different types of elements considered as nodes, yet the model dynamics is the same for both of them with ele-
ments getting a shunt or off state going extinct and never getting excited. As a last justification worth mentioning 
is to regard the survival condition in our model as the condition for persistence in an original complex dynamical 
model. An interesting finding is that we can show a relatively natural example that the extinction condition in a 
population dynamics model with ratio-dependent predation term, proposed and studied in ecology to improve 
the model’s correspondence with reality21, reduces to the same population-independent form as is the case in our 
simple model22.

In the previous yet even simpler model, the interactions between species of the system were generated ran-
domly with certain probability as unidirectional links between a pair of species i and j. This means that a random 
unidirectional link from j to i with a unidirectional link from i to j existing already, could be generated as a sec-
ond order effect proportionally to its link density, as ~ρ2. Hence the existence of influence from species i to j is 
independent of the existence of an influence in the opposite direction, i.e. from j to i. However, the simulation 
results of this model of self-emergence have shown that the accumulation of bidirectional influence is negligible, 
especially for large systems their density turned out to be vanishingly small.

However, in real systems, the interactions can on one hand be considered unidirectional as in case of reaction 
dynamics or signaling, and on the other hand bidirectional reflecting various types of bidirectional influence, like 
symbiosis or competition between species, predation-prey ecology, and even action-reaction law of Newtonian 
mechanics, etc. Therefore, in real systems we could distinguish five main types of interactions, of which two are 
unidirectional in nature, and three reflect bidirectional influence in terms of being cooperative, predatory, and 
competitive, as shown in Table 1 with the characterization and some real life examples.

Our aim in this study is to gain better understanding of the robustness and growth of real systems, with com-
putational modeling. In this study we will focus on studying systems in which the interactions around the species 
newly introduced into a system can be unidirectional, bidirectional, or a mixture of both in certain proportions. 
In the Model section we revisit the previous model and extend it to include bidirectional influence between 

Interaction type Representation Examples in real systems

Excitatory +
⟶X Y Signaling in neuronal and gene regulatory nets, commensalism, donation

Inhibitory
−
⟶X Y Signaling in neuronal and gene regulatory nets, amensalism, harassment

Cooperative
+

+
X Y Positive feedback, mutualism, cooperation, friendship

Predatory
+

−
X Y Negative feedback, predation, parasitism, exploitation, selfish actions

Competitive
−

−
X Y Mutual inhibition, competition, antagonism

Table 1. Types of interactions with those representation by links, and examples in real systems.
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species. In the following Results section we describe the simulation results for the cases purely and partially bidi-
rectional interactions. Next in the Discussion section we summarize our findings. This is then followed with the 
extensive Methods section.

Model
As in this study we are interested in the effects of bidirectional influences on the robustness of the evolving open 
system, we take the previous model as the base describing it first in detail and then extend it by introducing 
bi-directionality in a controlled way. In the previously model the evolution of an open system of species was set 
up to take place in a graph or network of randomly connected species or links describing the influences between 
species. This dynamical system evolves through interaction dependent survival of each species and a successive 
addition of new species to the system, as depicted in Fig. 1. This network consists of nodes (species) that are 
sparsely connected to each other with directed and (positively or negatively) weighted links, each describing the 
strength of interaction between a pair of species. In this system the survival of each species is determined by its 
fitness, which is calculated by the sum of the weights of its incoming links such that if the fitness of a given spe-
cies is positive, it will survive. On the other hand if the fitness of a species is non-positive that species and all the 
interactions from and to it are deleted. If two or more species have non-positive fitness values, the species with the 
minimum fitness are deleted and the fitnesses of other species are recalculate. This so called extinction process is 
repeated until all the remaining species have positive fitness and once such a network structure is reached, noth-
ing further will happen until a new node is born or introduced into the system. According to the terminology of 
ecology this is called a persistent state rather than a stable state.

When the system has relaxed to such a persistent state, a new species (node) is added to the system, and the 
above described process continues. Next M unidirectional links between the new node and the nodes randomly 
selected from the resident nodes are introduced.

Till this point our extended model is the same as the previous model, but instead of introducing unidirectional 
links a mixture in total of M unidirectional and bidirectional links is introduced by generating the bidirectional 
links with probability P and unidirectional links with probability 1 − P. The weight for each link is chosen again 
from a normal distribution. Thus our extended model has only two control parameters, M and P, instead of one in 
the previous model. In order to run the dynamics of both these models the above described addition and survival 
check process is repeated. A pseudo-code like description of the entire procedure of the present model is shown 
in the Methods section.

Counting each bidirectional link as two unidirectional links, one can say that m = (1 + P)M unidirectional 
links to the new species is introduced, which on average constitute PM bidirectional links. The extreme cases of 
P = 0 and P = 1 correspond to the original unidirectional model (with the number of unidirectional links per 
new species, m = M) and the pure bidirectional model (with m = 2M), respectively. We denote the density and 
the amount of bidirectionality of interactions in the emergent system in the same way, by the average number of 
interactions per species, i.e. K = ∑iMi/N, where Mi and N represent the number of links of ith resident and total 
number of resident species, respectively. We denote the ratio of bidirectional links by Q. Then the resident species 

Figure 1. The temporal evolution of a partially bidirectional model. (a) All the species have positive fitness and 
hence the system is in a persistent state. (b) The introduction of a new species (red). In this case the inclusion 
leads to the extinctions of a resident species (yellow) and that extinction triggers another extinction of a species, 
which is not directly connected to the newly introduced species (magenta). (c) Finally, the system reaches to a 
new persistent state. The numbers in the square brackets demonstrate the control parameters; M: the number 
of interacting species of the newly introduced species, P: the ratio of the bidirectional relation in the initially 
assigned interactions, and m = (1 + P)M: unidirectional link degree of the newly introduced species, and 
observables of the emerging network; N: the number of species, K: average number of interacting pairs per 
species in the system, Q: the ratio of the bidirectionally interacting pairs to the all interacting pairs in the system, 
and k = (1 + Q)K: average unidirectional link degree of the system.
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has k = (1 + Q)K unidirectional links such that they form QK bidirectional links. The above definitions are sum-
marized in Table 2.

Results
Purely bidirectional interaction (P = 1). Transition in growth behavior at twofold critical point. We first 
examine the system with purely bidirectional interaction, i.e. we choose P = 1. Similarly with what was obtained 
for the model with unidirectional interactions, the purely bidirectional model yields two distinct phases charac-
terized by its growth behavior. This is dependent on the unique parameter that specifies the number of interac-
tions, M, we introduce to each new species (Fig. 2(a)). While the system keeps growing without any limitation to 
its size if M is smaller than a certain value MC ( >→∞lim N t t( )/ 0t ), but the system shows finite size fluctuations if 
M > MC ( =→∞lim N t t( )/ 0t ). We call these phases diverging phase and finite phase, respectively.

From the systematic simulations, we have estimated the critical number of bidirectional interactions to be at 
between M = 19 and 20. As in this case all the interactions are bidirectional, the critical point, measured by the 
number of unidirectional links, is = == =m M2 39C

P
C
P1 1  (Fig. 2(b)). This value is almost two times that of the pure 

unidirectional model (i.e. = .=m 18 5C
P 0 ). Another clear difference from the unidirectional model is the absence 

of a finite phase in the very sparse regime. In the unidirectional case, the systems with m ≤ 4 are in finite phase, 
due to the fragility of the emerging network. In contrast, in the bidirectional case, the system even with M = 1 
turns out to exhibit diverging behavior. This is basically caused by the easiness of forming mutually supporting 
“dimers”, which is enough to let the nodes survive even when they are not globally connected. This regime will be 
discussed later in more detail. Our primary aim in what follows is to understand the twofold transition point in 
the well-connected regime.

To illustrate why we measure the interaction density by the number of unidirectional links and call the transi-
tion point “twofold”, we will briefly review the mean field argument on the basis of which the understanding and 
the rough prediction of the transition in the unidirectional model was obtained14, 23. In a system the introduction 
of a new species can lead to the extinctions of the resident species. We denote the extinction probabilities during 
this event as Ei. It should be noted that the extinction of resident species can also cause a cascading extinction 
through the deletion of the links from it, with a certain probability Ee. Assuming a structure-less random network 
topology, which is supported by the direct observation of the emergent network, the average number of extinc-
tions NE per a newly introduced species can be calculated as a simple infinite geometric series as follows

=
−

=N mE
kE2 (1)E

P i

e

0

for the unidirectional model, and,

=





+
− +






=N ME E
KE E

2 1
2 2 2 (2)

E
P

i
e

e e

1

for the bidirectional model. Here the critical point corresponds to NE = 1. Substituting Ei and Ee by an average 
extinction probability E and k by m, we obtain a simple guide of the transition point, namely mE = 1. Therefore 
we expect = == =m E M E2 1C

P
C
P1 1  for the bidirectional model, which means that the critical point of the bidirec-

tional model should have the same number of unidirectional links == =m M2C
P

C
P1 1 with that of the unidirectional 

model = .=m 18 5C
P 0 14. The details and an enhanced version of this mean-field argument are shown in the 

Methods section.

Reinforcement of elements. In order to clarify the crucial factor for the shift of the transition point, we evaluate 
the transition point using Eq (1) and Eq (2) with empirically obtained extinction probabilities (see the Method 
section). The average number of total extinctions per a newly introduced species increases monotonically as a 
function of the degree of a new species both for the unidirectional model and for the bidirectional model. The 
quantities =NE

P 0 and =NE
P 1 cross the critical value 1 at m* ~ 19.5 for the unidirectional model and 2M* ~ 39 for the 

bidirectional model, respectively, as depicted in Fig. 3(a). These critical points m* and 2M* agree well with the real 
transition points, = .=m 18 5C

P 0  and ==M2 39C
P 1 .

This result suggests that the shift of the transition point stems from the decrease in the extinction probability 
of the emergent system. In Fig. 3(b) we see that the quantities Ei and Ee decrease monotonically as a function 
of the degree of a new species both for the unidirectional and bidirectional models. Comparing the bidirec-
tional model with the unidirectional model, however, the bidirectional model gives a smaller Ei and Ee if the new 

Control parameters (for newly introduced species)

M: number of interacting species for the new species

P: ratio of the bidirectional relations

m: unidirectional link degree of the new species (=(1 + P)M)

Observables (for emerging nets)

K: average number of interacting pairs per species

Q: ratio of the bidirectionally interacting pairs to the all interacting pairs

k: average unidirectional link degree (=(1 + Q)K)

Table 2. Parameters and observables of the present model.
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species of the unidirectional model and the bidirectional model are assigned same number of unidirectional links, 
mP=0 = 2MP=1.

Further investigation of the emerging system reveals that the larger decrease in the extinction probability of 
the bidirectional model is caused by the slight increase in the average degree, together with the small change in 
the link weight correlation (see Method section for more details).

Model with partially bidirectional interaction (P ∈ [0, 1]). Bidirectionality dependence of the transition 
of the growth behavior. Next, we examine the systems with partially bidirectional interactions to investigate the 
influence of the proportion of bidirectionality P on the growth behavior. We find that P ∈ (0, 1) expands the area 
of the diverging phase, as seen in Fig. 4(a). Interestingly or even surprisingly, the system with a certain level of 
bidirectionality steadily grows even if the system with purely unidirectional interactions (P = 0) or purely bidirec-
tional interactions (P = 1) is in the finite phase. There are two phase boundaries, one found at around 18 < M < 22 
and another at around 1 ≤ M < 5, as can be seen in Fig. 4(a). Here the finite phase remains not only in the dense 
interaction regime and but also in the sparse interaction regime.

One may expect a strong effect of birectionality, because strong accumulation and cooperative interaction is 
possible. The most prominent example of this is the case of M = 1, in which each cooperative dimer can survive 
independently letting the system to consist of many independent clusters with broad size distribution. However, 
in the dense regime, one cannot find such a strong structuring effect. For example, in the dense regime, the pro-
portion of bidirectional links in the emerging system Q remains almost the same as the initial proportion P (see 
Methods).

Figure 2. The critical behavior of emergent systems with P = 0 or P = 1. (a) Temporal evolution of total number 
of species N(t) for P = 1. It diverges in time if the sum of in-degree and out-degree of each new species is small 
(m = 2M = 20 and 30), and it keeps fluctuating in a finite size for larger M (2M = 40 and 50). (b) Phase diagram 
of the growth behavior for P = 0 (red) and P = 1 (green). (top) Speed of divergence. (bottom) Average number of 
species. Filled symbols represent the systems with positive speed N(t)/t. The bidirectional model (circles) 
involves a transition from the diverging phase to the finite phase between m = 38 and 40. The critical point 

= == =m M2 39C
P

C
P1 1  is almost twofold of that of the unidirectional model (triangles) = .=m 18 5C

P 0 .
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Growth behavior in the dense interaction regime (19 ≤ M ≤ 22). Figure 5(a) shows the speed of divergence in the 
dense interaction regime. Here the speed of divergence is asymmetrically distributed as a function of a proportion 
of the bidirectional links. It is seen that there is an optimum bidirectionality for the growth rate P ~ 1/3. Thus, the 
upper phase boundary in the denser interaction regime (18 < M < 22) is asymmetric for the proportion of the 
bidirectional links (Fig. 4(b)). We also find that there exists an optimum bidirectionality for the growth rate at 
around P ~ 1/3.

The system with a moderate amount of bidirectionality grows for M = 19, 20, and 21, even if the system with 
purely unidirectional interactions or purely bidirectional interactions (P = 0 or P = 1) is in the finite phase. In 
addition, a small amount of bidirectionality makes the partially bidirectional system grow. On the other hand, the 
system with M = 22 remains in the finite phase only for all P ∈ [0, 1].

Growth behavior in the sparse interaction regime (1 ≤ M ≤ 4). In Fig. 5(b) it is seen that the speed of divergence 
increases monotonically from zero with the increasing proportion of the bidirectional links. Thus, a small but 
finite amount of bidirectionality brings the system from the original finite phase to the diverging phase, as is evi-
dent in Fig. 4(c). The area of the finite phase gradually decreases as a function of the amount of bidirectionality. 
Then if the proportion P of the bidirectionality is set larger than a certain value, the sparsely connected system 
involves only a diverging phase. We can also observe that, in this sparse regime, the emergent systems tend to have 

Figure 3. The mean-field approximation predictions of the transition points. (a) Estimation of the transition 
point from the diverging phase to the finite phase. The average number of total extinctions, =NE

P 0 (circles) and 
=NE

P 1 (boxes), increases monotonically as a function of m. They cross the critical value 1 at m* = 19.5 for the 
unidirectional model and at 2M* = 39 for the bidirectional model. Both of m* and 2M* agree well with the real 
transition points = .=m 18 5C

P 0  and ==M2 39C
P 1 . (b) Extinction probability Ei. (c) Extinction probability Ee. For 

the unidirectional model (circles) and the bidirectional model (boxes) with the same unidirectional link degree 
of a newly incoming species m, the extinction probabilities Ei and Ee of the bidirectional model are smaller than 
the corresponding probabilities of the unidirectional model.
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larger degree and larger proportion of bidirectional links than the input values (〈K〉 > M and 〈Q〉 > P, see Table 3 
in the Method section). This indicates relatively strong self-organization that is regarded as the main reason for 
the change in the system’s growth behavior such as the disappearance of the finite phase.

Discussion
We have studied the effects of introducing new species with variable degree of bidirectionality in the interactions 
between species, focusing especially on the dynamics of the robustness of the network of species.

First we found that the system with purely bidirectional interactions is more robust against the inclusion of 
new species, which is characterized by the twofold transition point from the growing phase to the finite phase. The 
twofold transition point also means that one can roughly identify or even mix the unidirectional and bidirectional 

Figure 4. The phase diagram of the growth behavior for (a) 1 ≤ M ≤ 22, (b) the dense interaction regime 
18 ≤ M ≤ 22, and (c) the sparse interaction regime 1 ≤ M ≤ 5. The partial bidirectionality expands the area of 
the diverging phase (filled circles). There exists an upper phase boundary (dotted line) at around 18 < M < 22 
and a lower phase boundary (solid line) at around 1 ≤ M < 5. The upper boundary is asymmetric for the 
bidirectionality and there is an optimum bidirectionality for the growth rate at around P ~ 0.3. The finite phase 
(open circles) in the sparse connecting regime M < 5 remains within a range of small but finite bidirectionality. 
The area of the finite phase gradually decreases as a function of the increasing bidirectionality.

Figure 5. The growth behavior of the partially bidirectional systems in (a) the dense interaction regime and 
(b) the sparse interaction regime. (a) Moderate proportion of bidirectional links brings the system from the 
finite phase to the diverging phase. The speed of divergence is asymmetric as a function of the bidirectionality 
and there exists an optimum bidirectionality for the growth rate at around P ~ 1/3. (b) The speed of divergence 
increases monotonically from zero as a function of proportion of the bidirectional links. A small but finite 
bidirectionality brings the sparsely connected system from the finite phase to the diverging phase.
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interactions to apply our framework to real systems, in which the detailed information of interactions and their 
nature is often not available. The upper limit of the average number of interacting species per species for let-
ting the system to grow its diversity is around 20 irrespective of the bidirectionality of interaction. This is again 
confirmed to be significantly looser than the classical diversity-stability relation known for random dynamical 
systems1 and for generalized Lotka-Volterra system with random inclusion of new species24, 25. This limiting con-
dition seems to be more consistent with the persistence condition of ecological models with realistic nonlinear 
interactions8 and of a model with spatial structure26, but most importantly with empirical data19.

In the model with partial bidirectionality, we find that there exists an optimum ratio of bidirectional interac-
tions at around 1/3, for the growth of the system to take place. Because the bidirectionality of the emergent system 
remains near to its input proportion, this optimum in the middle seems to be consistent with the enhancement of 
the system by the diversity of interaction types in the system, found in a more complex models of ecosystems27. 
We also find that only a small, though finite, portion of bidirectional interactions let the very sparse (M ≤ 4) sys-
tem to grow to a large and connected structure.

Except for the very sparse regime, all those drastic changes in the entire system’s robustness are caused by a 
little change in the degree and also in the emergent correlations between the link weights. The network character-
istics such as clustering and assortativity are also found to be not much deviated from that of Erdös-Rényi random 
graph (see Methods). This is quite noteworthy because the system in our model self-emerges without any appar-
ent constraints and hence more drastic self-organization could be possible. Indeed, stronger self-organization and 
its effect on the growth behavior of the system is observed in the sparse regime (M ≤ 4).

A study of an extended model in which we force the system to have stronger correlations in the link and 
weight topologies could be the next step6, 26, 28, 29, to further relate our framework to the real systems.

Methods
A pseudo-code representation of the model. The present model is expressed as the following pseudo-code. 

 0. (Create an initial network.)
 1. Calculate the fitness for each species: = ∑f ai j

incoming
ij

 2. If the fitness of the species are all positive (Fig. 1(a) and (c), persistent state), go to step 3. If not, 

 (i) Delete the species with minimum (and non-positive) fitness value.
 (ii) Delete the links connecting to and from that species.
 (iii) Go back to the step 1 (to re-evaluate the fitnesses).
 3. A new species is added to the system (Fig. 1(b)). 

M P 〈N〉 〈K〉 〈Q〉
Assortativity 
coefficient Nestedness

Clustering 
coefficient

19

1 Nobs = 20,000 19.7 1.00 −0.0202 0.00262 (1.09) 0.00221 (0.917)

0.7 Nobs 19.7 0.703 −0.0214 0.00107 (1.09) 0.000904 (0.917)

0.5 Nobs 19.8 0.504 −0.0216 0.00107 (1.09) 0.000921 (0.931)

0.3 Nobs 19.9 0.304 −0.0223 0.00108 (1.09) 0.000907 (0.913)

0.1 Nobs 19.7 0.102 −0.0210 0.00107 (1.09) 0.000901 (0.916)

0 2.67 × 103 19.4 0.00 −0.0198 0.0103 (0.841) 0.00866 (0.917)

10 0 Nobs 10.9 0.00 −0.0360 0.000610 (1.12) 0.000469 (0.861)

4

1 Nobs 5.04 1.00 −0.0444 0.000305 (1.21) 0.000205 (0.814)

0.1 Nobs 5.00 0.116 −0.0590 0.000293 (1.18) 0.000233 (0.942)

0.004 7.17 × 103 4.58 0.00540 −0.0763 0.00130 (0.911) 0.000745 (0.658)

3

1 Nobs 3.93 1.00 −0.0512 0.000245 (1.24) 0.000171 (0.869)

0.1 Nobs 3.87 0.126 −0.0765 0.000231 (1.20) 0.0000970 (0.501)

0.02 1.35 × 103 3.70 0.0305 −0.0836 0.00332 (0.878) 0.00169 (0.603)

2

1 Nobs 2.84 1.00 −0.0761 0.000182 (1.28) 0.0000855 (0.601)

0.1 Nobs 2.81 0.153 −0.0973 0.000172 (1.22) 0.0000479 (0.341)

0.04 1.16 × 103 2.80 0.0726 −0.0900 0.00241 (1.00) 0.000817 (0.418)

1

1 Nobs 1.84 1.00 −0.147 0.000120 (1.31) 0.00 (0.00)

0.7 Nobs 1.84 0.816 −0.149 0.000118 (1.28) 0.00 (0.00)

0.5 Nobs 1.84 0.659 −0.140 0.000117 (1.28) 0.00 (0.00)

0.3 Nobs 1.85 0.469 −0.134 0.000118 (1.27) 0.00 (0.00)

0.1 Nobs 1.90 0.212 −0.114 0.000125 (1.32) 0.00 (0.00)

0.05 1.75 × 103 1.93 0.120 −0.0788 0.00159 (1.14) 0.00 (0.00)

Table 3. Network characteristics of the emergent systems. For the case in the diverging phase, we observe the 
system when it first reaches a certain size Nobs = 20,000. The numbers in the parenthesis for clustering coefficient 
and nestedness are those ratios to the ones of Erdös-Rényi random graph with the same size and degree, i.e. 
N = 〈N〉, K = 〈K〉, Q = 〈Q〉.
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 (i) M interacting species are chosen randomly from the resident species, with equal probability 1/N(t).
 (ii) The new species forms bidirectional links, with probability P.
 (iii) With probability 1 − P, we assign a unidirectional link. Its direction is randomly chosen with proba-

bility 1/2.
 (iv) The link weights are independently drawn from the standard normal distribution. The link weights 

between incoming and outgoing unidirectional links which consist up one bidirectional link are also 
independent: 〈aijaji〉 = 0.

 (v) Go to 1.

The mean-field estimation of the transition point. In the original unidirectional model (P = 0), the 
system keeps growing only if the interaction is moderately sparse (5 ≤ m ≤ 18) and cannot grow outside of this 
regime (m ≤ 4 and m ≥ 19). The basic mechanism of the transition from the diverging phase to the finite phase 
at mc = 18.5 is known to be explained by the mean-field argument14, 15, which assumes a correlation-less random 
network structure for the interaction network of self-emerging system. The validity of this assumption is con-
firmed in the simulation, from the direct observation of the system. With such an assumption, the system’s growth 
behaviour against the inclusions of new species is characterized by two average extinction probabilities, Ei and 
Ee. Ei is the extinction probability of the resident species after obtaining a direct incoming link from the newly 
introduced species. The other extinction probability, Ee, is the probability of a species to get extinct after loosing 
one incoming link which is brought by the extinction of the neighboring species. Because of the assumption of 
random network topology, the total number of extinctions of the resident species per newly introduced species 
〈Ne〉 is calculated from a simple geometric sum as
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where mEi/2 is the average number of extinctions directly caused by the newly introduced species and the infinite 
geometric sum corresponds to the process of cascade extinctions. The transition point is the point at which 
〈NE〉 = 1, i.e. the average number of gain and loss of the species are equal.

Let us perform the same calculation in the system which consists of fully bidirectional interactions (P = 1). 
In this case, the expected number of extinctions in the layer of direct connection to the newly introduced species 
is MEi. These extinctions cause the following link-deletion events, subsequently giving rise to KEe extinctions in 
the next-nearest neighbors. After this layer, the contribution of the cascading extinction in each deeper layer is 
(K − 1)Ee. Therefore, the total number of extinctions per a newly introduced species in the bidirectional model 
is calculated as,
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For the simple evaluation of the transition point, we further assume that the average degree of the emergent 
system is same as the initial degree, i.e. m = k and M = K. Because the correlation-less network assumption it also 
means that the extinction probability is a function of the unique system parameter, i.e. average degree, meaning 
that it can be written as a function of initial degree m = 2M. Based on the empirical findings, we also assume that 
the extinction probabilities are similar and much smaller than 1 near the transition point ( = = E E E 1c i e ). 
Then the condition for the unidirectional case (Eq. 3) becomes the following very simple form14

⋅ =m E m( ) 1, (5)c c

and the corresponding simple form for the bidirectional system (Eq. 4) is

⋅ = +
+

.~M E M E
E

(2 ) (2 ) 1
2

1
(6)c c

c

c

These results gives us the basic estimation for the transition point for the bidirectional systems, which says that 
the transition occurs at the same critical unidirectional degree:

= = .= =M m m2 (7)c c
P

c
P1 0

This is why we regard the observed transition point, = =~M mc
P

c
P1 0, “tow-fold” of what is naively expected.

Calculation of the extinction probabilities in the emerging systems. The extinction probabilities 
Ei and Ee in an emerging system are calculated according to those definitions as,
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=
≤

E
#

#
,

(9)e
a f

link

ij i

where ≤#a fij i
 and #link represent the number of species with smaller fitness than the link weight receiving from each 

link and the total number of links of the emergent system, respectively.

The network structure and its effect in the bidirectional model (P = 1). Degree distribution. As 
shown in the Fig. 6(a), the average unidirectional link degree of the emergent system k increases almost linearly 
as a function of the degree of a new species m, both for the unidirectional model and for the bidirectional model. 
For the unidirectional model and the bidirectional model with the same degree of a newly incoming species 
mP=0 = 2MP=1, the average degree of the bidirectional model is slightly larger than that of the unidirectional 
model. This difference comes mainly from the broader tail of degree distribution in the bidirectional case. The 
peak position of the degree distribution at k = m and the tail on the large degree side is fatter than that on the 
other side (Fig. 6(b)).

One can find a scaling relation in the fitness distributions of the unidirectional model and the bidirectional 
model (Fig. 7(a)). The fitness distributions of the unidirectional model and the bidirectional model match well 
when the control parameter of those satisfies the relation: mP=0 = 2(MP=1 + 1). This scaling relation holds also for 
the distributions of the link weights (Fig. 7(b)). All the results above can be explained by the slight increase in the 
actual average degree in the emergent system in the bidirectional case: kP=1(M) = kP=0(2(M + 1)).

Weak correlation in link weights. According to the scaling relation, the unidirectional model and the bidirec-
tional model give the same average degree of the emergent systems kP=0 = 2KP=1 at mP=0 = 2(MP=1 + 1). Therefore, 
the unidirectional model and the bidirectional model are expected to have the same extinction probabilities at 
kP=0 = 2KP=1 (Fig. 8(a)). However, while Ei is found to obey this relation, Ee of the bidirectional model is slightly 
smaller than that of the unidirectional model (Fig. 8(b)). It suggests that the system of the bidirectional model has 
stronger weight-fitness correlation than the unidirectional model.

Here we conclude that the shift of the transition point stems from the small decrease in the extinction proba-
bility of the bidirectional model due to the weak shift in the average degree and the correlation in link weights, not 
from strong structuring or emergence of a certain motif in the emergent system.

The network structure of the partially bidirectional model. Dense regime. The self-emerging net-
work of the partially bidirectional model in the dense regime is found to have only weak structuring, similar to 
the fully bidirectional case. The proportion of bidirectional links in the system also remains the same as the newly 
introduced interactions (Q = P).

Sparse regime. In the sparse regime, the emergent systems tend to have larger degree and larger proportion 
of bidirectional links than input values (〈K〉 > M and 〈Q〉 > P, see Table 3). This indicates the relatively strong 
self-organization effect in this regime, which is regarded as the main reason for the disappearance of the finite 
phase.

In order to investigate the network structure in this regime, we analyze the network size distribution. As 
shown in Fig. 9(a), the systems are composed of multiple clusters in the diverging phase, whereas all resident spe-
cies construct a single big cluster in the finite phase. In the diverging phase, in contrast, the systems with M = 2, 3 
and 4 are composed of a single big cluster with some small fragments such as dimers, trimers, etc. (Fig. 9(b)). The 
cluster size distribution of the system with M = 1 is continuous up to its largest cluster size, meaning that there is 
no dominant giant component.

Figure 6. (a) Average degree of the emergent system. The emergent system in the bidirectional model (boxes) 
has larger average degree than that of the unidirectional model (circles) with the same unidirectional link 
degree of the new species mP=0 = 2MP=1. (b) Degree distribution of the emergent system at m = 18. The degree 
distribution of the bidirectional model (solid line) has broader tails than that of the unidirectional model 
(dashed line), with sharing the same peak position.
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The basic mechanism of the self-organization seems to be a formation of cooperative dimers. Such a dimer can 
survive independently and hence can be a nuclei of non-connecting cluster. We can see this effect in the cluster 
size distribution clearly in the case of M = 1. Although it becomes less visible in the cluster size distribution in the 
case of M > 1, because of the random reconnection (or, bridging) process due to the introduction of new nodes, 
the dimer nucleus still let the network, which consists of sparsely connected almost independent clusters, survive.

Assortativity, Nestedness, and Clustering. Some network characteristics of the emergent systems are 
shown in Table 3. For this we treat unidirectional and bidirectional links equally as directionless links. Therefore 
the assortativity coefficient is calculated from the directionless link degrees of the nodes in the both ends of link 
i, κ α

i  and κ β
i , as follows

κ κ κ κ

κ κ κ κ
= ∑ − −

∑ − ∑ −
.

α α β β

α α β β
A

( )( )

( ) ( ) (10)

i i i

i i i i
2 2

Moreover, we adopt a nestedness measure for uniparpite and dilectionless networks30 as
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where aij and Ki represent the adjacency matrix element and the degree of species i, defined by the directionless 
links. The clustering coefficient is also calculated from the number of triples and triangles formed by the direc-
tionless links as,

=
×

.C 3 (number of triangles)
number of triples (12)

Figure 7. Scaling relation in the fitness distribution function. (a) Fitness distributions of the unidirectional 
model (m = 14, 18, 22, and 30) and of the bidirectional model (M = 6, 8, 10, and 14). (b) Link weight 
distributions of the unidirectional model with mP=0 = 18 and of the bidirectional model with MP=1 = 8. Solid 
blue line is a fitting function, a standard normal distribution function G(x, μ) (solid line) with its mean μ = 0.45.

Figure 8. (a) Extinction probability Ei. (b) Extinction probability Ee. Emergent systems of the unidirectional 
and bidirectional models with same average unidirectional link degree show the same extinction probability 
against the direct disturbance event from the new species, Ei. On the other hand, the extinction probability 
against the loss of a link, Ee, is slightly smaller for the bidirectional model than that of the unidirectional model.
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Comparing to the Erdös-Rényi random graph, clustering coefficient is slightly smaller and nestedness is 
almost the same. In addition the assortativity coefficient turns out to be slightly negative.
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