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The lattice thermal conductivity of Cu2O was studied using ab initio density functional methods. The
performance of generalized gradient approximation (GGA), GGA-PBE, and PBE0 exchange-correlation
functionals was compared for various electronic and phonon-related properties. The 3d transition metal oxides
such as Cu2O are known to be a challenging case for pure GGA functionals, and in comparison to the GGA-PBE
the PBE0 hybrid functional clearly improves the description of both electronic and phonon-related properties.
The most striking difference is found in the lattice thermal conductivity, where the GGA underestimates it as
much as 40% in comparison to experiments, while the difference between the experiment and the PBE0 hybrid
functional is only a few percent.
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I. INTRODUCTION

Copper(I) oxide Cu2O (Fig. 1) is one of the first semi-
conductors known to man and has a history of being the
first example of different phenomena and devices, such as
the first p-n junction [1,2]. Copper oxides have been shown
to have potential in a plethora of applications such as the
p-type material in heterojunction photovoltaic cells [3,4], CO2

reduction [5,6], methanol production catalysis [7], and, lately,
also as a p-type thermoelectric material [8–10]. One of the
biggest advantages of using copper oxides is the relatively
high abundance of Cu and the proficiency of recycling it.
For substituting the currently best-performing thermoelectric
materials such as PbTe and Bi2Te3, the nontoxicity of copper
makes it even more attractive for everyday use. In order to use
copper oxides as thermoelectric materials, a lot of work is still
required to boost the material performance to a useful level.

The heat-to-electricity conversion efficiency of a thermo-
electric material is defined by a single, dimensionless figure of
merit, ZT = σS2T/κ , where σ is the electrical conductivity,
S the Seebeck coefficient, and κ the thermal conductivity of
the material. The problem of rationally optimizing materials
towards a high thermoelectric efficiency is that σ , S, and κ

are very difficult to decouple and systematically improve in a
one-at-a-time fashion. One of the most promising techniques
has been to consider κ as the sum of the electronic thermal
conductivity κe and the lattice thermal conductivity κl and
then reduce the latter by increasing phonon-phonon scattering
via nanostructuring or doping [11,12]. This not only improves
ZT by shrinking the denominator while keeping the electrical
properties roughly the same but, in the best case, can even
enhance them through increased carrier concentrations at
appropriate doping levels. Although the procedure is simple on
paper, finding the right material compositions and eventually
synthesizing them in a controlled fashion is not as straightfor-
ward.

With the recent advancements in atomistic materials model-
ing and the ever-increasing computational capacity, it is possi-
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ble to predict many physical properties with an accuracy that is
useful for rational materials design. Especially, the calculation
of lattice thermal conductivities has evolved vastly over the last
10 years, from the use of empirical potentials for silicon to the
full ab initio treatment of complex materials, several software
packages having been developed for this purpose [13–21].
Although these methods and software provide a robust and
parameter-free way to gain access to theoretical lattice thermal
conductivities, they use density functional theory (DFT) to
calculate interatomic force constants and, thus, are prone to
the common pitfalls of DFT. One of these is the inability of
the local density approximation (LDA) or generalized gradient
approximation (GGA) to correctly describe relatively localized
electronic states such as the d states of transition metals.

There are two common methods for handling the trou-
blesome self-interaction error with localized d states: (i)
introducing an on-site Coulomb repulsion to the LDA or GGA
using the Hubbard U term, as popularized by Liechtenstein
[22] and Dudarev [23] and (ii) using a so-called hybrid density
functional, where a part of the exchange energy of the system
is taken from the exact exchange of Hartree-Fock theory, as
introduced by Becke [24,25]. For three-dimensional periodic
systems, the first approach has gained much popularity due
to its much lower computational cost when plane-wave basis
sets are used. Hybrid functionals are more typically applied in
molecular calculations based on local basis functions, where
the computational cost of exact exchange is much lower
in comparison to that of plane waves. However, it is also
possible to apply local basis sets for solid-state systems with
periodic boundary conditions, enabling the more cost-effective
inclusion of hybrid functionals.

As DFT studies on the lattice thermal conductivity of
complex materials become more and more common, it is also
interesting to see how the DFT-GGA performs in comparison
with hybrid functionals in the case of phonon-related proper-
ties. We have interfaced the CRYSTAL14 materials modeling
package based on Gaussian-type basis sets with the Phono3py
program package and we report, to our knowledge, the first
full hybrid DFT calculations of lattice thermal conductivity
[19,26,27]. The outline of the paper is as follows: In Sec. II
we discuss the most important aspects of the theory of lattice
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FIG. 1. Unit cell of Cu2O. Red, O; brown, Cu.

dynamics related to our calculations. Then we report the results
on the basic electronic and structural properties of Cu2O in
Sec. III A, followed by the phonon-related results such as the
phonon dispersion, Grüneisen parameters, and lattice thermal
conductivity in Sec. III B. Next, we discuss the origins of
the performance difference between the GGA and the hybrid
density functional in the case of Cu2O in Sec. III C. Finally,
we report our conclusions in Sec. IV.

II. THEORETICAL BACKGROUND

A. Lattice dynamics

Lattice dynamics theory has been thoroughly discussed
in many textbooks [28–30]. Here we outline the theoretical
framework for our computational work, introducing the key
concepts that are required for a comprehensive analysis of
the calculated lattice thermal conductivities. We begin by
assuming that the crystal potential energy is an analytical
function of the atomic displacements from their equilibrium
positions. This potential contains all but the kinetic energy
of the crystal. Then, with small enough displacements, the
potential energy � can be expanded as a power series,

� = �0 + �1 + �2 + �3 + . . . , (1)

where �0 is the constant potential and other components are

�1 = 1

1!

∑
lkα

�α(lk)uα(lk), (2)

�2 = 1

2!

∑
lkα

∑
l′k′β

�αβ(lk,l′k′)uα(lk)uβ(l′k′), (3)

�3 = 1

3!

∑
lkα

∑
l′k′β

∑
l′′k′′γ

�αβγ (lk,l′k′,l′′k′′)

× uα(lk)uβ(l′k′)uγ (l′′k′′), (4)

where u(lk) is the displacement of the kth atom in the lth unit
cell from its equilibrium position r(lk), mk is the atomic mass
of atom k, and Cartesian coordinates are denoted by Greek
letters. �αβ and �αβγ are the second- and third-order force
constants, often called the harmonic and anharmonic force

constants, respectively. They are simply the nth derivatives of
the potential with respect to the Cartesian coordinates, e.g.,

�αβ(lk,l′k′) = ∂2�

∂uα(lk)∂uβ(l′k′)
|0 (5)

If we were to consider only the quadratic term in Eq. (1) and the
kinetic energy of the system T, defined with the displacement
derivative as

T = 1

2

∑
lkα

mk[u̇α(lk)]2, (6)

this would constitute the so-called harmonic Hamiltonian
HH = �2 + T . In practice, the first term �1 is omitted by the
assumption that forces on atoms at equilibrium vanish. That
is enough to resolve the lattice dynamics from the dynamical
matrix eigenvalue problem

∑
k′β

D
αβ

kk′(q)Wβk′
qj = ω2

qjW
αk
qj , (7)

where q is the wave vector, j is the band index, ωqj and Wqj

are the frequency and polarization vector of a phonon mode for
a set {q,j}, respectively, and the elements of the dynamical
matrix are

D
αβ

kk′(q) =
∑

l′

�αβ(0k,l′k′)√
mkmk′

eiq·[r(l′k′)−r(0k)]. (8)

Here and in Eq. (12) we have used the translational invariance
condition, which states that the force constants depend on l, l′,
and l′′ only through their difference, allowing us to drop the
sum over l.

A more convenient way to write the terms of the potential
expansion is to express the displacements with the use of
the phonon creation and annihilation operators â

†
qj and âqj ,

respectively, resulting in

uα(lk) =
(

h̄

2Nmk

) 1
2 ∑

qj

ω
− 1

2
qj (âqj + â

†
−qj )eiq·r(lk)Wαk

qj , (9)

where N is the number of unit cells (for the full derivation,
see, e.g., [29], pp. 93–95). This simplifies the expression for
the harmonic Hamiltonian, allowing us to write it as a sum of
harmonic oscillators,

HH =
∑
qj

h̄ωqj

(
1

2
+ â

†
qj âqj

)
. (10)

Furthermore, we obtain the third-order potential �3 from
Eq. (4) as a sum of three-phonon collisions,

�3 =
∑
qj

∑
q′j ′

∑
q′′j ′′

Fqj,q′j ′,q′′j ′′ (âqj + â
†
−qj )

× (âq′j ′ + â
†
−q′j ′ )(âq′′j ′′ + â

†
−q′′j ′′ ), (11)
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where the interaction strength is described by the term
Fqj,q′j ′,q′′j ′′ , written explicitly with phonon modes {q,j} as

Fqj,q′j ′,q′′j ′′ = 1

3!
√

N

∑
kk′k′′

∑
αβγ

Wαk
qj W

βk′
q′j ′W

γk′′
q′′j ′′

×
√

h̄

2mkωqj

√
h̄

2mk′ωq′j ′

√
h̄

2mk′′ωq′′j ′′

×
∑
l′l′′

�αβγ (0k,l′k′,l′′k′′)eiq′ ·[r(l′k′)−r(0k)]

× eiq′′ ·[r(l′′k′′)−r(0k)]ei(q+q′+q′′)·r(0k)δq+q ′+q ′′,G,

(12)

where δq+q ′+q ′′,G is the selection rule for the allowed collisions
(e.g., [30], p. 119). In a three-phonon process the wave vectors
of the phonons q, q′, and q′′ must add up to a reciprocal lattice
vector G in order to preserve the crystal momentum (for more
on the selection rules and their implications, see, e.g., [28]
pp. 134–145).

B. Thermal conductivity

Macroscopically thermal conductivity κ is defined as the
rate of heat energy flow per unit area normal to the thermal
gradient �T subjected to a solid material, which together form
the heat current

Q = −κ�T . (13)

Generally heat is transferred by several different carriers, and
the thermal conductivity can be written as the sum of all
individual components,

κ =
∑

i

κi . (14)

In solid semiconductor materials it is usually enough to
consider heat carried by the phonons (κl) and electrons (κe).
Often even the electron contribution can be neglected: with
increasing band gap the electrical conductivity decreases,
which also decreases the electronic contribution to the thermal
conductivity according to the Wiedemann-Franz law. In a
recent study of Cu2O thin films, the electrical conductivity was
found to be around 0.5 �−1 m−1 [9], allowing the estimation of
the total thermal conductivity to a reasonable accuracy based
on the lattice contribution alone. It should be noted that in
the case of highly doped semiconductor materials κe may no
longer be negligible.

The problem now is to write out a usable formula for
describing heat conduction due to phonons. This is done by
solving the linearized Boltzmann transport equation (LBTE).
When the single-mode relaxation time approximation is used,
the thermal conductivity for a collection of phonons can be
written using their heat capacity C, group velocity v, and
mean free path between collisions . We can write this for a
group of phonons in a finite crystal as

κl = 1

NV0

∑
qj

Cqj vqjqj , (15)

where V0 is the volume of the unit cell. Within the harmonic
approximation it is already possible to calculate the mode-
dependent heat capacity assuming that phonons obey Bose-
Einstein statistics. The group velocity for the modes obtained
from Eq. (7) is just the first derivative of the frequencies with
respect to the wave vector. The phonon mean free path can
be evaluated as a product of the group velocity and relaxation
time of a mode (which is assumed to be the same as the
lifetime) vqj × τqj , and for the latter we need to include the
anharmonicity of the crystal.

In the harmonic approximation, phonon lifetimes would
be infinite. Anharmonic effects in crystals produce a phonon
self-energy �ωqj + i�qj , where the imaginary part is in fact
the reciprocal of the phonon lifetime. An explicit formula for
this can be obtained using many-body perturbation theory.
Including contributions up to the second order, the imaginary
part can be written as

�qj (ω) = 18π

h̄2

∑
q′j ′,q′′j ′′

∣∣F−qj,q′j ′,q′′j ′′
∣∣2{(nq′j ′ + nq′′j ′′ + 1)

× δ(ω − ωq′j ′ − ωq′′j ′′ ) + (nq′j ′ − nq′′j ′′ )

× [δ(ω + ωq′j ′ − ωq′′j ′′ ) − δ(ω − ωq′j ′ + ωq′′j ′′ )]},
(16)

where the terms nqj are phonon occupation numbers [31,32].
Phonons are assumed to obey Bose-Einstein statistics and their
occupations as a function of temperature are

nqj = 1

e(h̄ωqj /kBT ) − 1
. (17)

So far everything about phonons and their behavior is
general. In actual calculations carried out in this work, the
reciprocal space is discretized to a �-point-centered mesh of
N1 × N2 × N3 grid points, and the set of considered collisions
is thus truncated to events in the vicinity of these grid points.
Additionally, when calculating the imaginary part of the
self-energy in Eq. (16), all other phonon modes are assumed
to be in their equilibrium distributions (single-mode relaxation
time approximation; hereafter RTA). We also checked the
accuracy of the RTA in comparison to the full direct solution
of the LBTE [16]. Force constants are calculated using the
finite-displacement method, where the dynamical matrix is
constructed by calculating the forces acting on each atom
in a supercell due to the displacement of one atom for the
second-order and two atoms for the third-order force constants.
The symmetry of the crystal is utilized to reduce the number of
supercell calculations required to construct the full set of force
constants. Also, only processes of up to three phonons are
considered, although the potential energy could be expanded
to fourth-order and higher terms. The computational cost
scales up rapidly already from the inclusion of third-order
interactions, as the number of required force calculations in
high-symmetry Cu2O is only 2 for the harmonic part but 246
for the anharmonic force constants obtained for a 2 × 2 × 2
supercell. Anharmonicity is considered only in the calculation
of different scattering processes, and the effect anharmonicity
may have on the phonon eigenvalues is neglected, as well as
any higher order force constants and decay pathways involving
more than three phonons.
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C. Computational details

All DFT calculations were carried out with the CRYS-
TAL14 program package [26]. Throughout the paper, we
compare the performance of two density functionals: (i) the
hybrid PBE0 functional, with 25% Hartree-Fock and 75%
PBE exchange [33,34]; and (ii) the PBE GGA functional. In
addition, we benchmarked three other well-known functionals
to provide a more general picture of the DFT performance for
Cu2O: (iii) the hybrid HSE06 functional derived from PBE0
and using an error-function-screened Coulomb potential to
calculate the exchange energy [35]; (iv) the Minnesota-type
meta-GGA functional M06L; and (v) its hybrid counterpart
M06, incorporating 27% exact exchange [36,37]. For all
calculations we used all-electron, Gaussian-type basis sets,
mainly triple-ζ -valence + polarization level, based on Karls-
ruhe def2 basis sets (a list of all basis sets used and their
derivations is given in the Supplemental Material) [38].
Convergence with respect to reciprocal space k sampling was
checked and a mesh of 8 × 8 × 8 points was used for all
calculations on the primitive unit cell of Cu2O [39]. Coulomb
and exchange integral tolerance factors (TOLINTEG) were
set to tight values of 8, 8, 8, 8, and 16. A default integration
grid (XLGRID) was used for the density functional part, along
with default total energy convergence thresholds (TOLDEE).
TOLDEE was tightened to 10−9 a.u. for the �-frequency
calculation [40,41]. Elastic constants were calculated with
the standard method implemented in CRYSTAL14 within the
keyword ELASTCON [42,43]. The methodologies used for
calculating different physical properties are described in detail
in the respective parts of the Results and Discussion section
(Sec. III).

Harmonic phonon properties and thermal conductivities
were obtained using the Phonopy and Phono3py program
packages, respectively [19,44]. Harmonic force constants were
calculated using a 4 × 4 × 4 supercell corresponding to a
lattice parameter of 17.27 Å, 384 atoms in the cell, and
an atomic displacement of 0.01 Å. For k sampling, only
the � point was considered. To confirm that the localized
GTO-type basis set provides accurate force constants, we also
calculated second-order force constants with the QUANTUM

ESPRESSO plane-wave code both analytically (density func-
tional perturbation theory) and numerically (finite differences
with Phonopy). We found a good agreement between the
GTO and the plane-wave results, and detailed results from
the the QUANTUM ESPRESSO calculations are included in
the Supplemental Material [45–52]. When calculating thermal
conductivities, the atomic displacement was increased to
0.03 Å for both harmonic and anharmonic force constants. The
effect of increasing the atomic displacement was negligible
for the harmonic frequencies. A smaller, 2 × 2 × 2, supercell
with 2 × 2 × 2 k sampling was used for the third-order force
constants. A q mesh (N1 = N2 = N3) for the calculation of
κl was tested with values varying from 10 to 20, and a mesh
of 20 × 20 × 20 q points was used in the final calculations
(18 × 18 × 18 for the full solution of the LBTE). A tight
10−10 a.u. total energy convergence threshold was used in
all supercell calculations. All Brillouin-zone integrations for
calculating the phonon density of states (PDOS) and the
imaginary part of the self-energy have been done with the

TABLE I. Optimized lattice parameter a (Å) of Cu2O for nine
combinations of functionals and Gaussian-type basis sets. The SVP
basis set is the smallest; the TZVPP, the largest. The difference
from the experiment (a = 4.269 Å, T = 295 K) [54] is shown in
parentheses.

SVP TZVP TZVPP

PBE 4.303 (+0.81%) 4.328 (+1.39%) 4.315 (+1.09%)
PBE0 4.296 (+0.64%) 4.318 (+1.16%) 4.328 (+1.39%)
HSE06 4.296 (+0.64%) 4.318 (+1.16%) 4.316 (+1.11%)

tetrahedron method. The nonanalytical contribution when
q → 0 has been taken into account in all phonon calculations
[53].

III. RESULTS AND DISCUSSION

A. Structural analysis and band structure

Cu2O is one of the oldest and most studied semiconductor
materials, and it crystallizes in the cubic Pn3̄m space group.
One unit cell has two formula units and consists of copper
atoms linearly coordinated with oxygen atoms, which in
turn are tetrahedrally coordinated (Fig. 1). Initial structural
parameters were taken from a synchrotron radiation study by
Kirfel and Eichhorn [54]. The only free structural parameter,
the lattice constant a, was optimized and band structure
calculations were performed using the three functionals, PBE,
PBE0, and HSE06, combined with the SVP, TZVP, and TZVPP
level basis sets. Additionally, the mGGA functionals M06L
and M06 were tested with the TZVP level basis set, and due to
their similar performance to the PBE and PBE0 functionals,
respectively, they are discussed in the Supplemental Material.
As reported in Table I, each combination performs in a rather
similar fashion in the structural optimization. All approaches
result in an increase in a that varies between 0.64% and 1.39%.
PBE0/TZVP produces a bulk modulus of 107 GPa, while the
experimental measurements lie in the range of 106–112 GPa
[55,56].

The functional performance starts to diverge when we take a
closer look at the electronic properties. The band structures in
principle look identical in all nine cases, but the magnitude
of the band gap differs significantly between functionals
(Fig. S1, Supplemental Material). The difference between the
three different basis sets is much smaller. GGAs are somewhat
notorious for underestimating band gaps, while hybrids are
more likely to overshoot them, a property directly traceable
back to the amount of Hartree-Fock exchange used. Band
gaps with the TZVP basis set are 0.53, 2.39, and 1.87 eV
for PBE, PBE0, and HSE06, respectively. The experimental
result most often cited is 2.17 eV (this varies slightly, from
2.0 to 2.2 eV), and the PBE0/TZVP level of theory shows
a reasonable agreement with the experiment [57,58]. Results
and trends obtained here fall in line with previous calculations
reported in the literature [8,59–63].

The PBE0 and PBE electronic band structures and the
atom-projected density of states (DOS) shown in Fig. 2 are
in line with earlier studies. The valence bands down to −5 eV
are dominated by Cu atoms, with some contributions from O
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FIG. 2. Band structure and density of states for Cu2O at the
PBE0/TZVP and PBE/TZVP level of theory. The dotted horizontal
line marks the top of the valence bands.

atoms, especially for the topmost valence bands (see Fig. S2 in
the Supplemental Material for corresponding band-projected
densities). Below −5 eV, the contribution of the O atoms
increases and both Cu and O contribute almost equally.
However, comparison of the DOS plots shows that the valence-
band energies predicted by PBE and PBE0 clearly differ. As
discussed before for the PBE functional by, e.g., Chen et al.
[8], the incomplete cancellation of the self-interaction of the
d orbitals results in their lying too high in energy. The large
number of Cu d states between −1 and −4 eV are shifted
almost 1 eV higher in energy with PBE. This shift to higher
energies is still seen in states below −5 eV, although to a
smaller degree, because the relative contribution of the oxygen
p orbitals is larger. As discussed in the following section, the
differences in the PBE0 and PBE electronic structures also

result in clear differences in the lattice dynamical properties
of Cu2O.

B. Lattice dynamics and phonon dispersions

Harmonic frequencies at the � point vary a lot depending
on the method of calculation used. Table II extends the list of
vibrational frequencies of Cu2O found in Ref. [64] with the
computational results obtained in this study from Phonopy.
� frequencies were calculated also with the built-in phonon
routines of CRYSTAL14, and since the results were practically
identical to the results from Phonopy, they are not listed
here. Vibrational energies from PBE0 are clearly closer to the
experiment in comparison to those from PBE. A noteworthy
detail is the systematicity of this study and results from
Ref. [65] in column (d). In these studies all values are either
within the range of experimental measurements or below them,
whereas in other studies some modes are found to be lower
and some higher in energy than the experiment.

The full phonon dispersion within the harmonic approxi-
mation was calculated for Cu2O with PBE, PBE0, and M06 for
their optimized unit cells. Due to the similarity of PBE0 and
M06 results, the latter are discussed only in the Supplemental
Material (Fig. S4). Considering first the dispersion obtained
using the hybrid PBE0 functional, it is in excellent agreement
with the early inelastic neutron scattering experiments by Beg
and Shapiro, apart from a few data points [70]. One phonon
band in each of the measured paths around 150 cm−1 differs
markedly from the otherwise near-perfect match as shown in
Fig 3. These same discrepancies were discovered by Bohnen
et al. in their calculations and they deduced them to be errors
in the earlier experiments [65]. To verify this, the authors
carried out a new set of neutron scattering measurements,
which indeed proved to be different along those reciprocal
space paths and support both their and our theoretical results.
Nonanalytic correction leads to LO-TO splitting in the IR
active modes at 144 and 620 cm−1, with values of 4.5 and
35.5 cm−1, respectively. These are somewhat larger than the
experimental values of 3 and 29 cm−1. PBE, on the other
hand, produces smaller values, 2.7 and 23.9 cm−1, similar to
previous PBE calculations [65,71].

When the phonon dispersion throughout the Brillouin zone
is considered, a similar softening of modes in comparison
to experiment can be seen for PBE. The phonon dispersions

TABLE II. Frequencies of phonon modes at the � point. The columns PBE and PBE0 list the frequencies obtained in this study with the
given functionals, columns (a)–(d) list other computational results, and column (e) lists experimental values. All values are in wave numbers
(cm−1).

Mode PBE PBE0 (a) (b) (c) (d) (e)
From [64] From [66] From [67] From [65] From [68], [69]

F2u 64 86 67 99 101 72 86–88
Eu 79 108 119 100 150 86 109–110
F1u (1) (TO) 133 144 142 143 115 147 146–153
F1u (1) (LO) 135 148 146 159 145 148 149–154
Bu 334 340 350 307 328 337 350
F2g 491 497 515 549 515 496 515
F1u (2) (TO) 603 619 635 608 578 609 609–640
F1u (2) (LO) 627 655 654 639 617 629 638–665
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FIG. 3. Phonon dispersion of Cu2O for relevant paths in the
reciprocal space (PBE0/TZVP level of theory). Green symbols are
data points from Ref. [70] and red lines show theoretical results
obtained in this study.

and PDOS for both the PBE and the PBE0 functionals are
plotted together with the experimental data from Ref. [65]
in Fig. 4. Even though the bands from PBE calculations
are in some cases closer to the experimental points than the
bands from PBE0, this can probably be attributed to fortuitous
cancellation of errors. Generally, the band shapes are very
similar to both functionals, although some tendency can be
seen for PBE to flatten the bands, as opposed to the higher
dispersion obtained with PBE0. This is immediately reflected
in the group velocities of the harmonic phonons, e.g., for
transverse acoustic modes very near the � point, the group
velocities obtained with PBE0 are around 20% larger than
those obtained with PBE. The PDOS is clearly affected by
the softening of the low-frequency modes with PBE. The
highest PDOS is found to be about 20 cm−1 lower with
the PBE functional in comparison to the PBE0 one, and the
shape of the PDOS feature is clearly different for the two
functionals.

C. Lattice thermal conductivity

Moving from phonon dispersions to lattice thermal con-
ductivities results in even larger differences between the
GGA-PBE and the hybrid PBE0 functionals. Unfortunately,
there are only a few experimental single-crystal data available
for the lattice thermal conductivity of Cu2O. However, Fig. 5
shows a clear difference between PBE and PBE0, which would
be expected from the differing phonon dispersion results.
PBE clearly underestimates the lattice thermal conductivity
of Cu2O, as the calculated values at 300 and 360 K are 3.2
and 2.8 W m−1 K−1, respectively, more than 40% below the
experimental values of 5.6 and 4.9 W m−1 K−1 [72]. PBE0,
on the other hand, overshoots the experimental values by only
about 7%, with predictions of 6.0 and 5.1 W m−1 K−1. Since
Cu2O is cubic, the thermal conductivity is the same in all
directions. The full solution of the LBTE gives results very
similar to those with the RTA. At 300 K, κl with the PBE full
solution is the same, 3.2 W m−1 K−1, as with the RTA, and with
PBE0 κl is increased from 6.0 to 6.1 W m−1 K−1. Dashed lines
in Fig. 5 show the lattice thermal conductivities when isotope
scattering is included in the calculations. This introduces a
mass variance term based on the natural isotope distributions
in the respective elements (for details, see Ref. [19]). As
a result, κl decreases slightly, around a few percent with
PBE0 and a little less with PBE, bringing the predictions
closer to experimental values with the hybrid PBE0 functional
and farther away from experiment with the GGA-PBE. The
predicted lattice thermal conductivity at 300 K for PBE0 with
isotope scattering is 5.9 W m−1 K−1, and for PBE it rounds
up to the same value of 3.2 W m−1 K−1 as without the isotope
scattering.

Comparison of the lattice thermal conductivities with the
experimental results at 160 K seems to bring PBE closer
to the experiment and PBE0 away from it. This is not,
however, necessarily a result of one functional performing
better than the other. Upon moving to lower temperatures,
defect scattering due to point defects and other defects such as
dislocations starts to play an increasingly important role in the
overall thermal resistance, while at higher T’s phonon-phonon

FIG. 4. Phonon dispersion for relevant paths in the reciprocal space. Symbols are data points from Ref. [65] and lines show theoretical
results obtained in this study. In each panel, PBE/TZVP results are shown on the left; PBE0/TZVP results, on the right. While the DOS is
plotted in arbitrary units, x axes are normalized between the DOS plots to show the actual differences in DOS.
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FIG. 5. Lattice thermal conductivity κl of Cu2O between 100 and
600 K. Computational results were obtained at the PBE/TZVP and
PBE0/TZVP levels of theory, while experimental values are from
Ref. [72].

scattering dominates. Boundary scattering can also play a role
at lower temperatures, but our calculations show that in the
case of Cu2O the grains would need to be clearly smaller than
1 μm to explain the difference at 160 K (experimental data are
for a single crystal). Full solution of the LBTE at 160 K does
not improve on the RTA result, showing only a 2% increase
in κl . Cu2O is rarely stoichiometric, so the computational
results shown in Fig. 5 lack a scattering mechanism, which
could further decrease the lattice thermal conductivity at lower
temperatures. Nonstoichiometricity of Cu2O has been studied
theoretically in some detail, and the feature-rich Raman spectra
obtained regardless of the synthesis method give a strong
indication of naturally occurring defects (only one vibrational
mode is Raman active in pure Cu2O) [73–76].

As we calculate the thermal conductivity through Eq. (15),
it is possible to study the individual factors giving rise to
the differences between the PBE and the PBE0 functionals.
The heat capacities for Cu2O are virtually identical with
both methods (Fig. S7, Supplemental Material), suggesting
that the disparity must be attributed to differences in group
velocities and phonon lifetimes. Except for the third-order
force constants �αβγ in Eq. (12), both group velocities and
phonon lifetimes are calculated from the harmonic phonon
eigenfrequencies and eigenvectors with no anharmonic correc-
tions to phonon eigenfrequencies. Thus, it is very important to
have accurate phonon dispersion relations and PDOS values
as a basis for the calculation of phonon-phonon interactions.
In addition to (i) the accuracy of the DFT forces, it is also
important to keep in mind other possible sources of error
in comparison to the experiment: (ii) point defect scattering
due to impurities or nonstoichiometry is neglected, and (iii)
the collision space for determining the processes producing
thermal resistance is described using a finite q mesh. The total
contribution arising from these three sources is not easy to
estimate and it is possible that some cancellation of errors is
also present.

For a symmetric material with a simple structure, Cu2O
has a rather low lattice thermal conductivity. This is usually

FIG. 6. Mode-Grüneisen parameters calculated with (a) PBE0
and (b) PBE functionals, plotted vs the frequency. Red circles show
acoustic modes; black circles, optical modes. Note the different y

axes for PBE and PBE0 functionals.

consistent with compounds that have large mode-dependent
Grüneisen parameters, a measure of the anharmonicity of
phonons in the system [77,78]. In fact, in continuum theory the
phonon lifetime τqj is inversely proportional to the square of
the averaged Grüneisen parameter γ [28]. The dimensionless
mode-Grüneisen parameter is often written by relating the
shifts in phonon frequencies of modes {q,j} with respect to
the varying volume, but a more general way is to define it using
strain ημν :

γμν(qj ) = − 1

ωqj

∂ωqj

∂ημν

. (18)

Within our DFT-based approach, γqj can be obtained from
third-order force constants using the relation (Ref. [30],
pp. 204–205)

γqj = − 1

2ω2
qj

∑
l′l′′

∑
kk′k′′

∑
αβγ

Wαk∗
qj W

βk′
qj√

mkmk′

×�αβγ (0k,l′k′,l′′k′′)

× eiq·[r(l′k′)−r(0k)] × r(l′′k′′γ ). (19)
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Calculated mode-Grüneisen parameters are shown in Fig. 6.
Data shown in these plots have been obtained using a
10 × 10 × 10 q mesh. A convergence check with respect to
a 16 × 16 × 16 mesh showed changes only in the density of
data points. PBE0 results are in agreement with previous ab
initio results obtained using the quasiharmonic approximation.
The only notable difference is in the maxima of the modes
around 60 cm−1, where our calculations show values of 3.5 and
previous quasiharmonic approximation results reach values
as high as 4.5. The γqj values obtained with PBE0 also
compare well with the experimental values of Reimann et al.
determined from Raman measurements, which range from
−3.4 to +1.7 [79]. With PBE, the maximum value is around
5 and the minimum is −11.5, which is unreasonably low. The
distribution of γqj with respect to the frequencies becomes
almost identical for ω � 200 cm−1. We would like to note
that there is no way to distinguish different modes when the
phonon bands cross, and thus the division into acoustic and
optical modes in Fig. 6 is based on the listing provided by
Phono3py.

Based on Eq. (19), according to which γqj values are
calculated, the reason for the observed discrepancies between
PBE and PBE0 is twofold. Lower harmonic frequencies
of PBE appear as larger mode-Grüneisen parameters since
γqj ∝ ω−2

qj . This alone might not explain the difference of
more than a factor of 2, although the relative difference at
the lower end of harmonic frequencies between the PBE
and the PBE0 functionals is greater than that at higher
wave numbers. This results in greater differences in absolute
values of γqj . As the vibrational modes associated with the
phonons are the same, meaning eiq·r and polarization vectors
cannot differ significantly, the rest of the differences can
be attributed to differences in third-order force constants
�αβγ .

To study the range of phonon-phonon interactions in Cu2O,
we also calculated the lattice thermal conductivity with a set
of cutoffs, setting the respective third-order force constants to
0 if the separation of any atom pair in a triplet of atoms is
longer than the cutoff value. Figure 7 shows the calculated κl

at temperatures between 100 and 400 K with different cutoff
values using PBE0. It is immediately apparent that a cutoff
distance of 3 Å will not suffice, as it will take into account only
forces between the nearest-neighbor atoms. The majority of the
strongest interactions are captured already with a 4-Å cutoff,
including next-nearest-neighboring atom pairs and oxygens
in adjacent oxygen tetrahedra. For accuracy’s sake, however,
a cutoff distance of at least 5 Å is needed; beyond that, the
effects are negligible. If knowledge of the range of interactions
were available prior to forming the supercells with finite
displacements, the number of required force calculations could
be drastically reduced. That said, setting cutoff ranges without
testing should generally be avoided. Although some estimates
can be made from the structure by choosing the number of
neighbor shells to include, a good choice is always heavily
material dependent, e.g., a cutoff of 3.8 Å, which is sufficient
for WSe2, would not capture all the relevant interactions in
Cu2O [80].

We also calculated the cumulative lattice thermal conduc-
tivity κqj (), where only modes with a mean free path smaller
than a certain threshold contribute to the thermal conductivity.

FIG. 7. Lattice thermal conductivity calculated with PBE0 using
different distance cutoff values for the third-order force constants
(normally, all third-order force constants within the supercell were
calculated).

In Fig. 8 we have plotted the cumulative lattice thermal
conductivity with respect to the phonon mean free path qj

for both PBE and PBE0. As the absolute value of κl is smaller
for PBE, it is natural for it to reach its maximum at a much
shorter mean free paths compared to PBE0. The shapes of the
curves are rather similar for PBE0 and PBE, with some obvious
numerical differences. The curve resembles those of other
semiconductors, such as PbTe [80] and ZnO [81], with a slow
start before the mean free path grows to relevant magnitudes,
followed by a somewhat steep linear regime and, finally, a less
steep plateau towards the maximum. For both Cu2O and PbTe
the majority of heat is carried by phonons with a mean free
path of less than 20 nm. For ZnO the linear regime continues
throughout the plot, indicating a more even distribution of
heat-carrying phonons over the whole frequency range. The
slope of the plot can be used as an approximate measure of

FIG. 8. Cumulative κl with respect to the phonon mean free path
qj calculated at 300 K with the functionals PBE and PBE0.
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FIG. 9. Cumulative properties with respect to harmonic frequen-
cies at 300 K for PBE and PBE0: (a) lattice thermal conductivity, (b)
phonon lifetime, and (c) group velocity.

where the density of heat-carrying phonons lies with respect to
qj . Figure 8 does not explicitly show the density of modes,
but when comparing the two curves for the same material,
general features, such as the bulge with PBE at qj � 5 nm,
reveal that the number of modes associated with such mean
free paths is greater with PBE than with PBE0.

A more detailed analysis can be made by investigating the
different properties through which κl is calculated. One way
is to plot the cumulative properties with respect to the phonon
frequency as in Fig. 9. As shown in Fig. 9(b), for phonons with
ωqj � 250 cm−1, the phonon lifetimes obtained with PBE0
are almost twice as large as the PBE lifetimes. The difference

in lifetimes is even larger in the region below 50 cm−1, which
explains the much larger cumulative κl of PBE0 in that regime
compared to that at higher frequencies, where the differences
in τqj between the PBE and the PBE0 functionals are smaller.
Despite the much higher phonon density at frequencies from
around 60 to 150 cm−1, the contribution to the thermal
conductivity is only half that from the transverse acoustic (TA)
modes below 50 cm−1. Group velocities play a bigger role in
this regime since, even though the lifetimes are on the same
scale as for the TA modes, given the number of modes in the
frequency range, the lower group velocity, which is squared in
the formula of κl , dominates the modes’ effect on the thermal
conductivity. The phonon modes showing a large dispersion
between 150 and 350 cm−1 make up about one-third of the total
lattice thermal conductivity despite their rather short lifetimes.
Optical modes above 500 cm−1 clearly carry less heat than the
modes described above. With PBE, the amount of heat carried
by the optical modes is almost negligible due to the short
lifetimes.

Another key feature to note in the cumulative properties is
that acoustic phonons carry a relatively small portion of the
heat in Cu2O. For comparison, in the case of WS2 and MoS2,
practically all heat is carried by phonons below 150 cm−1.
This region also includes some optical modes, but still it is
safe to assume that the heat carried by acoustic phonons is
much greater than in Cu2O. Generally, the lifetimes in Cu2O
are relatively short compared to those in other recently studied
semiconductors, such as Si, Si clathrate frameworks, and
the aforementioned sulfides [80,82,83]. Lifetimes of different
modes are of the order of picoseconds (see Supplemental
Material, Figs. S8 and S9), whereas for WS2 and Si, the
lifetimes of some modes are already of nanoseconds. The
lifetime of a phonon mode is strongly affected by the number
of available phonon-phonon scattering pathways, Eq. 16. In
Cu2O, the relatively low-lying optical modes around 100 cm−1

apparently facilitate the phonon scattering of the acoustic
modes. These optical modes are even closer to the TA modes
in the case of PBE, which underestimates their energy in
comparison to the experiment, increasing the number of
scattering pathways and, thus, decreasing the lattice thermal
conductivity due to the shorter phonon lifetimes. This is a
somewhat similar effect to what Lindroth and Erhart showed
for WS2 by artificially reducing the energy gap between
acoustic and optical phonon modes. As the optical modes
were brought closer in energy towards the heat-carrying
low-frequency phonons, the lifetimes became shorter.

To further investigate the effect, we plotted the imaginary
parts of the self-energy, joint density of states (JDOS), and
weighted joint density of states (w-JDOS) with respect to
the frequency at the R point [q = (0.5, 0.5, 0.5)] of the
first Brillouin zone. We checked the corresponding values
also at 10 points from � to the three directions [100], [110],
and [111], and the appearances of the plots were similar, so
the point R serves as a representative point in the reciprocal
space. This gives us explicit information on the number of
different pathways for phonon scattering through summing
the three-phonon events that do not violate the conservation of
energy and momentum. The JDOS is split into two types.
Class 1 events represent the different collision processes,
effectively the delta functions in the third row of Eq. (16),
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FIG. 10. (a) Imaginary part of the self-energy, (b) joint density of
states (JDOS), and (c) weighted joint density of states (w-JDOS) of
Cu2O calculated at the R point in the first Brillouin zone [q = (0.5,
0.5, 0.5)] for both functionals, PBE and PBE0. Solid lines mark class
1 events, and dashed lines class 2 events (see text). � and w-JDOS
are calculated at 300 K. We show the plot only up to 700 cm−1,
although � can be nonzero for up to two times the maximum phonon
frequency.

and class 2 events represent the decay processes, effectively
the delta functions in the second row of Eq. (16). When
the effects of temperature, meaning the actual occupations
of different modes, are taken into account, we also sum the
phonon distribution prefactors of Eq. (16) and this constitutes
the w-JDOS.

Figures 10(a) and 9(b) show, to some degree, the same result
in reverse. As the imaginary part of the self-energy is inversely
proportional to the lifetime, the two plots follow each other in
a reciprocal fashion when the two functionals are compared.
Figure 10(b) is as expected; there are no decay events until
frequencies at which there are optical modes. Between 100 and
200 cm−1 there are some minor differences, mainly shifts in
frequency, but based on the JDOS alone, there would not seem
to be much difference in the three-phonon scattering events

between the two functionals. Major differences between PBE
and PBE0 arise in the w-JDOS. Similarly to the JDOS, the
peaks appear at lower frequencies for PBE because of the
general softening of the modes, but here also the magnitudes
differ significantly. Since the calculated w-JDOS shows such
clear differences between PBE and PBE0, it could give useful
information on the performance of difference functionals for
calculating κl already based on phonon harmonic properties.
However, only one representative point in the Brillouin zone
has been discussed here, and in any case, to make a real
comparison, one needs to include the anharmonicity in order to
see the effect of the interaction strength, which is not included
in the w-JDOS.

IV. CONCLUSIONS

We have carried out the first ab initio DFT study on
the lattice thermal conductivity of a semiconductor material
using a full hybrid density functional method. In the case of
Cu2O, the hybrid DFT-PBE0 method outperforms its GGA
counterpart, the DFT-PBE, both in the case of the lattice
thermal conductivity and for various other properties studied
here. The largest difference is seen for the lattice thermal
conductivity, where PBE0 overestimates κl by only 5% in
comparison to experiment and PBE underestimates it by over
40%. Other quantities, such as the electronic band gap, phonon
frequencies at the � point, and mode-Grüneisen parameters
are also closer to the experiment when calculated with PBE0.
Overall, hybrid density functional calculations with Gaussian-
type local basis sets provide a rather cost-efficient way of
investigating the phonon properties of the challenging 3d

transition metal oxides without any empirical corrections.
Work remains to be done to take into account factors such
as point defect scattering and anharmonic frequency shifts.
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