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Abstract: This study introduces an AI-assisted workflow for wind simulation in landscape form-find-
ing. It can rapidly deliver a series of design options within designers' predefined constraints, each de-
tailed with wind indicators. Integrating AI to detect subtle environmental changes and align with de-
signers' intuitive decisions, this research fosters a collaborative paradigm between landscape architects 
and AI, aiming to shift from physics engine simulations to employing real-time AI simulations for 
rapidly aiding designers in the form-finding process in landscape design. 
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1 Introduction 

For many years, the field of architecture and landscape architecture has designed buildings 
and landscapes by relying on a comprehensive process of intuition, design experiences, and 
various mathematical tools (FRICKER 2022, WITT 2022). Designers, through the use of ap-
propriate tools and extensive practice, gather insights from their experiences. Designers are 
the ones who are good at conceptualizing their “Knowing in Action” into “Knowledge in 
Action” (SCHÖN 2013). The rapid advancement of digitalization, and the increasing demands 
for sustainable design, mark a transformative era for designers. Those experienced in lever-
aging various digital tools to boost their creativity are at the forefront of this change 
(KHAKUREL et al. 2018). 

In the rapidly evolving urban landscape, wind simulation and wind-environment-driven de-
sign have always been time-consuming and repetitive tasks. AI tools like Deep Fluids (KIM 
et al. 2019) and CFD-GAN (KASTNER & DOGAN 2023) have significantly streamlined the 
time-consuming and repetitive tasks of wind simulation and design in urban landscapes, of-
fering rapid and precise predictions. However, unlike humans, these tools lack subjective 
intuition and solely rely on brute-force calculations on large datasets for simulation and iter-
ation, serving as intuitive references for designers. Moreover, many of these tools, often cus-
tom-built by developers, function as “black boxes (FRICKER et al. 2023)”, making it crucial 
to choose appropriate tools and develop an AI workflow integrated with modern design meth-
odologies to meet the requirements of most designers in future computer-aided design. 

This study proposes an AI-integrated workflow for wind-driven landscape design, aiming for 
fast and dynamic design generation within the designer’s constraints. AI performs real-time 
simulations; it not only provides various design options with specific wind indicators but also 
allows designers to choose the most suitable scheme for diverse requirements. 
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2 Background 

2.1 Application of Deep Learning in Wind Environment Simulation 
With the advent of AI tools, especially Deep Learning models, Generative Adversarial Net-
work (GAN) models show great potential in wind prediction (TAN & ZHONG 2022). Mokhtar 
et al. (2020, 2021) applied cGAN and pix2pix for pedestrian and wind comfort estimation. 
Farimani et al. (2017) demonstrate Generative Adversarial Network (GAN) can reduce Com-
putational fluid dynamics (CFD) simulation expense and time with a minor error. HE et al. 
(2021) developed a hybrid framework based on parametric design and the pix2pix model for 
rapidly evaluating of wind environment around buildings Li et al., (2023) established the 
GAN-based model by using CFD-generated datasets to predict urban block wind environ-
ment. Besides, some studies integrate Deep Learning models and LIDAR data for wind field 
reconstruction and spatiotemporal prediction, including embedding Navier-Stokes equations 
and Convolutional Neural Networks (CNNs) for enhancing wind field prediction accu-
racy(ZHANG & ZHAO 2021a, 2021b). 

But most of the current tools are custom-built by developers, making them difficult to gen-
eralize as they often act like “black boxes” (FRICKER 2022a). Therefore, it remains crucial 
for most designers to choose the appropriate tools and construct an AI workflow for rapid 
landscape form finding that best suits their needs for effective assistance in design. This paper 
will build upon on a well-trained Wind GAN model developed, creating a deep learning-
based wind-driven design workflow for landscape form finding. It systematically explains 
how the AI workflow can align with and complement the designers' workflow. 

2.2 The Principle of Wind-Driven Design 
There are three main principles in wind-driven design and optimization (KORMANÍKOVÁ et 
al. 2018): (1) Reshape the building façade and outline to enhance the longevity of the ultimate 
structure, (2) Reduce emission for passive cooling (3) mitigate the strong wind and ensure 
the pedestrian wind comfort. And what we focus on in this paper is (3).  

The most current process of mitigating strong wind and optimising wind comfort can be 
roughly summarized in two directions. One mainly selects prototypes based on the designer’s 
perception and then uses CFD or Fast Fluid Dynamics (FFD) simulation to choose the opti-
mal human design prototype, this method is not only time-consuming but also hard to provide 
continuous guidance for approximating the optimal solution. In cases such as the study by 
Kazak’s team (KAZAK et al. 2022), they experimented with and designed a variety of wind 
shelter shapes for urban open spaces, dedicating 8 hours to their validation using CFD. The 
other one is to use an optimization algorithm, setting the wind-driven results as the optimi-
zation objectives. Like Shen et al. (2021), they integrated FFD with the Evo-mass tool in 
Rhino for building layout optimization. However, their approach to layout generation relies 
on numerical inputs to control forms, yet not all subjective perceptions can be quantified into 
mathematical functions for form optimization. 
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3 Method 

3.1 CycleGAN-Based Wind Prediction Model Development 
This model is set up based on a previous study developed by Tan & Zhong (2022). This 
research compared the performance of CycleGAN and pix2pix models. Datasets hypothetical 
urban models generated by Procedural Content Generation (PCG) in Houdini and conduct 
wind simulation at the height of 0-5m solver. The results show that CycleGAN not only can 
generate high-quality images without paired datasets but also demonstrates more stable train-
ing progress compared to pix2pix, as evidenced by its Fréchet Inception Distance (FID) val-
ues. These features can bypass the resource-heavy step of simulation-based data preparation 
in interactive design and rapid adaptations to changing simulation parameters. Overall, de-
spite a longer training time per epoch, CycleGAN can prove to be a resource-saving model, 
optimizing the balance between image quality and operational efficiency. 

3.2 Wind-driven Landscape Elements Form Finding 
In this section, we introduce an AI co-design workflow for wind-driven landscape form find-
ing, centred around this developed CycleGAN model.  

The related glossary in this study:  

1. WCR (Wind Comfortableness Rate): Indicates the comfort level in an area based on 
wind conditions, calculated from wind speed changes, average speed, and standard de-
viation. Higher WCR means more comfort.  

2. LVU (Landscape Visual Units): Elements in landscape architecture that enhance aes-
thetic appeal and functionality, particularly for wind speed mitigation.  

3. DHWF (Degree of High Wind Filling): Measures how extensively LVUs or similar fea-
tures are used in high wind areas to reduce wind speed and increase comfort.  

4. CA (Construction Area): The total area involved in a construction or landscaping project. 

5. EI (Economic Indicators): Assess the cost-effectiveness of design solutions for wind 
comfort, EI =WCR/CA. 

We tackle the issue of high-speed winds in a hypothetical urban block created through para-
metric generation, aiming to enhance the WCR through site-specific landscape design. The 
goal is to enhance the WCR by strategically placing LVU in areas with high wind speeds. 
This involves determining the optimal extent of LVU deployment to improve the WCR at a 
reasonable cost (EI).  

Aligned with Betz’s law (VILLANUEVA & FEIJÓO 2010), which dictates that wind turbines 
can theoretically convert up to 59.3% of the kinetic energy in wind, our approach targets 
areas with the highest wind speed to maximize energy capture. We also account for the “wind 
shading” effect, in which turbines can significantly reduce wind speed for those located 
downstream, presenting nonlinear impacts, and affecting the overall efficiency of wind farms 
notably.  

We intend to modulate the wind farm by adjusting the quantity and placement of LVUs, in 
varying DHWF. This strategy is aimed at dispersing the wind energy from areas of high wind 
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speed to a broader area. The traditional wind turbine placement optimizations often rely on 
rule-based optimization algorithms (CHEHOURI et al. 2015), which can be both time-consum-
ing and result in unsatisfactory outcomes. In contrast, our approach will initially arrange var-
ious landscape schemes by employing Houdini PCG. Then by utilizing AI to assess these 
schemes, it enables a series of options in real time. This approach can facilitate a collaborative 
iteration process with AI, which can optimize both pedestrian wind comfort and fulfil the 
designer’s intentions. 

The whole AI co-design process follows the principles and steps below (Fig. 1). 

 
Fig. 1:  The workflow of AI co-design in landscape form finding and wind prediction 

1. Image Conversion and Grid Formation: Transform the site's wind environment image 
and the designer's design into a gridded canvas with a resolution of 720x720 pixels. 

2. Wind Speed Analysis and Pixel Sorting: Organize pixel positions based on wind 
speed, as shown in Figure 1: Step 1. The x-axis (abscissa) represents the order of pixel 
positions, and the y-axis (ordinate) indicates the wind speed. This arrangement illustrates 
the variation in wind speed at different pixel locations, aiding in the selection of appro-
priate pixels for placing LVU. Additionally, this method allows for the calculation of the 
average wind speed (Fig. 1: Step 2). 

3. Designers define the design scope for the landscape area for LVU application. For 
the AI model, inputs include the surrounding buildings and the area outlined by designers. 
Considering that each case may have different prevailing wind directions, we introduced 
a function to rotate the model canvas to accommodate various prevailing wind directions. 
In this case, ten designers unanimously agreed upon the defined design scope. 
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4. LVU Placement in High Wind Areas: Considering that the placement and spacing of 
LVUs create wind shading, which in turn nonlinearly affects the change in the velocity 
of wind propagation, a parameter T is used to represent the DHWF. Figure 1 Step 2 
shows T's interval length correlates with area coverage. Twelve schemes, T1-T12, are 
defined, and each scheme offsets the same results in gradually extending LVU placement 
from high to low wind speed areas, each scheme represents a unique area-filling strategy, 
with LVUs placed within the designer's design boundary for a unified layout. 

5. Model Testing and Verification: Evaluate the wind speed environment using the 
trained CycleGAN model, and validate the results with Computational Fluid Dynamics 
(CFD) software for accuracy.  

6. Data Integration and Comparative Analysis: Collect data from the twelve schemes 
and compare their performance based on several factors: the tendency of wind speed 
changes, average wind speed, standard deviation, WCR and EI. Each scheme is assessed 
to understand its effectiveness in improving wind comfort (Fig. 1. Step 3). 

 
Fig. 2:  T1-T12 landscape form finding schemes, DL results and CFD results of 12 schemes  
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4 Landscape Form Finding Results Analysis 

Figure 2 displays the results of T1-T12 schemes of landscape form and the wind prediction 
in the CycleGAN model and verified results in CFD with the same size of solver boundary 
at the height of 0-5m. Each scheme takes 0.5s in the deep learning model and takes around 
30min in CFD estimation. The results show CycleGAN can perform well in a minor error but 
provides real-time feedback. In Figure 3, we convert the tendency graphic of wind speed to 
visual analysis, which helps us observe the details of the wind environment improvement. 
Meanwhile, the average wind speed and standard deviation of 12 schemes are used to evalu-
ate the wind parameters. Based on the pedestrian wind comfort indicators, the wind speed 
<1.0m/s is breezeless, 1.0~5.0m/s is comfortable, 5.0~10.0m/s is uncomfortable with move-
ments affected, 10.0~15.0m/s is very uncomfortable with movements greatly affected (YIN 
et al. 2022). WCR presents the degree of wind environment improvement. EI is equal to 
WCR/construction area, which is used to determine whether the WCR can be increased with 
a smaller area and whether the scheme is economical.  

 
Fig. 3:  12 schemes and corresponding wind environment analysis 

Figure 4(a) shows the decline rate from T1 to T12 is becoming slower and slower in general. 
we can see all the wind speeds showed a downward trend which means all the schemes im-
prove the wind comfortableness. In specially, the overall decline trends of T1, T2, T3, and 
T4 are similar, and the mutation occurs at T5, and the decline speed becomes slower from 
T6-T9. The decline trend of T6-T9 is similar, and T12 has the slowest decline. 
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Figure 4 indicates that schemes T2, T3, T4, and T12 significantly enhance the WCR. T2, T3, 
and T4 offer lower average wind speeds, ensuring comfort, but T3's high standard deviation 
suggests wind instability with significant speed variations. T9, with the lowest standard de-
viation (Fig. 4 (c)), presents higher average wind speeds and a lower WCR. While T12 has a 
small construction area and a relatively high WCR, its high standard deviation implies unsta-
ble wind. T4, with the lowest average wind speed and high WCR, effectively moderates wind 
speed in a smaller area. Each scheme's pros and cons are quantified for designers to make 
informed decisions. Finally, T4 is chosen as the final prototype for landscape filling, as 
shown in Figure 5.  

 
Fig. 4:  T1-T12 schemes analysis visualization 

 
Fig. 5: AI co-design interface in Houdini and T4 scheme generation  
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In this collaborative workflow, designers use their intuition and expertise for creative and 
informed decision-making, while AI contributes precise, rapid evaluations and data analy-
sis. This combination of human creativity and machine accuracy aids in developing effec-
tive, informed design solutions, making AI an integral part of the decision-making process 
(Fig. 5). 

5 Limitations 

Firstly, the deep learning model demonstrates minimal error when predicting wind direction 
in comparison to Computational Fluid Dynamics (CFD) simulations. However, it exhibits an 
approximate 2-8% error in predicting wind speeds within low wind speed zones and a 5-10% 
error within high wind speed zones. Future research should train the deep learning model 
with CFD samples for improved accuracy. Secondly, this research only considers the height 
of 0-5m, excluding higher elevation wind conditions. Future study will expand the boundary 
solver and integrate comprehensive 3D modelling to enhance accuracy in representing com-
plex wind. Furthermore, while it suggests potential design solutions, it does not ensure that 
they are optimal. We have investigated the effect of varying the T parameter (using LVU to 
denote DHWF) on design performance. However, the interaction of different T values in 
different wind zones, and whether these values are discrete or continuous, can also affect 
wind performance. Finding the ideal T value for a given condition is complex. Future re-
search could utilize machine learning to adjust T values in response to real-world wind sim-
ulations, leading to better design results over time. Furthermore, as shown in Figure 5, deep 
learning models currently evaluate designs rather than generate them. It is challenging to 
directly and autonomously provide designs that incorporate human intent and performance, 
and the final design remains dependent on process modelling. Future advances may facilitate 
a more intuitive and varied design process by using human preferences and wind performance 
as inputs, such as integrating large-scale language models (LLMs) to directly generate 3D 
landscape models based on human verbal descriptions. 

6 Conclusion and Outlook 

The study introduced a continuous co-design workflow for wind-driven landscape form find-
ing with real-time feedback, enhancing collaboration between designers and AI. This inno-
vative approach provides a synergistic interaction between designers and deep learning mod-
els, combining the strengths of human perceptual expertise with the rapid quantitative assess-
ment capabilities of machine learning models to enhance the entire design decision-making 
process. Although not a perfect tool, it represents a speculative approach to incorporating 
artificial intelligence into co-design, aiming to explore new pathways for integrating AI into 
collective design efforts. It avoids converting design intent into constraint parameters repet-
itively, but a series of feasible schemes can be generated in real-time. Each scheme is out-
putted with precise environmental and construction metrics, which fosters the creation of 
diverse solutions for comparison and adaptation to various design needs, establishing a rapid, 
collaborative design partnership paradigm between humans and AI.  
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