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This paper studies the electrostatic responses of a polarly radially anisotropic cylinder and a

spherically radially anisotropic sphere. For both geometries, the permittivity components differ

from each other in the radial and tangential directions. We show that choosing the ratio between

these components in a certain way, these rather simple structures can be used in cloaking dielectric

inclusions with arbitrary permittivity and shape in the quasi-static limit. For an ideal cloak, the

contrast between the permittivity components has to tend to infinity. However, only positive

permittivity values are required and a notable cloaking effect can already be observed with

relatively moderate permittivity contrasts. Furthermore, we show that the polarly anisotropic

cylindrical shell has a complementary capability of magnifying the response of an inner cylinder.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4816797]

I. INTRODUCTION

During the recent years, the concept of an electromag-

netic invisibility cloak has been actively studied by mathe-

maticians, physicists, and engineers alike. This has largely

been due to the emergence of metamaterials research, having

predicted that such a cloak could eventually be possible. The

perhaps best known suggestions for designing an ideal cloak

are based on transformation optics,1,2 where light is forced to

go around the cloaked object without distortion. The corre-

sponding coordinate transform had also been found slightly

earlier related to electrical impedance tomography.3,4

However, the realization of this anisotropic and inhomogene-

ous cloak has proven very difficult.

Another famous cloaking approach is based on Mie scat-

tering cancellation,5 where a metamaterial coating is used to

cancel out the dipolar field of a spherical object, so that in

the long-wavelength limit, the coated object becomes com-

pletely invisible. The roots of this idea actually trace a cou-

ple of decades back in history.6–9 Even though this method

of plasmonic cloaking10 has shown to be rather robust

against moderate perturbations of the inclusion geometry11

and it works also for several adjacent objects,12 the ideal

coating must be designed separately for each inclusion with

another size and different material parameters. The scatter-

ing cancellation approach has also been generalized for ani-

sotropic spherical13,14 and cylindrical15 coatings and

inclusions, increasing not only the degrees of freedom but

also the complexity of the cloak design.

In this paper, we continue the study of anisotropic geo-

metries and introduce an approximate and relatively simple

quasi-static and non-magnetic cloaking approach based on

radially anisotropic (RA) permittivity. By radial anisotropy

we mean that the considered geometries have clearly defined

radial and tangential directions and their electric responses

in these directions differ from each other. Radially aniso-

tropic permittivity can be written in a dyadic form

��e ¼ e0½eraduradurad þ etanð��I � uraduradÞ�; (1)

where e0 is the permittivity of vacuum, erad and etan are the

relative radial and tangential permittivities, respectively, ��I is

the unit dyadic, and urad is the unit vector in the radial direc-

tion. Note that Eq. (1) is independent of the coordinate sys-

tem and the dimension of the geometry.

We consider two geometries that are special cases of ra-

dial anisotropy, namely a polarly radially anisotropic (PRA)

cylinder in 2D polar coordinates and a spherically radially
anisotropic (SRA) sphere in 3D spherical coordinates. These

additional labels are introduced to retain the abbreviation

RA general and coordinate-independent.

The electrostatic analysis of the PRA, or cylindrically
anisotropic, cylinder can be found in Ref. 16. More often,

even with a cylindrical geometry, the anisotropy has been

considered with respect to Cartesian coordinates (see Ref. 15

and the references therein). In Refs. 17 and 18, scattering

from (plasmonic) PRA cylinders is computed and, as already

mentioned, Ref. 15 considers a PRA cylindrical shell for

cloaking purposes.

Even more analysis on SRA spheres can be found.19–24

Such spheres have also been referred to using the term radi-
ally uniaxial.25,26 Moreover, the general case, where all

three components of ��e are allowed to be different has been

investigated in Ref. 25, where the sphere is called systropic.

Mie scattering from SRA spheres has been studied as

well,27–30 including the aforementioned cloaking stud-

ies.13,14 A recent paper uses an SRA sphere as a model for

a human head for brain imaging purposes.31 For an exten-

sive list of occurrences and applications of radial anisot-

ropy, see Ref. 13.

Herein, the analysis is based on quasi-electrostatics and

finding the potential function /ðrÞ as a solution of the gener-

alized Laplace equationa)henrik.kettunen@helsinki.fi
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r � ð��e � r/Þ ¼ 0: (2)

For both PRA cylinder and SRA sphere, we show that

by choosing the contrast between erad and etan in a certain

way, the structure can be used to cloak an inner inclusion in

the quasi-static limit. Let us call this configuration an RA

cloak. By letting the permittivity contrast tend to infinity, the

RA cloak becomes ideal. Even though the approach is simi-

lar to plasmonic cloaking such that the cloaked inclusion is

coated by another material layer, the principle of cloaking is

different. The RA cloak does not give rise to a response op-

posite to one of the inclusion to cancel it out, but it creates a

zero electric field within itself allowing the hidden inclusion

not to polarize at all. Therefore, the design of the RA cloak

is fully independent of the shape and material of the cloaked

inclusion. Moreover, the RA cloak is completely based on

positive permittivities. In this sense, the RA cloak also

resembles the cloaks achieved by transformation optics. The

RA cloak can thus be seen as a simplification of the non-

magnetic cloak suggested for optical frequencies.32

The PRA cylinder can also perform a complementary

operation. By inverting the permittivity ratio used for cloak-

ing, it becomes a magnifying glass that transfers the response

of the inner inclusion onto the boundary of the PRA shell

making the inclusion effectively larger. This could prove an

interesting discovery considering many sensing applications.

Instead, the 3D SRA sphere does not share this characteristic.

In the following, we solve the polarizabilities and effec-

tive permittivities for structures where a dielectric inclusion, a

cylinder, or a sphere is coated by cylindrical PRA or spherical

SRA shell, respectively. It is assumed that all permittivity

components are positive and the structures are surrounded by

vacuum permittivity e0. We further show how by tailoring the

anisotropy ratio of the shell, the effective permittivity of the

layered structure can be adjusted to one of the surrounding

space making the structure invisible, or in the 2D cylindrical

case, alternatively to one of the coated inclusion. Moreover,

we provide a computational example verifying that the cloak-

ing effect is independent of the inclusion shape.

II. POLAR RADIAL ANISOTROPY

A. Polarizability and effective permittivity
of a PRA-coated cylinder

Let us first consider a cylindrical geometry with radial

anisotropy restricted into two dimensions. In other words,

we are only interested in the transverse response of an (infin-

itely) long straight cylinder, as the desired cloaking effect

can only be seen using a transverse electric excitation. The

cylinder may have an arbitrary axial permittivity component

ez, but since the axial electric field is not excited, this compo-

nent is omitted in our analysis. That is, we consider Eq. (1)

the permittivity of a 2D disk with only one tangential, azi-

muthal, component eu.

More precisely, let us study the layered structure pre-

sented in Fig. 1, where a circular dielectric cylinder with ra-

dius b and relative permittivity ei is coated by a PRA layer

with outer radius a and permittivity that is given in 2D polar

coordinates as

��eP ¼ e0ðeququq þ euuuuuÞ: (3)

Assume that this azimuthally symmetric structure is excited

by an external uniform x-polarized electric field

E0 ¼ uxE0 ¼ ux
U0

a
; (4)

where U0 is the potential difference across the cylinder ra-

dius a. The potential /ðq;uÞ that satisfies the generalized

Laplace equation (2) is of the form16

/out ¼ A
q
a

� ��1

cos u� U0

q
a

� �
cos u; q � a; (5a)

/P ¼ B
q
a

� �c

cos uþ C
q
a

� ��c

cos u; b � q � a; (5b)

/in ¼ D
q
a

� �
cos u; q � b; (5c)

where

c ¼
ffiffiffiffiffi
eu

eq

r
: (6)

The coefficients A, B, C, and D can be solved by apply-

ing the interface conditions on q ¼ a and q ¼ b, and we can

further solve the polarizability of the cylinder as (see

Appendix A)

aP ¼ 2
ðeqcþ 1Þðeqc� eiÞ b

a

� �2c � ðeqc� 1Þðeqcþ eiÞ
ðeqc� 1Þðeqc� eiÞ b

a

� �2c � ðeqcþ 1Þðeqcþ eiÞ
: (7)

The polarizability aP is a dimensionless number describing

the 2D transverse response of the structure. It is normalized

FIG. 1. Cross-cut of an infinitely long circular cylindrical structure where an

inner dielectric cylinder with radius b and permittivity ei is covered by a

polarly anisotropic layer with outer radius a and permittivity components eq

and eu. All permittivities are positive valued and given relative to the per-

mittivity of vacuum e0. The structure is excited by a uniform x-polarized

static electric field E0.
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by the vacuum permittivity e0 and the cross-sectional area of

the cylinder.

The corresponding polarizability of a homogeneous

dielectric cylinder with relative permittivity eh is

ah ¼ 2
eh � 1

eh þ 1
: (8)

This allows us to find an effective permittivity eeff;P for the

coated cylinder such as

aP ¼ 2
eeff;P � 1

eeff;P þ 1
; (9)

where

eeff;P ¼ eqc
ðeqcþ eiÞ � ðeqc� eiÞ b

a

� �2c

ðeqcþ eiÞ þ ðeqc� eiÞ b
a

� �2c : (10)

This principle of internal homogenization is discussed and

applied in case of 3D coated spheres in Refs. 33–35. We

note that due to the azimuthal symmetry, the internally ani-

sotropic structure looks isotropic from the outside.

B. PRA cylinder as a cloak

If we demand eeff;P ¼ 1 in Eq. (10), we obtain a design

rule for an ideal PRA cloak, which is already given in Ref.

15. We, however, consider a simpler approximative

approach.

If the inner cylinder vanishes, we are left with an intact

PRA cylinder, whose effective permittivity is obtained from

Eq. (10) by letting b! 0 as

eeff;P ! eqc ¼
ffiffiffiffiffiffiffiffiffi
eqeu
p

: (11)

From Eq. (11), we immediately see, like in Ref. 18, that an

intact PRA cylinder becomes invisible if

eqeu ¼ 1: (12)

Looking back at Eq. (10), we notice that the inner cylin-

der can also be shrunk effectively, as the dependence of the

radius b is of the form b2c and the exponent c in Eq. (6) is

determined by the anisotropy ratio of the PRA shell. Let us

choose the permittivities according to the invisibility condi-

tion of Eq. (12) such as

eu ¼ j; eq ¼
1

j
; (13)

where j is an arbitrary positive real number. The effective

permittivity in Eq. (10) becomes

eeff;P ¼
ðei þ 1Þ þ ðei � 1Þ b

a

� �2j

ðei þ 1Þ � ðei � 1Þ b
a

� �2j : (14)

Since 0 < b=a < 1, the limit when the anisotropy ratio

eu=eq ¼ j2 becomes infinite by j!1, gives

eeff;P ! 1; (15)

and the structure becomes fully invisible. In other words, the

PRA shell is capable of cloaking the inner cylinder regard-

less of the permittivity ei and the radius b.

It may not be possible to achieve the ideal cloaking con-

dition in practice. However, with a finite j, the PRA shell

works as an approximate cloak. Let us study the “worst case”

considering the material of the inner cylinder, that is, cloak-

ing a perfectly electrically conducting (PEC) cylinder. For a

PEC inclusion with ei !1, the effective permittivity in

Eq. (14) simplifies to

eeff;P !
1þ b

a

� �2j

1� b
a

� �2j ; (16)

which can further be written as

eeff;P ¼ 1þ 2
b
a

� �2j

1� b
a

� �2j ¼ 1þ Deeff : (17)

If we allow the effective permittivity of the nearly invisible

structure to deviate at most the amount Deeff from unity, we

can solve the required j as

j �
ln

Deeff

Deeff þ 2

� �
2ln b

a

� � : (18)

For instance, if we have b¼ a/2 and we require

Deeff � 1� 10�3, we need to choose the permittivity compo-

nents as eu ¼ j � 5:483 and eq ¼ j�1 � 0:182. This choice

with relatively moderate anisotropy ratio eu=eq ¼ j2 � 30 is

still enough to cloak the inner PEC cylinder almost com-

pletely. Figure 2 presents the potential distribution of the

aforementioned situation in the xy plane. The PRA annulus

makes the potential levels bend such that a nearly constant

zero potential and a zero field is formed around the origin,

which is enough to hide the PEC cylinder. The polarizability

of the structure becomes aP � 1� 10�3.

FIG. 2. Potential distribution of a structure where a PRA annulus with azi-

muthal permittivity eu ¼ j � 5:483, radial permittivity eq ¼ j�1 � 0:182,

and outer radius a cloaks a PEC cylinder with radius b¼ a/2 from an exter-

nal x-polarized electric field.
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In a more realistic quasi-static case, we also need to

consider the effect of material losses. With lossy complex

permittivities based on time convention ejxt, the ideal invisi-

bility condition (12) cannot be achieved without using an

active material to compensate the negative imaginary part.

With increasing losses, the cloaking effect naturally begins

to deteriorate. If we allow the permittivity deviation to

become double, that is jDeeff j � 2� 10�3, due to added

losses in the previous example, where j � 5:483, the

azimuthal component can have an imaginary part as large

as eu � j� j1:91� 10�2, when eq is assumed real.

Unfortunately, the allowed losses in the radial component

are much smaller as its real part is close to zero. To stay

within the limits of the allowed deviation given above, the

imaginary part of eq must remain smaller than eq ¼ j�1

�j6:26� 10�4, when eu is assumed real.

If the cloak is designed to sufficiently cloak a PEC

cylinder with radius b, it will cloak an inclusion, or a

collection of inclusions, of any shape made of any dielec-

tric material with e > 0, as long as they altogether fit

inside a cylindrical area with radius b. We demonstrate

this by a computational example using COMSOL

Multiphysics 4.3a, which is based on the finite element

method (FEM).

Let us consider cloaking a grounded triangular PEC cyl-

inder whose side length is a/2, where a is the outer radius of

the applied cylindrical PRA coating. It turns out that the ani-

sotropy ratio eu=eq ¼ j2 ¼ 6:25 is already enough to cloak

this inclusion sufficiently well. Figure 3 presents the poten-

tial distribution where the inclusion is hidden from an x-

polarized electric field. For the normalized polarizability of

the cloaked structure, we obtain only aP � 1:8� 10�3,

whereas for the bare triangular inclusion we would have36

a � 2:5811.

C. PRA cylinder as a magnifying glass

By saying that the PRA cylinder becomes a magnifying

glass, we mean a situation where the properties of the inner

dielectric cylinder are extended up to the outer surface of the

PRA coating. This phenomenon can be seen in the case

when there occurs a plasmonic resonance between the core

and the coating,16,37,38 that is, when eqc ¼ �ei. In the follow-

ing, it is shown how this magnification is achieved with only

positive permittivities regardless of the permittivity of the

inclusion.

Let us further study the case where a dielectric inner cyl-

inder is coated with a PRA shell with permittivity compo-

nents chosen as in Eq. (13) and the effective permittivity of

the structure is given by Eq. (14). If we consider the other

limit when the permittivity ratio eu=eq, instead of infinity,

tends to zero as j! 0, we obtain

eeff;P ! ei: (19)

The structure then seems to be made completely out of the

material of the inner cylinder. In other words, the PRA shell

works as a magnifier that makes the inner cylinder radius

effectively larger, in this ideal case up to b! a.

With nonzero j, Eq. (14) can be written as

eeff;P ¼ ei �
ðe2

i � 1Þ � ðe2
i � 1Þ b

a

� �2j

ðei þ 1Þ � ðei � 1Þ b
a

� �2j ¼ ei � Deeff : (20)

If ei > 1; Deeff is positive indicating that with j > 0; eeff;P

underestimates ei. Conversely, when 0 < ei < 1; Deeff

changes sign and with j! 0; eeff;P tends to ei from above.

As it is convenient to consider the deviation Deeff as a posi-

tive amount jDeeff j, we can write

eeff;P ¼
ei � jDeeff j; ei > 1

ei þ jDeeff j; 0 < ei < 1:

(
(21)

For the maximum allowed deviation jDeeff j, we must require

j � lns

2ln b
a

� � ; (22)

where

s ¼

ðei þ 1Þðei � 1� jDeeff jÞ
ðei � 1Þðei þ 1� jDeeff jÞ

; ei > 1

ðei þ 1Þðei � 1þ jDeeff jÞ
ðei � 1Þðei þ 1þ jDeeff jÞ

; 0 < ei < 1:

8>>>><
>>>>:

(23)

Moreover, it is assumed that jDeeff j is small compared to ei,

more precisely

jDeeff j < jei � 1j: (24)

We note that successful magnifying requires much more

extreme anisotropy ratios than it was required in the previous

cloaking examples. If we consider magnifying a cylinder

with radius b ¼ a/2 and permittivity ei ¼ 2 with maximum

FIG. 3. FEM simulation of the potential distribution in a case where a trian-

gular PEC cylinder with side length a/2 is cloaked from an external x-polar-

ized electric field using a cylindrical PRA coating with outer radius a and

permittivity components eu ¼ 2:5 and eq ¼ e�1
u ¼ 0:4. The outermost annu-

lus consists of free space and the computational domain is terminated by a

cylindrical boundary.
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deviation of 1%, jDeeff j � 0:01, according to Eqs. (22) and

(23) we must have eu ¼ j � 4:841� 10�3 and eq ¼ j�1

� 206:6, which gives the anisotropy ratio eu=eq � 2:34

�10�5, or its inverse as large as eq=eu � 43 000. With the

aforementioned parameter values, the polarizability of the

structure becomes aP � 0:662. Since the normalized polariz-

ability of a homogeneous cylinder with permittivity eh ¼ 2 is

a ¼ 2=3, the relative error in aP is 0.7%.

Figure 4 presents the potential distribution of an intact

PRA cylinder in x-polarized electric field with permittivity

components given above. Due to simultaneously large radial

and small azimuthal permittivity the potential has a strong

gradient at the origin. Although the cylinder is invisible

observed from the outside, the structure is very sensitive to

any perturbations near the origin. In Fig. 5, a dielectric cylin-

der with b¼ a/2 and ei ¼ 2 is inserted inside this PRA cylin-

der. We see that due to large eq, at a given angle u, the point

at the surface on the inner cylinder is (approximately) short-

circuited to the outer surface of the PRA coating. On the

other hand, eu that is near zero preserves the potential distri-

bution in the u direction. Altogether, observed from the

outside, the structure resembles a homogeneous cylinder

with radius a and permittivity eh � ei ¼ 2.

In the magnifying case, the effect of losses seems at first

sight counterintuitive. Due to the required extreme permittiv-

ity contrast in the example above, the radial component is al-

ready so large that it begins to resemble a conducting

medium from the viewpoint of the external electric field.

Therefore, adding moderate losses to eq induces no significant

effect. As our approximative magnifying glass with finite per-

mittivity contrast underestimates the desired permittivity, we

note that adding even larger losses to eq actually enhances the

magnifying effect, the level of permittivity deviation finally

saturating to jDeeffj � 3:4� 10�3. On the other hand, intro-

ducing losses into the tangential component eu with real eq

makes the deviation grow becoming double the accepted

level, jDeeff j � 2� 10�2, with eu � j� j2:51� 10�2.

III. SPHERICAL RADIAL ANISOTROPY

A. Polarizability and effective permittivity
of an SRA-coated sphere

Let us also consider the corresponding 3D spherical

structure, where a dielectric sphere with permittivity ei and

radius b is coated with a spherical SRA shell with outer ra-

dius a. The permittivity of the SRA coating is given as

��eS ¼ e0½erurur þ etðuhuh þ uuuuÞ�: (25)

With an azimuthally symmetric z-polarized external electric

field

E0 ¼ uzE0 ¼ uz
U0

a
; (26)

the potential /ðr; hÞ that satisfies the Laplace equation (2)

can be written as19–24

/out ¼ A
r

a

� ��2

cos h� U0

r

a

� �
cos h; r � a; (27a)

/S ¼ B
r

a

� ��
cos hþ C

r

a

� ����1

cos h; b � r � a; (27b)

/in ¼ D
r

a

� �
cos h; r � b; (27c)

where

� ¼ 1

2
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

et

er

r !
: (28)

The effective permittivity of the structure becomes (see

Appendix B)

eeff;S ¼
er�½erð� þ 1Þ þ ei� � erð� þ 1Þðer� � eiÞ b

a

� �n
erð� þ 1Þ þ ei þ ðer� � eiÞ b

a

� �n ; (29)

where

FIG. 4. Potential distribution of an intact PRA cylinder with azimuthal per-

mittivity eu ¼ j � 4:841� 10�3, radial permittivity eq ¼ j�1 � 206:6, and

outer radius a in an external x-polarized electric field. The given anisotropy

gives rise to a strong electric field in the origin. However, observed from the

outside, the cylinder is invisible.

FIG. 5. Potential distribution of a structure where a PRA annulus with azi-

muthal permittivity eu ¼ j � 4:841� 10�3, radial permittivity eq ¼ j�1

� 206:6, and outer radius a is used to magnify the response of a dielectric

cylinder with radius b¼ a/2 and permittivity ei ¼ 2 in an external x-polar-

ized electric field.

044110-5 Kettunen, Wall�en, and Sihvola J. Appl. Phys. 114, 044110 (2013)



n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8

et

er

r
¼ 2� þ 1: (30)

B. SRA sphere as a cloak

By letting the inner sphere vanish as b! 0 in Eq. (29),

we obtain the effective permittivity of an intact SRA sphere as

eeff;S ! er�: (31)

That is, an intact SRA sphere is invisible if

et ¼ j; er ¼
1

2j� 1
; (32)

where j � 1=2 in order to keep both permittivity compo-

nents positive. Choosing the parameters as above, the per-

mittivity in Eq. (29) becomes

eeff;S ¼
½2jþ ð2j� 1Þei� þ 2jðei � 1Þ b

a

� �4j�1

½2jþ ð2j� 1Þei� � ð2j� 1Þðei � 1Þ b
a

� �4j�1
: (33)

Again, letting the ratio et=er ¼ jð2j� 1Þ grow as j!1,

yields

eeff;S ! 1; (34)

and similarly to the PRA cylinder, the SRA sphere works as

a cloak.

The magnification of the inner core can again be

achieved by the plasmonic condition,38 er� ¼ �ei=2.

Instead, an SRA magnifying glass cannot be constructed

using positive permittivity components. First of all, reaching

the limit j! 0 would require er to be negative. Moreover,

this limit does not even yield the magnifying operation, as

then b4j�1 ! b�1 and the solution remains dependent on

the radius b. The limit b4j�1 ! 0 would be obtained when

er ¼ �2 and et ¼ 1=4, but within the scope of this paper, we

do not consider negative permittivity components, as they

would require more intricate analysis.26

C. Comparison between cylindrical and spherical
structures

The comparison between the 2D PRA and 3D SRA

structures reveals both similarities and differences. Figure 6

presents the permittivity ratios between the tangential com-

ponent etan and the radial component erad that satisfy the

invisibility conditions of Eqs. (13) and (32), for an intact

PRA cylinder and SRA sphere, respectively. Given as a

function of etan ¼ j, the anisotropy ratios etan=erad become in

the PRA case eu=eq ¼ j2 and in the SRA case

et=er ¼ jð2j� 1Þ. With simultaneously increasing tangen-

tial and decreasing radial permittivity, both structures can be

used as a cloak. On the other hand, when the ratio etan=erad

tends to zero, only the PRA cylinder has the capability to

magnify the response of the inner inclusion.

We can construct both approximate PRA and SRA

cloaks with relatively moderate anisotropy ratios. Let us

compare their performance in cloaking a PEC inclusion. The

required parameter j for the PRA cloak to achieve deviation

smaller than Deeff from the invisibility eeff ¼ 1 is already given

in Eq. (18). For the SRA cloak, the effective permittivity in

Eq. (33) with a PEC inclusion, ei !1, can be written as

eeff;S ! 1þ Deeff ¼ 1þ
ð4j� 1Þ b

a

� �4j�1

ð2j� 1Þ 1� b
a

� �4j�1
h i : (35)

In this case, the parameter j does not have a simple explicit

solution.

The deviation Deeff is plotted as a function of the anisot-

ropy ratio etan=erad for the PRA and SRA cloaks with two ra-

dius ratios, b/a¼ 1/3 and b/a¼ 2/3, in Fig. 7. In this

comparison, the SRA cloak seems to be notably more effi-

cient by giving the same Deeff with smaller anisotropy ratio

than the PRA cloak. We must, however, note that with a

given b/a, the fraction that a 3D inclusion occupies out of the

total volume is smaller than the area fraction of the corre-

sponding 2D inclusion. Let us, therefore, define a filling fac-

tor f, which for the PRA cloak is the square, fP ¼ ðb=aÞ2, and

for the SRA cloak the cube, fS ¼ ðb=aÞ3, of the radius ratio.

When the Deeff curves are plotted demanding the same filling

factors for both cloaks, as in Fig. 8 with f¼ 1/3 and f¼ 2/3,

FIG. 6. The anisotropy ratios that make the intact PRA cylinder and SRA

sphere invisible, Eqs. (13) and (32), respectively, plotted on a linear scale.

With etan=erad !1 both structures can be used for cloaking, whereas only

the PRA cylinder works as a magnifier when etan=erad ! 0.

FIG. 7. Comparison between the PRA cloak (blue lines) and the SRA cloak

(red lines) when cloaking a PEC inclusion. The deviation Deeff from ideal

invisibility eeff ¼ 1, for PRA given by Eq. (17) and for SRA by Eq. (35), is

plotted as a function of the anisotropy ratio etan=erad for two radius ratios

b¼ a/3 (solid lines) and b¼ 2 a/3 (dashed lines).
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the performance of the cloaks becomes much more equal, the

PRA cloak being slightly better in this comparison.

According to computational comparison, with equal fill-

ing factors, the SRA cloak’s sensitivity to losses appears to be

on the same order of magnitude as the PRA cloak described

in Sec. II B. However, in the SRA case, the required permit-

tivity contrast is achieved with smaller absolute values of erad

and etan than in the PRA case making the SRA structure

slightly more vulnerable to increasing imaginary parts.

IV. CONCLUSION

In this paper, we have studied the responses of RA geo-

metries in a uniform static field. We have shown that a 2D

PRA cylinder and a 3D SRA sphere with moderately large

anisotropy ratios etan=erad can be used in cloaking dielectric

inclusions of arbitrary shape. In addition, the PRA cylinder

starts to behave as a magnifying glass for the inner inclusion

when the anisotropy ratio tends to zero, whereas the spheri-

cal structure does not share this characteristic.

The cloaking is based on a certain relation between the

radial and tangential components, which makes the intact

structure invisible. When the tangential component then

tends to infinity, the radial one tends to zero. This gives rise

to a strong gradient in the potential on the interface between

the RA material and free space, whereas the interior of the

RA cloak remains in the zero potential creating a region

where any dielectric object can be inserted without being

observed from the outside. That is, one cloak design works

for all inclusions independent of their permittivity, shape, or

number. In other words, the ideal RA cloak is a special kind

of Faraday cage that is also invisible.

Our analysis of the cloak is, however, based on electro-

statics and its ideal performance can so far only be verified

when cloaking non-magnetic objects from a static electric

field. To achieve cloaking in the case of magnetic inclusions

with magnetostatic excitation, the permeability ��l of the

cloak must be made radially anisotropic. A crucial future

objective is to study the performance of the RA cloak in a

dynamic case with propagating electromagnetic waves. We

may, however, assume that similar to Refs. 5 and 13–15, the

cloaking effect extends to the long-wavelength region, where

the cloak is not extremely small compared with the wave-

length. The suggested RA cloak may prove useful in optical

frequencies where magnetism is not an issue. A phenomenon

that clearly affects the performance of the cloak destructively

is the first magnetic Mie resonance, which sets a certain limit

for the maximum electrical size of the cloak.

We have estimated the effect of material losses by a

couple of computational examples. The full-wave frequency

domain analysis is still needed to give more detailed insight

on the RA cloak’s sensitivity to material dispersion and

losses and to further distinguish the effects of absorption and

scattering. Since the operating principle of the cloak is not

based on a tuned resonant behavior of the structure, very

small losses do not immediately eradicate the cloaking

effect. However, increasing imaginary parts of the permittiv-

ity components monotonically decreases the performance of

the cloak. Especially the radial permittivity component,

whose real part is required to be near zero, becomes very

sensitive to material losses.

There are at least two different ways to construct an object

with radial anisotropy, let us call them the hedgehog and the

onion approaches. The hedgehog structure is constructed using

radially oriented wires or needles as it is suggested in Ref. 32.

The onion structure is based on multiple concentric layers. In

the 2D case, we may consider a cross-cut of a tree trunk with

concentric annual rings. The simplest realization of an RA

cloak is perhaps a cylindrical cloak, which consists of multiple

isotropic layers. This kind of geometry is considered, for

example, in Ref. 39. There must be enough layers and they

must be thin enough so that the material can be considered

effectively homogeneous. The radial and tangential compo-

nents of the RA cloak become tunable being functions of the

permittivities and thicknesses of the layers. On the other hand,

achieving a permittivity near zero calls for some kind of meta-

material realization. We must also note that the cylindrical

structure is designed only for the case where the polarization

of the electric field is transverse to the cylinder axis.

The magnifying behavior of the PRA cylinder may also

prove useful considering sensing applications. Successful

magnification, however, requires an extreme contrast

between the permittivity components and the cylindrical

shape of the studied inclusion.
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APPENDIX A: PRA-COATED CYLINDER IN A STATIC
ELECTRIC FIELD

The solution for the generalized Laplace equation (2) in

a PRA medium with permittivity given by Eq. (3) can be

found in Ref. 16, where also the case of a layered cylinder is

considered. The structure described in Sec. II A with an x-

polarized excitation thus yields solutions (5a)–(5c). The

interface conditions become with q ¼ a

A� U0 ¼ Bþ C; (A1)

FIG. 8. Comparison between PRA (blue lines) and SRA (red lines) cloaks as

deviation Deeff as in Fig. 7. The curves are plotted for inclusion filling fac-

tors fP ¼ fS ¼ f of f¼ 1/3 (solid lines) and f¼ 2/3 (dashed lines).
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�A� U0 ¼ eqcB� eqcC; (A2)

and with q ¼ b

b

a

� �c

Bþ b

a

� ��c

C ¼ b

a

� �
D; (A3)

eqc
b

a

� �c�1

B� eqc
b

a

� ��c�1

C ¼ eiD: (A4)

From Eqs. (A1)–(A4), we can solve

A ¼ U0

ðeqcþ 1Þðeqc� eiÞ b
a

� �2c � ðeqc� 1Þðeqcþ eiÞ
ðeqc� 1Þðeqc� eiÞ b

a

� �2c � ðeqcþ 1Þðeqcþ eiÞ
;

(A5)

B ¼ U0

2ðeqcþ eiÞ
ðeqc� 1Þðeqc� eiÞ b

a

� �2c � ðeqcþ 1Þðeqcþ eiÞ
;

(A6)

C ¼ U0

2ðeqc� eiÞ b
a

� �2c

ðeqc� 1Þðeqc� eiÞ b
a

� �2c � ðeqcþ 1Þðeqcþ eiÞ
;

(A7)

D ¼ U0

4eqc b
a

� �c�1

ðeqc� 1Þðeqc� eiÞ b
a

� �2c � ðeqcþ 1Þðeqcþ eiÞ
:

(A8)

Let us define the 2D normalized polarizability of the cy-

lindrical structure aP as a ratio between the induced dipole

moment p and the external electric field E0 such as

p ¼ pa2e0aPE0: (A9)

Since the potential given rise by a 2D x-polarized line dipole,

p ¼ uxp, is of the form

/d ¼
pcos u
2pe0q

; (A10)

we obtain the polarizability from the coefficient A given by

Eq. (A5) as

aP ¼ 2
A

U0

; (A11)

which further yields Eq. (7).

APPENDIX B: SRA-COATED SPHERE IN A STATIC
ELECTRIC FIELD

The solution for the Laplace equation in an SRA me-

dium can be found in, e.g., Refs. 19–24. Reference 24 also

considers the layered case. Considering the coated spherical

structure described in Sec. III A, we obtain solutions

(27a)–(27c), whose coefficients need to be solved from the

interface conditions.

On the interface with r¼ a

A� U0 ¼ Bþ C; (B1)

�2A� U0 ¼ er�B� erð� þ 1ÞC; (B2)

and on the interface with r¼ b

b

a

� ��
B� b

a

� ��þ1

C ¼ b

a

� �
D; (B3)

er�
b

a

� ���1

B� erð� þ 1Þ b

a

� ����2

C ¼ eiD: (B4)

From Eqs. (B1)–(B4), we can solve the coefficients

A ¼ U0

ðer� � eiÞ½erð� þ 1Þ þ 1� b
a

� �2�þ1 � ðer� � 1Þ½erð� þ 1Þ þ ei�
ðer� � eiÞ½erð� þ 1Þ � 2� b

a

� �2�þ1 � ðer� þ 2Þ½erð� þ 1Þ þ ei�
; (B5)

B ¼ U0

3½erð� þ 1Þ þ ei�
ðer� � eiÞ½erð� þ 1Þ � 2� b

a

� �2�þ1 � ðer� þ 2Þ½erð� þ 1Þ þ ei�
; (B6)

C ¼ U0

3ðer� � eiÞ b
a

� �2�þ1

ðer� � eiÞ½erð� þ 1Þ � 2� b
a

� �2�þ1 � ðer� þ 2Þ½erð� þ 1Þ þ ei�
; (B7)

D ¼ U0

3erð2� þ 1Þ b
a

� ���1

ðer� � eiÞ½erð� þ 1Þ � 2� b
a

� �2�þ1 � ðer� þ 2Þ½erð� þ 1Þ þ ei�
: (B8)
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Let us now define the 3D normalized polarizability of the

spherical structure, aS, by the relation

p ¼ 4

3
pa3e0aSE0: (B9)

The potential of a z-polarized dipole, p ¼ uzp, becomes

/d ¼
pcos h
4pe0r2

; (B10)

and the polarizability is obtained from the coefficient A

given by Eq. (B5) as

aS ¼ 3
A

U0

: (B11)

The effective permittivity, Eq. (29), is derived with straight-

forward algebra using the equation of the polarizability of a

homogeneous sphere such as

aS ¼ 3
eeff;S � 1

eeff;S þ 2
: (B12)
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