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We derive equations for nonadiabatic Ehrenfest molecular dynamics within the projector augmented-
wave (PAW) formalism. The discretization of the electrons is time-dependent as the augmentation
functions depend on the positions of the nuclei. We describe the implementation of the Ehrenfest
molecular dynamics equations within the real-space PAW method. We demonstrate the applicability
of our method by studying the vibration of NaCl, the torsional rotation of H2C=NH+

2 in both the
adiabatic and the nonadiabatic regimes, and the hydrogen bombardment of C40H16. © 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.3700800]

I. INTRODUCTION

Many natural processes, such as light absorption, ig-
nition of chemical reactions, and ion-atom collisions, are
related to excited electronic states and their time develop-
ment. The most general approach for treating such nonadi-
abatic processes, which in general involve two or more cou-
pled electronic states, would be to solve the time-dependent
many-body Schrödinger equation. However, this is not fea-
sible for systems consisting of more than a few electrons.
Moreover, the standard ab initio molecular dynamics meth-
ods such as Car-Parrinello MD (Ref. 1) or Born-Oppenheimer
MD (BOMD) (see, for example, Ref. 2) confine electrons to a
single adiabatic state, typically the ground state. Semiclassi-
cal methods, such as Ehrenfest molecular dynamics (Ehren-
fest MD) or trajectory surface hopping3 (TSH), in which
the electrons are treated quantum-mechanically via the time-
dependent Schrödinger equation and the nuclei classically via
the Newtonian mechanics, have been developed some decades
ago, but only during the last decade they have become fea-
sible in atomistic simulations beyond small systems. This is
partly due to the methodological advances in time-dependent
density functional theory4 (TDDFT) which provides a com-
putationally affordable basis for the Ehrenfest MD and the
TSH methods, and also due to the rapidly increasing amount
of computational resources available. There are two realiza-
tions of TDDFT: the linear-response scheme,5 which is based
on TD perturbation theory and the time propagation scheme,
which is based on propagating the time-dependent Kohn-
Sham (TDKS) equations.6 Ehrenfest MD is based on the real-
time propagation scheme, while the linear-response scheme is
better suited for TSH methods.

Ehrenfest MD within TDDFT offers a simple yet effec-
tive framework for simulating nonadiabatic processes by cou-
pling the time-dependent Kohn-Sham equations6 with classi-
cal equations of motion for nuclei via the KS potential energy
surface (PES). The method works well for condensed matter,
where many single electron levels are involved and a single re-
action path dominates the nonadiabatic process such as in car-
bon nanostructures. However, when reactions pass regions of

close lying electronic states but end up in a state which is well
described by a single potential energy surface, TSH methods
such as linear-response TDDFT-based implementation7 pro-
vide a more accurate description than the Ehrenfest MD. This
is due to the deficiency of the Ehrenfest MD that the system
remains in a mixed state after exiting the nonadiabatic region.
Moreover, due to its mean-field character, the Ehrenfest MD
cannot correctly describe multiple reaction paths.8 Especially
when quantum-mechanical effects on the nuclei are impor-
tant, one has to use methods that go beyond the semi-classical
approximation such as ab initio multiple spawning9 (AIMS)
or variational multi-configuration Gaussian wavepacket.10

The Ehrenfest MD has been successfully used for study-
ing various nonadiabatic processes such as collisions between
atomic oxygen and graphite clusters,11 excited carrier dynam-
ics in carbon nanotubes,12 and electronic excitations in ion
bombardment of carbon nanostructures.13 Previously, Ehren-
fest MD has been implemented using the complete active
space self-consistent field method14 as well as the TDDFT
framework. For the TDDFT-based implementations, various
basis sets such as LCAO,15–18 plane waves,19 and real-space
grids20 have been used. Real-space techniques have several
advantages: (1) the quality of the results can be controlled
by a single variable, the grid spacing, (2) parallelization can
be done straightforwardly using domain decomposition, and
(3) different boundary conditions such as Dirichlet, periodic,
or a mixture of them can be easily applied.

In DFT-based electronic structure calculations, the pro-
jector augmented-wave (PAW) method21 is one of the most
widely used methods for treating the problem of highly os-
cillatory wavefunctions near the nuclei. In spite of its exten-
sive use, to our knowledge, it has not been used in Ehrenfest
MD simulations previously. Compared to pseudopotentials,
the PAW method improves the description of the transition
metal elements and the first row elements with open p-shells.
Moreover, the PAW method in real space allows one to use
fewer grid points than pseudopotentials22 as well as longer
time steps in the propagation of the TDKS equations.23 The
all-electron (AE) nature of the PAW method, even though the
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core states are frozen, is also a methodological advantage over
pseudopotentials. However, compared to pseudopotentials,
Ehrenfest MD within the PAW method is more complicated
due to the augmentation functions that depend on the atomic
positions. First, an additional term describing the moving spa-
tial gauge of the electrons must be included in the TDKS
equations.24 Also, the Hellmann-Feynman (HF) theorem (see,
for example, Ref. 25), traditionally used for calculating the
atomic forces with pseudopotentials, is no longer valid.

The present paper is constructed as follows. In Sec. II, we
briefly describe the Ehrenfest MD equations within the Kohn-
Sham formalism in a finite basis and our propagation algo-
rithm for the coupled quantum-classical system. The Ehren-
fest MD implementation within the PAW method is described
in Sec. III. The applicability of our method is demonstrated
in Sec. IV by carrying out simulations for NaCl, H2C=NH+

2 ,
and C40H16. Furthermore, the applicability of different forces
in both the adiabatic and the nonadiabatic regimes is dis-
cussed. Finally, we give conclusive remarks in Sec. V.

II. EHRENFEST MD WITHIN THE
KOHN-SHAM FORMALISM

A. Quantum-classical equations of motion

We consider a general time-dependent quantum-classical
system within the Kohn-Sham formalism, in which the total
energy of the electrons is defined as

Eel[ρ; R] = Ts[ρ] + Eext[ρ; R] + EH[ρ] + Exc[ρ], (1)

where Ts is the kinetic energy of the non-interacting electrons,
Eext is the energy due to the external potential, which in this
case includes the electron-nucleus and nucleus-nucleus inter-
actions, EH is the Hartree energy, and Exc is the exchange-
correlation energy. The semicolon in Eq. (1) is used to distin-
guish between the function (electronic density ρ) and vector
(atomic positions R) dependencies of Eel. The corresponding
Hamiltonian operator reads as (atomic units are used through-
out the paper)

Ĥ = −1

2
∇2 + Vext + VH + Vxc. (2)

We expand the Kohn-Sham auxiliary wavefunctions ψn in
terms of a basis {χ k} that depends explicitly on the atomic
positions,

ψn(r, R, t) =
∑

k

cnk(t)χk(r, R). (3)

Moreover, we assume that the time-dependency of the basis
functions is solely due to the movement of the atomic posi-
tions. With this construction, we define the Hamiltonian ma-
trix

Hij = 〈χi |Ĥ |χj 〉. (4)

The electronic subsystem is described by time-dependent
Kohn-Sham equation,

i
∂ψn

∂t
= Ĥψn. (5)

Using the expansion of the wavefunctions given by Eq. (3),
the above equation can be written as

iS
∂cn

∂t
= (H + P)cn, (6)

where the vector cn contains the basis function coefficients of
state n, cnk, and we have introduced the matrices

Sij = 〈χi |χj 〉, (7)

Pij = −i

〈
χi

∣∣∣∣∂χj

∂t

〉
, (8)

in addition to the Hamiltonian matrix H. The S matrix de-
scribes the overlap between the basis functions, while the P
matrix takes into account the moving spatial gauge of the elec-
trons due to the changing atomic positions and conserves the
norm of the electronic states. It disappears if the nuclei do not
move. Furthermore, employing the chain rule, the P matrix
can be written in terms of the atomic velocities Ṙa as

P = −i
∑

a

Ṙa · Da, (9)

with the definition

Da,ij =
〈
χi

∣∣∣∣ ∂χj

∂Ra

〉
. (10)

The dynamics of the classical nuclei is described by the New-
ton equations of motion

MaR̈a = Fa, (11)

where the force acting on the atom a, Fa, is determined in
Sec. II B.

B. Relations between different forces

The force on the classical nuclei is obtained by requiring
that the total Hamiltonian of the quantum-classical system,
usually interpreted as the total energy,

H =
∑

a

Ma

2
Ṙ2

a + Eel, (12)

be conserved.15 Thus, the energy-conserving (EC) force is the
negative derivative of the electronic energy with respect to
nuclear coordinates

FEC
a = −dEel

dRa

= −∂Eel

∂Ra

−
∑

n

[
∂Eel

∂cn

dcn

dRa

+ c.c.

]
. (13)

The energy gradient is given by

∂Eel

∂c∗
n

= fnHcn, (14)

where fn is the occupation number of state n. The derivatives
of the coefficients cn can be calculated using the condition

d

dRa

(c∗
nScn) = 0, (15)
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and the relation between the matrix Da and the gradient of S

∂S
∂Ra

= Da + D∗
a. (16)

Consequently, we obtain the following expression for the
energy-conserving force:

FEC
a = −∂Eel

∂Ra

+
∑

n

fnc∗
n(HS−1Da + c.c.)cn. (17)

The time derivative of the total Hamiltonian reads as

dH
dt

=
∑

a

Ṙa · Fa + dEel

dt

=
∑

a

Ṙa ·
[

Fa + ∂Eel

∂Ra

−
∑

n

fnc∗
n(HS−1Da + c.c.)cn

]
. (18)

Clearly, when we insert the EC force into Eq. (18), the first
term inside the brackets cancels out the other terms, and hence
the time derivative equals zero.

At this point, we note that the definition of the force based
on total energy conservation is not unique. The most general
force for quantum-classical MD is obtained by requiring that
the quantum-classical action be stationary.16, 18 In the Kohn-
Sham formalism, the action can be written as a sum of the
classical action Ac and the quantum-mechanical action Aq ,

A = Ac + Aq =
∫ t1

t0

[∑
a

Ma

2
Ṙ2

a

]
dt

+
∫ t1

t0

[∑
n

fn〈ψn|i ∂

∂t
− ∇2

2
|ψn〉

]
dt − Apot, (19)

where the potential part Apot includes the external and Hartree
energies and the exchange-correlation action Axc,

Apot =
∫ t1

t0

(Eext + EH)dt + Axc

=
∫ t1

t0

∫
ρ(r, R, t)

[
Vext(r, R)

+ 1

2

∫
ρ(r′, R, t)

|r − r′| dr′
]
drdt + Axc. (20)

By making the total action stationary, one actually obtains ad-
ditional velocity-dependent terms in the forces as shown in
Ref. 16. In Sec. III B, we discuss this further and present the
additional force terms in the PAW method.

In order to see the connection to the ground state Pulay
force,26 we note that if the electronic subsystem remains in its
ground state,

Hcn = εnScn, (21)

the EC force reduces to the well-known form of Hellmann-
Feynman force plus Pulay corrections (see, for example,
Ref. 2), which we in this context call the incomplete basis

set corrected (IBSC) force,

FIBSC
a = −∂Eel

∂Ra

+
∑

n

fnεnc∗
n

∂S
∂Ra

cn. (22)

The Pulay force in Eq. (22) constitutes of the second term on
the right-hand side and the terms containing the matrix ele-
ments 〈 ∂χi

∂Ra
|Ĥ |χj 〉 + 〈χi |Ĥ | ∂χj

∂Ra
〉. In the case of nonadiabatic

processes, the ground state assumption [Eq. (21)] might yield
inadequate results in terms of the total energy conservation.

C. Time propagation of the electron-ion system

In order to carry out actual simulations, a propagation al-
gorithm for the quantum-classical system [Eqs. (6) and (11)]
is required. First, we use the following splitting for the prop-
agation of coupled electrons and ions:

UN,e(t + �t, t) = UN

(
t + �t

2
, t

)
Ue(t + �t, t)

×UN

(
t + �t, t + �t

2

)
+ O(�t3), (23)

where the propagator for the nuclei, UN, is the standard ve-
locity Verlet,27 while the electronic states (Ue) are propagated
using the so-called semi-implicit Crank Nicholson (SICN)
method.22, 28 The idea of the method is to first approximate
the Hamiltonian matrix H to be constant during the time step
and solve the following linear equation to obtain the predicted
future electronic states cpred

n[
S + i

�t

2
(H(t) + P)

]
cpred
n (t + �t)

=
[

S − i
�t

2
(H(t) + P)

]
cn(t) + O(�t2). (24)

Then, the predicted future Hamiltonian matrix, based on cpred
n ,

is used for calculating the Hamiltonian matrix in the mid-
dle of the time step, H(t + �t/2) = 1

2 (H(t) + Hpred(t + �t))
+ O(�t2). Now, using the notation H1/2 = H(t + �t/2), the
final, propagated states cn(t + �t) can be obtained from[

S + i
�t

2
(H1/2 + P)

]
cn(t + �t)

=
[

S − i
�t

2
(H1/2 + P)

]
cn(t) + O(�t3). (25)

In the supplementary material,29 we study the total en-
ergy conservation of a one-dimensional test system in a
position-dependent basis. We compare the HF, IBSC, and EC
forces and discuss their applicability in adiabatic and nonadi-
abatic regimes.

III. EHRENFEST MD WITHIN THE PAW FORMALISM

The central idea of the PAW method is that the all-
electron wavefunctions can be reconstructed from the pseudo-
wavefunctions by adding the all-electron part and subtract-
ing the pseudo part inside augmentation spheres defined for
each atom. The method is based on the following linear trans-
formation between the KS pseudo (ψ̃n) and all-electron (ψn)
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wavefunctions:

ψn = T̂ ψ̃n =
[

1 +
∑
a,i

(|φa
i 〉 − |φ̃a

i 〉)〈p̃a
i |

]
ψ̃n, (26)

where i is a multi-index consisting of the quantum numbers
l, m, and n, p̃a

i are the projectors, T̂ is the PAW transforma-
tion operator, and φ̃a

i and φa
i are the pseudo and AE partial

waves, respectively. With this construction, all observables in
the PAW method consist of a smooth part and atomic correc-
tions, for example, the PAW total energy for electrons reads
as

EPAW
el = Ẽ +

∑
a

(Ea − Ẽa), (27)

where the expressions for the different terms and a de-
tailed description of the real-space PAW method are given in
Ref. 30.

Ehrenfest MD within the PAW formalism resembles the
finite basis formalism presented in Sec. II. The first notable
difference is that within the PAW method, we actually have a
basis defined by two different functions, the projectors p̃a

i and
the pseudo-partial waves φ̃a

i , which fulfill〈
p̃a

i1

∣∣φ̃a
i2

〉 = δi1,i2 . (28)

The second notable difference is that the dependency on the
atomic positions arises from the position-dependent PAW
transformation operator T̂ . As in Sec. II, there appears an ad-
ditional term due to the moving basis set in the TDKS equa-
tion [Eq. (5)].

A. Electron dynamics

We start from the all-electron TDKS equation [Eq. (5)]
by applying the PAW transformation [Eq. (26)]. Then, the
TDKS equation is operated from the left by the adjoint of the
PAW transformation operator, T̂ †. Subsequently, we arrive at
the following PAW-transformed TDKS equation:

iS̃
∂ψ̃n

∂t
= (H̃ + P̃ )ψ̃n, (29)

where S̃ = T̂ †T̂ is the PAW overlap operator, and H̃

= T̂ †Ĥ T̂ is the PAW Hamiltonian operator. The P̃ term,
which corresponds to the P matrix presented in Sec. II A,
reads as

P̃ = −iT̂ † ∂T̂
∂t

. (30)

It takes into account the time evolution of the PAW transfor-
mation operator in TDDFT-based quantum-classical MD sim-
ulations. Qian et al.24 derived the following expression for this
term:

P̃ = −i
∑

a

Ṙa · (1 + t̂†a )
∂

∂Ra

(1 + t̂a)

= −i
∑

a

Ṙa · D̂a, (31)

where t̂a = ∑
i(|φa

i 〉 − |φ̃a
i 〉)〈p̃a

i | is a projection operator be-
longing to atom a, and we have defined the operator D̂a in
the spirit of the formalism presented in Sec. II. Moreover,

Eq. (31) only holds if the overlap between the PAW augmen-
tation spheres is zero. In practice, however, Eq. (31) turns out
to work well even in the case of overlapping augmentation
spheres as long the overlap is not significant. The operator D̂a

can be written in the following form [Appendix]:

D̂a =
∑
i1,i2

[∣∣p̃a
i1

〉
Oa

i1,i2

〈
∂p̃a

i2

∂Ra

∣∣∣∣
+ ∣∣p̃a

i1

〉(〈
φa

i1

∣∣∣∣∂φa
i2

∂Ra

〉
−

〈
φ̃a

i1

∣∣∣∣∂φ̃a
i2

∂Ra

〉)〈
p̃a

i2

∣∣]. (32)

The matrix elements Oa
i1,i2

describe the overlap between the
all-electron and pseudo-partial waves

Oa
i1,i2

= 〈
φa

i1

∣∣φa
i2

〉 − 〈
φ̃a

i1

∣∣φ̃a
i2

〉
. (33)

B. Atomic forces

The next task is to derive an expression for the Ehrenfest
force. The total energy of the quantum-classical system reads
within the PAW method as

Etot =
∑

a

Ma

2
Ṙ2

a + EPAW
el , (34)

where the nucleus-nucleus interaction is included in the elec-
tronic energy. Using the same reasoning as in Sec. II B, i.e.,
the conservation of the total energy, we calculate the force as
the negative derivative of the electronic energy,

FEC
a = −dEPAW

el

dRa

= −∂EPAW
el

∂Ra

−
∑

n

[
∂EPAW

el

∂ψ̃n

dψ̃n

dRa

+ c.c.

]

= −∂EPAW
el

∂Ra

+
∑

n

fn〈ψ̃n|D̂†
aS̃

−1H̃ + c.c.|ψ̃n〉. (35)

By defining g̃n = S̃−1H̃ ψ̃n and the vector-valued matrix ele-
ments

�a
i1,i2

=
〈
φa

i1

∣∣∣∣∂φa
i2

∂Ra

〉
−

〈
φ̃a

i1

∣∣∣∣∂φ̃a
i2

∂Ra

〉
, (36)

the following relation can be used to calculate the second term
on the right-hand side of Eq. (35):

〈ψ̃n|D̂†
aS̃

−1H̃ |ψ̃n〉 =
∑
i1,i2

[〈
ψ̃n

∣∣∣∣∂p̃a
i2

∂Ra

〉
Oa

i1,i2

〈
p̃a

i1

∣∣g̃n

〉

+〈
ψ̃n

∣∣p̃a
i2

〉
�a

i1,i2

〈
p̃a

i1

∣∣g̃n

〉]
. (37)

With this expression, the EC force can be straightforwardly
implemented. The matrix elements Oa

i1,i2
and �a

i1,i2
are calcu-

lated on radial grids inside the PAW augmentation spheres,
whereas the terms involving the pseudo-wavefunctions are
computed on uniform Cartesian grids.

In a similar fashion as in Sec. II B, the EC force reduces
to a Pulay-like ground state expression by assuming

H̃ ψ̃n = εnS̃ψ̃n. (38)
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Consequently, the IBSC force within the PAW method is

FIBSC
a = −∂EPAW

el

∂Ra

+
∑

n

fnεn〈ψ̃n| ∂S̃

∂Ra

|ψ̃n〉. (39)

This force is used for ground state calculations in the GPAW
package.30, 31

At this point, we return to the discussion of the defini-
tion of forces in Sec II B. First, we rewrite the quantum-
mechanical action [Eq. (19)] using the very widely used adi-
abatic approximation for the exchange-correlation part,32

Axc[ρ] =
∫ t1

t0

Exc[ρ]|ρ=ρ(r,t)dt. (40)

Now, the quantum-mechanical action [Eq. (19)] can be writ-
ten in terms of the Kohn-Sham energy,

Aq =
∫ t1

t0

[∑
n

fn〈ψn|i ∂

∂t
|ψn〉 − Eel

]
dt. (41)

The PAW action, then, can be obtained by replacing Eel with
the corresponding PAW expression for the total energy, EPAW

el .
Moreover, applying the PAW transformation to the first term
inside the brackets in Eq. (41) gives

Aq =
∫ t1

t0

Lqdt

=
∫ t1

t0

[∑
n

fn〈ψ̃n|T̂ †
(

i
∂

∂t

)
T̂ |ψ̃n〉−EPAW

el

]
dt. (42)

Expanding the functional Lq gives

Lq =
∑

n

fn

[
〈ψ̃n|i

∑
b

Ṙb · D̂b|ψ̃n〉

+ i〈ψ̃n|S̃|∂ψ̃n

∂t
〉
]

− EPAW
el . (43)

The force acting on atom a is obtained by requiring that the
variation of the total action with respect to the position of that
atom vanishes,

δA
δRa

= δAc

δRa

+ ∂Lq

∂Ra

− d

dt

∂Lq

∂Ṙa

= 0. (44)

The contribution from the classical action is just δAc/δRa

= −MaR̈a . According to Eq. (44) and Newton’s second law,
the force is then obtained by varying the quantum-mechanical
part. This gives

δAq

δRa

= −∂EPAW
el

∂Ra

+
∑

n

fn

[
〈ψ̃n|D̂†

aS̃
−1H̃ + c.c.|ψ̃n〉

+ 〈ψ̃n|D̂†
aS̃

−1P̃ + c.c.|ψ̃n〉

− i〈ψ̃n|dT̂
†

dt

∂T̂
∂Ra

|ψ̃n〉 + i〈ψ̃n|∂T̂
†

∂Ra

dT̂
dt

|ψ̃n〉
]
.

(45)

We can immediately recognize that this expression contains
the EC force [Eq. (35)] plus additional terms,

δAq

δRa

= FEC
a + FTD

a . (46)

The correction term FTD
a can be further expanded using the

chain rule and assuming zero overlap between the augmenta-
tion spheres of different atoms,

FTD
a = i

∑
n

fn〈ψ̃n|Ĉa|ψ̃n〉, (47)

where the operator Ĉa reads as

Ĉa = (Ṙa · D̂†
a)S̃−1D̂a − D̂†

aS̃
−1(Ṙa · D̂a)

+ ∂T̂ †

∂Ra

(
Ṙa · ∂T̂

∂Ra

)
−

(
Ṙa · ∂T̂ †

∂Ra

)
∂T̂
∂Ra

.

(48)

These velocity-dependent terms resemble the additional terms
presented in Ref. 16, but the terms with different atom indices
are now zero due to the zero overlap of augmentation func-
tions of different atoms. The purpose of the force correction
[Eq. (47)] is to guarantee momentum balance.16 However, the
implementation of the operator Ĉa [Eq. (48)] is not trivial in
the real-space PAW method. Moreover, the energy-conserving
force approach has been successfully applied to a variety of
problems in earlier localized basis set work (see Ref. 15 and
references therein). Therefore, we use the EC force in the
present implementation and leave the implementation of the
extra terms arising from making the quantum-classical action
stationary as future work.

The coupled electron-ion system is propagated using the
combination of SICN and the velocity Verlet algorithm as pre-
sented in Sec. II C.

C. Inverse overlap operator

The only remaining task is the calculation of the inverse
PAW overlap operator S̃−1. We use two different approaches
for this. In the first approach, we assume that the inverse over-
lap operator can be written as

S̃−1 = 1 +
∑

a

∑
i1,i2

∣∣p̃a
i1

〉
Ca

i1,i2

〈
p̃a

i2

∣∣, (49)

where Ca
i1,i2

are the inverse overlap coefficients. They can be
obtained from the linear equation resulting from the require-
ment

S̃−1S̃ = 1, (50)

in which we also assume that there is no overlap between
the PAW augmentation spheres. For this reason, this approach
will likely produce unsatisfactory results if the overlap is non-
zero. In the second approach, we obtain the required S̃−1H̃ ψ̃n

terms by solving the linear equations

S̃x̃ = H̃ ψ̃n, (51)

iteratively using the conjugate gradient (CG) method. This ap-
proach is generally more accurate than the approximative in-
verse method [Eqs. (49) and (50)] and less sensitive to PAW
overlap and numerical errors due to a large grid spacing.
Table I shows that the approximative inverse method is very
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sensitive to the grid spacing used in the calculations. How-
ever, the CG method will likely consume more computational
resources than the approximative method.

IV. CALCULATIONS FOR SMALL AND
MEDIUM-SIZED MOLECULES

In order to test our PAW-based Ehrenfest MD method,
we study the dynamics of small and medium-sized molecules
both in adiabatic and in nonadiabatic cases. The adiabatic
cases include the vibration of the NaCl molecule, and the ro-
tation of the H2C=NH+

2 molecule about its internal axis with
a small initial kinetic energy. Nonadiabatic effects, then, are
studied in the case of H2C=NH+

2 with a high initial kinetic
energy, and also in the hydrogen bombardment of the C40H16

molecule. We use the local-density approximation exchange-
correlation functional33 in all the calculations. The grid spac-
ing is h = 0.2 Å unless specified otherwise.

A. Vibration of the NaCl molecule

First, we study the total energy conservation of the
NaCl molecule. The simulations begin from equilibrium,
deq = 2.36 Å, with an initial kinetic energy of 2 eV. The
period of the NaCl vibration calculated with the BOMD is
TBOMD = 181.6 fs. With this low initial kinetic energy, the
vibration is almost adiabatic, and subsequently the period
obtained with the Ehrenfest MD (�t = 8 as, IBSC force)
is very close to the BOMD result, TEF = 181.4 fs. This is
not surprising as the Ehrenfest MD should reduce to the
BOMD in the case of adiabatic processes. We investigate
the difference between the IBSC and EC forces in terms of
the total energy conservation, using both the approximative
and the CG inverse method for calculating the inverse overlap
operator. The decay of the error in the total energy as a
function of the simulation time step is shown in Fig. 1. For
time steps below 10 as, there is little difference between
the IBSC and EC forces. Actually the total energy error
with the IBSC force is slightly smaller than that with the
EC force, thus rendering the EC force unnecessary in this
adiabatic case. Moreover, the two methods used for calcu-
lating the inverse overlap operator give practically identical
results.

B. Rotation of the H2C=NH+
2 molecule

Next, we turn our attention to simulating nonadiabatic
dynamics. The dynamics of the H2C=NH+

2 molecule has
been studied with both the Hartree-Fock-based Ehrenfest
dynamics34 and the trajectory surface hopping method.7 We
study the torsional rotation of the molecule about its internal
axis by carrying out Ehrenfest MD calculations with two
different initial torsional kinetic energies, Ek = 1.5 eV and Ek

= 10 eV. In order to investigate the nonadiabaticity in our sim-
ulations, we also carry out PAW-based BOMD calculations
for both initial kinetic energies. Based on the results pre-
sented in Ref. 34, the rotation is expected to be adiabatic with
Ek = 1.5 eV, whereas with Ek = 10 eV we expect the Ehren-

4 8 12 16 20

Time step (as)
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6

8

ΔE
to

t (
m

eV
)

IBSC
EC, approx
EC, CG

FIG. 1. Decay of the error in the total energy of the NaCl molecule as a func-
tion of the simulation time step. The results are shown for the IBSC and the
EC forces [Eqs. (39) and (35), respectively]. Approx denotes the approxima-
tive method for calculating the inverse overlap operator [Eqs. (49) and (50)],
and CG corresponds to the conjugate gradient method. The lines are just a
guide to the eye.

fest MD results to clearly differ from the BOMD results.
The molecule is initially in the planar equilibrium geometry.
For both initial kinetic energies, we carry out calculations
using two different time steps, �t = 2 and 5 as. Similar to
the calculations for the NaCl molecule, the IBSC and the
EC forces are applied. In the case of the EC force, both the
approximative and the CG method are used for computing
the inverse overlap operator.

The potential energy surfaces obtained from the Ehren-
fest MD and the BOMD simulations for both initial kinetic
energies are presented in Fig. 2. For the Ehrenfest PES, the
EC force in conjunction with the CG method for calculating
S̃−1 is used.

The figure illustrates that the dynamics is nearly adiabatic
with Ek = 1.5 eV as the Ehrenfest and the Born-Oppenheimer
PES are almost identical. In contrast, with Ek = 10 eV, the
Ehrenfest PES starts to deviate rapidly from the BO one,
which indicates a significant amount of nonadiabaticity in the
dynamics.

In the adiabatic case, the total energy is conserved to a
few meV even with the IBSC force. With Ek = 10 eV, in
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FIG. 2. Time evolution of the PES of the H2C=NH+
2 molecule. The results

obtained with the Ehrenfest MD and the BOMD for low and high initial ki-
netic energies are compared. In the BOMD simulations, the time step is 0.1 fs.
The Ehrenfest MD simulations are performed using the EC force [Eq. (35)] in
conjunction with the CG method for calculating the inverse overlap operator.
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FIG. 3. Conservation of the total energy of the H2C=NH+
2 molecule as a

function of the simulation time. The results obtained with the IBSC and the
EC forces [Eqs. (39) and (35), respectively] using two different time steps,
�t = 2 and 5 as, are compared. The initial kinetic energy of the molecule is
Ek = 10 eV. Approx and CG correspond to the approximative
[Eqs. (49) and (50)] and the CG method for calculating the inverse overlap
operator, respectively.

contrast, this is no longer the case. The total energy curves
obtained with the different forces and time steps of 2 and 5 as
are shown in Fig. 3.

First, we observe that the maximum total energy fluctu-
ation with the IBSC force is roughly the same for both time
steps used in the calculations. Second, the EC force in con-
junction with the conjugate gradient method for calculating
the inverse overlap operator, yields the best total energy con-
servation for both time steps, �Etot = 45 meV and 9.3 meV
for �t = 5 and 2 as, respectively. The latter number is very
good considering the amount of nonadiabaticity involved in
the dynamics, and it could be further improved by decreasing
the time step. Furthermore, with �t = 2 as, the EC force in
conjunction with the approximative inverse already improves
the total energy conservation quite significantly compared to
the IBSC force. Nevertheless, the error in the total energy is
at least twice as high as with the CG inverse.

Next, we study the effect of the grid spacing on the to-
tal energy conservation by carrying out simulations with h
= 0.15, 0.2, 0.25 Å. Because the IBSC force works well with
the low initial kinetic energy of Ek = 1.5 eV, we only study the
more energetic case. The error in the total energy as a function
of the grid spacing is presented in Table I.

The accuracy of the approximative inverse increases
rapidly as a function of decreasing grid spacing. However,
despite the rapid convergence, it is undesirable that the to-
tal energy error has such a strong dependence on the grid
spacing. In contrast, the grid spacing has very little effect
on the results obtained with the CG inverse. For this reason,

TABLE I. Maximum total energy fluctuation of the H2C=NH+
2 molecule

as function of the grid spacing h. The initial kinetic energy is Ek = 10 eV.
The results obtained with the IBSC and EC forces [Eqs. (39) and (35),
respectively] are compared. All the energies are in meV.

h (Å) �EIBSC
tot �E

EC,approx
tot �E

EC, CG
tot

0.15 148.5 9.95 10.01
0.2 149.19 23.08 9.58
0.25 151.06 228.78 8.86

FIG. 4. C40H16 and the two representative trajectories used in the simula-
tions.

even though the calculations might require, depending on the
system, 10%−20% more computational time, the CG inverse
should be used for simulations involving nonadiabatic effects
instead of the approximative inverse.

C. Hydrogen bombardment of the C40H16 molecule

As the final test for our PAW-based Ehrenfest MD
method, we study the collision of hydrogen with the
graphene-like nanoflake C40H16. With high enough impact
energies, the hydrogen projectile will invoke electronic exci-
tations in the target, rendering the BOMD approach unusable.
In Ref. 13, a similar hydrogen ion stopping process was stud-
ied in the case of graphene, for two representative trajectories:
(1) center of hexagon and (2) an impact parameter of 0.25 Å
along the C–C bond. The two trajectories are illustrated in
Fig. 4.

The EC force in conjunction with the CG method for
computing the inverse overlap operator is used in all the cal-
culations. The time step varies between 1 and 5 as such that
�t = 1 as is used in the simulation with the highest initial
projectile energy, Ek = 10 keV and �t = 5 as in that with the
lowest initial energy, Ek = 100 eV.

We study the accomodation of the energy transferred into
the individual degrees of freedom. Because of the overlap
between the augmentation spheres, the PAW method under-
estimates the atomic forces when the interatomic distance
is small. Consequently, we use pair-potential corrections de-
rived from results obtained with FHI-aims (Ref. 35) when the
distance between the projectile and the nearest carbon atom is
smaller than 0.5 Å. Figure 5(a) shows the total transferred en-
ergy and the C recoil energy for the bond trajectory. Electronic
excitations significantly influence the results beyond an im-
pact energy of 400 eV as the total transferred energy starts to
increase. This observation is in agreement with the Troullier-
Martins (TM) pseudopotential-based Ehrenfest MD calcula-
tions for graphene in Ref. 13. However, despite the qualitative
agreement, the quantitative results differ slightly, which can
be attributed to the heavy overlap between the augmentation
spheres of the hydrogen projectile and the target carbon atom
(see the discussion of Fig. 5(b)). Nevertheless, the agreement
is quite good considering that Eqs. (31) and (32) used for
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FIG. 5. Deposition of the energy into the individual degrees of freedom in
the collision of the H atom with C40H16. (a) Energy transferred to the target
C atom, and the total transferred energy as a function of the H impact energy.
The results are shown for the bond trajectory. Pair-p denotes the pair-potential
corrections. (b) Energy transferred into the electronic degrees of freedom as
a function of H impact energy for both trajectories. The lines are just a guide
to the eye.

calculating the P̃ operator are in principle only correct when
the augmentation spheres do not overlap.

In Fig. 5(b), the energy transferred into the electronic
degrees of freedom is presented. The PAW and TM results
are in good agreement for the center of hexagon trajectory,
i.e., when there is no overlap between the PAW augmentation
spheres. Thus, our method describes electronic excitations in
a similar fashion as the TM-based method. Consequently, it
seems that our method works correctly in this nonadiabatic
case as long as the overlap between the PAW augmentation
spheres is not significant. Even in the case of overlapping
augmentation spheres, our method can predict qualitative
trends with the help of pair-potential corrections.

Finally, we summarize the results regarding the total en-
ergy conservation in the calculations. First, in all the simula-
tions for the center of hexagon trajectory, the total energy is
conserved to better than 2.7 meV, which is an excellent re-
sult considering that the amount of energy deposited into the
electronic degrees of freedom is of the order of tens of eV.
In the case of the bond trajectory, unfortunately, such good
numbers cannot be obtained – the total energy is conserved to
better than 230 meV. This is probably due to the breakdown
of the zero overlap approximation in deriving the P̃ term as
it is essential that this term is correct in order to conserve the
total energy. Nevertheless, significant PAW overlap is unusual
in Ehrenfest MD applications – the ion bombardment calcu-
lation with an impact parameter of 0.25 Å is an extreme case.
Thus, in most cases our method can be expected to conserve
the total energy very well.

V. CONCLUSIONS

We have described the implementation of the Ehren-
fest molecular dynamics within the time-dependent density
functional theory and the projector augmented-wave formal-
ism. We have studied the dynamics of small and medium-
sized molecules both in adiabatic and in nonadiabatic cases.
We found that the incomplete basis set corrected force
(Hellmann-Feynman force + Pulay corrections) does not con-
serve the total energy in nonadiabatic cases, whereas the force

that comes from differentiating the electronic energy (energy-
conserving force), conserves the total energy very well as long
as the PAW augmentation spheres do not overlap significantly.
Finally, the PAW-based Ehrenfest MD results for C40H16 were
compared to Troullier-Martins pseudopotential calculations.
From these results, we conclude that our method seems ap-
plicable to simulating the nonadiabatic dynamics of medium-
sized molecules and beyond as long as the semi-classical and
mean-field approximations underlying our method are valid
to a reasonable accuracy.
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APPENDIX: SYMMETRIC FORM OF THE
OPERATOR D̂a

In order to carry out Ehrenfest MD simulations in prac-
tice, it is useful to write the P̃ term [Eq. (31)], in a symmet-
ric form reminiscent of the other observables within the PAW
method. This can be achieved by deriving a symmetric form
for its constituent operator D̂a [Eq. (32)]. We start by expand-
ing this operator in terms of the PAW projectors and partial
waves

D̂a = (1 + t̂†a )
∂t̂a

∂Ra

= ∂

∂Ra

∑
i2

(∣∣φa
i2

〉 − ∣∣φ̃a
i2

〉)〈p̃a
i2
|

+
∑
i1

∣∣p̃a
i1

〉(〈
φa

i1

∣∣ − 〈
φ̃a

i1

∣∣)

× ∂

∂Ra

∑
i2

(∣∣φa
i2

〉 − ∣∣φ̃a
i2

〉)〈
p̃a

i2

∣∣. (A1)

Rearranging the terms and adding and subtracting a suitable
term gives

D̂a =
(

1 −
∑
i1

∣∣p̃a
i1

〉〈
φ̃a

i1

∣∣) ∂

∂Ra

∑
i2

(∣∣φa
i2

〉 − ∣∣φ̃a
i2

〉)〈
p̃a

i2

∣∣
+

∑
i1

∣∣p̃a
i1

〉〈
φa

i1

∣∣ ∂

∂Ra

∑
i2

(∣∣φa
i2

〉 − ∣∣φ̃a
i2

〉)〈
p̃a

i2

∣∣
+

∑
i1

∣∣p̃a
i1

〉〈
φ̃a

i1

∣∣ ∂

∂Ra

∑
i2

(∣∣φa
i2

〉 − ∣∣φ̃a
i2

〉)〈
p̃a

i2

∣∣
−

∑
i1

∣∣p̃a
i1

〉〈
φ̃a

i1

∣∣ ∂

∂Ra

∑
i2

(∣∣φa
i2

〉 − ∣∣φ̃a
i2

〉)〈
p̃a

i2

∣∣. (A2)
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Using the orthonormality of the projectors and pseudo-partial
waves, we obtain the following expression:

D̂a = −
∑
i1

∣∣p̃a
i1

〉〈
φa

i1

∣∣ ∂

∂Ra

∑
i2

∣∣φ̃a
i2

〉〈
p̃a

i2

∣∣
+

∑
i1

∣∣p̃a
i1

〉〈
φa

i1

∣∣ ∂

∂Ra

∑
i2

∣∣φa
i2

〉〈
p̃a

i2

∣∣
+

∑
i1

∣∣p̃a
i1

〉〈
φ̃a

i1

∣∣ ∂

∂Ra

∑
i2

(∣∣φa
i2

〉 − ∣∣φ̃a
i2

〉)〈
p̃a

i2

∣∣
−

∑
i1

∣∣p̃a
i1

〉〈
φ̃a

i1

∣∣ ∂

∂Ra

∑
i2

∣∣φa
i2

〉〈
p̃a

i2

∣∣. (A3)

The first term in Eq. (A3) is zero due to orthonormality. Com-
bining the remaining terms then yields the desired symmetric
form,

D̂a =
∑
i1,i2

(∣∣p̃a
i1

〉
Oa

i1,i2

〈
∂p̃a

i2

∂Ra

∣∣∣∣ + ∣∣p̃a
i1

〉(〈
φa

i1

∣∣∣∣∂φa
i2

∂Ra

〉

−
〈
φ̃a

i1

∣∣∣∣∂φ̃a
i2

∂Ra

〉)〈
p̃a

i2

∣∣). (A4)
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