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Studies on polarizabilities and scattering behavior 
of small spherical particles 
Reena Sharma and Ari Sihvola 

Electromagnetics Laboratory, Helsinki University of Technology, Espoo, Finland 

Abstract. It is possible to relate the response of a sphere to an applied uniform static 
electric field with the scattering from a small spherical particle due to plane wave 
incidence. The limits up to which these relations between the polarizability and the 
extinction, scattering, and radar cross sections of a sphere are valid in the dynamic range 
are presented here. From the observations it can be concluded that radar cross section is a 
very good measure in predicting the polarizability. A related aspect studied here is the 
evaluation of the effective permittivity of a sparse mixture of spherical inclusions using a 
generalized Maxwell Garnett mixing rule. This is compared with extinction of a plane 
wave by a slab of n spherical inclusions sparsely located. The extinction by such a slab is 
calculated using the quasistatic approximation to Mie theory, and also using the full Mie 
theory, as the size of the inclusions is increased. The studies have been carried out for 
both lossless and lossy inclusions. The generalized mixing rule was found to be quite 
accurate in predicting the value of effective permittivity up to size parameters of 0.5 at 
least for small 8r of the inclusion. 

1. Introduction 

The scattering from dielectric spherical inclusions 
has been analyzed by Mie [1908] and Debye [1909], 
popularly known as the Mie scattering theory, using 
the vector spherical harmonic functions to represent 
the fields. It is also well known that this theory is not 
so elegant when one is dealing with scattering from 
electrically small particles. By using the quasistatic 
analysis, it is possible to get simple expressions for the 
Mie coefficients without worrying about the behavior 
of spherical Bessel functions. Under the quasistatic 
limit the fundamental mode given by the first Mie 
coefficient of the scattered field is similar to the field 

scattered by an oscillating dipole with a dipole mo- 
ment the same as that of a sphere under the influence 
of uniform static field. Therefore one can relate the 

polarizability of an electrically small dielectric sphere 
to its scattering and radar cross section (RCS) in the 
dynamic range. 

Since there are practical situations where it is much 
more convenient to calculate the RCS of the particle, 
it is sometimes easier to evaluate its polarizability 
from the definition of RCS. One of the aspects 
studied in this paper is to see the limit of validity of 
relating the RCS of the particle to its polarizability 
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when the scatterer size is very small compared with 
the operating wavelength. Relations have been de- 
rived between the static polarizability and the scatter- 
ing, extinction, and radar cross section for both 
lossless and lossy dielectrics. 

A related aspect discussed here is to measure or 
estimate the effective dielectric constant of a compos- 
ite material made up of small spherical inclusions 
embedded in a homogeneous matrix. The imaginary 
part of the effective value of permittivity -Im{eeff/ 
e0} is calculated using the definition of the polariz- 
ability of a dielectric sphere and the generalized 
Maxwell Garnett (MG) mixing formula which was 
derived by Sihvola and Sharma [1999]. Sihvola and 
Sharma [1999] derived the generalized MG mixing 
formula by adding a few correction terms to the 
polarizability (explained in section 5). The effective 
permittivity is generalized to include the first-order 
scattering effects of the inclusions, which contribute 
to the imaginary part of the effective permittivity and 
are discussed in section 2. The problem can be 
analyzed by treating the mixture as a slab of particles 
that are electrically small and sparse, as shown in 
Figure 1. The incident field, which is assumed to be a 
plane wave, and the transmitted field are represented 
as E i and E t. The imaginary part of the effective 
permittivity is compared with the extinction due to 
scattering by small inclusions and is seen to be 
consistent up to a certain upper limit of the frequency. 
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Figure 1. Extinction from a slab of small spherical particles. 

Since the formula takes into account the size of the 

scatterer at least to the lowest-order terms, the 
-Im{eeff/e 0} is plotted as a function of the size 
parameter k oa - x using different definitions, ex- 
plained in section 4. The radius of the spherical 
inclusion is a, and ko is the free-space wave number. 
The limit up to which the generalized MG formula is 
accurate is shown clearly by considering inclusions of 
different sizes and permittivities satisfying the sparse 
mixture conditions. 

Table 1 illustrates the approach of the study carried 
out in this paper. The interaction of the electromag- 
netic wave with a single spherical particle and with a 
dilute mixture of spherical inclusions is considered for 
both the static and dynamic cases. The aim here is to 
see to what extent the static mixing rules can be 
extended into the higher frequency ranges. 

One of the motivations for this study is the concep- 
tion of new materials with particular electromagnetic 
properties (like absorbers). These materials utilize 
heterogeneous structures made up of inclusions of 
different shapes and properties dispersed in a dielec- 
tric matrix. Another possible application of this study 
is analyzing the atmospheric aerosols. The interaction 
of electromagnetic waves with particles such as clouds 
or rain is one such example. 

2. Single Scattering Extinction 
The problem of analyzing the scattering from a 

sparse mixture can be treated as scattering from a slab 
of n particles embedded in a host medium (as shown 
in Figure 1), which is considered to be free space in 
this paper. The attenuation due to a plane wave 
incident on a slab of n such scatterers is calculated. 

This is then compared with scattering from a single 

spherical scatterer whose scattering characteristics 
can be evaluated using the standard Mie theory [Mie, 
1908], the scattering code of which is available on the 
World Wide Web (http://imperator.cip-iwl.uni-bre- 
men.de/fg01/codes2.html) and also given by Sharma 
and Sihvola [1998]. In the present paper all the results 
are presented using the code used by Sharma and 
Sihvola [1998]. 

The Mie theory is well established and used to 
solve scattering from cylindrical- and spherical- 
shaped conducting and dielectric scatterers. It has 
been very well discussed by de Hulst [1957], Kerker 
[1969], and Bohren and Huffman [1983]. Mie theory 
involves expansion of the electric and magnetic fields 
inside and outside the sphere in terms of vector 
spherical harmonic functions with unknown coeffi- 
cients, also called Mie coefficients. Application of the 
boundary conditions at the interface results in solving 
for the unknown Mie coefficients. The Mie coeffi- 

cients are used to compute various cross sections, 
namely, the scattering (Cscat), extinction (Cext) , ab- 
sorption (Cabs) , and radar cross sections (O'rcs). From 
the optical extinction theorem one can write the 
absorption cross section as Cabs = Cext - Cscat. The 
expressions for these cross sections in terms of the 
Mie coefficients are given by de Hulst [1957], Kerker 
[1969], and Bohren and Huffman [1983]. 

The scattering efficiencies, namely, the scattering 
(Q scat ), extinction (Q ext ), and absorption (Q abs ) effi- 
ciencies, are defined as the respective cross sections 
normalized with respect to the geometric cross sec- 
tion of the sphere (rra2). Thus we can relate the 
scattering efficiencies to the cross sections as 

C ext rra 2Q ext C scat rra 2Q -- = scat (1) 

Now if such spherical scatterers are sparsely distrib- 
uted and occupy a number density n in the mixture, a 
plane wave that travels through it suffers the extinc- 
tion in power density (the Poynting vector) S(z) --- 
E(z)l 2 ,• exp (- 2k'•ffz), with 

2k';ff = nCext, (2) 

Table 1. Scattering Problem Classification 

Single Particle Mixture 

•o = 0 polarizability an 
•o 4:0 Mie theory 

Maxwell Garnett 
9 
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where Cext = C scat -t- Cabs. For lossless inclusions the 
extinct power is due to scattering alone, as there is no 
absorption, and therefore in the above equation we 
can replace C ex t by C scat. The connection of the 
extinction coefficient k';ff with the imaginary part of 
the effective permittivity is obviously 

k•ff = -k0 Im •/Seff/80 = 
/1 C ext 

(3) 

where the minus sign is due to the engineering 
notation keff -- k•ff -- jk'•ff. If the mixture is sparse, 
then we can accurately determine the value of the 
imaginary part of the effective permittivity using the 
computed values of C scat and C ex t for lossless and 
lossy inclusions, respectively, provided multiple scat- 
tering is ignored. 

3. Quasistatic Approximations 

The Mie scattering from dielectric spherical parti- 
cles of dimensions small compared with wavelength 
can be approximated using the asymptotic series 
expansions for the spherical Bessel functions 
[Abramowitz and Stegun, 1970] for the unknown scat- 
tered field coefficients [Bohren and Huffman, 1983]. 
The normalized extinction, scattering, and absorption 
cross sections or efficiencies for a small dielectric 

sphere with radius a and relative permittivity 8 r under 
the quasistatic approximation can be written in terms 
of series expansion of the size parameter x = k o a. 
Below, we define the quasistatic efficiencies [Bohren 
and Huffman, 1983] (by taking the series expansion 
terms up to order X 4)' 

Qext-qs = --4X 

ß Im 1+ 
er+2 • er+ 

8 8 r -- 
+ -x 4 Re 

3 Lk•r + z/ J 

8 

Qscat-qs -- 3 x 

Qabs-qs = Qext-qs 

2+ 27er + 381 } 8r 

2er + 3 

(4) 

8r_12 2 8r + (5) 
-- Q scat-qs, (6) 

where, Re and Im represent the real and imaginary 
parts of the argument, respectively. The subscript qs 
has been attached to the scattering, extinction, and 
absorption efficiencies to represent them for quasi- 

static approximations only. These will be compared 
later on in this paper, while discussing the results, 
with the full Mie theory definitions of scattering and 
extinction cross sections. The expressions given above 
are for the relative permittivity 8 r = 8' r -- js'• corre- 
sponding to the e jø•t notation. The value of 8'; is 
assumed to be greater than zero to represent passive 
dielectric materials. 

It can be seen from (5) that the scattered power is 
quadratic to the field. Substituting the expression for 
Cscat_qs (for a lossless inclusion) from (5) into (3), we 
can derive the expression for -Im{8½ff/80}. The 
result is 

-Im {Sef f} = 8•ff : 2feo(koa) 3 r r q- ' (7) 
where the assumptions 8•ff/8 0 • 1 and 8•ff/8 0 << l 
have been made for a sparse mixture, allowing the 
relation -Im ¾/Seff/80 • 8•ff/(280). 

4. Polarizability: Relation to Extinction, 
Scattering, and Radar Cross Sections 

4.1. Scattering and Extinction Cross Sections 

The response of an isotropic sphere to an applied 
uniform static electric field which induces a dipole 
moment is well known [Jackson, 1975], and its polar- 
izability is defined as 

er-1 
• = 4rra3e0 --. 

er+2 

Let us denote the static polarizability given above as 
a = a(0), representing the static case •o - 0 and 
differentiating it from the quasistatic polarizability 
a(•o). Normalizing the above equation with respect to 
the volume and 80 to make it dimensionless gives 

oz 8 r - 1 
OZn(0) =-- = 3 -- (8) 

80V 8 r + 2' 

4 3 

where V = 5*ra is the volume of the spherical 
inclusion. The dimensionless normalized polarizabil- 
ity for the static fields is denoted as an(O ). 

In order to determine the polarizability as a func- 
tion of frequency a(w), one needs to calculate the 
scattering and absorption from a spherical particle. 
Under the quasistatic limits •o • 0 the definition for 
normalized polarizability for a sphere should reduce 
to that given in (8). Therefore we proceed to relate 
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the normalized polarizability to the extinction and 
scattering cross sections. 

Under the quasistatic approximations the cross 
sections for the extinction and scattering can be 
obtained for small size parameters (x << 1) and for 
IVZr << 1 and thus can be written in terms of the 
static polarizability (to -• 0), denoted here as a(0) as 
[Bohren and Huffman, 1983, p. 140] 

Cext.qs = -ko Im {a(O) / so J 
(9) 

and 

ko 4 
Cscat_qs = 6 rr 

.(0) 
(10) 

The coupled dipole method was first applied by 
Purcell and Pennypacker [1973] for scattering from 
nonspherical particles using the Clausius-Mossotti 
(CM) [Clausius, 1879; Mossotti, 1850] relations to 
evaluate the complex polarizability. There is a short- 
coming, however, in using the CM relations in the 
coupled dipole method, as pointed out by Dungey and 
Bohren [1991] and also described below. 

From (9) we can see that the extinction cross 
section C ext_qs for small spheres is directly propor- 
tional to the imaginary part of its polarizability. When 
the relative permittivity is real, the polarizability a(0) 
is also real. Since C ext_qs cannot be zero because the 
incident wave gets attenuated by scattering, a(0) must 
be complex. In the literature, Draine [1988], Goedecke 
and O'Brien [1988], and Dungey and Bohren [1991] 
have provided methods to satisfy this criterion. In this 
paper we have derived the equation for the polariz- 
ability, which is complex and satisfies the above 
criterion, as will be seen in section 5. 

Here we would like to extend this definition of 

polarizability to include the extinction effects. This 
results in polarizability being a function of frequency, 
denoted here as a(to). To derive a relation between 
the scattering cross section and the polarizability of a 
sphere, (10) is used. Thus the magnitude of the 
normalized polarizability lan(to)[ for lossless or lossy 
inclusions can be written in terms of the scattering 
cross section as 

or(co) •/6'rrCscat-qs 
e-•--l, 7 = k o2 V (11) 

The magnitude of the normalized polarizability 
makes sense only for lossy inclusions, since it is a 

complex number. The imaginary part of a•(to) for 
lossy inclusions can be obtained from the extinction 
cross section and by using (9). The value of an (to) is 
also calculated by replacing Cscat_qs with Cscat , ob- 
tained from the full Mie theory solution, in the above 
equation. 

4.2. Radar Cross Section 

Next we would like to relate the radar cross section 

to the polarizability a(to). For this we consider a plane 
wave varying in time and space to be incident on an 
infinitesimal dipole. When a plane wave Eoa x (ax is 
an x-directed unit vector, and e jtot time-dependence is 
assumed and omitted everywhere) is incident on a 
dipole located at z = 0, it oscillates with the fre- 
quency of the applied field; the dipole radiates or 
scatters an electric field as given by Stratton [1941]' 

ß 3 
e-jkor (_jk0) 

Es = ar X (/•r X p), (kor >> 1), (12) 
jkor 4 weo 

where p - a(to)Eoa x is the dipole moment of an 
ideal dipole located at z - 0 and r is the distance to 
the point from the origin at which the scattered field 
is evaluated (a r is the radial unit vector). The scat- 
tered electric field intensity after some manipulations 
can be written as 

e -jkor 
Es (13) 

jkor 

-jao 
X = 4•- a(to)/,. x (a,. x ix). (14) 

X is called the vector scattering amplitude. 
For a unit power incident on a scatterer we define 

the monostatic RCS in terms of the scattered ampli- 
tude in the backward direction as 

4•/- 

O'rc s -- • Xl 2. (15) 
ko 

Using the above definition for the RCS, we can write 
the normalized polarizability an(to), as a function of 
the radar cross section, as 

eoV ko2V 
(16) 

It can be seen that (16) gives a relation between the 
magnitude of an(to ) and RCS for lossy inclusions. 
The plots for the variation of the normalized polar- 
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izability as a function of size parameter are shown in 
section 6 using the above definitions. 

5. Corrections to the Maxwell Garnett 

Mixing Formula 
A heterogeneous medium made up of spherical 

inclusions in a host medium can be treated as an 

effective homogeneous medium, with its constitutive 
parameters being the effective permittivity and the 
permeability. Assuming the medium to be nonmag- 
netic and its relative permeability to be the same as 
free space (/•r = 1), the effective permittivity of such 
an heterogeneous mixture can be calculated as a 
function of the parameters of the host and the 
inclusion materials and their fractional volume. The 

effective permittivity could be complex in general. 
The well-known Maxwell Garnett (MG) [Gamett, 
1904] mixing rule 

E--E 0 

8eff = 80 q- 3f80 (17) 
8 + 28o -f(8 - 8o) 

gives the effective permittivity Seff of a mixture where 
spherical inclusions of permittivity e = ere0 occupy a 
volume fraction f in the background medium with 
permittivity •0, here assumed vacuum. As can be seen 
from the simple appearance of the formula, the 
effective permittivity does not depend on the size of 
the scatterers or on the wavelength of the operating 
field. Indeed, it is approximatively valid for wave- 
lengths that are much larger than the size of the 
spheres. Because of this low-frequency character of 
the mixing rule, it is often characterized as quasistatic. 

Although there have been size-dependent correc- 
tions to the Maxwell Garnett mixing rule earlier 
[Fikioris, 1965; Wang, 1982], we have used the Peltoni- 
emi [1996] approach for evaluating the polarizability 
of a finite sphere asymptoti.cally. (The time-depen- 
dence behavior is given by ½joot notation.) Using the 
quasistatic assumption in calculating the dipole mo- 
ment, the size-dependent polarizability denoted here 
as a(to) can be calculated as [Sihvola and Sharma, 
1999] 

o•(to) = 3V8o 
8 r -- 1 

8r+2 

8 r -- 1 )-1 1 - 3- [GI(x) + 8rG2(x)] (18) 
8r+2 ' 

where 

2 

Gl(X) = j[(1 + jx)e -jx - 1], (19) 

7 2 2(x) = + jx - 2x -j (20) 

and x = koa is the size parameter of the scatterer. 
The Taylor series expansion of the polarizability gives 

a(to) = 3V8o 
8 r -- 1 

8r+2 

E r - 1 E r q- 10 2 E r -- 1 ) 1 + --x 2-j---x 3+''' . (21) 
8r + 2 10 3 8r + 2 

The effective permittivity of a sparse mixture with 
f << 1 can be written as eeff • •0 + ha(to) and is 
thus given as 

8eft • 8 0 q- 3f8 0 
8 r -- 1 

8r+2 

E r -- 1 E r q- 10 2 E r -- 1 ) 1 +----x 2-j---x 3+''' . (22) 
8r + 2 10 3 8r + 2 

The comparison of (7) with the imaginary part of the 
size-dependent Maxwell Garnett mixing rule (22) 
results in perfect agreement. 

The numerical results presented here for the effec- 
tive permittivity are obtained not by terminating the 
series for a(to) but by using the exact expression given 
in (18). The value of a(to), a function of G l(X) and 
G2(x), is evaluated by using the complete expres- 
sions of G l(x) and G2(x) as given in (19) and (20). 

For a lossless scatterer the relation between the 

imaginary part of the effective permittivity of the 
mixture and the scattering cross section Cscat_qs (since 
there is no attenuation due to absorption) can be 
found from (7) and written as 

/•/C scat-qs 
-Im {Seff/80} =--. (23) 

ko 

The above equation is also used by replacing the 
C scat_qs with C scat , obtained by using the full Mie 
theory results. For a lossy scatterer, Cext_qs (and Cext) 
has to be used in the above equation since it now 
takes into account the absorption due to the imagi- 
nary part of the dielectric constant of the inclusion. 

Since for an arbitrarily shaped scatterer it is easier 
to evaluate the backscattered RCS, we can also relate 
the imaginary part of the effective relative permittiv- 
ity e eff of the mixture to the radar cross section of the 
spherical scatterer using (16) and (7) to get 
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Figure 2. The variation of an(co ) as a function of the relative permittivity of the inclusion. 

2n O'rc s 
-Im {eeff/e0} = (24) 

3ko 

This definition is correct only if the inclusions are 
lossless. For lossy inclusions, however, the attenua- 
tion of the plane wave as it passes through a slab of 
lossy particles cannot be related to RCS alone. The 
absorption phenomena also has to be taken into 
account. Thus evaluating the imaginary part of the 
effective permittivity of the mixture using the defini- 
tion of RCS is not proper for lossy inclusions. 

6. Results 

The heterogenous mixture is analyzed when a 
plane wave is incident on it. Two types of inclusions 
are considered in order to study the behavior of the 
complex polarizability and the imaginary part of the 
effective permittivity of a sparse mixture. These are 
lossless inclusions and lossy inclusions. 

The normalized polarizability values are computed 
using the definitions given in section 4 for different •:r 
and loss tangents. Their deviation from the static 
value is also plotted as a function of the size parameter. 

The generalized Maxwell Garnett mixing formula 
is used to calculate the effective permittivity of the 
mixture. The imaginary part of the complex effective 
permittivity is evaluated using the corrections made in 
the polarizability of the mixture. These results are 
then compared with the results obtained from scat- 
tering from a slab of particles using the Mie theory 
under the quasistatic approximation (equations (4) 
and (5)). The full Mie theory code given by Sharma 

and Sihvola [1998], by using which the scattering cross 
section and the radar cross section can be calculated, 
is also used to calculate the imaginary part of the 
effective permittivity of the mixture using (23) and (24). 

The frequency has been fixed to 1 GHz, and the 
number density of the spheres is chosen to be 20 m -3. 
The variation of size parameter results in variation of 
the radius of the dielectric inclusions. The variation in 

the fractional volume for a change in the size param- 
eter x from 0 to 1 is 0-9.12 x 10 -3. The change in the 
fractional volume for a constant number density of 20 
m -3 results in the variation of the radius of the 
dielectric inclusion from 0 to 4.78 x 10 -2 m. These 
values satisfy the condition of a sparse mixture on 
which (22) is also based. 
6.1. Lossless Dielectric Inclusions 

For a lossless dielectric inclusion the value of the 

dielectric constant is real, and thus the extinct power 
is due to scattering alone, and hence we can replace 
Cex t in (2) by Cscat. The normalized polarizability was 
calculated for different •:r and for different size 
parameters. Next the -Im{eeff/e 0 } was calculated 
using the generalized MG formula. The definitions of 
Cscat and Crrc s were used for calculating an(tO ) and 
-Im{eeff/e 0 } using the complete Mie coefficients. A 
comparative study is made between the various meth- 
ods used in finding the values of a n (to) and -Im{eeff/ 
e0}. First let us discuss the deviation of an(tO ) from 
(8) using different approaches. 

6.1.1. Comparison of normalized static polariz- 
ability a,• (0) with a,• (to). The value of the normal- 
ized polarizability is calculated using the definitions 
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Figure 3. The variation of an (to) as a function of the relative permittivity of the inclusion. 

of RCS and scattering cross section. Figures 2 and 3 
show the behavior of a n (w) with the variation of 8 r 
using the two definitions and for two different size 
parameters, namely, x = 0.3 and 0.6, respectively. 
The value of a n (0) is also plotted in the same graphs 
for the static case. It is seen from the plots that the 
value of a n (w) obtained using the definition of RCS 
can be successfully used to determine the static 
polarizability, as compared with that obtained from 
Cscat. 

The normalized values of polarizability and the 
percentage deviation in its value from the static 
normalized polarizability 

er-- 1) an(O) = 3 8r q- 2 

calculated using different approaches are given in 
Table 2 for 8r = 1.3. The percentage deviation in the 
values of normalized polarizability is higher when rrrc s 
is used to calculate a(w)/eoV as compared with that 
obtained using Cscat. It is also seen that the percent- 
age deviation increases as the size parameter in- 
creases in both cases. 

6.1.2. Comparison of the values of-lln{•eff/• 0 } 
with full Mie theory calculations. The - Im {eeff/e 0 } 
is calculated by using the generalized MG mixing 
formula (equation (22)), Cscat_qs , Cscat (equation 
(23)), and rrrc s (equation (24)). These are then com- 
pared with the value of Cscat obtained from the full 
Mie theory, which is considered to be exact. The 
percentage errors in calculation of -Im {eeff/e 0} 
using different methods are given in Table 3 for a 
dielectric inclusion of er = 1.3. The results show that 

Table 2. Percentage Deviations in the Values of 
Normalized Polarizability an(to ) From the Static 
Polarizability (an (0) = 0.27273) Using Different 
Methods for a Lossless Inclusion of 8 r -- 1.3 

Percent 

a n (o•) an (o•) Deviation 
From From in a n ( w) 
C scat O-rc s From C scat 

Percent 

Deviation 

in an(o•) 
From 6rrc s 

0.2 0.27133 0.26907 -0.51 
0.3 0.26958 0.26453 - 1.15 
0.4 0.26711 0.25819 -2.06 
0.5 0.26389 0.25011 -3.24 
0.6 0.25992 0.24033 -4.70 
0.7 0.25517 0.22890 -6.44 

- 1.34 

-3.01 
-5.33 

-8.29 

-11.88 

-16.07 

Table 3. Percentage Errors in the Values of -Im {Seff/ 
80} Using Different Methods for Dielectric Inclusions of 
8 r - 1.3 

Percent Error Percent Error Percent Error 

From MG From Cscat_qs From O'rc s 

0.2 0.92 1.03 - 1.66 

0.3 2.07 2.35 -3.72 
0.4 3.69 4.25 -6.56 
0.5 5.77 6.81 -10.17 
0.6 8.30 10.09 - 14.51 
0.7 11.29 14.23 - 19.53 

MG, Maxwell Garnett. 
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Figure 4. The variation of -Im {ecff/eo} of a sparse mixture at a frequency of 1 GHz as a function 
ofx. 

the percentage error increases with the increase in the 
size parameter for all the methods adopted for cal- 
culations. 

Figures 4-6 show the variation of -Im {eeff/e0} as 
a function of the size parameter using different 
methods for dielectric inclusions of 8 r = 1.3, 2, and 
10, respectively. Figure 6 has an expanded x range, 
with x varying from 0 to 0.5. It can be seen from these 
plots that the generalized Maxwell Garnett formula is 
a good approximation for calculating the imaginary 
part of the effective dielectric constant of the mixture 

only for small values of x. For larger size parameters, 
however, it becomes an overestimate as compared 
with the values obtained using the full Mie theory. 
This should indeed be the case, as it is valid only for 
quasistatic limits, and we are trying to see the extent 
up to which we can apply it. The quasistatic approx- 
imations are valid only when the condition IX•er• << 
1 is satisfied. Thus it can be seen that as we increase 

both 8 r and x the error in computing the imaginary 
part of the permittivity of the mixture also increases, 
but it is reasonably accurate for small x. 
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Figure 5. The variation of -Im {eeff/e 0} of a sparse mixture at a frequency of 1 GHz as a function 
ofx. 
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Figure 6. The variation of -Im {eeff/e 0} of a sparse mixture at a frequency of 1 GHz as a function 
of x, with x ranging from 0 to 0.5 only. 

6.2. Lossy Dielectric Inclusions 
In the case of lossy dielectric inclusions the extinct 

power is due to both scattering and absorption of the 
particles. Thus we use the definitions of Cscat and Cext 
obtained from the complete Mie formulation to cal- 
culate the magnitude and the imaginary part of the 
normalized polarizability, respectively. The imaginary 
part of the effective permittivity of the mixture is also 
calculated by using the same definitions. As in the 
case of lossless inclusions, we will first compare the 
values of normalized polarizability obtained by differ- 
ent methods and then the values of -Im {eeff/e0}. 
The frequency has been fixed to 1 GHz and the 
number density n was fixed to 20 m -3 as was done in 
the lossless case. 

Table 4. Percentage Deviations in the Magnitude of 
Normalized Polarizability la,•(to)l From the Magnitude of 
Static Normalized Polarizability (a,•(0) = 0.27523 - 
j0.08257 and la•(0)l = 0.28735) Using Different 
Methods for a Lossy Inclusion of er = 1.3 - j0.1 

From C scat From O'rc s 

Percent Percent 

Deviation in Deviation in 

From C scat From trrc s 

0.2 0.285846 0.283464 
0.3 0.283910 0.278583 
0.4 0.281127 0.271735 
0.5 0.277453 0.262932 

0.6 0.272852 0.252208 
0.7 0.267300 0.239618 

-0.52 -1.35 

-1.20 -3.05 
-2.17 -5.43 

-3.44 -8.50 

-5.04 -12.2 
-6.98 -16.61 

6.2.1. Comparison of normalized static polariz- 
ability an(O) with an(tO). First, a lossy dielectric 
inclusion of er = 1.3 - j0.1 was considered. Since the 
normalized polarizability an(O) (see equation (8)) is 
complex for lossy inclusions, its magnitude was calcu- 
lated and compared with the magnitude of normal- 
ized polarizability an(tO ) obtained using the scatter- 
ing cross section and the radar cross section. 

The values of the magnitudes of normalized polar- 
izabilities calculated using different ap- 
proaches and their deviation from the static value are 
given in Table 4 for t• r = 1.3 - j0.1. It can be seen 
from Table 4 that the deviation has increased slightly 
for lossy inclusions for the same size parameter x and 
for the same real value of the relative permittivity, as 
compared to the lossless case, for both methods 
(using scattering cross section and the radar cross 
section). 

The magnitude of an(to ) is also plotted for differ- 
ent values of the real part of the relative permittivity, 
for two different size parameters, using the defini- 
tions of the radar cross section and the scattering 
cross section. The results are shown in Figures 7 and 
8 for x = 0.3 and x = 0.6, respectively, for a tan/5 = 
0.5 (loss tangent tan fi is defined as a ratio of e'[ to e'r). 
For a given tan/5 the variation in the real part of the 
relative permittivity results in the variation of its 
imaginary part also. 

6.2.2. Comparison of the values of -Im {eeff/E 0 ]' 
with full Mie theory calculations. The value of -Im 
{eeff/e0} was calculated using the generalized MG, 
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Figure 7. The variation of lano)l as a function of the real part of the relative permittivity of the 
inclusion (tan iS = 0.5). 

using C ext_qs , C ext, and O'rc s for a dielectric inclusion 
of relative permittivity of Sr = 1.3 - j0.1. The errors 
in the values of -Ira {Self&0} evaluated using differ- 
ent methods are shown in Table 5. As seen from the 

table, the percentage errors are very small for x 
ranging from 0 to 1 as compared with the lossless 
case. The error increases, however, with the increase 
with the size parameter, as is expected. The percent- 
age error using O'rc• was very high for small values of 
S'r and is not given in Table 5, although it has been 
plotted in the figures given. 

The variation of -Ira {Self/S0} with the size param- 
eter is shown in Figure 9 using different definitions to 

get the imaginary part of the effective permittivity of 
the mixture. The results of the generalized MG match 
very well with that obtained using the extinction cross 
section from Mie code, even for reasonably large 
values of the size parameters. The results computed 
using the radar cross section are quite inaccurate, 
however. 

Next a slightly higher dielectric inclusion of er = 
2 - jl.9 was chosen as an inclusion. The dielectric 
inclusion was deliberately chosen to have a high loss 
tangent. The results are shown in Figure 10. The 
results of the generalized Maxwell Garnett formula 
and using (5) matched very well with that of using the 
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Figure 8. The variation of lano)l as a function of the real part of the relative permittivity of the 
inclusion (tan is = 0.5). 
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Table 5. Percentage Errors in the Values of -Im {eeff/ 
e0} Using Different Methods for a Lossy Inclusion 
Having er = 1.3 - j0.1 

Percent Error Percent Error 

From MG From Equation (4) 

0.2 0.188 0.012 
0.3 0.437 0.064 
0.4 0.815 0.210 

0.5 1.351 0.532 

0.6 2.077 1.130 
0.7 3.020 2.127 

extinction cross section from the Mie theory up to size 
parameters of 0.6. 

When the relative permittivity of the inclusions was 
chosen to be as high as er = 10 - j0.5, it was seen that 
the generalized MG formula was quite an overesti- 
mate. The results are as shown in Figure 11 for an 
expanded x range (x varying from 0 to 0.5). The 
quasistatic approximation does not match at all be- 
yond x = 0.1, since (5) is approximate only for low 
dielectric constant scatterers. The MG formula is 

accurate only up to x = 0.2, beyond which the error 
slowly increases. 

7. Discussion and Conclusions 

The two main aspects studied here are the follow- 
ing: First, the idea of complex polarizability is ex- 
plained and related to various cross sections, namely, 
extinction, scattering, and radar cross sections. These 
definitions are used in a related aspect, which is the 

evaluation of the imaginary part of the effective 
permittivity of a sparse heterogeneous mixture. A 
generalized Maxwell Garnett formula (equation 
(22)), which is dependent on the electrical (optical) 
size of the spheres, in addition to the permittivity and 
volume fractions of the components in the mixture, is 
derived and used to calculate the effective properties 
of the heterogeneous mixture. The imaginary part of 
the complex permittivity obtained from this new 
generalized MG mixing formula is compared with the 
value obtained using the quasistatic Mie theory, radar 
cross section, and the full Mie scattering analysis. The 
range of applicability of these rules is then examined. 

The results for both the polarizability and the 
imaginary part of the effective permittivity are given 
for two types of dielectric inclusions: lossless and 
lossy. For the lossless case the attenuation in a slab of 
n particles is described by scattering alone, but in the 
case of lossy inclusions the absorption, in addition to 
scattering, is taken into account to satisfy the optical 
extinction theorem. Thus the magnitude of the nor- 
malized polarizability is calculated using scattering 
and radar cross sections for both lossless and lossy 
inclusions, and its imaginary part can be obtained 
from the extinction cross section (using the full Mie 
theory code). 

It was observed that for both lossless and lossy 
dielectric inclusions the deviation in calculating the 
magnitude of polarizability increases with the in- 
crease in the size parameter from its static value. The 
deviations in the values of magnitudes of normalized 

Figure 9. 
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polarizability were slightly higher for lossy inclusions 
as compared with the lossless case. The definition of 
radar cross section gave smaller deviation in comput- 
ing the value of la•(to)l from its static value when • 
was high as compared with that obtained from the 
definition of Cscat. This is because the relation be- 
tween the scattering cross section and polarizability 
becomes inaccurate much faster when the size param- 
eter or the dielectric constant is increased, as the 
higher-order terms also start contributing. 

The -Im {Self/e0} is calculated using the general- 
ized Mie theory and compared with the results ob- 
tained from the extinction cross section and radar 

cross section from the full Mie theory. For lossless 
inclusions the extinction cross section and the scat- 

tering cross sections are the same. 
For lossless inclusions it was seen that the error in 

-Im {Seff/s0} increases with the increase in the size 
parameter and also as the dielectric constant was 
increased. For lossy inclusions, however, the general- 
ized MG and the quasistatic approximation gave 
smaller errors in the values of -Im {Seff/e0} when 
compared with the full Mie theory calculations. 

We may stop here to take a closer look at the first 
few Mie coefficients when expanded as a series and 
compare them with the coefficients obtained in the 
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Figure 12. Variation of the X 6 term as a function of 8r for Maxwell Garnett and Mie expansions. 

generalized Maxwell Garnett mixing rule. At low 
frequencies, mainly the first few Mie coefficients are 
contributing to the scattered fields. In section 3 the 
Mie coefficients al, a2, b l, and b2 were expanded 
using the Bessel function series up to the O(xS). 
Using these Mie coefficients, the scattering, extinc- 
tion, and absorption efficiencies were derived up to 
O(x 4) or the cross sections up to O(x6). It is worth 
looking at the behavior of the Mie scattering using the 
higher-order expansion of the Bessel functions in the 
Mie coefficients, especially around the value 8r = 2. 
Below are given the order x 6 and x 8 contributions to 
the scattering cross section C scat: 
Order x 6 

16 

5 

er -- er 

er + er + 2 

Order x 8 

24 (er -- 2) 2 8 

25 (er + 2)4 + 4725 4 13813e3 36548er2 [(2862er - r - 

+ 17880er + 49272 + 7er 6 + 185er 5) 

/(er + 2)4(2er + 3)2]. 

Similar expansions that were obtained from the gen- 
eralized MG formula (equation (22)) are 
Order x 6 

15 r+2 er+2 

Order x 8 

525 er -12) 2 2 7412er + 6180) + [(14•4 + 228er 3 + 1197e r -- r 

/(Sr q- 2) 2] ß 

We would like to compare the first correction of the 
MG with the quasistatic term. The coefficients of the 
X 6 terms of the Mie and the MG are plotted in Figure 
12 as a function of er. It is seen that this term goes to 
zero at •r = 2 and at •r = 1.34 for Mie and MG, 
respectively. This term is negative when er < 1.34 for 
MG and is negative for Mie when er < 2. The 
contribution of this term is higher for MG as com- 
pared with Mie. These observations give support to 
the results in the previous section (section 6), where 
the MG prediction of the effective permittivity of the 
mixture was good, for small values of e r. 

Although it is easy to compute the RCS of various 
objects, the definition of RCS when used to calculate 
the value of -Im {eeff/e 0 } is highly inaccurate. This is 
because although the polarizability magnitude is re- 
lated to the scattering cross section, the attenuation 
of the electromagnetic wave as it passes through a 
slab of lossy particles of spherical shapes cannot be 
explained by RCS alone. The absorption phenomena 
also has to be taken into account. 

Thus it can be concluded that the polarizability of a 
spherical particle can be obtained from its RCS when 
it is small compared with the wavelength. In addition, 
it can be said that the generalized Maxwell Garnett 
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formula is quite accurate for smaller values of 
k oaX/• r, and for larger values it is an overestimate 
for both lossless and lossy inclusions. 
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