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In developmental language disorder (DLD), learning to comprehend and express oneself with spoken language is impaired, but the
reason for this remains unknown. Using millisecond-scale magnetoencephalography recordings combined with machine learning
models, we investigated whether the possible neural basis of this disruption lies in poor cortical tracking of speech. The stimuli
were common spoken Finnish words (e.g., dog, car, hammer) and sounds with corresponding meanings (e.g., dog bark, car engine,
hammering). In both children with DLD (10 boys and 7 girls) and typically developing (TD) control children (14 boys and 3 girls),
aged 10–15 years, the cortical activation to spoken words was best modeled as time-locked to the unfolding speech input at∼100 ms
latency between sound and cortical activation. Amplitude envelope (amplitude changes) and spectrogram (detailed time-varying
spectral content) of the spoken words, but not other sounds, were very successfully decoded based on time-locked brain responses
in bilateral temporal areas; based on the cortical responses, the models could tell at∼75–85% accuracy which of the two sounds had
been presented to the participant. However, the cortical representation of the amplitude envelope information was poorer in chil-
dren with DLD compared with TD children at longer latencies (at ∼200–300 ms lag). We interpret this effect as reflecting poorer
retention of acoustic–phonetic information in short-term memory. This impaired tracking could potentially affect the processing
and learning of words as well as continuous speech. The present results offer an explanation for the problems in language compre-
hension and acquisition in DLD.

Key words: development; developmental language disorder; machine learning; magnetoencephalography; speech processing

Significance Statement

The neural basis of impaired speech processing in developmental language disorder (DLD) was probed with magnetoenceph-
alography, natural spoken words and sounds, and state-of-the-art machine learning models. Cortical tracking of speech was
normal at initial stages but impaired at syllable-level latency, reflecting problems in maintaining cortical memory represen-
tations of the incoming speech across the word. This offers an explanation for the problems in DLD in identifying words and
learning new ones.

Introduction
Developmental language disorder (DLD) is a failure of normal
language development despite adequate learning environment

and lack of intellectual or physical disability (Leonard, 2014;
Bishop et al., 2017). It involves deficits in varying, often multiple,
aspects of language development, and theories of its causes range
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from “high-level” deficits to hypothesized problems in “low-
level” sensory processing. Also, the specificity of problems to
speech processing and the existence of a more general auditory
deficit have been debated. According to one hypothesis, the
root cause for DLD might lie in deficient processing of auditory
information, i.e., in perceiving duration and frequency cues that
are crucial for discrimination of phonemes and words. Some
brain imaging studies have shown difficulties in discriminating
sounds, but results are inconsistent (review Bishop, 2007).
Brain imaging of DLD is scarce, and a broad view of the under-
lying cortical causes of the disorder is still missing. A comprehen-
sive account of DLD should explain the problems in language
acquisition ranging all the way from learning to repeat single
words to understanding grammatically complex sentences.

Recently, cortical tracking of the amplitude modulations of
speech has emerged as a potential mechanism for mapping
between the different levels of linguistic processing (phonemes,
words, sentences) and the acoustic signal and parsing the speech
stream into linguistic units (Ding and Simon, 2014; Ding et al.,
2016; Obleser and Kayser, 2019). Amplitude modulations are
important for speech intelligibility (Shannon et al., 1995), and
their cortical tracking has been shown to be especially prominent
for speech, in contrast to other sounds with comparable ampli-
tude fluctuations (Nora et al., 2020; Zuk et al., 2021).
Amplitude envelope tracking reflects the tracking of multiscale
spectrotemporal features that are synchronized to the overall
rhythm of speech (Obleser et al., 2012; Peelle et al., 2012; Ding
et al., 2014) and seems to rely on the encoding of acoustic edges
(amplitude change, e.g., at syllable onsets) in evoked responses
(Oganian and Chang, 2019; Oganian et al., 2021). Based on beha-
vioral work, children with DLD have decreased sensitivity to
amplitude envelope modulations (prosody, amplitude rise times;
Coady and Evans, 2008; Beattie and Manis, 2013; Cumming et
al., 2015; Richards and Goswami, 2015), pointing to a potential
deficit in the cortical processing of these aspects of speech.
During development, sensitivity to the speech amplitude modu-
lations and their cortical tracking have been suggested to be
important not only for learning to extract phonological informa-
tion but also for the acquisition of morphology and syntax (tem-
poral sampling theory; Goswami, 2019, 2022; Leong and
Goswami, 2015).

Impairments in cortical tracking of speech amplitude enve-
lope have been widely studied as a possible underlying mecha-
nism for phonological impairments in developmental dyslexia
(Abrams et al., 2009; Molinaro et al., 2016; Power et al., 2016;
Di Liberto et al., 2018; Keshavarzi et al., 2022; Palana et al.,
2022). Somewhat surprisingly, results relating to cortical tracking
of speech in adults or children affected with DLD have not yet
been published. Dyslexia and DLD are overlapping disorders,
and children diagnosed with DLD early on may later be classified
as dyslexics at school age, although they also have problems with
a range of nonphonological language tasks (McArthur et al.,
2000; Fraser et al., 2010; Ramus et al., 2013). Similar but even
more prominent problems in cortical tracking of the amplitude
envelope of speech could be expected in DLD, as compared
with dyslexia.

Here, as a first step toward uncovering potential differences in
tracking of speech in DLD, we focus on individual words and
“bottom-up” tracking of acoustic and phoneme information.
We build on the paradigm used in our recent study on adults,
showing that the detailed cortical tracking of acoustic features
supports their instantaneous transformation into linguistic rep-
resentations during speech processing (Nora et al., 2020).

Cortical activation was measured with magnetoencephalography
(MEG) and cortical representations of spoken words investigated
with machine learning models. Decoding of time-varying acous-
tic–phonetic features was performed using a convolution model
(Faisal et al., 2015), which models the activation of neuronal pop-
ulations as following the sequence of stimulus features in time.
Alternative regression models with no such tracking were tested
as well. In addition, wemodeled cortical activation related to pro-
cessing the phoneme content and semantics of the spoken words.
Processing of common nouns and novel pseudowords was com-
pared with listening to environmental sounds, to examine the
specificity of the potential auditory processing problems to
speech. Based on previous studies, we expected to see impaired
or temporally delayed neural tracking in DLD, especially for
speech.

Materials and Methods
Participants
Seventeen children with DLD (mean age 12 years, 0 month) and 17 chil-
dren with typically developing (TD) language (mean age 11 years,
11 months) participated in the study. Most of the participants were
male (10 in the DLD group and 14 in the control group). The participants
were contacted through the Helsinki longitudinal SLI (HelSLI) study,
aiming to highlight the etiology and prognosis of DLD in the greater
Helsinki area (Laasonen et al., 2018). The children with DLD had been
diagnosed at the Helsinki University Hospital prior to school entry
with expressive or receptive language disorder, according to the
Finnish version of the International Statistical Classification of
Diseases and Related Health Problems (ICD-10). All participants were
right-handed and native Finnish speakers with monolingual back-
ground, with no history of other developmental or neurological disorders
or hearing impairment. The experiments were undertaken with the
understanding and written consent of each participant and guardian,
according to the Declaration of Helsinki and prior approval of the
Helsinki and Uusimaa Hospital Ethics Committee.

Neuropsychological testing
All children participated in neuropsychological testing in the context of
the HelSLI study at schools or at Aalto University before the MEG mea-
surements. The test battery tapped nonlinguistic and linguistic reason-
ing, working memory and processing speed (Wechsler, 2010), as well
as phonological processing (Korkman et al., 2008) and reading skills
(Häyrinen et al., 2013). Children with nonlinguistic performance below
average (performance IQ < 75) were excluded from the study. The chil-
dren in the DLD group showed on average poorer performance in verbal
reasoning and verbal memory measures, as well as poorer reading
fluency (Table 1).

We also asked the parents to rate the children’s current language
comprehension and production deficits on a scale from 0 (no deficit)
to 5 (very high). For the DLD group, the ratings varied between 0 and
4, with an average rating of 1.5 (mild/moderate problems) in comprehen-
sion and 1.4 (mild/moderate problems) in production. The parents of the
control group children did not report any language problems.

Stimuli and experimental design
The spoken word stimuli were 44 nouns from various semantic catego-
ries, taken from our previous study (full list of stimuli can be obtained in
the supplementary materials of Nora et al., 2020). The spoken words
were composed of 2–5 syllables, with five compound words included
in the stimuli. To increase the acoustic variability, the words were spoken
by eight different speakers: four females and four males, two children/
adolescents. The speaker set was rotated across participants. The unique-
ness point (i.e., estimated time of lexical selection) occurred on average at
500 ms (range, 300–890 ms, from first to fourth syllable). Because of the
highly transparent writing system of Finnish, the uniqueness point of a
spoken word (point of divergence from all other words with a different
word stem) corresponds to its orthographic uniqueness point, calculated
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here based on the same 1.5 billion-token Finnish Internet-derived text
corpus that was used to create the semantic features (Kanerva and
Ginter, 2014). In addition, eight pseudowords were presented (e.g., kar-
salassu, taapuri, teni). They were minimal pairs to real Finnish words,
following Finnish phonotactic rules.

The 44 environmental sounds were high-quality sounds chosen from
Internet sound libraries. We sought to include as much acoustic variabil-
ity as possible. The environmental sound stimuli formed six categories:
animals, human sounds, tools, vehicles, musical instruments, and others;
the spoken word stimuli were the noun labels of the environmental
sounds.

The sounds were modified using the Adobe Audition program to
mono sounds with sampling frequency of 44.1 kHz and bit rate of
16 bits. All sounds were filtered with an 8 kHz linear low-pass fast
Fourier transform (FFT) filter (Blackman–Harris) and resampled at
16 kHz. Mean amplitudes of the stimuli were normalized such that the
root-mean-square power of each stimulus was the same. Stimulus dura-
tion was on average 810 ms (SD 180 ms) for the spoken words and
920 ms (SD 230 ms) for the environmental sounds.

The stimuli were delivered through a panel speaker at the level of nor-
mal conversation (50–60 dB SPL, measured inside the MEG helmet). To
reach a sufficiently high MEG signal-to-noise ratio (SNR) per stimulus
item, we presented each stimulus 20 times in a pseudorandom manner.
Event-related fields were calculated as an average of these 20 repetitions.
In the stimulus sequence, two words spoken by the same speaker or a
spoken word and an environmental sound referring to the samemeaning
(e.g., the word cat and a cat sound) were not presented in a row.

To ensure concentration, participants performed a one-back task:
they were instructed to listen carefully to each sound, think about its
meaning, and respond with lifting a finger when two sounds with the
same meaning were presented one after another (4% of trials). The one-
back task target trials consisted of the same word spoken by two different
speakers or the same environmental sound with a different acoustic form,
e.g., two different kinds of dog bark, never the corresponding sound and
word. Response hand was alternated between participant pairs.
Additional filler items (nine spoken words and eight environmental
sounds) were presented only a few times, after task trials and initial trials
in each block of the sequence. The MEG responses for one-back task tri-
als and filler sounds were excluded from the analysis.

MEG recording
Magnetic fields associated with neural current flow were recorded with a
306-channel whole-head neuromagnetometer (Elekta Oy for 10/11 of the
DLD/TD participants and MEGIN Oy for 7/6 of the DLD/TD partici-
pants; the same device design, upgraded). The sensor array consists of
102 triple sensor elements, each with one magnetometer and two planar
gradiometers. The MEG signals were acquired at 1,000 Hz and hardware
filtered at 0.03–330 Hz. Eye movements and blink artifacts were moni-
tored by two diagonally placed electrodes measuring electro-oculogram
(EOG) signal. The position of the participant’s head within theMEG hel-
met was defined using five head position indicator coils. The locations of

these coils, attached to the participant’s scalp, were determined with
respect to three anatomic landmarks (nasion and two preauricular
points) with a 3D digitizer and with respect to the sensor array by briefly
feeding current to the coils during the measurement. Head movements
were monitored continuously (Uutela et al., 1999). The MEG measure-
ment was conducted in 2 d and lasted for ∼35 min on each day. On
both days, the stimuli were divided into eight blocks, with breaks in
between.

Anatomical MRI acquisition
Anatomical MRIs were obtained with a 3T MRI scanner (MAGNETOM
Skyra, Siemens Healthineers). The scan included a three-plane localizer
and a T1-weighted anatomic image. To enable attribution of MEG acti-
vation patterns to cortical loci, we coregistered the MEG data in the same
coordinate system with the individual MR images.

MEG preprocessing and source modeling
Spatiotemporal signal space separation (Taulu and Simola, 2006) and
movement compensation algorithms (Uutela et al., 1999) were applied
offline to the raw data using the MaxFilter software (Elekta Neuromag
Oy), to remove the effects of external interference and to compensate
for head movements during the measurement. The MEG data were fur-
ther preprocessed with MNE-Python. The raw data were filtered to 0.1–
40 Hz. To obtain an estimate of the artifact signals caused by blinks or
saccades, we averaged the MEG signals with respect to transient maxima
in the EOG signal, we performed an independent component analysis on
this average, and we removed the corresponding magnetic field compo-
nents from the raw data (Uusitalo and Ilmoniemi, 1997).

The MEG data analysis focused on the 204 planar gradiometer chan-
nels. Trials were averaged from 300 ms before to 2,000 ms after the sti-
mulus onset. The averaged MEG responses were baseline corrected to
the 300 ms interval immediately preceding the stimulus onset. The delay
in the presentation of auditory stimuli was measured using an artificial
ear and corrected for. On average, 19.98 ± 0.15 (mean ± SD) artifact-free
epochs (trials) per stimulus were gathered in the DLD group and 19.96 ±
0.33 in the TD group (maximumwas 20). To verify that the quality of the
MEG data did not differ dramatically between the two participant
groups, we estimated the SNR on the responses of each participant by
calculating the baseline variance over trials and dividing the z scored
and baseline corrected mean signal intensity of the sensor signals during
stimulus presentation by the estimated noise (baseline variance). These
obtained SNR values were then compared between participant groups.
There was no significant difference (mean SNR in DLD group 18.2
and in TD group 17.4; t(32) = 0.547; p= 0.29).

Machine learning analysis was conducted on sensor-level data. An
estimate of the underlying cortical sources was additionally obtained
for an overview of the data and for visualization purposes, using mini-
mum norm estimates (MNEs; Hämäläinen and Ilmoniemi, 1994) with
MNE-Python. For MNE analysis, the cortical surface of each participant
was reconstructed from their individual MR images with the Freesurfer
software (Dale et al., 1999; Fischl et al., 1999). Each hemisphere was

Table 1. Results of the neuropsychological assessment

DLD (n= 17) TD (n= 17) Significance (t test)

Sex 10 boys, 7 girls 14 boys, 3 girls N.a.
Age at time of MEG measurement 12 years, 0 month (min 10 years, 6 months; max

15 years, 8 months)
11 years, 11 months (min 10 years, 5 months; max
15 years, 9 months)

p= 0.41

Verbal comprehension index (WISC-IV) Mean (SD) 79.8 (15.9) Mean (SD) 101.9 (14.8) p< 0.001*
Working memory index (WISC-IV) 81.8 (15.7) 102.6 (11.8) p< 0.001*
Perceptual reasoning index (WISC-IV) 94.2 (12.7) 99.6 (16.5) p= 0.146
Processing speed index (WISC-IV) 89.5 (17.2) 98.7 (17.7) p= 0.068
Comprehension of instructions (NEPSY II) 7.1 (4.3) 10.4 (3.7) p= 0.011*
Phonological processing (NEPSY II) 8.9 (2.9) 9.6 (3.2) p= 0.25
Reading fluency (Lukilasse 2) −1.2 (1.1) 0.2 (1.2) p= 0.002*
Reading comprehension (Lukilasse 2) 0.7 (2.0) 1.9 (1.7) p= 0.077

Neuropsychological testing was conducted prior to the MEG measurements in all participants. The children in the DLD group showed on average poorer verbal reasoning, verbal working memory, comprehension of instructions, and
reading fluency, as investigated with t test. At least 35% of the participants with DLD also would potentially qualify for diagnosis of developmental dyslexia (reading fluency two standard deviations or more below age average).
*Statistically significant at the FDR-corrected level (p< 0.05).
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covered with ∼5,000 potential source locations. Currents oriented nor-
mally to the cortical surface were favored by weighting the transverse
currents by a factor of 0.2, and depth weighting was used to reduce the
bias toward superficial sources (Lin et al., 2006). Noise-normalized
MNEs (dynamical statistical parametric maps, dSPMs) were calculated
over the whole cortical area to estimate the SNR in each potential source
location (Dale et al., 2000). Noise covariance matrix was estimated from
the 300 ms prestimulus baseline periods across all trials. For group-level
visualization, the cortical surface of each participant was morphed onto
Freesurfer’s average cortical surface template (fsaverage).

Acoustic, semantic, and phonemic features of the stimuli
Acoustic features. We modeled the stimulus sounds with four sets of

acoustic features. The time-varying acoustic representations that were
used as features in themodels were amplitude envelope and spectrogram.
The amplitude envelope captures amplitude modulations within the
sound but lacks fine spectral structure. In speech signals, the boundaries
between syllables are encoded well by the temporal envelope. The enve-
lope also carries information about the identity of phonemes, particularly
consonants, at syllable onsets, as can be seen for the example sounds in
Figure 1. The spectrogram, in turn, is a representation of the spectrotem-
poral fine structure of the sound (amplitude changes in the different fre-
quency channels separately). In speech, it captures, for example, the
acoustic cues responsible for formant structure of speech.

The spectrogram was created using an auditory filter bank with 128
overlapping frequency bands, mimicking the representation of sound in
the human cochlea (Chi et al., 2005), with central frequencies of the
bands ranging from 180 to 7,246 Hz. The sounds were divided into
frames of 10 ms and integrated over 16 ms time windows. The amplitude
envelope was created by averaging the sound spectrogram across the fre-
quencies, resulting in one feature vector of the temporal changes occur-
ring in the spectrogram. We chose to model the full range of amplitude
envelope frequencies to capture the full representations of the speech sig-
nal and to allow for comparison to the other acoustic models.

For comparison, we included two nontime-varying representations
of the acoustic features of the sounds. The frequency spectrum (FFT)
is a nontime-varying representation of the stimulus power per frequency
(the same filter bank of 128 frequency bands as for the spectrogram). In
addition to displaying an organization by frequency, the primary and
secondary auditory cortices respond to different rates of temporal mod-
ulations at different spectral scales (Pasley et al., 2012; Santoro et al.,
2014, 2017). These modulations are captured by our second set of fea-
tures, the modulation power spectrum (MPS; Chi et al., 2005; Pasley et
al., 2012; Santoro et al., 2014, 2017). MPSs were calculated using the
NSL toolbox (Chi et al., 2005) with modulation-selective filters spanning
four spectral scales (0.5, 1, 2, and 4 cycles/octave) and four temporal rates
(1, 3, 9, and 27 Hz); these have been shown to capture the essential fea-
tures of a broad range of natural sounds (Santoro et al., 2014).We chose a
three-dimensional MPS where the upward-going and downward-going
modulations were not separated.

Phoneme sequence. Phonetic features represent the phoneme con-
tent within each spoken word over time. The phoneme sequences of
the words were obtained using their phonemic annotation, manually
time-aligned to the stimulus wavefile using the Praat software
(Mesgarani et al., 2014; Di Liberto et al., 2015). Only phonemes with
10 or more instances in the stimulus set were included, resulting in a
set of 15 phonemes, each occurring 10–40 times. These covered 95%
of all the phonemes occurring in the familiar words and 100% of pho-
nemes in the pseudowords. Each phoneme was set as 1 in those 10 ms
time windows within the word where the phoneme was present and as
−1 otherwise. Only one phoneme was marked “active” in each time win-
dow, capturing well the timing of phoneme onsets but not taking coarti-
culation into account.

Semantic features. The semantic features were obtained by concate-
nating two sets of norms, one acquired through a questionnaire and the
other using word co-occurrences in a large-scale text corpus (Nora et al.,
2020). Question norms for the stimulus words were collected with a web-

based survey, where 59 university students answered 99 questions about
the semantic properties of each item on a scale from 0 to 5. For extracting
the corpus statistics, the frequencies of co-occurrences of words in the
immediate neighborhood (five words before and five words after) of
each lemmatized stimulus word were calculated from a 1.5 billion-token
Finnish Internet-derived text corpus (Kanerva and Ginter, 2014).

Machine learning models
The models that were used in predicting the different features of the sti-
mulus sounds are illustrated in Figure 2. Each computational model
aimed to learn a function f : X→ Y that maps a set of predictive features
X to some predicted value Y. Here, the predictive features X are derived
from the observed activity in a set of MEG sensors, and Y is a variable
indicating the value of the representation (feature) of a stimulus sound.
Here, we used the success or failure of the learned function f : X → Y in
predicting different sets of sound features Y in the test data to explore
what kind of information is encoded in the MEG signal X. This decoding
approach shares the basic rationale of the temporal response function
(TRF) analysis (Crosse et al., 2016) in relating brain activation to differ-
ent stimulus features, but it aims to reconstruct the stimulus features
(e.g., the envelope) based on the MEG responses and the learned
response function or response weights (backward modeling), while the
TRF analysis is typically performed in the opposite direction (forward
modeling).

Each decoding model was trained and tested separately for each indi-
vidual participant and tested separately for the spoken words and for the
environmental sounds. For acoustic and phoneme decoding, we used
MEG data from sensors above the bilateral auditory cortices (28 planar
gradiometer pairs). To investigate possible differences in speech process-
ing between the two hemispheres, we additionally trained and tested
separately the time-sensitive models for data from left and right auditory
cortices. For decoding the semantic features, data from all 204 sensors
covering the entire cortex were used.

Before performing the analyses, MEG responses were downsampled
to 100 Hz (10 ms resolution). Also, all features and MEG responses were
standardized across the stimuli by setting the mean value to 0 and stan-
dard deviation to 1: for the acoustic features, the FFT and spectrogram
were normalized within each frequency band and the MPS within each
rate, scale, and frequency band. Each semantic feature and the amplitude
envelope were similarly standardized across all stimuli. The MEG signal
power per sensor was normalized within each 10 ms time window.When
applied to both stimulus features and corresponding MEG responses,
this procedure ensures that the absolute power per frequency band is
not crucial in model estimation. Instead, the unknown quantities (weights
in regression and spatiotemporal response functions in convolution) are
estimated such that the variation in the MEG signal power consistently
correlates with variation in each stimulus feature, across stimuli.

For predicting the nontime-varying sound features (FFT, MPS, and
semantic features), a simple linear regression model was used. In this
model, each feature of the stimulus is reconstructed based on all time
points of theMEG responses (Sudre et al., 2012), here at 0–1,000 ms after
stimulus onset. For time-sensitive decoding of the acoustic features, a
kernel convolution model (Faisal et al., 2015) was used. The model learns
a linear mapping between the time-varying neural responses (evoked
responses to sounds) and time-varying representation of the stimulus
sounds (spectrogram or envelope) via convolution. This model, unlike
the simple regression model, assumes that the activation of neuronal
populations follows closely in time the time sequence of stimulus fea-
tures. Additionally, for decoding the categorical time-varying phoneme
features of the spoken words, a binary logistic regression model was
used. It predicts the probability of each phoneme being active, at each
time window. These models are described in detail below.

Convolution model for decoding time-varying acoustic features. A
dual representation of a convolution model, also called a kernel convo-
lution model (Faisal et al., 2015), was used for decoding the time-varying
features. In the convolution model, a linear mapping between the neural
responses, evoked by the stimulus sounds, and a time-varying represen-
tation of the original stimulus (spectrogram or envelope) is learned. We
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used a dual (kernel) representation of a sparse convolution model, which
is practical for decoding multidimensional MEG data due to the reduced
computation time (Faisal et al., 2015).

The linear mappings are learned via a convolution of the evoked neu-
ral responses r(t, x) with unknown spatiotemporal response functions
g(t, f , x). More specifically, values at each frequency band of a sound
are predicted at each time point t (moving from 0 to end of the sound)
based on MEG responses (r) in the time range from (t − t2) to
(t − t1), where t1 and t2 are the temporal lags used for the model.
Thus, each time point t in the feature set is decoded based on a lagged
time window in the response, and the start and end of the lag window
are determined by t1 and t2 (Fig. 2A). The lag values from the stimulus
to neural response are always selected to be positive, as the neural activa-
tion always follows, and never precedes, in time each time point of the
stimulus that it is encoding; the model does not take into account the
anticipation of the next events in the sound. This results in the prediction
of the time series of amplitude changes of the sound spectrogram or the
amplitude envelope. The reconstructed time series of a sound spectro-
gram can be modeled as follows:

ŝf (t) =
∑

x

∑t=t2

t=t1

gf (t, x)r(t − t, x). (1)

In this model, each frequency channel of the stimulus representation
is treated independently, which means that for the reconstruction of
each frequency channel in ŝf , an independent response function gf is
trained. Thus, for the reconstruction of one frequency channel, the
mapping can be written in its matrix notation as Sf = RGf where we
define Sf [ R(NT)×1 and Gf [ R(tx)×1 and the response matrix R [

R(NT)×(tx). Each row rn(t) in R represents the MEG response to a spoken
word or environment sound n across all sensors x and all time points sam-
pled from (t − t2) to (t − t1). Next, the unknown functionGf is estimated
byminimizing themean-squared error between the actual sf and predicted
the ŝf representation of the stimulus sounds as follows:

arg minGf

∑

n,t

{sf (n, t)− ŝf (n, t)}
2 + lf

∑

x,t

gf (t, x)
2. (2)

Minimizing this loss function leads to the maximum-a-posteriori (MAP)
estimate for Gf as follows:

Ĝf = (RTR+ lf I)
−1RTSf . (3)

This classical MAP estimate is not ideal for MEG studies where the num-
ber of conditions are typically small compared with the dimensionality of
the neural responses. To solve this problem, we used the dual (kernel) rep-
resentation (Faisal et al., 2015) of a convolution model. Here, the MAP
estimate is obtained by replacing the inner product RTR with the corre-
sponding Gram matrix RRT , which leads to the following:

Ĝf = RT (RRT + lf I)
−1Sf , (4)

where lf is the regularization parameter and I is an identity matrix. To
estimate the regularization parameter lf , we used a grid of predefined val-
ues to find the optimal value thatminimizes the leave-one-out error within
the training data (Faisal et al., 2015). Given the lag parameters t1 and t2,
the MAP estimates Ĝf were used to predict the time-varying features for
the unseen test sounds as follows:

ŝ f {TEST}(t) =
∑

x

∑t=t2

t=t1

gf (t, x)r{TEST}(t − t, x). (5)

To obtain an overview of the model’s performance, we used a lag window
of 0–420 ms (delay from time point in the stimulus spectrogram to a range
of time points in the MEG signal, i.e., from−t2 to−t1, where t1 = −420
and t2 = 0. Next, we advanced the lag window in nonoverlapping 20 ms
steps (20–40 ms, 40–60 ms, …, 400–420 ms) to investigate for how long
the sound features at each time point of the evolving sound are represented
in the MEG responses.

Linear regression model for decoding time-integrated acoustic and
semantic features. The time-integrated representations of the stimulus
sounds (FFT, MPS, and semantic features) were decoded by using a sim-
ple linear regression model, where the unknown weight matrix wf (t, x)
maps the neural activity r(t,x) at brain location x and time t to each

Figure 1. Time-varying versus nontime-varying features for modeling spoken words and environmental sounds. Visualization of the different acoustic models for example stimuli (four spoken
words and the corresponding four environmental sounds).
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nontime-varying feature of a stimulus sound Sf . These nontime-
varying stimulus features were decoded using MEG data from the
time interval 0–1,000 ms, for the acoustic models with data from sen-
sors over bilateral temporal cortices and for the semantic models with
data from all sensor locations. The weight matrices were learned in a
similar fashion as for the convolution model, by using dual representa-
tion of the regression model. Also in the linear regression model, ridge
regularization was used. Using the same notation as in Equation 1, the
reconstruction value ŝf for one semantic or nontime-varying acoustic
feature f can be written as follows:

ŝf =
∑

x

∑

t

wf (t, x)r(t, x). (6)

Binary logistic regression model for phoneme decoding. For the cate-
gorical phoneme representations, the linear regression model is not opti-
mal, and a logistic regressionmodel was used instead. For each column of
phonemes Yf = [Y1, . . . , Yk] [ Rt×k in the phoneme feature matrix, a
binary classification model was trained separately. Let p be the probabil-
ity of Yf = 1 or p = P(Yf = 1|X), which is the probability of pho-
neme Yf being active within a certain time window given the data X.

In the following, the prediction framework of phoneme vector Yf sam-
pled at times t = 1, .., T is shown. For predicting the inactivity or
activity (−1 or 1) of phoneme Yf at each time point t, MEG responses
in the time range from t = (t − t2) to (t − t1) were used for predic-
tion, where t1 and t2 are the temporal lags. The probability p can be
modeled as follows:

P = 1

1+ e−wTX+b
, (7)

wherew and b are the vectors containing themodel coefficients andX [

R(NT×tx) contain the lagged representations of the MEG responses to N
sounds in the training set. To estimate the model coefficients w and b, we
minimized the loss function between the predicted and observed proba-
bilities using the stochastic gradient descent method and ridge regulari-
zation. After training the model, the estimated model coefficients b̂ were
used for predicting the probabilities p for onset of phoneme Yf in each
time window by applying the sigmoid function as shown in Equation
7. If the predicted probability was larger than 0.5, the phoneme was con-
sidered active in this time window. Otherwise, the phoneme was consid-
ered inactive.

Figure 2. Models for decoding spoken words and environmental sounds. A, Illustration of the time-locked (convolution and logistic regression) and time-averaged (linear regression) machine
learning models and the different sets of acoustic, phonemic, and semantic features. The different sets of features and the different machine learning models are illustrated here for exemplary
spoken words; the same models were used for decoding environmental sounds. B, Visualization of the performance evaluation for the machine learning models (here for spectrogram recon-
struction with the convolution model, for two spoken words).
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Performance evaluation and statistical significance
The performance of all the machine learning models was evaluated using
a leave-two-out cross-validation scheme (Mitchell et al., 2008), where
each model learned a mapping between a stimulus feature set and the
MEG response, based on all but two sounds (Fig. 2B). Then the model
was used to predict the features based on MEG data of the two left-out
sounds, and the similarity (Pearson’s correlation) between the original
and reconstructed features is calculated. The decoding was considered
correct if the combined similarity (sum of correlations of the recon-
structed sounds to the correct originals) between the true features of
sounds (s1 and s2) and the decoded features of the sound (p1 and p2)
was greater than the reverse labeling (summed correlations of the recon-
structed features to the features of the incorrect sounds of the test pair) as
follows:

sim(s1, p1)+ sim(s2, p2) . sim(s1, p2)+ sim(s2, p1), (8)

where sim(s, p) is the Pearson’s correlation between original s and
decoded features p. We additionally investigated leave-one-out recon-
struction (correlation of the original and reconstructed features) for
the amplitude envelope and spectrogram models; this cross-validation
method yielded similar results as the leave-two-out scheme.

The performance evaluation process was repeated for all possible
leave-two-out combinations: the 44 items (spoken words or environ-
mental sounds) were divided into 42 training and 2 test sounds in all pos-
sible pairwise combinations, leading to a total of 946 pairwise tests. For
the time-varying representations of the sounds, the feature vectors for the
two held-out test sounds were always equalized to the length of the
shorter one, to control for possible confounding effects of the varying
lengths of feature vectors on the performance of the convolution model.

The final decoding accuracy of the model is the percentage of predic-
tions that were classified as correct.

To evaluate whether the decoding accuracy for the models was statis-
tically different from chance performance, we compared the results with
those obtained from permuted data separately for each participant. In
each permutation run, the item labels for the averaged evoked responses
were randomly permuted across the different sounds (within spoken
words or environmental sounds). This procedure was repeated 200 times
for each convolution model and 1,000 times for each regression model.
For each permutation, the models were evaluated using all possible pair-
wise combination tests in a leave-two-out cross-validation scheme. The p
values were computed for each participant individually by calculating the
number of times the permutation result was better than the observed
decoding accuracy. The significance levels (p= 0.05) were similar for
different participants (∼62% for the spoken words/environmental
sounds for all models and ∼75% for pseudowords for all models); decod-
ing performance above those levels may be considered significantly
above chance-level performance, which was ∼50%. We report, for each
model, the number of participants of total (n/17) that showed statistically
significant decoding.

Comparisons between the two participant groups were performed
only for the models in which the decoding accuracy reached significance
in more than half (at least 9/17) of the participants in either group.
Independent samples t tests were used for comparing the decoding per-
formance between the two participant groups. The results were corrected
for multiple comparisons over the different models tested, using the false
discovery rate (FDR) at a level of 0.05.

To investigate group differences in decoding performance at different
lags after sound time points (i.e., for how long information in the spoken
word at each time-point is represented cortically), we used the cluster
permutation testing (Maris and Oostenveld, 2007). This method is able
to find clusters of time points in a time series that differ between the
two participant groups, without having to choose the points manually
and perform single independent tests for each time point. Thus, this
method resolves the need for correcting over multiple comparisons, as
it takes advantage of the fact that the decoding results in the neighboring
lags are nonindependent. In this test, we investigated all lags from 20–40
to 400–420 ms. First, when testing for a difference between the two

groups for each lag, we used independent samples t tests. We then
defined clusters of lags where the difference between participants was
greater than a selected threshold (e.g., alpha 0.05) with the selected test
statistic and calculated the cluster mass, which is the sum of observed t
statistics for each lag within the cluster. If there were multiple clusters,
the largest one was selected, and cluster mass was calculated for that clus-
ter only, to find the time windows with most robust group differences.
We then tested whether this cluster was larger than clusters that occur
by chance. This was determined by permutation testing: we created
two participant groups by randomly selecting data from participants in
either group and repeated the above steps, that is, calculating the cluster
mass in this case. This permutation procedure was repeated 1,000 times.
The p value for each model was obtained by calculating how many per-
mutations produced higher cluster mass than the observed one, divided
by the number of permutations [p value =N (permutation cluster mass >
observed cluster mass) /N (permutations)]. Paired comparisons were
conducted in the largest clusters identified in cluster permutation testing,
as well as in a window around the lags showing the best decoding for each
participant group, and effect sizes were computed for these comparisons.

Data and code availability
Raw data were generated at Aalto University, Department of
Neuroscience and Biomedical Engineering. The data are not publicly
available due to ethical restrictions imposed by the research ethics com-
mittee, as brain data cannot be fully anonymized. Relevant derived and
pseudonymized data supporting the findings of this study are available
from the corresponding author upon reasonable request and with per-
mission of the research ethics committee for researchers aiming to repro-
duce the results. Custom code used in the machine learning analysis is
available from the corresponding author upon reasonable request for
replication purposes.

Results
Behavioral one-back task performance
The DLD group successfully detected repetition of meaning for
83 ± 18% (mean ± SD) of the spoken words and 59 ± 23% of the
environmental sounds; in the TD group, the hit rate was 92 ±
9% for spoken words and 66 ± 19% for environmental sounds.
Overall, the participants performed better for spoken words
than environmental sounds (Wilcoxon signed rank test,
Z = 7.0; p < 0.001). There was no statistically significant differ-
ence between the participant groups for spoken words (Mann–
Whitney U= 94.0; p= 0.080) and environmental sounds
(Mann–Whitney U = 121.5; p= 0.43). To further investigate
whether the one-back task performance can be considered equiv-
alent in the two participant groups, we conducted an equivalence
test with lower and upper boundaries for equivalence set to a
medium-sized effect (d=−0.5 and 0.5). The effect size of the
observed group difference for speech stimuli was d= 0.625, and
the 90% confidence interval for the effect size was 0.048–1.204.
For environmental sounds the effect size of the observed
difference was d= 0.274, and the 90% confidence interval for
effect size was −0.235 to 0.901. Thus, the performance should
not be considered equivalent between the participant groups.
Therefore, we sought to control for the possible contribution of
attentional differences by equalizing one-back task performance
(see section at the end of Results).

Brain responses
Responses to spoken words and environmental sounds were
plotted on both sensor and source levels to get an overall view
of the brain activation patterns and their timings (Fig. 3).
Visually inspected, the responses in the DLD and TD groups
were similar. Spoken words seemed to elicit more activation in
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the left temporal regions than environmental sounds in later time
windows. However, right temporal responses were also promi-
nently visible for both spoken words and environmental sounds.

Decoding the semantic features of sounds
The environmental sounds were decoded successfully with the
semantic model, with average decoding accuracy at 70% for the
DLD group and 72% for the TD group. The decoding of semantic
features of spoken words was near the chance level, with average
decoding accuracy of 54% for the DLD group and 53% for the TD
group. No statistically significant group differences were found.

Decoding acoustic features and phoneme labels
Figure 4 and Table 2 summarize the overall decoding differences
between the different acoustic and phoneme models. For the spo-
ken words, the time-locked acoustic models (spectrogram and
amplitude envelope decoding with the convolution model) per-
formed remarkably well. Here, the convolution model uses
MEG data at 20–420 ms lag to predict each time point in the
sound features. The significance limit according to permutation
tests was at ∼62% across participants and models; Table 2 shows,
next to the average accuracy (%) of each model, the number of
participants for whom performance was significantly above the
chance level. With the amplitude envelope model, the average

Figure 3. Sensor and source-level brain responses to spoken words and environmental sounds. A, Grand average evoked responses averaged over all spoken words (orange) and environ-
mental sounds (blue) and over sensors covering the left and right temporal cortices in individual participants (narrow lines) and over participants (thick lines) of the DLD and TD groups. The same
selection of sensors was used for decoding of the acoustic and phoneme features in the machine learning analysis. B, Cortical source maps (dSPMs) of spoken words and environmental sounds.
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decoding accuracy of the spoken words was at 80% (ranging from
62 to 92%) for the DLD group and 84% (ranging from 77 to 91%)
for the TD group. Environmental sounds were also decoded
above the chance level in most participants with the amplitude
envelope model but with considerably lower accuracy (average
decoding accuracy of the environmental sounds was at 68%,
ranging from 57 to 77%, for the DLD group and 67%, ranging
from 49 to 81%, for the TD group); decoding accuracy was higher
for the speech stimuli compared with that for environmental
sounds in all participants except in one participant of the DLD

group. Spectrogram decoding also performed very well for the
spoken words (accuracy 72–75%) and at a lower accuracy for
the environmental sounds (59–64%). The average decoding
accuracy for the phoneme sequence was 63% in both groups,
significantly above the chance level in half or more of the partic-
ipants in both groups.

The performance was notably lower for the nontime-locked
acoustic models. Only a few participants showed significant
decoding of the time-averaged spectral content (FFT) of the spo-
ken words (accuracy 57–60%) and the environmental sounds
(55–60%). Also, for the time-averaged spectral and modulation
content (MPS), few participants showed significant decoding
for spoken words (59–60%); for the environmental sounds,
decoding was somewhat better (62–66%). Between-group com-
parisons (performed for the models with significant decoding
in more than half of the participants, marked with asterisk in
Table 2) revealed no significant differences between the groups
in decoding performance of any of the models after correcting
for multiple comparisons.

Cortical tracking of the acoustic envelope and spectrogram at
different latencies
To examine possible differences in the timing or duration of cor-
tical representations between DLD and TD children, we next
investigated envelope and spectrogram tracking of speech using
a moving 20-ms-wide lag window and covering the lag range
from 20–40 to 400–420 ms after each time point in the sound.
In both participant groups, the best decoding occurred at a lag
of ∼100 ms for spoken words, indicating that the acoustic infor-
mation within speech is represented cortically mostly at around
this latency (Fig. 5). At this lag, the decoding results were similar
in the two participant groups [average decoding accuracy 76% in
the DLD group and 77% in the TD group; paired comparisons of
average decoding accuracies at 80–120 ms lag window (TD vs
DLD): t(32) =−0.21; FDR-corrected p= 0.42; effect size d= 0.073].

However, group differences emerged in the cortical represen-
tation of amplitude envelope information at longer latencies
(based on cluster permutation results in the bilateral temporal
regions, with largest cluster approximately at 160–340 ms lag; p
= 0.039), where the TD children showed higher decoding accu-
racy than children with DLD [average decoding accuracy 64%
in the DLD group and 68% in the TD group; paired comparisons
of average decoding accuracies at 160–340 ms lag window (TD vs
DLD): t(32) = 2.43; FDR-corrected p= 0.017; effect size d= 0.83].
When analyzing the data from each hemisphere separately, the
group difference reached significance in the right hemisphere
[largest cluster at ∼220–320 ms lag; p= 0.037; average decoding
accuracy 57% in the DLD group and 64% in the TD group; paired
comparisons of average decoding accuracies at 220–320 ms lag
window (TD vs DLD), t(32) =−2.54; FDR-corrected p= 0.017;
effect size d= 0.87; Fig. 5]. The spectrogram decoding also
showed tentative group differences in the right temporal region
in the cluster-based permutation testing (largest cluster at 300–
420 ms lags; DLD>TD; p= 0.055).

Environmental sounds did not show a reliance on time-locked
encoding, and no group differences were found based on cluster
permutation testing (Fig. 6).

Decoding performance for novel words
New words (pseudowords) also yielded good decoding perfor-
mance with the time-locked models (Table 2). In the initial anal-
ysis with a wide lag window (20–420 ms), the amplitude envelope
of pseudowords was decoded on average at 75% accuracy for the

Environmental sounds
Spoken words

DLD TD

PhonemesEnvelopeSpectrogramMPSFFT

Decoding
accuracy

%

50

55

60

65

70

75

80

85

Figure 4. Decoding results for the different acoustic models for spoken words and envi-
ronmental sounds. MEG data from sensors over bilateral temporal cortices were used in
decoding. For getting an overview of decoding the amplitude envelope and the spectrogram,
we used a lag from 20 to 420 ms between each time point in the stimulus features and the
MEG data. The phoneme sequence of the spoken words was decoded with the same lag win-
dow using a logistic regression model. These models were compared with models using a
wide time window of the MEG data (0–1,000 ms) for decoding the overall spectral content
(FFT) or spectral and modulation content (MPS) for spoken words (orange) and, separately, for
environmental sounds (blue). The gray solid line denotes the chance level (50%) and the gray
dashed line the approximate significance level at alpha 0.05, based on permutation tests; the
significance level varied somewhat between different models. The average decoding accuracy
reported here means the percentage of cases, averaged across all participants, where the
model finds the correct sound among two sounds, based on reconstructed features.

Table 2. Average decoding results

DLD (n= 17) TD (n= 17)

Speech
Speech amplitude envelope* 80% (17) 84% (17)
Speech spectrogram* 75% (14) 72% (13)
Speech phoneme sequence* 63% (11) 63% (9)
Speech FFT 60% (6) 57% (4)
Speech MPS 60% (7) 59% (4)
Speech semantic 52% (2) 53% (2)

Nonspeech
Nonspeech amplitude envelope* 68% (14) 67% (12)
Nonspeech spectrogram 59% (5) 64% (8)
Nonspeech FFT 55% (3) 60% (5)
Nonspeech MPS* 62% (10) 66% (10)
Nonspeech semantic* 70% (14) 72% (15)

Pseudowords
Pseudoword amplitude envelope* 75% (14) 80% (15)
Pseudoword spectrogram* 74% (9) 74% (12)
Pseudoword phoneme sequence 68% (4) 69% (5)

In the regression models a large time window of the MEG data (0–1,000 ms) and in the convolution models a
wide lag window between the sound features and the MEG data (20–420 ms) were used for decoding. The
numbers in parentheses show the number of participants that showed statistically significant results (p< 0.05)
based on individually determined significance levels, calculated with permutation tests. Between-group
comparisons were run for the models (marked with asterisk*) in which the decoding performance reached
significance in more than half (nine or more) of the 17 participants in either participant group.
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DLD group and at 80% accuracy for the TD group. Spectrogram
decoding also performed well for the novel words (74% for both
groups). The average decoding accuracy for the phoneme
sequence was at 68% for the DLD group and at 69% for the
TD group but only reached significance for a few participants
(for this small set of pseudowords, the significance limit accord-
ing to permutation tests was at ∼75%). In this initial analysis,
there were no significant differences between groups.

However, in the more detailed analysis of decoding at differ-
ent temporal lags at 20 ms intervals, the TD group showed better
decoding of pseudoword envelopes (largest cluster at ∼160–
340 ms lag in bilateral temporal regions; p= 0.041; Fig. 7).
When analyzing the left and right temporal regions separately,
this difference reached significance only in the left hemisphere
(largest cluster at ∼160–300 ms lag; p=0.046). Spectrogram
decoding did not reveal group differences. It is to be noted that
these analyses on pseudowords are based on a small number of
test stimuli (eight pseudowords) and thus are less reliable.

Correlating decoding performance with behavioral
performance
To investigate whether there is a relationship between behavioral
performance and results of different decoding models, we calcu-
lated Pearson’s correlation coefficients with the two participant
groups combined. There were some tentative correlations, but
none of the correlations reached significance after correcting
for multiple comparisons (p values given below are uncorrected).
The overall decoding level did not correlate with one-back task
performance for either spectrogram or envelope decoding of

words or sounds or phoneme or semantic decoding of spoken
words. However, semantic decoding of environmental sounds
showed tentative correlation with one-back task performance
for speech (r= 0.35; p= 0.044) and one-back task performance
for environmental sounds (r= 0.45; p= 0.008). Speech envelope
decoding at bilateral temporal regions at 160–340 ms lag showed
a tentative correlation with the verbal reasoning index (r= 0.38;
p= 0.026) and working memory index (r= 0.39; p= 0.024) of
the Wechsler Intelligence Scale for Children-IV (WISC-IV).
One-back task performance for speech also tentatively correlated
with speech envelope decoding at bilateral temporal regions at
160–340 ms lag (r=0.38; p=0.025), as well as with verbal reason-
ing index (r=0.35; p=0.044) and workingmemory index (r=0.45;
p=0.008) of the WISC-IV.

Controlling for possible attentional differences
To verify that poor attention to the stimuli did not affect the
group differences observed in speech decoding, we compared
the decoding performance for pairs of participants, one from
the DLD and one from the TD group who had similar one-back
task performance. The decoding performance was averaged over
spoken word and sound stimuli, participants performing under
50% were rejected, and the participants were arranged as pairs
according to their one-back performance. This yielded equivalent
performance on the one-back task but a significant difference in
the decoding of speech envelope (at 160–340 ms lag window,
using data from bilateral temporal regions, one-sided Wilcoxon
signed rank test, z=−1.99.0; p= 0.024).
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Figure 5. Decoding results for speech envelope and spectrogram in the left and right hemispheres in the DLD and TD groups. Solid (DLD) and dashed (TD) red lines show the average (with
standard error of mean) decoding performance for each participant group. The black bar denotes the largest observed cluster showing differences (TD > DLD) based on cluster permutation
testing.
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Figure 6. Decoding results for the nonspeech envelope and spectrogram in the left and right hemispheres in the DLD and TD groups. Solid and dashed blue lines show the average (with
standard error of mean) decoding performance for each participant group. Based on cluster permutation testing, there were no significant differences between the participant groups.
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Figure 7. Envelope and spectrogram decoding for pseudowords in the left and right hemispheres in the DLD and TD groups. Solid and dashed red lines show the average (with standard error
of mean) decoding performance for each participant group. The black bar denotes the largest observed cluster showing differences (TD > DLD) based on cluster permutation testing.
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Discussion
We investigated whether the cause of poorer spoken language
comprehension and learning in DLD lies in the atypical cortical
tracking of speech. The acoustic and phoneme contents of the
spoken words were successfully decoded in both TD children
and children with DLD. For both TD and DLD groups, decoding
of acoustic features of spoken words was best at a lag of ∼100 ms
between each time point of the unfolding spoken word and the
corresponding time point in the cortical response, similarly to
what has been observed earlier in adults (Nora et al., 2020).

Cortical evoked activation thus followed speech closely in time.
No such high reliance on time-locked encoding was observed
for the environmental sounds. However, group differences
emerged in the temporal details of cortical tracking of speech.

The TD children displayed another, later peak in amplitude
envelope decoding at∼160–340 ms lag. This peak was significantly
lower in theDLD group. The delayed decoding peak approximately
corresponds to the lag between syllables for our stimulus words
(average, 310 ms; range, 90–650 ms; Fig. 8). We propose that this
difference in delayed decoding could reflect poorer maintenance
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Figure 8. Illustration of the original and reconstructed amplitude envelopes of the spoken words. A, Amplitude envelopes for example words. The overall syllable rhythm is clearly illustrated,
but the amplitude envelope also carries information about phoneme identity, such as the voiceless stops /k/ and /t/ and the vibrations of the alveolar trill /r/, which are clearly visible in the
envelope. B, Average amplitude envelopes for words of different lengths (2, 3, and 4 syllables) in one stimulus set. The downward facing arrows mark the average syllable timings for stimuli of
each syllable length. The black/gray arrow denotes the 160–340 ms lag, which showed better decoding of the spoken word amplitude envelope in the TD than DLD group; this corresponds
roughly to between-syllable latency within the stimulus words. C, Reconstructed amplitude envelopes for example words, based on data from bilateral temporal cortices at 50–150 and 200–
300 ms lag, in one participant from each group (leave-one-out reconstruction). The reconstructions based on MEG data at both latencies most prominently highlight the first syllables (where the
word stress lies in Finnish words) but also somewhat reflect the syllable rhythm in both participant groups. D, Reconstructed amplitude envelopes averaged over two-, three-, and four-syllable
words, based on data from bilateral temporal cortices at 20–420 ms lag, in one participant from each group (leave-one-out reconstruction).
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of information in children with DLD, due to either faster decay of
the auditory memory trace or stronger interference due to subse-
quent acoustic input. No differences between TD and DLD groups
were observed in decoding environmental sounds, indicating some
specificity of the observed differences for speech stimuli in the
time-locked tracking of the amplitude envelope. However, some
of the acoustic models performed at a significant level only for a
few participants in both groups for environmental sounds, not
allowing for comparisons between groups (Table 2). Thus, further
study would be needed to draw conclusions on the specificity of the
effects for speech stimuli.

The group differences in speech decoding do not seem to stem
from attentional differences: the one-back task performance was
not statistically different between the two groups. The overall
success of decoding and the SNR of the cortical evoked responses
were comparable between the two groups. Based on the success of
decoding semantic features of the environmental sounds, the
participants concentrated similarly on deriving sound meanings.
Decoding the semantic features of spoken words was near the
chance level, but this was true for both participant groups and
is also in line with previous studies on adults (Simanova et al.,
2010; Correia et al., 2015; Nora et al., 2020).

Nonetheless, we cannot completely rule out the possibility
that the one-back memory task was somewhat more taxing for
the participants with DLD, who typically have problems in verbal
short-term memory, and that executive or attentional processes
would contribute to the observed neural differences. In equiva-
lence testing, the participant groups did not show equal perfor-
mance in the one-back task: the DLD group seemed to show
somewhat poorer performance, especially for speech.
Near-significant correlations revealed a tentative connection
between speech envelope decoding at 160–340 ms and one-back
performance; however, they also indicated a relationship of the
decoding differences to linguistic and working memory skills.
Linguistic and working memory skills were, tentatively, also
reflected in the one-back task.When equalizing for one-back per-
formance, the differences in the delayed speech envelope decod-
ing remained significant. In any case, the requirements of the
one-back task resemble everyday speech processing: understand-
ing spoken utterances requires identifying the individual words,
activating their meanings in long-term memory, and retaining
them in short-term memory to integrate them to the following
words in the sentence. In this way, the observed impairments
in the maintenance of speech representations in DLD could be
expected to show in everyday speech processing of continuous
speech.

The low-level deficit hypothesis revisited
The early decoding peak at ∼100 ms, similar in the TD and DLD
groups, was observed both for the amplitude envelope and spec-
trogram which contain overlapping information (Obleser et al.,
2012; Teng et al., 2019). This is approximately the time frame
in which categorical neural organization for phonemes tran-
siently emerges (Ostroff et al., 1998; Tremblay et al., 2003;
Chang et al., 2010), and tracking of speech acoustics at this
latency is coupled with phonological representations (Nora et
al., 2020). Linguistic representations are thought to emerge
directly from tuning to the complex spectrotemporal acoustic
feature characteristic of different phonemes (Mesgarani et al.,
2014; de Heer et al., 2017). The current results suggest that this
initial analysis of translating the acoustic stream into phoneme
representations in the temporal cortical regions is not impaired
or slower in children with DLD.

Our current results are compatible with earlier behavioral
studies of DLD reporting, for example, impaired performance
in discrimination of amplitude modulations (Cumming et al.,
2015; Richards and Goswami, 2015; Caccia and Lorusso, 2019),
but they call for a new interpretation of the previous findings.
In those studies, children with DLD performed more poorly,
for example, in deciding which “ba” syllable or which tone had
a longer rise time or longer duration and determining where
the stress lies in multisyllabic words or syllable sequences
(Cumming et al., 2015; Richards and Goswami, 2015). Based
on the present results of similar decoding in TD and DLD groups
at ∼100 ms lag but a salient group difference at longer lags, we
propose that those earlier observations of impaired performance
may not be tied to impaired encoding of the amplitude modula-
tions per se but, instead, might reflect impaired maintenance of
cortical activity representing the amplitude modulations. This
could impair the necessarily delayed comparisons of amplitude
rise times or intensities of two syllables over time and, more cru-
cially, speech processing.

Impairments in maintaining acoustic–phonetic
representations in DLD show bilaterally in the temporal
cortices
Time-locked tracking of the acoustic content in bilateral tempo-
ral areas, with no clear lateralization, is consistent with previous
studies and compatible with the view that acoustic–phonetic pro-
cessing is bilaterally implemented (de Heer et al., 2017; Brodbeck
et al., 2018; Nora et al., 2020). Previous MEG studies on spoken
word/pseudoword repetition have highlighted left-hemispheric
differences between language-impaired and TD children and
adults in short-term memory of word-level information
(Helenius et al., 2009, 2014; Nora et al., 2021). The present par-
adigm that investigated the tracking of subword-level acoustic
information, however, revealed bilateral differences between
DLD and TD children in the tracking of familiar and new words
in evoked responses of temporal areas (Figs. 5, 7). When the
decoding was tested separately in each hemisphere, group differ-
ences at longer latencies reached significance in the right tempo-
ral regions for real (familiar) words and in the left temporal
regions for pseudowords (new words).

The left and right auditory regions have been suggested to
have somewhat different roles in the processing of speech enve-
lope information. To simplify, it has been suggested that the
coarser (syllable and word rate) modulations are processed
with a right-hemispheric preference and finer (phoneme rate)
modulations with a bilateral or left-hemispheric preference
(Poeppel, 2003; Boemio et al., 2005; Abrams et al., 2008;
Vanvooren et al., 2014; Ylinen et al., 2015). The amplitude enve-
lope of speech is dominated by low-frequency modulations,
which are more strongly tracked in the right hemisphere, and
impairments in speech envelope tracking in dyslexic children
have also been observed more prominently in the right temporal
regions (Abrams et al., 2009; Molinaro et al., 2016; Di Liberto et
al., 2018). The current results could be compatible with more
rightward impairment for speech tracking also in DLD.
However, with this first attempt at uncovering deficient speech
tracking in DLD, conclusions on hemispheric differences are
not yet warranted without further studies.

Possible consequences of impaired speech tracking for
processing and learning words
When we hear a word, we hear a sequence of sounds spread
across time. Multiple lexical candidates are activated in long-
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term memory while an auditory word is being perceived, until a
single item is selected and the word recognized (Marslen-Wilson
and Tyler, 1980; Luce, 1986; McClelland and Elman, 1986;
Marslen-Wilson, 1987; Gaskell and Marslen-Wilson, 1997).
Thus, a detailed echoic memory representation of speech sounds
needs to be stored temporarily until enough information is accu-
mulated for identifying the word (Calabrese, 2012; Gwilliams et
al., 2018). Simultaneously, the perception of earlier sounds is
reassessed with later acoustic input. Children with DLD show
deficits even in recognizing familiar spoken words (Dollaghan,
1998; Mainela-Arnold et al., 2008). The impaired maintenance
of sublexical acoustic–phonetic information observed here for
children with DLD likely results in problems in activating the
correct word-level representations for familiar words in long-
term memory based on incoming speech input. It may poten-
tially lead to increased vulnerability to competing words, as has
been observed in behavioral studies (Mainela-Arnold et al.,
2008; McMurraya et al., 2019), when the competition between
lexical candidates is more difficult to solve due to faster decay
of auditory traces.

One of the most robust findings in DLD is impaired phono-
logical memory, reflected, for example, in pseudoword repetition
(Bishop et al., 1996; Graf Estes et al., 2007). Impaired phonolog-
ical memory is thought to be a bottleneck for learning new words
(Baddeley, et al., 1998; Adams and Gathercole, 2000), impairing
language learning in children and adults with DLD (Attout et al.,
2020; Jackson et al., 2021). If the children with DLD are unable to
accurately represent earlier parts of the word in memory, as sug-
gested by the current results, tentatively, theymight not be able to
properly integrate across word segments to form new lexical rep-
resentations. This would particularly impair the cortical repre-
sentations for novel word forms. This possible interpretation of
the current findings should be investigated in learning para-
digms, where the impaired tracking could be directly related to
the integration of syllable-level information for forming new lex-
ical representations.

It is possible that a similar impairment in maintaining the
speech representations that was observed here for individual
words would also be observed in the processing of continuous
speech. Listeners with DLD have been shown to have difficulties
in maintaining cortical representations from one spoken word to
the next (Helenius et al., 2009, 2014). Cortical tracking of ampli-
tudemodulations should also be studied for continuous speech to
uncover whether its deficits in DLD also contribute to problems
in sentence-level processing. Similarly as was done in this study
for individual words, a response function for speech amplitude
envelope could be constructed for continuous speech by kernel
estimation (as in Brodbeck et al., 2018) to investigate this possi-
bility. Investigating speech tracking across different frequency
ranges could also further shed light on the potential hemispheric
differences in the observed impairment in DLD.
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