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A B S T R A C T

The metaverse paradigm has recently captured increasing scholarly and industrial attention, particularly
within the scope of human-centric Industry 5.0. In this context, the metaverse promises a transformative
confluence of the physical and digital realms, offering unparalleled avenues for human augmentation in
industrial applications. Yet, while several conceptual metaverse architectures and illustrative case studies have
emerged, they scarcely delve deep into the nuanced practice of cultivating the industrial metaverse for factory-
scale applications. Addressing this research gap, this work introduces a novel architecture for a data-centric
and semantic-enhanced industrial metaverse. The architecture intricately weaves the physical factory domain
with the metaverse, fortified by a suite of ten modules, facilitating data flow and knowledge synchronization
with the integration of digital twins and semantic models. The practical application and relevance of this
architecture are further accentuated through a case study focused on in-plant material flow tracking. Emerging
results underline that our architecture encapsulates the essential components for constructing a factory-scale
industrial metaverse. Future research will be geared towards a comprehensive validation of the proposed
metaverse architecture, culminating in tangible implementations across diverse industrial contexts.

1. Introduction

The metaverse paradigm has recently gained great attention, un-
derpinned by its transformative potential in integrating physical and
digital worlds. While consumer sectors such as online retail, social
media, and gaming have seen early adoption spearheaded by compa-
nies like Meta, the industrial metaverse is rapidly coming into focus
as an arena of enormous potential. ABI Research predicts that the
industrial metaverse market can grow to nearly 100 billion dollars
by 2030, overshadowing its consumer counterpart pegged at about 50
billion. Bearing testament to a paradigm shift in contemporary industry,
the industrial metaverse promises to reshape the industrial chain and
usher in unparalleled value for diverse stakeholders in the foreseeable
future [1]. Within the paradigm of human-centric Industry 5.0, the
metaverse is posited as a revolutionary force, seamlessly integrating the
physical and digital worlds [2,3]. Such integration can pave the way for
innovative manufacturing frameworks characterized by interactive, im-
mersive, and tailored experiences, thereby facilitating enhanced human
augmentation in industrial scenarios [4].

The term ‘‘metaverse’’ has been at the forefront of both technolog-
ical and cultural discourses, often bringing along with it a medley of
interpretations. Drawing from the perspectives of [5,6], the metaverse
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is envisioned as an interconnected web of social, networked, perpet-
ual, and persistent multi-user immersive environments that combines
physical reality and digital virtuality. To bring clarity to our discussion,
we define the metaverse as ‘‘a continuum of physical and virtual sys-
tems, interconnected and intertwined in ways that allow for seamless
transitions and interactions, which stands distinct from merely virtual
environments in its depth of connection to the physical world, and its
constant synchronization and reflection of real-world dynamics’’.

Transitioning from this foundational understanding of the meta-
verse, this article delves into the concept of the ‘‘industrial metaverse’’,
a nuanced adaptation tailored for the industrial domain. According
to [7], the industrial metaverse not only incorporates core features
of the metaverse, such as man-in-the-loop, digital assets, and social
networks, but it also distinguishes itself through a unique focus on the
industrial process value, and the capability to simulate and connect
with various industrial factors including machines, humans, materials,
processes, and activities. Notably, [7] posits the industrial metaverse as
a novel digital twin system, centered on human-in-the-loop dynamics,
adeptly simulating industrial processes, facilitating industrial value
transactions, and fostering human–machine collaborations. This con-
ceptualization aligns with [8], which perceives the industrial metaverse
as a workspace’s digital twin, a cornerstone in augmenting interactions
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Fig. 1. Condensed overview of the proposed industrial metaverse architecture: This
architecture seamlessly bridges the physical space, encompassing entities and infras-
tructure, with the metaverse space. Within the metaverse space, digital twins ensure
bi-directional data flows, while semantic models drive knowledge synchronization. The
architecture also encompasses the XR interface and support functions.

with physical entities and enhancing visualizations in a cyber–physical
ecosystem. This represents a significant evolution from conventional
digital twins or standalone extended reality (XR) technologies, or a dis-
parate collection of technologies. Instead, the industrial metaverse syn-
thesizes various enabling technologies into a sophisticated, cohesive,
interoperable, and scalable framework, extending beyond traditional
software platforms to offer a multifaceted solution tailored to meet the
complex demands of modern industry.

The industrial metaverse offers a communal space for interdisci-
plinary teams and customers to interact and collaborate seamlessly with
highly personalized experiences [9]. The applications of the industrial
metaverse manifest along multiple phases of a plant’s life cycle: facil-
itating collaborative simulations for product and plant layout designs
during the design phase, offering intuitive training arenas for novice
workforce during the onboarding phase, and enhancing operational
efficiency while minimizing quality risks during the manufacturing
phase. By structurally integrating various technologies, the industrial
metaverse represents a significant advancement over existing methods,
not only providing a dynamic approach to digitalizing manufacturing
processes but also offering interactive interfaces that empower hu-
man workers to interact with complex manufacturing environments
effectively. In essence, it promises a transformative shift in factory per-
sonnel’s engagement, ushering in collaborative and tailored machine
interfaces pivotal for control, monitoring, and upkeep.

Despite these promising potentials, there are notable gaps in the
industrial metaverse development. Current metaverse architectures,
as underscored by [6,10–12], predominantly cater to consumer ap-
plications, often overlooking the bespoke challenges and intricacies
posed by industrial contexts. Furthermore, literature targeting indus-
trial metaverse [7,8] while enlightening, are largely conceptual, lacking
the granular technical guidelines for tangible, real-world implemen-
tations. Moreover, prevailing case studies [8,13–15], though rich in
insights, tend to overemphasize XR that consists of virtual reality
(VR), augmented reality (AR), and mixed reality (MR). This focus,
though important, often neglects the holistic, platform-centric approach
pivotal to the essence of the metaverse — a seamlessly intercon-
nected digital–physical continuum. Such studies sideline imperatives
like data integration, and semantic enrichment. In our prior research
endeavors [16–22], the attention was primarily on integrating the foun-
dational technologies underpinning the industrial metaverse: digital
twins and XR. While these explorations provided invaluable insights,
they predominantly gravitated towards specific machine applications,
bypassing the wider spectrum of metaverse components encompassing
personnel, materials, and the environment. Collectively, these research
gaps accentuate an urgent need for an interconnected, scalable, and
pragmatic industrial metaverse architecture, a challenge this article
aspires to address.

Fig. 1 illustrates a condensed representation of our proposed indus-
trial metaverse architecture. At its core, this architecture bridges the

physical factories, consisting of entities and infrastructure, with their
metaverse counterparts. Within the metaverse space, digital twins form
the backbone for dynamic bi-directional data flows. Simultaneously,
semantic models ensure knowledge synchronization. The architecture
also emphasizes the criticality of the XR interface for end-users and
highlights the encompassing support functions that represent various
capabilities within the metaverse. Building on this premise, this work
elucidates the following pivotal contributions:

1. Introducing a novel industrial metaverse architecture, seamlessly
linking physical factories with their metaverse counterparts.

2. Orchestrating data flow and knowledge synchronization through
the integration of digital twins and semantic models.

3. Affirming the efficacy and viability of the proposed architecture
through a case study focused on in-plant material flow tracking.

The rest of the article is structured as follows: Section 2 analyzes
existing literature on prevailing metaverse and industrial metaverse
architectures, case studies of industrial metaverse applications, and
the interplay of digital twins and XR. Section 3 introduces our pro-
posed industrial metaverse architecture, detailed across ten pivotal
modules, and underscored by the principles of data flow and knowledge
synchronization. Section 4 illustrates the practical application of our
architecture through a case study focused on in-plant material flow
tracking. Discussions on the implications, challenges, and future re-
search are presented in Section 5. The article culminates in Section 6,
summarizing our findings and contributions to the field.

2. Related works

This section delves into a literature review across three pivotal
domains: prevailing metaverse and industrial metaverse architectures,
case studies of industrial metaverse applications, and the authors’
previous works focusing on digital twins and XR as the foundational
pillars of the industrial metaverse. Through a critical examination of
the related works, we highlight existing gaps and shortcomings, thereby
establishing the research motivation of this work.

2.1. Existing metaverse architectures

The metaverse development is still at an early stage, therefore its ar-
chitecture has not reached a consensus. [10] proposed a seven-layered
architecture that described the value chain of the metaverse develop-
ment stages: The seven layers from bottom to top were infrastructure,
human interface, decentralization, spatial computing, creator economy,
discovery, and experience; The sequence of the layers indicated that
the realization of the metaverse should start from infrastructure and
equipment, then move to development tools, and eventually reach
application products and operation ecosystems [6]. Based on the seven-
layered architecture, [11] described the metaverse at a more macro
level with only three layers: the infrastructure layer that corresponded
to the physical world, the ecosystem layer that corresponded to the
virtual world, and the interaction layer in the middle that corresponded
to the intersection between these two worlds. [12] introduced three
sequential stages of the metaverse development as a ‘‘digital twins-
native continuum’’ considering the experience-duality: The first stage
focused on creating a digitalized real world; It was followed by the
phase of ‘‘digital natives’’, which led to various virtual worlds with
content from their digital creators; The final phase featured the forming
of a self-sustaining and persistent metaverse, with the co-existence of
physical–virtual reality that was interoperable yet independent of each
other.

Despite their advancements, these metaverse architectures predom-
inantly focus on consumer applications, neglecting the distinctive re-
quirements and challenges presented by industrial settings. In contrast
to consumer-oriented metaverses, industrial metaverses demand signif-
icantly higher levels of reliability to ensure consistent performance,
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stringent security measures to protect sensitive data and operations,
and comprehensive interoperability to facilitate seamless interaction
among a variety of systems and devices. This interoperability be-
comes particularly critical when considering the need to integrate with
existing industrial systems. Recognizing these unique requirements,
researchers have proposed specific architectures tailored to the needs
of the industrial metaverse.

For instance, [7] proposed a primary architecture specific for build-
ing the industrial metaverse, consisting of four layers. The basic layer
includes five essential elements (personnel, equipment, raw material,
environment, and principle), along with data, storage, and network
resources. These provided all the basis and support for generating and
operating the industrial digital space. The perception layer, equipped
with the capabilities to link, detect, percept, obtain, and abstract,
ensured stable and real-time perception of multi-source industrial in-
formation from physical elements and human participants. The service
layer was divided into three platform-as-a-service (PaaS) sub-layers:
foundation, engine, and analyze PaaS. This layer provided various ser-
vices around the requirements of a high-fidelity industrial environment,
immersive user experience, and a decentralized social system. Finally,
the application layer provided users with multiple functions that fulfill
the needs of the industrial metaverse across various industrial system
granularities along the product lifecycle.

Similarly, [8] proposed the cyber–physical industrial metaverse
systems based on the ‘‘5C’’ framework: The connection layer focused
on data acquisition using hardware; The conversion layer processed
raw data into information; The cyber layer conducted time-machine
and fleet-sourced data management; The cognition layer focused on
information visualization to enhance human–machine interaction; The
configuration layer enabled multi-sourced information to be viewed
simultaneously in the metaverse to realize different purposes including
remote interaction, remote instruction, remote indoctrination, as well
as remote investigation and control.

Despite the emergence of these specialized architectures, the current
body of literature often remains conceptual, falling short of providing
concrete guidance for the implementation of an industrial metaverse
on a factory scale. Furthermore, much of the existing work emphasizes
building an entirely new metaverse ecosystem from scratch, rather than
focusing on how to establish a meaningful and seamless connection
between the metaverse space and existing physical factories. A critical
aspect often overlooked is the integration of information technology
(IT) and operational technology (OT) systems. IT systems facilitate the
secure processing and storage of data, supporting essential functions
such as user interaction, system monitoring, and analytics. Meanwhile,
OT systems directly manage the physical elements of industrial opera-
tions, playing a vital role in automating and optimizing manufacturing
processes. This integration is essential for a fully functional and ef-
ficient industrial metaverse that can operate in harmony with legacy
infrastructures.

2.2. Industrial metaverse case studies

Several case studies have been conducted around industrial meta-
verse applications. For instance, [13] explored the metaverse’s appli-
cations in fluid machinery, focusing specifically on pumps and fans.
Their study highlighted that current metaverse applications in this field
were primarily relegated to enabling remote operation and monitoring
of machinery within virtual environments. [8] studied the application
of the metaverse in machine health and process monitoring, control,
and maintenance of a ball screw for remote manufacturing. Their
work underscored the real-time data connectivity, through which users
could not only access real-time machine status but also engage with
experts for instructions on remote maintenance. [14] shifted the focus
to data-driven intelligent transportation systems, demonstrating meta-
verse applications that employed AR for data visualization and VR for
remote operation of vehicles. [15] investigated the concept of a ‘‘digital

factory metaverse’’, emphasizing the incorporation of VR and online
multi-user experiences to facilitate factory operations.

Despite the valuable insights offered by existing case studies in the
realm of the industrial metaverse, several research gaps are evident.
Predominantly, these studies often portray XR as the centerpiece, ne-
glecting a holistic platform-oriented approach that integrates multiple
technological components. Consequently, they fall short of capturing
the core essence of the metaverse, which is fundamentally an inter-
operable and dynamically linked digital–physical space. This myopic
focus on isolated XR applications overlooks crucial elements such as
seamless data integration, and semantic enrichment, thereby limiting
the architecture’s versatility and potential for transformative impact
across diverse industrial settings.

2.3. Interplay of digital twins and extended reality

In the realm of the industrial metaverse, digital twins and XR
emerge as key technological enablers. Digital twins offer dynamic
digital representations of physical entities, facilitating a seamless inte-
gration between physical and virtual domains. Concurrently, XR serves
as the visual interface, offering users a rich, immersive, and interac-
tive experience, epitomizing the metaverse’s human-centric approach.
Drawing upon the authors’ prior research, particular attention has been
given to how digital twins and XR can interplay effectively in industrial
contexts.

Initially, [16] introduced a feature-based digital twin framework
(FDTF) enumerating ten key features. These guiding principles were
expanded in [17] and demonstrated with an industrial crane, where
digital twins provided data interfaces leveraging twin description docu-
ments. While the FDTF was initially designed to articulate the structure
and components of digital twins, its implications extended to shaping
the architecture of the industrial metaverse. Guided by this insight, our
present article incorporates pivotal elements from FDTF, adapting its
well-defined features to suit the specific requirements of the industrial
metaverse. Next, the importance of connectivity, extendability, and
interoperability of digital twins was investigated through the Digital
Twin Web (DTW) [18]. This expansive network of digital twins en-
abled streamlined management and distribution of twin description
documents that captured the metadata of digital twins with common
data ontology. Building upon this, [19] introduced the TwinXR method,
leveraging DTW and twin description documents to customize XR ap-
plications to varied physical setups. While this approach amplifies prior
research on singular XR applications tailored for digital twin-based
industrial cranes [20,21], it remains constricted in scope, emphasizing
single-machine applications and overlooking broader considerations
such as personnel, materials, and the environment. Finally, our most
recent work introduced the industrial production workflow ontology
(InPro) [22], which complements our efforts to achieve a holistic
view of the industrial metaverse, particularly in terms of understand-
ing intricate processes across different layers of industrial activities,
thus integrating existing industrial systems and allowing knowledge
synchronization.

2.4. Research motivation

The examination of current metaverse architectures, industrial case
studies, and the integration of digital twins and XR technologies reveals
significant gaps and opportunities for advancement in the industrial
metaverse domain. Existing frameworks largely cater to consumer ap-
plications, neglecting the complex needs of industrial environments,
especially the system integration aspect. Moreover, most case studies
focus narrowly on XR applications, missing the broader perspective
needed for a fully integrated digital–physical ecosystem. Our prior
work on digital twins and XR has laid a foundational understanding
but remains limited in scope, emphasizing single-machine applications
without fully addressing broader industrial components. This identified
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Fig. 2. Schematic representation of the proposed industrial metaverse architecture tailored for smart factories: The architecture delineates between the physical space, comprising
tangible entities and infrastructure, and the metaverse space across ten comprehensive modules, namely, coupling, data storage, semantic link, XR interface, identifier, security,
simulation model, computation, analysis, and AI, with data flow and knowledge synchronization enabled by digital twins and semantic models.

need for a holistic, scalable, and adaptable industrial metaverse archi-
tecture that bridges these gaps and facilitates a more integrated ap-
proach to digital–physical interactions in industrial settings motivates
our research.

3. Proposed industrial metaverse architecture

This section delineates a novel industrial metaverse architecture de-
signed for the intelligent orchestration of smart factories, as illustrated
in Fig. 2. The architecture comprises two interconnected domains: the
physical space and the metaverse space. The physical space represents
the foundation of a smart factory, encompassing not only the tangible
entities – machines, materials, personnel, and the environment – but
also the infrastructure elements including sensors, actuators, networks,
and support systems. These elements interact and collaborate to create
an efficient and intelligent production environment. The metaverse
space is a virtual representation of the physical space, centered around
ten key modules: the coupling and data storage modules for data
flow through digital twins, the semantic link module for knowledge
synchronization through semantic models, the XR interface module for
user interaction, as well as support functions including the modules of
identifier, security, simulation model, computation, analysis, and artifi-
cial intelligence (AI). This section delves into the essential components
of the physical space alongside the critical modules constituting the
metaverse space. Additionally, we elucidate the principles of the data
flow and knowledge synchronization across the physical and metaverse
spaces.

3.1. Physical space: entities

The core entities in the physical space of a smart factory setup
encompass machines, materials, personnel, and the environment. These
entities are integral to industrial processes and form the basis for
creating their digital twins and semantic models in the metaverse
space. As they engage and evolve dynamically, these entities generate
a continuous stream of real-time data and knowledge for the metaverse
space to capture, process, analyze, visualize, and interact.

Machines in the physical space include production equipment,
automation systems, robots, and other tools used to carry out manu-
facturing and assembly tasks. These machines are often interconnected
and communicate with each other and the data is captured through
the Internet of Things (IoT) devices to enable smart manufacturing
processes.

Materials refer to raw materials, work-in-progress items, and fin-
ished products that are involved in the production processes. Proper
tracking and management of these materials are crucial for optimiz-
ing inventory levels, reducing waste, and ensuring timely delivery of
products to customers.

Personnel encompasses the workforce managing and operating
production processes. Industry 5.0 highlights the integration of human
expertise with technology, fostering innovation and enhancing system
performance, which is achieved by enhanced human–machine collab-
oration, training and tools for their efficiency and safety. Personnel’s
skills and well-being are key to a smart factory’s success, and integrat-
ing their knowledge into the metaverse can boost decision-making and
collaboration.

The environment encompasses the factory’s physical layout, am-
bient conditions, and external factors that can impact the production
process. Monitoring and controlling environmental factors, such as
temperature, humidity, air quality, and lighting, contribute to main-
taining optimal working conditions and minimizing the potential for
equipment failure or product defects.

3.2. Physical space: infrastructure

Comprising sensors, actuators, networks, and support systems, the
infrastructure not only supports manufacturing processes but also facil-
itates the seamless integration of the physical and metaverse spaces.

Sensors gather real-time data from various sources in the physical
space, such as temperature, humidity, pressure, vibrations, machine
operation status, and process parameters. This data is used for creating
accurate digital twins within the metaverse space.

Actuators convert digital commands from the metaverse space into
physical actions. They implement control strategies and adjustments
based on insights gained from the analysis of data, driving improved
efficiency and performance.

The network infrastructure facilitates seamless data transmission
between the physical space and the metaverse space, ensuring real-
time synchronization between the two domains. Implementing reliable
and high-speed connectivity solutions, such as 5G, Wi-Fi 6, or other
industrial communication protocols, is essential for supporting the
data-intensive requirements of the industrial metaverse.

In addition to these components, the infrastructure also encom-
passes support systems like power distribution systems, data centers,
building facilities, pneumatic air or water systems. These systems con-
tribute to the overall stability and efficiency of the industrial metaverse
framework.

3.3. Metaverse space: coupling and data storage modules for data flow

This section explores the foundational modules that are pivotal
to the orchestration of data flow within the metaverse space: the
coupling and data storage modules. These modules work in tandem to
facilitate the seamless transfer and preservation of digital twins, which
is essential for the real-time representation and interaction within the
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metaverse. The coupling module acquires and channels data between
the physical and metaverse spaces, while the data storage module
encapsulates the state of the metaverse, ensuring data integrity and
accessibility for ongoing operations and analysis.

3.3.1. Coupling module
The coupling module creates a two-way data connection between

a physical entity and its digital twin, facilitating real-time interaction
and synchronization. Coupling relies on the sensors, actuators, and
network infrastructure in the physical space to establish and maintain
connections between the physical entities and their digital twins in the
metaverse space. The module is closely integrated with the security and
identifier modules of our architecture, which is essential for maintain-
ing data integrity and security across the interface between physical
and digital entities. Coupling plays several essential roles from data
acquisition, data transmission, to control and actuation.

During data acquisition, the coupling module leverages the sensors
in the physical space to gather real-time data from the physical entities,
including their states, behaviors, and contextual information. This data
is then used to create and update the corresponding digital twins in
the metaverse space, ensuring accurate and up-to-date representations.
For data transmission, the module utilizes the network infrastructure
in the physical space to facilitate efficient, secure, and reliable data
transfer between the physical entities and their digital twins, ensuring
seamless communication and synchronization between the physical and
metaverse spaces. Communication protocols such as Open Platform
Communications Unified Architecture (OPC UA), Message Queuing
Telemetry Transport (MQTT), and Constrained Application Protocol
(CoAP), facilitate the data transfer between physical entities and their
digital twins. The choice of communication protocols should be aligned
with the specific requirements of each use case, considering factors such
as security, reliability, and real-time performance [23,24]. In terms of
control and actuation, the coupling module works with the actuators
in the physical space to translate digital commands from the metaverse
space into physical actions, allowing for precise and responsive control
of the physical entities and real-time feedback to the digital twins.

To augment the coupling module’s capability, we propose the data
link [17] integration as a potential enhancement. This linkage facili-
tates centralized access to various data systems through an application
programming interface (API) gateway, offering a streamlined approach
to merging scattered data for digital twin creation. Capabilities as such
enable the metaverse to integrate new IoT technologies as they emerge,
expand to support a broader range of physical entities, and adapt to
changes in the industrial environment.

3.3.2. Data storage module
The data storage module manages and preserves digital twin models

of machines, materials, personnel, and the environment, while being
able to communicate with the physical space through a bi-directional
data flow enabled by the coupling module. The digital twin models
stored in this module are further accessed, processed, enriched, and
updated through feedback loops by the support functions of simulation
model, computation, analysis, and AI. To ensure the confidentiality and
integrity of the stored data, the data storage module is enhanced by
the security and identifier modules’ capabilities, as detailed in their
respective sections.

Data storage relies on databases, which provide the capability to
store, organize, and retrieve large amounts of data efficiently. While
relational databases – often regarded as the classic model – support
structured data storage, the industrial metaverse demands specialized
solutions, based on the specific use case requirements, such as data
volume, velocity, variety, and veracity: Real-time databases are piv-
otal when immediate data reflection is required; Time-series databases
are ideal for storing sequences of data points indexed in time or-
der [25]; Document-based NoSQL databases, like MongoDB, stand out
for their adaptability in managing varied data structures without a rigid

schema, offering more flexibility as data needs evolve [26]; Distributed
databases ensure data consistency across diverse network nodes [27];
Meanwhile, graph databases, designed to treat relationships between
data points with as much priority as the data itself, emerge as especially
relevant for ontological applications [28]. Furthermore, the storage
solution must be capable of accommodating growing data volumes in
the metaverse context, which can be achieved through cloud-based
storage solutions. Cloud storage provides on-demand access to a shared
pool of computing resources, including storage, processing power, and
networking, typically offering high availability, data redundancy, and
data backup capabilities [29].

3.4. Metaverse space: semantic link module for knowledge synchronization

This section examines the semantic link module that underpin the
knowledge synchronization within the metaverse space. This module
connects the metaverse space to the physical space by extracting knowl-
edge from the physical entities of machines, materials, personnel, and
the environment, and representing it with semantic models.

Semantic models represent complex attributes and relationships of
physical entities, adhering to recognized standards such as the Digital
Twin Definition Language (DTDL) [30], the Web of Things Thing De-
scription (WoTTD) [31], and the Asset Administration Shell (AAS) [32].
These models leverage linked data formats like JavaScript Object No-
tation for Linked Data (JSON-LD) [33] to enable encoding of data in
a machine-readable manner, which is essential for linking the data
within semantic models to other external data sources, and forming the
basis for a comprehensive global data space [34]. The information from
these linked datasets can be precisely extracted using semantic query
languages like SPARQL Protocol and Resource Description Framework
(RDF), shortly as SPARQL.

Key to the module’s efficacy are domain ontologies that provide a
common vocabulary for knowledge representation and organization.
Based on prevailing machine-readable ontologies such schema.org [35],
the Smart Applications REFerence (SAREF) [36], and GS1 Web Vo-
cabulary [37], this module develops customized ontologies to en-
able domain knowledge representation. The ontology customization
requires an in-depth understanding of unique industrial processes,
terminologies, and workflows, demanding collaboration with industry
experts to tailor ontologies accurately. These ontological models enable
assimilation of both structured and unstructured data from varied
OT and IT sources, thus facilitating the integration of the industrial
metaverse with pre-existing industrial systems.

3.5. Metaverse space: XR interface module for user interaction

This section explores the XR interface module for immersive en-
gagement within the industrial metaverse. Serving as the connection
for user and digital twins, the XR interface transcends traditional
interfaces by enabling intuitive, real-world analogous experiences. It
plays a critical role in allowing users to navigate, manipulate, and
communicate within the integrated digital–physical continuum of the
metaverse, establishing a seamless conduit for the multidimensional
exchange of information and control.

When integrating XR technologies – VR, AR, and MR – into indus-
trial applications, it is crucial to tailor the approach to each technol-
ogy’s strengths and specific use cases: VR offers complete immersion in
a digitally simulated environment, making it ideal for scenarios where
replicating real-world conditions is beneficial but physically impractical
or risky. Industries utilize VR for creating detailed training simula-
tions, conducting safety protocols, and showcasing product designs in a
risk-free, cost-effective manner [38–40]. For these applications, digital
twins must deliver high-fidelity recreations of actual environments,
embodying precise spatial, behavioral, and visual attributes to ensure
simulations are both realistic and effective. AR and MR, conversely,
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augment the user’s real-world view with digital overlays, providing in-
valuable tools for on-the-ground tasks like maintenance, assembly, and
quality inspections [41–43]. These applications demand digital twins
that supply immediate, context-aware data and visualizations, offering
users pertinent information and guidance seamlessly integrated with
their physical environment. This blend of digital and physical elements
enhances efficiency and accuracy in complex industrial operations.

We propose five key function blocks for the XR interface: commu-
nication, visualization, control, spatial registration, and customization.
Communication enables bi-directional data exchange between the XR
interface and various digital twins in the data storage module, which
eventually link to the physical entities. This function also distributes
acquired data to the visualization and spatial registration functions,
as well as collects digital commands from the control function and
reflects them back to the digital twin models. Visualization renders the
virtual environment and displays relevant information to the user. This
function ensures that the XR interface provides accurate, up-to-date,
and context-aware visualizations of the digital twins with analytics,
and other essential data, allowing users to make informed decisions
based on real-time insights. Control facilitates user interaction with
digital twins and other virtual elements within the metaverse space.
By providing intuitive control mechanisms, such as gestures, voice
commands, or haptic feedback, users can navigate, manipulate, and
operate the virtual environment and the physical entities through their
corresponding digital twins. Spatial registration aligns and anchors
the virtual content within the physical space. By mapping digital twins
and other virtual elements to their corresponding real-world locations,
the function enables the visualization function to place virtual objects
at their designed locations, and the control function to accurately ex-
ecute the intended commands. In multi-user or multi-device scenarios,
this function also ensures a coherent and consistent XR interface across
various devices and perspectives. Customization utilizes the knowl-
edge synchronization from the semantic link module to customize the
XR interface and provide a context-aware and personalized experience
for users. The preliminary principles and workflows are detailed in the
TwinXR method [19]. First, the function queries the semantic models
of machines, materials, personnel, the environment in the semantic
link module. Based on retrieved knowledge, the function customizes
the XR interface to accurately reflect the current user profile, as well
as the overall situation of the factory floor and production process.
This approach enhances the scalability and resilience of XR interface
development for evolving factory conditions and physical setups. It also
enables each user to interact with the interface according to their skill
level, specific needs, and preferences.

3.6. Metaverse space: support functions

The support functions of the metaverse space comprise six modules:
identifier, security, simulation model, computation, analysis, and AI.
This section explicates how each module underpins the metaverse oper-
ation, enabling identity verification, data protection, sophisticated sim-
ulations, computational efficiency, insightful analytics, and intelligent
decision-making.

3.6.1. Identifier module
The identifier module allocates unique and persistent identifiers

for each digital twin in the network. These identifiers streamline the
location, access, and interaction of digital twins, facilitating data ex-
change and collaboration within the industrial metaverse. By providing
a distinct identifier to each digital twin model in the data storage,
access and modification privileges are restricted to authorized users.

Key aspects of the identifier module include generation, resolution,
management, and integration of identifiers. The generation of glob-
ally unique identifiers is pivotal for the unambiguous identification of
entities, ensuring smooth metaverse interactions. The module enables
the resolution of identifiers to their corresponding entities, maintains

a registry or directory of identifiers and metadata, and provides APIs
or query mechanisms for identifier resolution. Effective management
and maintenance of identifiers keep the identifier system up-to-date,
secure, and accurate. Seamless integration with other modules in the
industrial metaverse architecture ensures that entities are consistently
identified and accessed across the entire system. We propose the follow-
ing technological enablers for the identifier module: Uniform Resource
Identifiers (URIs) [44] that offer distinct addresses and consistent ref-
erencing for digital resources, the blockchain technology that features
distributed ledger capability and the cryptographic principles of im-
mutability [45], as well as the Decentralized Identifiers (DIDs) [46]
that grant users complete self-sovereignty over their digital identifiers,
which becomes particularly salient within the vast expanse of the
metaverse.

3.6.2. Security module
The security module safeguards the industrial metaverse’s integrity,

focusing on protecting the digital twin models within the data storage
module. The significance becomes evident given the convergence of
physical and digital spaces and the central role of humans.

The module employs a suite of advanced security technologies to
prevent unauthorized access, data breaches, and cyber threats. The
technologies encompass the Advanced Encryption Standard (AES) [47]
like AES-256 for data at rest, and the Transport Layer Security (TLS)
protocol [48] relying on Secure Hashing Algorithms (SHAs) like SHA-
256 for data in motion, ensuring comprehensive encryption across all
data states. Authentication mechanisms are reinforced with multi-factor
authentication and digital certificates [49] to authenticate user and
system identities rigorously. Access control is meticulously managed
through Role-Based Access Control (RBAC) [50] or Attribute-Based
Access Control (ABAC) [51], delineating user permissions in alignment
with their designated roles and attributes. The network’s security in-
frastructure is bolstered by sophisticated firewalls, employing Stateful
or Deep Packet Inspection [52] to establish a resilient defense against
external threats. Intrusion detection systems, including Snort [53] for
network-level surveillance and OSSEC [54] for host-level monitoring,
are deployed to vigilantly identify and respond to security anoma-
lies. Notably, the integration of humans into the metaverse introduces
unique challenges. The module employs technologies like differential
privacy and homomorphic encryption and adheres the principle of
‘‘secure by design’’ [55] to protect individual privacy during data
processing [56]. Additionally, the security module advocates for the
development of intuitive and fail-safe XR interfaces to mitigate the
impact of human errors.

3.6.3. Simulation model module
The simulation model module shapes the representation of digi-

tal twins. Aided by various modeling techniques, the module creates
high-fidelity digital twins that capture the graphical, numerical, or be-
havioral essence of their physical counterparts. Once these simulation
models are crafted, a dynamic feedback loop becomes active, allowing
the data storage module to maintain and update the digital twin models
by integrating the output of the simulation models.

We propose selecting modeling techniques based on the complexity
and behavior of the physical system: Mathematical modeling, encap-
sulating the behavior and attributes of entities, such as fluid flow
or mechanical movement [57], are often used to anticipate system
responses that is dictated by well-defined physical laws; On the other
hand, 3D modeling, providing intricate visual replicas of physical assets
or environments via Computer-Aided Design (CAD) software, such as
a factory floor or a piece of equipment, should be selected to visualize
the system, simulate its behavior, and test changes to the system before
they are implemented in the physical world [58]; Finite Element Anal-
ysis (FEA), assessing product responses to physical forces, vibration,
and thermal effects [59], is especially advantageous when dealing with
complex geometries and material properties; Lastly, system dynamics,
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rooted in control engineering, focuses on understanding the nonlinear
behaviors of complex systems over time using stocks, flows, feedback
loops, and delays [60]. The application of digital twins further ex-
tends into dynamic scenarios for real-time responsiveness to changes
in the environment or production needs, enhancing flexibility and effi-
ciency [61]. Furthermore, the selection of simulation models, whether
static, dynamic, continuous, discrete, deterministic, or stochastic, is
vital as each type is suited for different industrial scenarios [62]. It
is important to ensure that the simulation models are accurate and
validated against real-world data to ensure the models’ credibility and
their effective representation within digital twins.

3.6.4. Computation module
The computation module executes algorithms that process and

transform digital twin data in the data storage module. A key em-
phasis within the industrial metaverse is on spatial computing, which
ensures the spatial alignment between physical space and its metaverse
counterpart [63,64]. The integration of the spatial computing with the
XR interface module provides intuitive and immersive visualizations
of spatial data. An integral part of spatial computing is indoor po-
sitioning, enabled by Wi-Fi positioning system [65], Bluetooth [66],
ultra wideband (UWB) [67], markers [68], object detection [69], or
spatial anchors [70], which rely on different sensor technologies in the
physical space for initial data acquisition.

We propose employing ‘‘edge-cloud continuum’’ [71] principles
in the computation module, effectively integrating the capabilities of
both edge and cloud computing. Situating computations on the edge,
especially in spatial computing, allows for more instantaneous reactions
to dynamic changes in the environment [72], while cloud computing
leverages remote servers on the internet to manage, process, and store
data [9], offering expansive computational capabilities. Furthermore,
the module should consider leveraging parallel computing and dis-
tributed processing techniques that optimize resource utilization and
reduce computation time for time-critical metaverse use cases.

3.6.5. Analysis module
The analysis module extracts valuable insights from digital twin

data in the data storage module. It encompasses descriptive, predictive,
and prescriptive analysis to understand the current state of the system,
predict its future behavior, and recommend optimal actions to achieve
desired outcomes.

The selection of suitable methods and algorithms must align with
the data type, desired outcomes, and specific use-case requirements
[73]: For instance, time-series analysis, essential for understanding
temporal dynamics, enables regression and classification analyses, often
crucial in predictive modeling [74]; Clustering techniques facilitate
the segmentation of complex industrial data into meaningful groups,
enhancing understanding of diverse data sets [75]; Anomaly detection
algorithms identify outliers or unexpected events, critical for maintain-
ing system integrity [76]. Data quality and accuracy are paramount -
Mechanisms for data cleansing, validation, and enrichment are nec-
essary parts of this module to ensure data integrity. Furthermore,
integration of the analysis module with other modules are beneficial.
For instance, analysis performed on the simulation models allows for
scenario modeling [77], essential for strategizing and aligning efficient
decision making with human-centric principles.

3.6.6. Artificial intelligence module
The AI module enables intelligent decision-making based digital

twin data in the data storage module. It uses control, optimization,
and prediction algorithms to enhance the efficiency and effectiveness
of the industrial metaverse, while fostering a collaborative environment
between humans and machines.

The module leverages machine learning, or deep learning, which
are trained on large amounts of data to identify patterns, make predic-
tions, and learn from experience [78]. Reinforcement learning can also

Fig. 3. Interaction between the T-box and the A-box in the context of data flow
and knowledge synchronization within an industrial metaverse architecture: The T-box,
representing the schema or structure, defines the ontological framework and conceptual
relationships within the semantic models, essential for knowledge synchronization; The
A-box corresponds to the data or instance, populating the digital twin models critical
for the data flow. The dual arrows indicate bidirectional interactions where the T-box
and A-box define and validate each other to maintain a coherent system state.

be employed to adapt to changing conditions and optimize decision-
making based on the observed outcomes of previous actions, especially
in the context of industrial metaverse with robotics applications [79].
Additionally, natural language processing and computer vision can be
incorporated to facilitate interaction between humans and AI-powered
systems, further promoting human-centric design [80]. The module
can also incorporate Generative AI and large language models (LLMs)
that excels in creating new content across text, visuals, and audio.
One metaverse-specific use case is dynamically generating contextual
instructions for XR users [81]. Notably, embedding AI module in the
metaverse context enables the human-in-the-loop principles [82] for
augmenting human expertise and allowing real-time oversight and
validation of AI-driven actions.

3.7. Data flow and knowledge synchronization

Our proposed industrial metaverse architecture features data flow
and knowledge synchronization across the physical and metaverse
spaces. As illustrated in Fig. 3, central to the orchestration between data
and knowledge lie two fundamental ontological components, known as
the Terminology box (T-box) and the Assertion box (A-box) that govern
the structure and instantiation of information within the system.

The T-box refers to the schema or structure of data, defining the on-
tological framework for abstract entities such as ‘‘Machine’’, ‘‘Material’’,
‘‘Personnel’’, and their conceptual interrelations. In the knowledge
synchronization process, the T-box informs the semantic models that
shape the interaction between these entities within the metaverse. In
contrast, the A-box populates the ontology with individual, concrete
instances of the data, which are specific details like the actual sensor
readings, machine states, personnel activities, and environmental con-
ditions. The A-box reflects digital twin models guiding the data flow
process. Through the interconnected operation of the T-box and A-
box in guiding both the data flow and the knowledge synchronization,
the industrial metaverse is able to maintain coherent and synchronized
semantic models and digital twins of the physical space, facilitating an
intelligent and responsive environment.

3.7.1. Data flow
The proposed industrial metaverse architecture relies on a finely-

tuned data flow mechanism that ensures seamless interaction between
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Fig. 4. Diagram of the bi-directional data flow process interlinking the physical space with the metaverse space across various modules and components: Starting from the primary
entities in the physical space, data is collected by sensors and forwarded to the coupling module. This data undergoes transmission augmented by the identity and security modules
and is stored in the data storage module, which continually refines digital twins of machines, materials, personnel, and the environment by harnessing outputs from the connected
modules of simulation model, computation, analysis, and AI. Simultaneously, control commands are dispatched from the data storage module, passing through the coupling module
to influence actuators in the physical space. The XR module fetches data with its communication function to aid visualization and spatial registration while ensuring instantaneous
updates and efficient control via feedback to the data storage module.

the physical and the metaverse spaces. As illustrated in Fig. 4, this
involves the bi-directional data exchange across several crucial mod-
ules. The data flow process is primarily facilitated by the A-box, which
contains concrete data instances, essential for updating digital twins.

Commencing with physical entities of machines, materials, person-
nel, and the environment, the system employs an array of sensors
and actuators to collect data and execute control commands respec-
tively. The data captured by sensors from various sources is then
funneled to a central coupling module, which acts as a gateway to the
metaverse space. Within the coupling module, the data transmission
function, facilitated by communication protocols, ensures that data
flow remains synchronized between the two spaces. Following this,
data is organized by the data acquisition function and stored within
the data storage module. Data security and identity verification are
paramount in this process: The coupling module works in tandem with
the security module that maintains data integrity, and the identity
module that manages authentication and authorizes data exchange. The
stored data manifesting as digital twin models are continually updated
and refined through inputs from the simulation model, computation,
analysis, and AI modules. Concurrently, control commands issued from
the metaverse space traverse through the same route in reverse. These
commands are retrieved from the data storage module and dispatched
to the physical space’s actuators via the coupling module, allowing for
precise manipulation of the physical components based on the digital
twin models. The XR interface module further presents the data visually
and interactively: Its communication function retrieves data from the
data storage module, allowing the visualization and spatial registration
functions to render an immersive and coherent XR environment, which
users can engage with; Meanwhile, control inputs generated by users
via the control function are fed back to the communication function,
and subsequently to the data storage module, which further manipulate
the physical space.

3.7.2. Knowledge synchronization
The knowledge synchronization process within the industrial meta-

verse is depicted in Fig. 5, which elucidates the translation of real-world
data into a structured ontology that guides interactions between the
physical and metaverse spaces. Knowledge synchronization is dom-
inated by the T-box, which defines the ontological framework and
conceptual relationships within the semantic models.

Starting with the ontology modeling of entities in the physical space,
including machines, materials, personnel, and the environment, the
process encapsulates the comprehensive knowledge structure into the
semantic models in the semantic link module in the metaverse space.
The knowledge from the semantic link module progresses towards the

XR interface through ontology-based querying within the customization
function. This query process distills data into actionable insights and
targeted information relevant to the tasks at hand, such as machine and
material statuses, personnel profiles, and conditions of the operational
environment. The XR interface module, now informed by this curated
knowledge, customizes the overall XR interface to align with the op-
erational landscape. Inside the XR interface module, the visualization
function uses the structured knowledge to render intricate details of
the metaverse, ensuring that users are presented with accurate and
relevant visual cues. The control function references the fetched knowl-
edge to understand the potential actions and commands applicable to
different machines and processes, thus enabling precise and effective
control within the virtual environment. Spatial registration accuracy
is achieved by applying the knowledge to map the physical entities
within the virtual space. The communication function benefits from this
knowledge to prioritize and channel information in alignment with user
requirements and system needs.

4. Case study: in-plant material flow tracking

To demonstrate the applicability of our industrial metaverse archi-
tecture, we conducted a focused case study centering on in-plant ma-
terial flow tracking. This study showcases the multifaceted capabilities
of the architecture in enhancing industrial workflows.

4.1. Physical space of the case study

The physical space investigated in the material flow tracking case
study consists of materials, transport mechanisms, tracking systems,
human oversight, and the environment. This case unfolds at the Aalto
Industrial Internet Campus (AIIC) at Aalto University, as illustrated in
Fig. 6.

The setup involves an overhead crane system serving as the trans-
portation machine, and materials represented by wooden pallets to be
transported. A human operator is tasked with monitoring and managing
the flow of materials. A UWB-based indoor positioning system with
beacon devices facilitates the materials tracking. The AIIC environment
is equipped with the crane’s wireless network, complemented by a
campus-wide private 5G network to ensure seamless connectivity.

4.2. Metaverse space of the case study

This section explores the metaverse modules implemented in our
case study: the coupling module for data flow, the semantic link for



Journal of Manufacturing Systems 74 (2024) 965–979

973

X. Tu et al.

Fig. 5. Diagram of the knowledge synchronization process bridging the physical space and the metaverse space across various modules and components: Starting from ontology
modeling of entities in the physical space, the knowledge traverses through the semantic link module to form semantic models. This structured representation feeds into the XR
interface via ontology-based querying within the customization function. The XR module utilizes this knowledge to tailor the application across its visualization, control, spatial
registration, and communication functions.

Fig. 6. Overview of the physical space for the case study of in-plant material flow
tracking: The physical space at the AIIC involves transported materials, an overhead
crane system, a UWB indoor positioning system, and a human operator managing the
process within AIIC’s network environment.

knowledge synchronization, the XR interface module for user interac-
tion, and the simulation module as a support function. Detailed archi-
tectural decisions and implementation are elaborated on for each mod-
ule, providing concrete examples to elucidate their functions within the
metaverse infrastructure.

4.2.1. Data flow: coupling module implementation
The coupling implementation covers three key functions: data ac-

quisition, data transmission, as well as control and actuation. Fig. 7
illustrates the data flow for the crane example enabled by the coupling
module.

Data acquisition is executed by a Programmable Logic Controller
(PLC) that manages the crane sensor and actuator data. This data is
subsequently exposed via an OPC UA server that functions as the pri-
mary external interface. Data transmission employs three distinct types
of communication middleware, the OPC UA-GraphQL wrapper, the OPC
UA-MQTT wrapper, and the OPC UA-Unity client, as articulated in
our prior work [21]. These middleware solutions connect OPC UA
server and diverse client types, namely, HTTP, MQTT, and OPC UA
clients. These clients are integral parts of other metaverse modules like
the XR interface. Furthermore, simulation models of crane operation
also directly interfaces with the communication middleware, allowing
simulated interactions with the system. Incorporating bi-directional
data flow, the control and actuation component of the coupling module
operates in a manner reciprocally parallel to the process described for
data acquisition and transmission. Commands originating from other
modules like the XR interface, traverse through the communication

Fig. 7. The bi-directional data flow structure of the crane coupling module: The crane’s
PLC directly processes crane sensor and actuator data, subsequently interfacing with an
OPC UA server. Through three distinct communication middleware systems, the OPC
UA server or the crane simulation is coupled to various communication clients inherent
to other metaverse modules.

middleware and execute control operations on the physical crane or
its simulation counterpart.

Furthermore, the coupling module incorporates real-time positional
data from the UWB indoor positioning system in the physical space.
This ensures the materials’ precise locations, trajectories, and statuses
within the physical space are accurately mirrored in the metaverse,
facilitating real-time tracking in both spaces.

4.2.2. Knowledge synchronization: semantic link module implementation
In the case study, the semantic link module utilizes the InPro on-

tologies introduced in our previous work [22]. The InPro is capable of
formalizing and integrating production process information, especially
for use cases like material flow tracking, as illustrated in Fig. 8.

The InPro assimilates both structured and unstructured data from
heterogeneous sources. These sources span from real-time feeds such
as the OPC UA server, to integral information systems like Enterprise
Resource Planning (ERP), Manufacturing Execution System (MES), Hu-
man Resource Management System (HRMS), Warehouse Management
System (WMS), and Product Lifecycle Management (PLM). Zooming



Journal of Manufacturing Systems 74 (2024) 965–979

974

X. Tu et al.

Fig. 8. Using InPro in the semantic link module for in-plant material flow tracking:
InPro model incorporates data sources spanning OPC UA systems and various indus-
trial systems (like ERP, MES, and HRMS) to its seven ontology modules, namely,
Entities, Agents, Machines, Materials, Methods, Measurements, and Production Process. The
ontologies further converge into a graph database for streamlined information retrieval.

in to the in-plant material flow tracking scenario: ERP provides busi-
ness activities like production orders; MES disseminates production
process information from raw material to the final product; HRMS
supplies personnel’s schedules and tasks for production activities; WMS
sheds light on material inventory and delivery information; and PLM
furnishes process plans and operation details. Delving deep into the
InPro, the ontologies comprise seven main domain modules: Entities,
Agents, Machines, Materials, Methods, Measurements, and Production Pro-
cesses. The Agentsmodule includes a specialized Personnel subclass, with
properties that enable knowledge representation of organizational rela-
tions, capabilities, and task schedules of each personnel. Parallelly, the
Machine module encapsulates robotics-related knowledge in alignment
with the OPC UA Companion Specification, thereby facilitating direct
and interoperable integration between the OPC UA server and a host
of industrial ecosystems. The Material module describes materials used
in the production process. The InPro is instantiated and converted to
RDF format for subsequent storage within a dedicated semantic graph
database - GraphDB. The database offers an interface for information
retrieval through SPARQL query language.

4.2.3. User interaction: XR interface module implementation
The XR interface module enables user interaction within the mate-

rial flow tracking paradigm in the industrial metaverse. Built on the
game engine Unity’s XR framework, this module comprises both VR
and AR/MR interfaces, each fine-tuned to specific scenarios associated
with the surveillance and management of material flow, as illustrated
in Figs. 9 and 10.

The VR interface offers an immersive virtual representation of the
physical environment for remote operation. It enables operators to

Fig. 9. A scene captured from our VR application for remote crane operation and
material flow tracking: Users can remotely monitor material flows and control the
crane through a virtual representation of the physical crane operating space with VR
headsets.

Fig. 10. MR application for on-site crane operation and material flow tracking: The
user leverages the MR application running on the Microsoft HoloLens headset to
perceive real-time information about the crane, materials, and the factory environment,
and to intervene the process through holograms overlaying on the physical world.

oversee material flows from a distance, facilitating timely interven-
tions when necessary. Fig. 9 showcases the scenario where users are
submerged in a virtual landscape tailored for remote crane material
flow operation. Utilizing VR headsets like Varjo XR or Meta Quest,
personnel can remotely monitor factory situations and maneuver cranes
to transport materials. This is conducted within an immersive setting
that closely mirrors the actual crane operating space. The AR/MR
interface, in contrast, is engineered for on-site scenarios, where per-
sonnel, equipped with smart glasses or handheld devices, are presented
with an augmented overlay of vital information directly onto the
physical environment. As showcased in Fig. 10, the user, wearing a
Microsoft HoloLens headset running our MR application, can perceive
real-time conditions of the crane, materials, and the overall operating
environment on the virtual dashboard, while operating the crane via a
holographic controller interface. In both remote VR and on-site AR/MR
interfaces, materials being transported by the crane are visualized with
real-time data and synchronized information overlays. These overlays,
sourced from UWB tracking systems and other industrial systems, inte-
grated by the InPro and communicated via coupling processes, provide
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Fig. 11. Overview of crane simulation models: The crane CAD model is first developed
in Siemens NX, and then converted into interactive simulations in the Unity game
engine and in the ROS-based Gazebo simulator [21].

users with instant insights into the material’s specifications, current
status, and location.

Building on the TwinXR method delineated in our prior study [19],
XR applications are able to interchange based on the knowledge en-
capsulated within the semantic models. Within XR applications, the
customization component makes SPARQL queries to the GraphDB
database, sourcing requisite information about the crane, materials,
personnel, and the environment. The acquired knowledge then enables
the adaptation of XR interfaces across their visualization, control,
spatial registration, and communication functions. For instance, based
on production stages, users proficiency, and their role specifications,
the visualization and control functions exhibit varying data depths
and operational alternatives. The spatial registration function employs
fetched environment information to render accurate replicas of physical
entities in the XR space. This ensures immediate mirroring of any real-
world structural modifications within the virtual space, maintaining
coherence. With knowledge about the current requirements from other
functions of the XR interface, the communication function determines
the granularity and frequency of data transfer between the XR interface
and the crane, mediated via the aforementioned coupling module.

4.2.4. Support function: simulation module implementation
In the case study, simulation model module employs CAD models

of the crane, materials, and their operating environment. These models
are subsequently transformed into simulations that seamlessly integrate
the crane, materials, and their dynamic flow within the operating
environment.

As depicted in Fig. 11, the process initiates with the creation of
CAD models using the Siemens PLM software NX. This is followed
by progressing to interactive simulations using the Unity game engine
and the Robot Operating System (ROS) -based Gazebo simulator. The
Unity-based simulation serves as the foundational blocks of the XR
scene, facilitating immersive VR experiences as in [21] or spatial regis-
tration for AR/MR development as in [20]. Concurrently, ROS-based
Gazebo simulations are augmented with virtual sensors like inertial
measurement units (IMUs), allowing for realistic system behaviors and
facilitating virtual commissioning, when further coupled with other
support functions of metaverse space like computation, analysis, and
AI modules.

5. Discussion

This section explores the extensive implications of our research, fo-
cusing on the multifaceted contributions and the emerging challenges.

Drawing upon our work, we aim to elucidate the broader impact and
delineate future research trajectories within the industrial metaverse
domain.

5.1. Contributions of this work compared with existing literature

Our research unfolds in three intertwined contributions, each ad-
dressing specific gaps in current academic literature and industrial
practice. These contributions are expounded below, along with their
attendant benefits.

5.1.1. Novel architecture for industrial applications
At the forefront of our contributions is the introduction of a novel

industrial metaverse architecture that bridges the divide between physi-
cal factories and their metaverse counterparts. While existing architec-
tures often target consumer applications [6,10–12] and provide only
conceptual frameworks for industrial contexts [7,8], our architecture
addresses the specific demands of smart factory environments. Our
design meticulously articulates the components of the physical space
including machines, materials, personnel, and the environment, along-
side the requisite infrastructure like sensors, actuators, network, and
support systems essential for smart factories. The metaverse space
within our architecture is structured around ten pivotal modules, in-
cluding coupling and data storage for seamless data flow, semantic
links for knowledge synchronization, and the XR interface module for
immersive user interaction. These are supported by additional modules
of identifier, security, simulation model, computation, analysis, and
AI, each meticulously defined to facilitate their roles and interactions
within the industrial metaverse.

By providing a comprehensive, actionable blueprint for implementa-
tion, our architecture addresses a notable gap in existing research, tran-
sitioning from theoretical constructs to practical applicability in indus-
trial settings. Moreover, the architecture’s scalability and interoperabil-
ity are emphasized, reflecting the needs of both the academic commu-
nity and industry practitioners for a broad-based industrial metaverse
infrastructure. This work synthesizes and extends our prior research
in digital twins and XR integration [16–22], significantly broadening
the scope to encompass critical elements of the industrial metaverse,
expanding from machines to include also personnel, materials, and the
environment, presenting a unified, holistic framework.

5.1.2. Orchestrated data flow and knowledge synchronization
A pivotal attribute of our architecture is the orchestrated data flow

and knowledge synchronization, achieved through the incorporation of
digital twins and semantic models. This integration enables concurrent
updating of physical and digital components, enhancing the relevance
and utility of data. The orchestration of data flow and knowledge
synchronization is delineated by a robust interplay between the T-box
and A-box within our architecture: The T-box represents the ontological
schema that informs the semantic models, ensuring knowledge synchro-
nization aligns with a consistent ontological framework. Conversely,
the A-box comprises live, operational data populating the digital twins,
reflecting the dynamic data flow. The bidirectional interplay of T-box
and A-box defines and validates each other, thus preserving a coherent
and up-to-date representation of both the physical and virtual domains.
Together, they ensure that the metaverse is both semantically informed
and practically responsive, capable of not just reflecting but also acting
upon the physical world it parallels.

This orchestrated approach not only facilitates a seamless integra-
tion with existing industrial systems through semantic models but also
addresses the challenges of interoperability by enabling the architecture
to adapt without requiring comprehensive system modifications. As
the physical environment changes, the architecture’s knowledge base
is dynamically updated to provide an accurate semantic mirror of both
the structural and operational aspects of the industrial setting, ensuring
the metaverse’s relevance and responsiveness.
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5.1.3. Validation through a case study
The efficacy of our architecture is corroborated through a detailed

case study focused on in-plant material flow tracking. The physical
setup of the case study involves materials in transit, an overhead
crane system for transportation, a UWB indoor positioning system
for tracking, and a human operator managing the workflow within
AIIC’s interconnected network environment. The case study selectively
implements four critical modules of the metaverse space: the coupling
module enabling bi-directional data flow for the overhead crane and
integrating real-time positional data from the UWB system for accurate
material tracking; the semantic link module employing the InPro model
to assimilate heterogeneous data sources into a cohesive and synchro-
nized knowledge base across seven ontology domains; the XR interface
module providing VR and AR/MR interfaces for user interaction for
both remote and on-site scenarios of crane material flow operation,
adapting dynamically based on insights derived from the semantic
models. The simulation model module blending CAD models of the
crane, materials, and the operating environment into interactive sim-
ulations within Unity and Gazebo, serving as foundational elements for
XR interfaces and further integration with the metaverse’s supportive
functions.

This empirical exploration not only demonstrates the architecture’s
practical applicability but also extends beyond the scope of previous
studies that focused solely on XR [8,13–15] by offering a comprehen-
sive view of a digital–physical integrated ecosystem. The case study
underscores the architecture’s real-world utility, highlighting often-
overlooked elements like data integration and semantic modeling, thus
providing a robust empirical foundation for our theoretical framework.

In summary, our contributions tackle the research gaps and practical
limitations of existing works. The architecture we propose serves as
an extensible, and actionable guide for industrial metaverse advance-
ment. This research marks a significant stride towards actualizing the
comprehensive potential of the industrial metaverse.

5.2. Limitations and future work

While this study marks a significant step towards realizing an
industrial metaverse, it acknowledges certain limitations and identifies
key areas for future research. The key aspects are outlined below:

Comprehensive validation: Our case study provides an prelimi-
nary proof-of-concept demonstration, but a broader range of applica-
tion scenarios and operational complexities need to be addressed to
affirm the architecture’s robustness and versatility. The future trajec-
tory of research must involve extensive validation of the architecture
in diverse industrial settings. The impact of the architecture on actual
industrial processes, such as manufacturing efficiency, error reduction,
and cost implications, should be quantitatively analyzed.

Customization and personalization: Our architecture’s modular-
ity and scalability are key strengths, designed to cater flexibly to
a broad range of industry-specific requirements. This adaptability is
crucial as different sectors have unique operational needs and techno-
logical landscapes. Future research will delve deeper into developing
tailored modules and functionalities that align with the specific char-
acteristics and challenges of these diverse sectors. This will involve
engaging with sector experts and stakeholders to identify critical re-
quirements and integrate sector-specific best practices and standards
into the architecture. Additionally, personalization capabilities will
be enhanced to allow for user-specific configurations that adjust to
individual or organizational preferences and workflows, thereby im-
proving user engagement and operational efficiency. For each sector,
the adaptability of the proposed architecture will be rigorously tested
not only for functionality but also for its integration with existing
legacy systems and the latest technological advancements.

Multi-user interaction: The current implementation of the XR
Interface in the case study is primarily designed for individual users,

while future work should broaden its functionality to support multi-
user virtual collaborations. This expansion is critical to advancing the
Industry 5.0 vision, which emphasizes collaborative industrial envi-
ronments where interdisciplinary teams and clients can engage both
physically and virtually. Enhancing the XR Interface to support avatars
and collective virtual experiences will facilitate interactive activities
such as joint training programs and cooperative operations. Addi-
tionally, the upcoming enhancements will focus on incorporating a
sophisticated representation of personnel digital twins and detailed
personnel profiles into multi-user scenarios. This improvement will
not only manage digital identities more effectively but also boost
active participation across multiple users in the metaverse, enriching
the digital workspace with a dynamic and inclusive user interaction
framework.

Real-world data challenges: While our architecture offers founda-
tional data management capabilities, and our case study demonstrates
effectiveness in a controlled lab setting, real-world factory environ-
ments present unique challenges such as data integrity, instantaneous
communication, and robust cybersecurity. Notably, the integration of a
5G network within the AIIC’s infrastructure in our case study is crucial
for supporting high-speed data transmission and low latency, essential
for the operations of the industrial metaverse. Although 5G promises
key advantages for real-time data processing and interaction in digital
twins, actual data speeds often vary and may not consistently reflect
these advanced capabilities. Empirical measurements are therefore crit-
ical to verify real data speeds and accurately evaluate system latency.
Future research endeavors must validate the network’s effectiveness,
data integrity and cybersecurity across diverse industrial environments.
Comprehensive efforts to confirm the true capabilities of 5G will help
address practical obstacles effectively, ensuring the robust application
of the architecture in the dynamic and complex landscape of actual
industrial settings.

Human factors and human-centric design: The architecture’s
emphasis on XR for HMI necessitates rigorous study on its ergonomic
and psychological implications. The design of XR interfaces needs to
consider factors such as usability, accessibility, and adaptability, prior-
itizing human-centric design principles that address ergonomic comfort
and psychological well-being. In the context of Industry 5.0, under-
standing the expected level of operator autonomy is crucial, especially
as it varies with cultural backgrounds and educational levels. These
factors significantly influence how operators interact with advanced
technologies. Future work must explore human-centered designs that
enhance productivity while mitigating potential health risks and must
ensure that XR interfaces are adaptable to support a diverse work-
force. This will ensure inclusivity and effectiveness in a digital work
environment that harmonizes human and machine collaboration.

Environmental impact:The sustainable deployment of the indus-
trial metaverse poses significant challenges due to the resource-intensive
nature of technologies such as data centers and XR devices. To mitigate
these impacts, future work will focus on enhancing energy efficiency
and integrating sustainability practices. Efforts will include optimiz-
ing data center energy consumption through advanced virtualization
technologies that reduce physical hardware needs and improve server
efficiency. Additionally, transitioning to energy-efficient hardware and
smarter algorithms will lower power requirements and cut energy
use. A key strategy will be the adoption of renewable energy sources
to power metaverse infrastructures, thereby reducing dependence on
fossil fuels. Implementing innovative cooling techniques, such as liquid
immersion cooling, will further decrease energy consumption used for
heat management. The lifecycle impacts of metaverse hardware will
also be addressed, incorporating sustainable manufacturing, promoting
component recyclability, and supporting a circular economy to manage
electronic waste effectively.

Ethical and regulatory considerations: Rapid advancements in
industrial metaverse technologies, particularly the use of digital twins
for personnel, could outpace existing regulations, leading to ethical
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challenges like data privacy, workers’ rights, and the potential impli-
cations of human tracking within the metaverse. The use of sensitive
data from health records, employee monitoring systems, or wearable
devices necessitates stringent privacy protections and transparency.
Moreover, ethical concerns surrounding data privacy and surveillance
of individuals in the Metaverse are amplified with the integration
of blockchain technology, which, while enhancing the security and
auditability of transactions, must also safeguard privacy and autonomy.
Future research must develop robust policies and ethical standards
to guide responsible technology deployment. This effort should focus
on securing personal data, clearly communicating data usage to all
stakeholders, and updating regulatory frameworks to address new chal-
lenges posed by these advanced technologies. It is essential to ensure
that these innovations protect individual well-being and privacy rights,
maintaining a respectful balance between technological innovation and
human dignity.

Overall, the future research trajectory is committed to compre-
hensive validation and real-world implementation, aligning with the
foundational premise of this article. As the architecture continues to
evolve, interdisciplinary research collaborations and partnerships with
industry stakeholders will be essential in addressing these challenges
and achieving the pragmatic application of the industrial metaverse.

6. Conclusion

The advent of the metaverse paradigm within the realm of Indus-
try 5.0 underscores the need for a transformative architecture that
unifies the digital and physical elements of industrial environments.
This work proactively responds to this need, proposing a data-centric
and semantic-enhanced industrial metaverse architecture that inter-
links the operation of physical factories with the digital expanse of the
metaverse.

The proposed architecture comprises interconnected physical and
metaverse spaces: The physical space encompasses tangible entities
of machines, materials, personnel, and the environment, as well as
the infrastructure elements of sensors, actuators, networks, and sup-
port systems; The metaverse space is constructed around ten modules,
including the coupling and data storage modules for data flow, the
semantic link module for knowledge synchronization, the XR interface
module for user interactions, and the dedicated support functions of
identifier, security, simulation, computation, analysis, and AI modules.

Central to our architecture is the orchestration of the data flow
and the knowledge synchronization, facilitated by the integration of
digital twins and semantic models. This integration ensures practical
and operational relevance, enabling precise reflections of physical en-
tities within the metaverse and facilitating seamless interactions. The
semantic modeling approach also allows for integration with existing
industrial systems, offering a pragmatic path to industrial metaverse
adoption.

The case study on in-plant material flow tracking serves as a practi-
cal demonstration of the proposed architecture in a real-world setting,
incorporating an overhead crane, materials in transit, UWB tracking,
and human oversight within an interconnected network. It showcases
the proof-of-concept implementation of four key architectural modules:
the coupling module for crane data flow and material localization, the
semantic link module for integrating data into a unified knowledge
base using the InPro ontology, the XR interface module for immersive
remote and on-site crane operation, and the simulation model module
for creating interactive simulations. This practical application high-
lights the architecture’s ability to facilitate comprehensive data flow,
knowledge synchronization, and immersive user interactions.

This work advances the industrial metaverse concept but recognizes
the need for broader validation across varied industrial applications
to confirm the architecture’s efficacy and flexibility. Future research
will address customization for specific industry needs, tackle real-world
data challenges in factory settings, and explore the human factors

associated with XR interface use. Environmental sustainability and
ethical considerations related to the deployment of industrial meta-
verse also present areas for further investigation. Addressing these
points is essential for achieving our long-term vision for a fully in-
tegrated, human-centric industrial metaverse, highlighting a path for
interdisciplinary research and industry collaboration.
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