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A B S T R A C T

Learning contextual and spatial environmental representations enhances autonomous vehicle’s hazard antici-
pation and decision-making in complex scenarios. Recent perception systems enhance spatial understanding
with sensor fusion but often lack global environmental context. Humans, when driving, naturally employ
neural maps that integrate various factors such as historical data, situational subtleties, and behavioral
predictions of other road users to form a rich contextual understanding of their surroundings. This neural
map-based comprehension is integral to making informed decisions on the road. In contrast, even with their
significant advancements, autonomous systems have yet to fully harness this depth of human-like contextual
understanding. Motivated by this, our work draws inspiration from human driving patterns and seeks to
formalize the sensor fusion approach within an end-to-end autonomous driving framework. We introduce a
framework that integrates three cameras (left, right, and center) to emulate the human field of view, coupled
with top-down bird-eye-view semantic data to enhance contextual representation. The sensor data is fused
and encoded using a self-attention mechanism, leading to an auto-regressive waypoint prediction module. We
treat feature representation as a sequential problem, employing a vision transformer to distill the contextual
interplay between sensor modalities. The efficacy of the proposed method is experimentally evaluated in
both open and closed-loop settings. Our method achieves displacement error by 0.67 m in open-loop settings,
surpassing current methods by 6.9% on the nuScenes dataset. In closed-loop evaluations on CARLA’s Town05
Long and Longest6 benchmarks, the proposed method enhances driving performance, route completion, and
reduces infractions.

1. Introduction

The autonomous driving ecosystem involves the perception and
planning modules to complement each other for a smooth course of
action (Yurtsever et al., 2020). These systems, fundamental to the au-
tonomous driving ecosystem, are tasked with interpreting vast amounts
of sensory data to understand the vehicle’s surroundings and make
real-time decisions to navigate complex environments safely. To this
end, two approaches—modular (Azam et al., 2020) and end-to-end
autonomous driving (Xiao et al., 2020; Khan et al., 2022)—have been
adopted in academia and industry as possible solutions for perception
and planning modules. While the modular approach offers the advan-
tage of interpretability and modular debugging, it is often criticized for
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its potential bottlenecks in data processing and decision latency. On the
other hand, end-to-end autonomous driving presents a promising alter-
native, offering scalability and the potential to directly learn driving
policies from raw sensory inputs, thereby providing a more streamlined
integration of perception and action (Schwarting et al., 2018).

Addressing the dynamic and unpredictable nature of driving en-
vironments is paramount for advancing end-to-end autonomous driv-
ing systems. While existing strategies that use various sensor modal-
ities, such as single-camera systems and LiDAR, have significantly
contributed to capturing environmental details, they often fall short
in dynamically adapting to the rapidly changing context of real-world
scenarios. Several techniques have been developed to extract spatial

https://doi.org/10.1016/j.engappai.2024.108767
Received 2 January 2024; Received in revised form 16 April 2024; Accepted 31 May 2024

https://www.elsevier.com/locate/engappai
https://www.elsevier.com/locate/engappai
mailto:shoaib.azam@aalto.fi
https://doi.org/10.1016/j.engappai.2024.108767
https://doi.org/10.1016/j.engappai.2024.108767
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2024.108767&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Engineering Applications of Artificial Intelligence 135 (2024) 108767

2

S. Azam et al.

and temporal information from these modalities (Huang et al., 2020;
Behl et al., 2020). Among these, sensor fusion techniques have marked
a leap forward in creating a more holistic understanding of the vehicle’s
surroundings. Yet, the challenge persists in achieving an adaptable and
subtle perception that can prioritize the shifting relevance of environ-
mental features. The interactions between multiple dynamic agents and
the need for a comprehensive representation that spans different views
or modalities highlight the critical gap in current methodologies: the
ability to maintain a global contextual awareness amidst the complexity
and unpredictability of the driving environment. As mentioned earlier,
the limitations underscore the necessity for an adaptive approach that
synthesizes spatial and temporal information from multi-modal sensory
inputs and intelligently adapts to the evolving context of the envi-
ronment, mirroring the adaptability and situational awareness akin to
human perception and decision-making processes.

To address the above-mentioned limitations, we introduced a novel
end-to-end encoder–decoder framework for predicting waypoints as
illustrated in Fig. 1. Our work aims to simulate a human-like ap-
proach to perception and decision-making by incorporating immediate
visual data with a global understanding of the environment. This dual-
modality approach sets our framework apart from existing methodolo-
gies by improving decision-making capabilities under various driving
conditions. To this end, our approach is the integration of multi-camera
views (left, right, and center) with top-down Bird’s-Eye View (BEV)
semantic maps through a transformer-based encoder. A key feature of
our framework is incorporating a self-attention mechanism within the
encoder. This mechanism empowers the system to intelligently adjust
its prioritization of environmental features based on their immediate
relevance and contextual significance. This capability is essential for
navigating scenarios where the importance of environmental elements
can shift rapidly, providing a solution to the previously static inter-
pretation of sensor data and fulfilling the need for a deeper, better
understanding of the environment.

The proposed framework is structured around two key components:
(i) the perception module and (ii) the waypoint prediction module.
The perception module extracts features from multi-camera views and
BEV (Bird’s-Eye View) semantic maps through a dedicated backbone
network. Subsequently, these features undergo a fusion process, after
which they are fed into a transformer network. This network is respon-
sible for refining the feature representation, ensuring a comprehensive
and cohesive understanding of the vehicle’s surroundings. Following
this feature enhancement, the information is relayed to a Gated Re-
current Unit (GRU)-based waypoint prediction module tasked with
generating the navigational waypoints. The rationale behind proposing
this unique framework and encoder stems from our objective to sim-
ulate a more human-like approach to perception and decision-making
in autonomous driving. Just as a human driver integrates immediate
visual cues with an overarching understanding of their environment,
our model synthesizes data from RGB cameras with BEV semantic
maps to form a comprehensive and adaptable representation of the sur-
roundings. By doing so, our approach aims to surmount the limitations
of existing methods, offering superior navigation and decision-making
capabilities that are robust across various driving conditions.

To validate the effectiveness of our proposed method, we have con-
ducted extensive experimental analysis in both open-loop and closed-
loop settings. In open-loop settings, we have evaluated the performance
of our method in terms of Euclidean distance (L2 norm) using the
nuScenes dataset, and it has surpassed the state-of-the-art methods.
Moreover, we have employed two Carla benchmarks, Town05 Long
and Longest6, to assess the performance of our method in closed-
loop settings. Our method has demonstrated superior performance in
terms of driving, route completion, and infraction score compared to
the state-of-the-art methods, reinforcing its robustness across various
driving conditions.

In summary, our work has following contributions:

1. Designing a framework that demonstrates an integration of spa-
tial perception through RGB cameras with a top-down bird’s-eye
view (BEV) for contextual mapping. This dual approach mim-
ics human-like perception by combining immediate visual data
with a global understanding of the environment, enhancing the
autonomous system’s ability to navigate complex scenarios

2. Develop a transformer-based encoder to sequence the spatial and
contextual features, leading to an improved feature representa-
tion for learning the driving policies.

The remainder of this paper is structured as follows: Section 2
provides a review of the relevant literature. The problem formulation is
discussed in Section 3. The proposed framework is detailed in Section 4,
while Section 5 is dedicated to the experimental setup, analysis, and
results. Section 6 focuses on the ablation studies conducted. Section 7
delves into discussions and outlines directions for future research, and
Section 8 offers concluding remarks for the paper.

2. Related work

2.1. Multi-modal end-to-end learning frameworks for autonomous driving

Learning optimal trajectories involve a better representation of the
environment to include spatial, temporal, and contextual information
of the environment. Different multi-modal end-to-end driving methods
are developed in the literature to improve driving performance. These
multi-modal methods either use cameras, Lidar, HD maps, or sensor
fusion between these information modalities. Xiao et al. (2020) have
used the sensor fusion between RGB cameras and depth information to
investigate the use of multi-modal data compared to single modality for
end-to-end autonomous driving. Some works have focused on semantics
and depth for determining the explicit intermediate representation
of the environment and their effect on autonomous driving (Behl
et al., 2020; Zhou et al., 2019). In addition, some works, for instance,
NMP (Zeng et al., 2019), have used the Lidar and HD maps first to
generate the intermediate 3D detections of the actors in the future and
then learn a cost volume for choosing the best trajectory. Lidar and
camera fusion are extensively used for perception and obtaining driving
policies. Sobh et al. (2018) have used the Lidar and image fusion
by processing both sensor modality streams in a separate branch and
then fusing the resulting features. Further, they have applied semantic
segmentation and Lidar post-processing Post Grid Mapping to increase
the method’s robustness. Similarly, Prakash et al. (2021) have fused
the Lidar and camera data at multiple levels through self-attention
for learning the driving policies. In addition, some methods have
adopted sensor fusion between camera and semantic maps (Natan and
Miura, 2022) for learning end-to-end driving policy for autonomous
driving. Several studies have investigated the application of knowledge
distillation techniques to learn driving policies. In this approach, a
privileged agent is initially trained with access to comprehensive in-
formation, such as maps, navigational data, and images. Subsequently,
this privileged agent is employed to train a sensorimotor agent, which
only has access to image data (Chen et al., 2020b; Zhang et al.,
2023). Furthermore, improving the decoder architecture in an encoder–
decoder architecture is also being explored by Jia et al. (2023). All
these methods have used sensor fusion techniques to acquire the spatial
or temporal information of the environment but lack contextual infor-
mation in terms of BEV semantic maps. In the proposed work, we have
opted for BEV semantic maps and incorporated them with a camera
stream to answer whether the inclusion of BEV semantic maps improves
driving performance.
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2.2. BEV representation end-to-end autonomous driving

Representing the environment in a BEV benefits the planning and
control task as it circumvents the issues like occlusion and scale dis-
tortion and also provides the contextual representation of the envi-
ronment. In this context, some works focus on generating the BEV
representation; for instance, ST-P3 leverages spatial–temporal learning
by designing an egocentric-aligned representation of BEV and finally
uses that representation for perception, planning, and control (Hu
et al., 2022). Hu et al. (2023) have designed an end-to-end plan-
ning autonomous driving framework. This framework’s perception and
prediction modules are structured as transformer decoders, with task
queries acting as the interface between these two nodes. An attention-
based planner is used to sample the future waypoints by considering the
past node’s data. Following the same approach, Jiang et al. (2023) have
used a vectorized representation for end-to-end autonomous driving.
They have adopted a BEV encoder for BEV feature extraction combined
with map and agent queries in a transformer network for environment
representation and then a planning transformer for predicting the
trajectories. In addition, Chitta et al. (2021) have proposed a neural
attention field for waypoint prediction. All these methods have used the
BEV representation, similar to our work, but are more focused on how
to make the BEV representation from input images; however, in our
work, we focus on how to use the BEV features for learning the policy
rather make BEV from input images and then use it for the planning.
The experimental analysis shows the efficacy of our proposed method
against state-of-the-art methods illustrating the effectiveness of using
BEV representation for learning the driving policies in both open and
closed-loop settings.

2.3. Sensor fusion for autonomous driving

In autonomous driving, the integration of various sensor types—
such as cameras, LiDAR, and radar—is crucial for a comprehensive
understanding of the vehicle’s environment, as each sensor type has dis-
tinct limitations that can be mitigated through combined usage (Yurt-
sever et al., 2020; Huang et al., 2022). In this aspect, multi-modal
sensor fusion has become the preferred approach (Chen et al., 2020a,
2017; Fadadu et al., 2022; Meyer et al., 2020). In literature, sensor
fusion is typically classified according to the stage at which multi-modal
data fusion occurs during the feature representation learning process.
Notably, three primary fusion strategies, early, late, and intermediate-
level fusion approaches, are studied in the research (Tang et al., 2023;
Munir et al., 2023).

Recent studies in multi-modal end-to-end autonomous driving per-
form sensor fusion between RGB cameras, LiDAR, depth and semantic
data, and radar to enhance driving performance. For instance, (Haris
and Glowacz, 2022; Codevilla et al., 2018; Huang et al., 2020) have
employed an early fusion approach to fuse multi-modal data to learn
the driving policies. Similarly, in the case of late fusion approaches,
multi-modal data is fused at the decision level for learning the driving
policies using multi-modalities as proposed in this works (Huang et al.,
2023). However, neuroscience research indicates that intermediate-
level fusion can enhance feature representations learned from multiple
modalities, offering a more comprehensive understanding of the envi-
ronment (Schroeder and Foxe, 2005; Macaluso, 2006). In this work,
we have adopted this approach to fuse the intermediate features from
multi-view cameras and BEV semantic maps to learn the driving poli-
cies. In literature, most approaches have followed this approach; for
instance, LAV designed a framework that learns from the behaviors of
all observed vehicles, not just the ego-vehicle (Chen and Krähenbühl,
2022). LAV fuses the RGB and LiDAR data to represent the environment
using PointPainting (Vora et al., 2020), combining the semantic infor-
mation extracted from the RGB with the LiDAR point cloud. Similarly,
Confuse fuses the RGB and LiDAR feature maps to learn better feature
representation at different levels (Liang et al., 2018). In addition to

fusing data between LiDAR and cameras, another promising approach
is to generate BEV maps/features. In this regard, extracting features
from multi-modal input and converting them into a shared BEV space
can then be utilized for downstream tasks (Man et al., 2023; Liu et al.,
2023).

Similarly, some methods have utilized transformer-based approaches
for fusing the multi-modal data at intermediate levels for learning
driving policies (Singh, 2023; Ye et al., 2023). Initially used for natural
language processing tasks (Vaswani et al., 2017), transformers have
widely been employed for learning meaningful representation in vi-
sion applications (Dosovitskiy et al., 2020; Carion et al., 2020). The
transformer’s self-attention module enhances the learning of sequential
data globally and improves feature representation. Prakash et al. (2021)
employed the transformer to combine intermediate features represen-
tation from RGB images and Lidar data. Huang et al. (2022) design
a transformer-based neural prediction framework that considers social
interactions between different agents and generates possible trajecto-
ries for autonomous vehicles. Dong et al. (2021) determines the driving
direction from visual features acquired from images by using a novel
framework consisting of a visual transformer. The driving directions
are decoded for human interpretability to provide insight into learned
features of the framework. Finally, (Li et al., 2020) considers social in-
teraction between agents on the road and forecasts their future motion.
The spatial–temporal dependencies were captured using a recurrent
neural network combined with a transformer encoder. The closest to
our work is (Shao et al., 2022), which uses transformer-based encoder–
decoder architecture with safety constraints. However, we believe that
using the vision transformer learns the structure of the fused features
independently, attending to the most relevant parts of the features to
make predictions, and can produce high-quality intermediate represen-
tations. In contrast, traditional transformer-based encoder–decoders are
less efficient in capturing the global dependencies in the features.

3. Problem formulation

In this work, an end-to-end learning approach is adopted for the
point-to-point navigation problem, where the objective of the trained
agent is to safely reach the goal point by learning a driving policy
𝜋∗ that imitates the expert policy 𝜋. The learned policy completes the
given route by avoiding obstacles and complying with the traffic rules.
In the closed-loop settings, we have opted for the CARLA simulator to
collect the expert dataset in a supervised learning approach. Similarly,
to use the expert data in open-loop settings, we have used the nuScenes
dataset. Suppose the dataset 𝐷 = (𝑋𝑗 , 𝑌 𝑗 )𝑑𝑗=1 of size 𝑑 is collected that
consists of high dimensional observations vector 𝑋 from the sensory
modalities along with the corresponding expert trajectories vector 𝑌 .
The expert trajectories are defined in vehicle local coordinate space
and are set of 2D waypoints transformed that is, 𝑌 = 𝐲𝐭 = (𝑢𝑡, 𝑣𝑡)𝑇𝑡=1,
where 𝑢𝑡 and 𝑣𝑡 are the position information in horizontal and vertical
directions, and 𝑇 corresponds to the future horizon for the waypoints,
respectively. The objective is to learn the policy 𝜋 with the collected
dataset 𝐷 in a supervised learning framework with the loss function 
expressed as follows

argmin
𝜋

E(𝑋,𝑌 )→𝐷[(𝑌 , 𝜋(𝑋))]. (1)

In this urban setting, the high-dimensional observations include the
center, right, left cameras and top-down BEV semantic data.

4. Method

Fig. 1 illustrates the overview of the proposed method, which
comprises two main components: (i) the perception module and (ii)
the waypoint prediction modules. The perception module extracts fea-
tures from input sensor modalities and then forwards them to the
waypoint prediction module to generate future waypoints/trajectories.
The following sections details the perception and waypoint prediction
modules.
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Fig. 1. Architecture of a Proposed Multi-modal Perception and Waypoint Prediction framework for End-to-End Autonomous Driving: The proposed method’s architecture is composed
of two main components: the Perception Module and the Waypoint Prediction Module. In the Perception Module, features are extracted from three RGB camera inputs and BEV
semantic maps, which are then enhanced with velocity data before being processed by a transformer encoder. The encoded features are subsequently relayed to the Waypoint
Prediction Module, where a GRU (Gated Recurrent Unit) predicts the vehicle’s future waypoints based on these features. (Best view in color).

4.1. Perception module

The perception module incorporates a backbone network designed
to extract features from sensor modalities, coupled with a transformer-
based encoder network for representation learning.

(A) Backbone Feature Extraction Network: In this module of the
proposed method, we aim to construct a spatio-temporal represen-
tation of the environment. The sequence of input RGB images from
three distinct views that are center(𝐼𝑐∈ 3×𝐻×𝑊 ), right (𝐼𝑟∈ 3×𝐻×𝑊 ),
and left (𝐼𝑙∈ 3×𝐻×𝑊 )—with width 𝑊 and height 𝐻 , are processed
through a feature extraction backbone network. For the feature extrac-
tion network, we have adopted ResNet(50) architecture; however, in
our ablation studies, we have evaluated the other variants of ResNet
architecture to validate the performance of the proposed method. Simi-
larly, BEV (Bird’s-Eye View) semantic maps (𝑀∈ 𝐻×𝑊 ), which encode
spatial layout and environmental context, are integrated into the per-
ception pipeline to complement the image-derived features. Suppose
𝐼𝑣, where 𝑣 corresponds to the three views (𝐼𝑐 , 𝐼𝑙, and 𝐼𝑟) and BEV
semantic maps (𝑀), is passed to the backbone network to extract the
features maps 𝑓𝑣 for each sensor modalities expressed as:

𝑓𝑣 =  (𝐼𝑣; 𝜃 ) (2)

where 𝜃 encapsulates the trainable parameters of the feature extrac-
tion network. After extracting the feature maps 𝑓𝑣, from the backbone
feature extraction network, it is necessary to synthesize these into a sin-
gle representation that encapsulates spatio-temporal information of the
environment. To this end, a project layer  is employed that converts
the feature maps 𝑓𝑣 of all sensor modalities to low dimensional feature
maps 𝑓 ′

𝑣 for all the sensor modalities. Mathematically, as expressed in
Eq. (3),

𝑓 ′
𝑣 = (𝑓𝑣; 𝜃 ) (3)

where, in our experiment, we have kept the size of this low dimension
feature maps to 400 for all feature maps 𝑓𝑣, respectively. 𝜃 denotes the
weights associated with the projection layer, which are learned during
the training process to optimize the fusion of features. To encapsulate
the features representation to a unified embedding, all the feature maps
𝑓 ′
𝑣 from three views and BEV semantic maps are merged in conjunction

with vehicle velocity data through linear transformation layers  as
shown in Eq. (4)

𝑓 = (𝐶𝑜𝑛𝑐𝑎𝑡(𝑓 ′
𝑐 , 𝑓

′
𝑙 , 𝑓

′
𝑟 , 𝑓

′
𝑀 ); 𝜃) (4)

Finally, to make combined feature maps 𝑓 compatible as input to
the transformer encoder, we have used post-processing techniques to
reshape the feature maps 𝑓 from the 1600 dimension to (𝐵, 1, 40, 40)
dimension.

(B) Transformer Encoder : In this work, a transformer encoder, specif-
ically a vision transformer, is employed to learn the contextual relation-
ship between the features and to generalize it to learn better feature
representation. In this context, the resulting features 𝑓 = 1×𝐻×𝑊 is fed
to the transformer encoder by flattening into patches 𝑓𝑝 = 𝑁×(𝑃 2𝐶),
where 𝐻 and 𝑊 corresponds to the resolution of input features from
the backbone network, 𝐶 is the number of channels, (𝑃 , 𝑃 ) is the size
of each patch, and 𝑁 = 𝐻𝑊 ∕𝑃 denotes the number of patches and also
the input sequence length. In addition, a learnable position embedding
is added to the input sequence, a trainable parameter with the same
dimension as the input sequence, so that the network infers the spatial
dependencies between different tokens at the train time. A velocity
embedding is also added to the 𝐶 dimensional of the input sequence
through a linear layer, which includes the current velocity. Finally,
the input sequence, positional embeddings 𝐸𝑝𝑜𝑠, and velocity embed-
dings 𝐸𝑣𝑒𝑙 are element-wise summed together, which is mathematically
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expressed in the following,

𝑧𝑜 = [𝑓 1
𝑝𝐸; 𝑓 2

𝑝𝐸;⋯ ; 𝑓𝑁
𝑝 𝐸] + 𝐸𝑝𝑜𝑠 + 𝐸𝑣𝑒𝑙 ,

𝐸 ∈ (𝑃 2 .𝐶)×𝐷,

𝐸𝑝𝑜𝑠 ∈ (𝑁+1)×𝐷, 𝐸𝑣𝑒𝑙 ∈ (𝑁+1)×𝐷,

𝑧′𝑙 = 𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1 + 𝑧𝑙−1,

𝑧𝑙 = 𝑀𝐿𝑃 (𝐿𝑁(𝑧′𝑙)) + 𝑧′𝑙 + 𝑧′𝑙 ,

(5)

where MSA corresponds to multi-head self-attention, MLP is multi-layer
perceptron, LN is layer normalization, and 𝐷 corresponds to dimen-
sion. The multi-head attention helps in generating the rich feature
representation for the input sensor modalities that in turn to learn
better contextual representation. The formulation of the multi-head
self-attention is expressed as,

(𝐐,𝐊,𝐕) = 𝐳𝐖𝑄𝐾𝑉 ,

𝐖𝑄𝐾𝑉 ∈ 𝐷×3𝐷ℎ ,

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐐𝐊𝐓)∕
√

𝐷ℎ,

𝐴 ∈ 𝑁×𝑁 ,

𝑆𝐴(𝐳) = 𝐴𝐯,
𝑀𝑆𝐴(𝐳) = [𝑆𝐴1(𝐳);𝑆𝐴2(𝐳);⋯ ;𝑆𝐴𝑗 (𝐳)]𝐖𝑚𝑠𝑎,

𝐖𝑚𝑠𝑎 ∈ (𝑗.𝐷ℎ)×𝐷.

(6)

where 𝐐, 𝐕 and 𝐊 are the query, value and key vectors and 𝐖 is
the weight matrix. The output features from the MSA have the same
dimensionality as the input features. The transformer encoder applies
the attention multiple times throughout the architecture. The final out-
put features from the transformer encoder are then summed along the
dimension to produce the 16 dimensional vector having the contextual
representation of features from all the sensor modalities. This resulting
16 dimensional feature vector is injected into the waypoint prediction
module to predict waypoints.

4.2. Waypoint prediction module

The waypoint prediction module acts as a decoder for predicting
future waypoints using the encoded information from the transformer
encoder. The resulting 16 dimensional vector is passed through an MLP
consisting of two hidden layers having 256 and 128 units, respectively,
to output the 64 dimensional vector. The MLP layer is used for upsam-
pling the vector dimension from 16 to 64 and is related to experimental
heuristics that produce better results in terms of waypoint prediction.
We have employed the auto-regressive GRU model to predict the next
waypoints that take the 64 dimension feature vector to initiate the
hidden state of the GRU model. The GRU-based auto-regressive model
takes the current position and goal location as high-level commands
as input, which helps the network focus on the relevant context in
the hidden states to predict the next waypoints. In the case of closed-
loop settings, the goal locations include the GPS points registered in
the same ego-vehicle coordinate frame as input to the GRU rather than
the encoder because of the colinear BEV space between the predicted
waypoints and the goal locations. However, high-level commands such
as forward, turn right and left are passed as input to the GRU for
waypoint predictions in the open-loop settings.

In the open-loop settings, we have evaluated the predicted trajectory
with the ground-truth trajectory without using a controller. However,
for the closed-loop setting, the predicted waypoints are passed to the
control module of the CARLA simulator to generate steer, throttle, and
brake values. Two PID controllers for lateral and longitudinal control
are used in this context. The longitudinal controller takes the average
weighted magnitude of vectors between the waypoints of consecutive
time steps, whereas the lateral control takes their orientation.

5. Experiments

This section explains the proposed method evaluation in both open-
loop and closed-loop settings. The nuScenes dataset is utilized for the
open-loop evaluation, whereas the CARLA simulator is used for the
closed-loop evaluation.

5.1. Open-loop experiments on nuscenes

(A) Dataset: The nuScenes dataset contains 1k diverse scenes com-
prising different weather and traffic conditions. Each scene is 20 sec-
onds long and contains 40 frames, corresponding to a total of 40k
samples in the dataset. The dataset is recorded using a camera rig
comprised of 6 cameras on ego-vehicle, giving a full 360 deg view of
the environment. The dataset includes the calibrated intrinsic 𝐾 and
extrinsic (𝑅, 𝑡) for each camera view at every time-step. The proposed
method settings utilize the center, right, and left camera views. Since
the nuScenes dataset does not provide any top-down BEV semantic
representations, the BEV semantic representation is generated using
ego-vehicle poses and camera views intrinsic and extrinsic calibration
data.

(B) Input Representations: For the nuScenes dataset, the input image
from the center, front, and left camera views are first cropped and
resized to 256 × 256 from the original resolutions of 900 × 1600.
Contrary to the camera views and ego-vehicle future positions data,
the nuScenes data does not provide the top-down BEV semantic maps.
Given the necessity of BEV semantic maps for the proposed method,
we follow the off-shelf Cross-view Transformer method (Zhou and
Krähenbühl, 2022) to generate the BEV semantic maps. It is to be noted,
that one can use better alternatives to generate the richer BEV se-
mantic maps. The Cross-view Transformer utilizes the encoder–decoder
architecture to achieve precise map-view semantic segmentation. An
image encoder generates the multi-scale feature maps for each image
view. Later, these feature maps are merged using cross-view attention
into cohesive map-view representation. The cross-view attention relies
on positional embeddings attuned to the scene’s geometric layout,
facilitating accurate alignment between camera and map views. All
camera views shared the same image encoder, each employing camera-
specific positional embeddings on their individual camera calibration
parameters. Finally, a lightweight convolutional decoder upsamples
the refined map-view embedding and produces the final segmentation
output. In our settings, we kept the resolution of this BEV semantic map
to 256 × 256.

(C) Output Representations: The proposed method predicts the future
trajectory 𝑌 , for the ego-vehicle in the ego-vehicle coordinate. In the
open-loop settings, the future trajectory 𝑌 is represented as waypoints
that include position information. In our experiments, by default, the
horizon 𝑇 = 2.0 s is set for predicting the future trajectory by taking
the past 1.0 s past context.

(D) Evaluation Metrics: For the proposed method evaluation, Eu-
clidean distance (L2 error) is used which is the measure of distance
between the expert trajectory and the predicted trajectory. Mathemat-
ically, the L2 error is defined by the Eq. (7)

𝐿2(𝑇𝑒, 𝑇𝑝) =
𝑛
∑

𝑖=1

𝑑
∑

𝑗=1
(𝑇

𝑒𝑖𝑗
− 𝑇

𝑝𝑖𝑗
)2, (7)

where, 𝑇𝑒 and 𝑇𝑝 correspond to the expert and predicted trajectory,
respectively. Each trajectory consists of 𝑛 points in a 𝑑-dimensional
space.

5.2. Closed-loop experiments on CARLA

(A) Dataset: In this work, CARLA 0.9.101 simulator is used to create
a dataset for training and evaluation. Table 1 illustrates the dataset

1 https://carla.org/

https://carla.org/
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Table 1
Dataset generation details using the CARLA simulator for the proposed method.

Maps Training Data: Town01, Town02, Town03, Town04, Town06, Town07, Town10
Test Data: Town05

Weather Conditions Clear sunset, Clear noon, Wet noon, Wet sunset,
Cloudy noon, Cloudy sunset, Rainy noon, Rainy sunset

Non-player characters (NPCs) Pedestrians, Car, Bicycle, Truck, Motorbike

Object Classes 0:Unlabeled, 1:Pedestrian, 2:Road line, 3:Road,
4:Sidewalk, 5:Car, 6:Red traffic light,
7: Yellow traffic light, 8: Green traffic light

Routes Tiny (only straight or one turn)
Short (100–500 m)
Long (1000–2000 m)

CARLA Version 0.9.10

details that are utilized in generating the training dataset to create a
more varying simulation environment. For generating the dataset, an
expert policy with the privileged information from the simulation is
rolled out to save the data at 2FPS. The dataset includes left, right,
and center camera RGB images, top-down semantic map information,
the corresponding expert trajectory, speed data, and vehicular controls.
The trajectory includes 2D waypoints transformed into BEV space in
the vehicle’s local coordinate, whereas the steering, throttle, and brake
data are incorporated into the vehicular control data at the time of
recording. Inspired by Prakash et al. (2021) configurations, we have
gathered the data by giving a set of predefined routes to the expert in
driving the ego-vehicle. The GPS coordinates define the routes provided
by the global planner and high-level navigational commands (e.g., turn
right, follow the lane, etc.). We have generated around 60 hours of the
dataset, including 200𝐾 frames.

(B) Input Representation: The proposed method utilizes two modali-
ties: RGB cameras (left, center and right) and semantic maps. The three
RGB cameras provide a complete field of view that mimics the human
field of view. The semantic maps are converted to BEV representation
that contains ground-truth lane information, location, and status of
traffic lights, vehicles, and pedestrians in the vicinity of ego-vehicle.
The top-down semantic maps are cropped to the resolution of 256 ×
256 pixels. For all three cameras, to cater the radial distortion, the
resolution is cropped to 256 × 256 from the original camera’s resolution
of 400 × 300 pixels at the time of extracting the data.

(C) Output Representation: For the point-to-point navigation task, the
proposed method predicts the future trajectory 𝑌 of the ego-vehicle in
the vehicle coordinate space. The future trajectory 𝑌 is represented by
a sequence of 2𝐷 waypoints, 𝑌 = 𝐲𝐭 = (𝑢𝑡, 𝑣𝑡)𝑇𝑡=1, where 𝑢𝑡 and 𝑣𝑡 are the
position information in horizontal and vertical directions, respectively.
In the experimental analysis, we have utilized 𝑇 = 4 as the number of
waypoints.

(D) Evaluation Metrics: The proposed method’s efficacy is eval-
uated using the following metrics indicated by the CARLA driving
benchmarks.

Route Completion: is the percentage of route distance 𝑅𝑗 completed
by the agent in route 𝑗 averaged across the number of 𝑁 routes is shown
in the form,

𝑅𝐶 = 1
𝑁

𝑁
∑

𝑗
𝑅𝑗 . (8)

The RC is reduced if the agent drives off the specified route by some
percentage of the route. This reduction in RC is defined by a multiplier
(1-% off route distance).

Infraction Multiplier : as shown in (9) is defined as the geometric
series of infraction penalty coefficient, 𝑝𝑖, for every infraction encoun-
tered by the agent along the route. Initially, the agent starts with the
ideal base score of 1.0, which is reduced by a penalty coefficient for
every infraction. The penalty coefficient 𝑝𝑖 for each infraction is prede-
fined. If the agent collides with the pedestrian 𝑝𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛, the penalty is

set to 0.50; with other vehicles 𝑝𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠, it is set to 0.60, 0.65 for colli-
sion with static layout 𝑝𝑠𝑡𝑎𝑡, and 0.7 if the agent breaks the red light 𝑝𝑟𝑒𝑑 .
The penalty coefficient is defined as 𝑃𝐶 = 𝑝𝑝𝑒𝑑𝑒𝑠𝑡𝑟𝑖𝑎𝑛, 𝑝𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠, 𝑝𝑠𝑡𝑎𝑡, 𝑝𝑟𝑒𝑑 ,

𝐼𝑀 =
𝑃𝐶
∏

𝑖
(𝑝𝑖)𝑖𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑖
. (9)

Driving Score: is computed by taking the product between the per-
centage of the route completed by the agent 𝑅𝑗 and the infraction mul-
tiplier 𝐼𝑀 𝑗 of the route 𝑗 and averaged by the number of the routes 𝑁𝑟.
Higher driving score corresponds to the better model. Mathematically,
the driving score (DS) is

𝐷𝑆 = 1
𝑁𝑟

𝑁𝑟
∑

𝑗=1
𝑅𝐶𝑗𝐼𝑀 𝑗 (𝑝𝑖)𝑖𝑛𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑠

𝑖
. (10)

It is to be noted that if the ego vehicle deviates from the route 𝑗 for
more than 30 meters or there is no action for 180 seconds, then the
evaluation process on route 𝑗 will be stopped to save the computations
cost and next route will be selected for the evaluation process.

5.3. Training details

The proposed method is trained using the dataset collected from
the CARLA simulator by rolling out the expert model and also on the
nuScenes dataset. In addition, we have used the pre-trained ResNet50
model trained on the ImageNet dataset to extract the features in the
backbone network for each sensor modality. In training the proposed
network, we have added augmentation such as rotating and noise injec-
tion to the training data, along with adjusting the waypoints labels. For
the transformer encoder, we have used the patch size of 4, which gives
the 16 dimensional feature embedding. In addition we have adopted the
attention layer of 12 in the transformer encoder. We have trained the
proposed method using the Pytorch library on RTX 3090 having 24 GB
GPU memory for a total of 100 epochs. In training, we have used the
batch size of 64 and an initial learning rate of 10−4, which is reduced
by a factor of 10 after every 20 epochs. The 𝐿1 loss function is used
for training the proposed method. Let 𝑦𝑔𝑡𝑡 represent the ground-truth
waypoints from the expert for the timestep 𝑡; then the loss function is
represented as

 =
𝑇
∑

𝑡=1

‖

‖

‖

𝑦𝑡 − 𝑦𝑔𝑡𝑡
‖

‖

‖1
. (11)

An AdamW optimizer is used in training with a weight decay set to
0.01 and beta values to the Pytorch defaults of 0.9 and 0.99 (Yao et al.,
2021).

5.4. Results

(A) Open-loop Experimental Results on nuScenes: The proposed method
is evaluated on the L2 evaluation metric against the state-of-the-art
methods for the quantitative analysis, as illustrated in Table 2. In our
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Fig. 2. Qualitative results for the proposed method in different driving conditions using nuScenes dataset in open-loop evaluation.

Table 2
Quantitative Comparison of Proposed Method in Open-loop Settings: The com-
parative analysis lists the L2 error between the proposed method and state-of-the-art
methods for forecasted positions at 1 s, 2 s, and 3 s horizons using nuScenes dataset.
A lower L2 error indicates better performance.

Method L2 (m)

1s 2s 3s Avg

NMP (Zeng et al., 2019) – – 3.18 –
FF (Hu et al., 2021) 0.55 1.20 2.54 1.43
ST-P3 (Hu et al., 2022) 1.33 2.11 2.90 2.11
UniAD (Hu et al., 2023) 0.48 0.96 1.65 1.03
VAD-Base (Jiang et al., 2023) 0.41 0.70 1.05 0.72

Ours 0.35 0.61 1.01 0.66

experiments, we have deactivated the ego-status information in the
open-loop settings and also fixed the planning horizon 𝑇 = 3.0 s to make
a fair comparison with the state-of-the-art methods. Since the L2 error
corresponds to the displacement error in meters between the predicted
and ground-truth trajectories, the lower the displacement error, the
better the model. The proposed method illustrates better performance
as compared to state-of-the-art methods. The comparative analysis uses
camera-centric and Lidar-based end-to-end learning methods to predict
trajectory. For instance, NMP uses the Lidar and HD maps for predicting
future trajectories, giving the L2 error of 3.18 m. Then NMP model
is only evaluated for the planning horizon of 3.0 s. Similarly, the FF
method predicts the future trajectory based on free-space estimation
having the L2 error of 2.54 m at the planning horizon of 3.0 s and
an average L2 error of 1.43 m. The proposed method illustrates lower
L2 error at the planning horizon of 3.0 s and on average compared
to NMP and FF methods. Similar to our work, the baseline methods
that follow the BEV representation are ST-P3, UniAD, and VAD-Base.
The L2 error for the ST-P3, UniAD, and VAD-Base are 2.90 m, 1.65 m,
and 1.05 m, respectively, at the planning horizon of 3.0 s, where the
proposed method has L2 error of 1.01 m at the same planning horizon,
outperforming the ST-P3, UniAD, and VAD-Base by 89.5%, 38.8%, and
3.8% respectively. Similarly, on average, the proposed method shows
lower L2 error than the state-of-the-art methods.

Fig. 2 illustrates the qualitative analysis of the proposed method
when evaluated on the nuScenes dataset.

(B) Closed-loop Experimental Results on CARLA: We compare the
proposed method with other state-of-the-art methods on two CARLA
benchmarks, Town05 Long and Longest6, in closed-loop settings. Our
quantitative analysis considers the baselines with multi-modality inputs
rather than sticking with methods involving only a single modality.
Using contextual information, the proposed method achieves better
driving, route completion, and infraction scores. Table 3 illustrates
the quantitative results of the proposed method on the Town05 Long
benchmark. Specifically, the proposed method achieves the driving
score of 68.30±1.90, 96.5±1.18 of route completion, and 0.75±0.05 of in-
fraction score, outperforming the ThinkTwice by 4.8% in driving score,
1.03% in route completion and 8% in infraction score respectively.
Similarly, the proposed method illustrates better evaluation metrics
scores when compared with other state-of-the-art methods.

Table 4 shows the proposed method results with other state-of-the-
art methods on the Longest6 benchmark in closed-loop settings. The

proposed method achieves the driving score of 67.43 ± 2.3, 80.54 ±
1.5 of route completion, and 0.81 ± 0.05 of infraction scores on the
Longest6 benchmark, outperforming the other state-of-the-art methods
in evaluation metrics in the closed-loop settings. Figs. 3 and 4 illustrate
the proposed method’s qualitative results on Town05 and Longest6
benchmarks in various driving scenarios. The learned driving policy
through the proposed method is displayed in moving straight, stopping
at the traffic light, and making left, and right turns. These results
demonstrate that the driving policy learned using the proposed method
show promising results and complements the quantitative analysis of
the proposed method with other state-of-the-art baseline methods.

6. Ablation studies

In this section, we further investigate the performance of the pro-
posed method by conducting ablation studies that explore the impact
of different BEV map generation techniques on our approach, as well as
examining the influence of various components on overall performance.

6.1. Comparative analysis of BEV semantic map generation techniques on
proposed method

In our proposed method, we have utilized an off-the-shelf Cross-
view Transformer (CVT) (Zhou and Krähenbühl, 2022) to create BEV
semantic maps under open-loop settings. This study extends our in-
vestigation into how varying BEV map generation methods impact the
performance of our approach in these settings, providing insights into
the adaptability and effectiveness of different strategies.

To this end, we have employed Lift, Splat (Philion and Fidler, 2020),
ST-P3 (Hu et al., 2022), BEVFormer (Li et al., 2022), and CVT (Zhou
and Krähenbühl, 2022),BEV semantic map generation methods and
used for the proposed method in predicting the waypoints in open-loop
settings. Table 5 illustrates the quantitative results for the proposed
method when used with different BEV generation methods. In our
findings, the proposed method produces better results with CVT than
other state-of-the-art methods. The Lift, Splat method shows increasing
error over time. The ST-P3 has lower errors than Lift, Splat, while
BEVFormer and CVT show significant improvements. CVT has the
lowest errors across all time frames, indicating the highest accuracy
when used with the proposed method for waypoint prediction.

Within the closed-loop context of our study, we have leveraged
BEV semantic maps generated by the Carla simulator as part of our
proposed methodology. However, alternative methods are viable for
generating these maps. To examine the influence of BEV map quality
on the performance of the proposed method within closed-loop settings,
we have incorporated the ST-P3 (Hu et al., 2022) method to produce
BEV semantic maps for the Town05 Long Benchmark. These maps were
then input into our model. Table 6 presents a quantitative comparison,
showcasing how different BEV map generation approaches affect our
proposed method’s performance in closed-loop scenarios.
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Table 3
Quantitative Comparison of Proposed method in Closed-loop Settings for Town05 Long Benchmark: The analysis illustrates the
quantitative comparison of proposed method with state-of-the-art methods on Town05 Long benchmark. The evaluation uses three
metrics:driving score (DS), route completion (RC) and infraction score (IS).

Methods Metrics

DS ↑ RC ↑ IS ↑

CILRS (Codevilla et al., 2019; Jia et al., 2023) 7.80 ± 0.30 10.30 ± 0.00 0.75 ± 0.05
LBC (Chen et al., 2020b; Jia et al., 2023) 12.30 ± 2.00 31.90 ± 2.20 0.66 ± 0.02
Transfuser (Prakash et al., 2021; Jia et al., 2023) 31.00 ± 3.60 47.50 ± 5.30 0.77 ± 0.04
SDCa (Natan and Miura, 2022) 47.13 ± 5.27 77.42 ± 0.00 0.65 ± 0.00
SDCb (Natan and Miura, 2022) 31.05 ± 2.70 64.13 ± 0.00 0.53 ± 0.00
Roach (Zhang et al., 2021; Jia et al., 2023) 41.60 ± 1.80 96.40 ± 2.10 0.43 ± 0.03
LAV (Chen and Krähenbühl, 2022; Jia et al., 2023) 46.50 ± 2.30 69.80 ± 2.30 0.73 ± 0.02
InterFuser (Shao et al., 2023) 51.60 ± 3.40 88.90 ± 2.50 0.58 ± 0.05
TCP (Wu et al., 2022; Jia et al., 2023) 57.20 ± 1.50 80.40 ± 1.50 0.73 ± 0.02
Think Twice (Jia et al., 2023) 65.00 ± 1.70 95.50 ± 2.00 0.69 ± 0.05

Ours 𝟔𝟖.𝟑𝟎 ± 𝟏.𝟗𝟎 𝟗𝟔.𝟓𝟎 ± 𝟏.𝟏𝟖 𝟎.𝟕𝟓 ± 𝟎.𝟎𝟓

a Indicates the respective method reports the score on normal all weather conditions.
b Corresponds to adversarial all weather conditions.

Table 4
Comparative analysis of Proposed method in Closed-loop Settings for Longest6 Benchmark: The quantitative results show the
comparison of proposed method with state-of-the-art methods on Longest6 benchmark in terms of driving score (DS), route completion
(RC) and infraction score (IS).

Methods Metrics

DS ↑ RC ↑ IS ↑

WOR (Chen et al., 2021; Zhang et al., 2023) 17.36 ± 2.95 43.46 ± 2.99 0.54 ± 0.06
LAV (Chen and Krähenbühl, 2022; Zhang et al., 2023) 48.41 ± 3.40 80.71 ± 0.84 0.60 ± 0.04
Transfuser (Prakash et al., 2021; Zhang et al., 2023) 46.20 ± 2.57 83.61 ± 1.16 0.57 ± 0.00
NEAT (Chitta et al., 2021; Zhang et al., 2023) 24.08 ± 3.30 59.94 ± 0.50 0.49 ± 0.02
CAT (Zhang et al., 2023) 58.36 ± 2.24 78.79 ± 1.50 0.77 ± 0.02
TCP (Wu et al., 2022; Zhang et al., 2023) 42.86 ± 0.63 61.83 ± 4.19 0.71 ± 0.04
Think Twice (Jia et al., 2023) 66.7 77.2 0.84

Ours 𝟔𝟕.𝟒𝟑 ± 𝟐.𝟑 𝟖𝟎.𝟓𝟒 ± 𝟏.𝟓 𝟎.𝟖𝟏 ± 𝟎.𝟎𝟓

Fig. 3. Visualization of Proposed Method’s Decision-making on Town05 Long Benchmark: The qualitative results illustrate the proposed method efficacy in different driving
conditions (a–f) of Town05 Long benchmark. The results also highlights the throttle/brake and steer values of proposed method’s action in different driving conditions.
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Fig. 4. Visualization of Proposed Method’s Decision-making on Longest6 Benchmark: The qualitative results showcase the proposed method’s efficacy in different driving conditions
with also throttle/brake and steer action values (a–f).

Table 5
BEV Map Generation: Quantitative Open-Loop Performance Analysis: The quanti-
tative comparison illustrates the BEV map generation methods on proposed method’s
performance in an open-loop settings. A lower L2 error indicates better performance.
All the maps generated from BEV methods are used with proposed method.

Method L2 (m) ↓

1s 2s 3s Avg

Lift, Splat Philion and Fidler (2020) 1.75 2.15 2.95 2.28
ST-P3 (Hu et al., 2022) 1.25 1.95 2.54 1.91
BEVFormer (Li et al., 2022) 0.40 0.85 1.49 0.91
CVT (Zhou and Krähenbühl, 2022) 0.35 0.61 1.01 0.66

Table 6
Closed-Loop Evaluation: BEV Map Impact on Proposed Method Performance: The
comparative analysis shows the impact of BEV map generation methods on proposed
method’s performance in an closed-loop settings. All the maps generated from BEV
methods are used with proposed method.

Method Metrics

DS ↑ RC ↑ IS ↑

ST-P3 (Hu et al., 2022) 59.25 ± 2.40 87.54 ± 1.25 0.65 ± 0.03

Ours 𝟔𝟖.𝟑𝟎 ± 𝟏.𝟗𝟎 𝟗𝟔.𝟓 ± 𝟏.𝟏𝟖 𝟎.𝟕𝟓 ± 𝟎.𝟎𝟓

6.2. Comparative early and late fusion approaches with proposed method

Sensor fusion techniques utilize three principal paradigms to inte-
grate multi-modal data: early, late, and intermediate fusion approaches.
As our model employs the intermediate fusion paradigm, we have
designed the early and late fusion approaches and conducted a com-
parative analysis against our proposed method. In the early fusion
approach, as illustrated in Fig. 5(a), the multi-view camera and BEV
semantic maps are stacked together before performing any feature
extraction. At the network level, we have used a single ResNet module
as a backbone network to extract the features, which are then fed
to the Transformer encoder through the projection layer. In the late
fusion approach, as shown in Fig. 5(b), we have adopted a uni-modal
architecture for each sensor modality for the feature representation.

For each multi-view RGB image and BEV semantic map, the ResNet
network is used as a backbone network for the feature representation.
Each feature is subjected to average pooling and flattening, reducing
the dimensionality to a 512-dimensional vector. A projection layer
transforms these vectors into 400-dimensional vectors suitable for input
into the transformer encoder. A dedicated transformer encoder individ-
ually processes each transformed feature vector. This step emphasizes
the learning of contextual relationships within each sensor modality.
Following encoding, a late fusion technique is employed to concatenate
these feature vectors with velocity embedding followed by a linear
layer to make the 16 dimensional vector to be used by the waypoint
prediction module. It is to be noted that in both early and late fusion,
the transformer encoder and waypoint prediction module follow the
same architecture as designed in the proposed method.

In our comparative analysis, we have evaluated both early and late
fusion variants of the proposed method in open and closed-loop set-
tings. Within the open-loop configuration as illustrated in Table 7, the
early fusion variant exhibited an L2 error of 1.55 m, 2.25 m, and 2.99 m
for the 1 s, 2 s, and 3 s prediction horizons, respectively. However, The
proposed method, with its superior performance, demonstrated greater
efficacy in the open-loop setting than the early fusion variant. Similarly,
the late fusion approach has an L2 error of 0.42 m at the 1 s horizon,
0.74 m at the 2 s horizon, and 1.15 m at the 3 s horizon, which is much
better than the early fusion approach but slightly comparable with the
proposed method.

For the closed-loop settings, we have followed the same experi-
mental protocols of the proposed method for early and late fusion
approaches. In this regard, we have experimentally evaluated the early
and late fusion approaches on Town05 Long and Longest6 benchmarks
for closed-loop settings. On the Town05 Long benchmark, the early
fusion approach has attained the driving score of 52.74±3.85, 80.12±2.50
for route completion, and an infraction score of 0.65±0.03, respectively.
Similarly, the late fusion approach has obtained 60.35±1.50, 87.45±2.00,
and 0.72 ± 0.05 of driving, route completion, and infraction scores,
respectively. The proposed method has illustrated better driving, route
completion, and infraction scores than early and late fusion approaches
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Fig. 5. Comparative frameworks: (a) Early fusion approach (b) Late fusion approach.

Table 7
Fusion Approach Efficacy in Open-Loop nuScenes Analysis: The comparative
analysis illustrates the quantitative results of proposed method’s fusion approach and
its early and late fusion variants on nuScenes in open-loop settings.

Methods L2 (m)

1 s 2 s 3 s Avg

Ours(Early Fusion) 1.55 2.25 2.99 2.26
Ours(Late Fusion) 0.42 0.74 1.15 0.77

Ours 0.35 0.61 1.01 0.66

on the Town05 Long benchmark, as illustrated in Table 8. Additionally,
Table 9 provides a quantitative comparison of the early and late fusion
approaches against our proposed method on the Longest6 benchmark.
The early fusion approach has achieved the driving score of 47.35±1.65,
65.50 ± 3.20 of route completion, and 0.69 ± 0.05 of infraction score,
respectively. The late fusion approach on the Longest6 benchmark has
obtained the 59.15 ± 2.00, 71.73 ± 3.50, and 0.77 ± 0.02 of driving,
route completion, and infraction scores, respectively. The comparative
analysis showcases that the proposed method illustrates better perfor-
mance in terms of driving, route completion, and infraction score on
the Longest6 benchmark against both the fusion approaches.

Table 8
Fusion Variant Performance Comparison on Town05 Long Benchmark: The quan-
titative results indicate the proposed method’s fusion approach with its early and late
fusion variants on Town05 Long benchmark in closed-loop settings. The comparative
analysis demonstrates the efficacy of the proposed method over its early and late fusion
counterparts.

Methods Metrics

DS ↑ RC ↑ IS ↑

Ours(Early Fusion) 52.74 ± 3.85 80.12 ± 2.50 0.65 ± 0.03
Ours(Late Fusion) 60.35 ± 1.50 87.45 ± 2.00 0.72 ± 0.05

Ours 𝟔𝟖.𝟑𝟎 ± 𝟏.𝟗𝟎 𝟗𝟔.𝟓𝟎 ± 𝟏.𝟏𝟖 𝟎.𝟕𝟓 ± 𝟎.𝟎𝟓

6.3. Effect of backbone architectures and attention layers on waypoint
prediction

This section analyzes how different network components influence
the final waypoint prediction accuracy in the proposed method and its
early and late fusion variants. For the proposed method, the ResNet50
architecture is utilized to extract features from multi-view RGB cameras
and Bird’s Eye View (BEV) semantic maps. To assess the impact of vary-
ing backbone architectures, we implemented ResNet-34 and ResNet-18
models for feature extraction. The performance outcomes of employing
ResNet-18 and ResNet-34 as the backbone in open-loop configurations
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Table 9
Fusion Variant Performance Comparison on Longest6 Benchmark: The proposed
method’s fusion approach is quantitative compared with its early and late fusion
variants on Longest6 benchmark for closed-loop settings. The quantitative analysis
demonstrates the efficacy of the proposed method over its early and late fusion
counterparts.

Methods Metrics

DS ↑ RC ↑ IS ↑

Ours(Early Fusion) 47.35 ± 1.65 65.50 ± 3.20 0.69 ± 0.05
Ours(Late Fusion) 59.15 ± 2.00 71.73 ± 3.50 0.77 ± 0.02

Ours 𝟔𝟕.𝟒𝟑 ± 𝟐.𝟑 𝟖𝟎.𝟓𝟒 ± 𝟏.𝟓 𝟎.𝟖𝟏 ± 𝟎.𝟎𝟓

are detailed in Table 10. Additionally, the results from closed-loop
scenarios on the Town05-Long and Longest6 benchmarks, with ResNet-
18 and ResNet-34 backbones, are documented in Tables 11 and 12,
respectively. Our comparative analysis demonstrates that alterations
in the backbone network architecture markedly affect the efficacy of
the proposed method. Moreover, we have also performed the analy-
sis of different components of architecture for early and late fusion
approaches. Table 10 illustrates the open-loop settings results with
different backbones for the proposed method’s early and late fusion
variants. Similarly, the performance in closed-loop settings for different
backbone networks on the Town05 Long and Longest6 benchmarks ap-
plied to both early and late fusion approaches is presented in Tables 11
and 12, respectively.

In addition to different backbone effects on the proposed and its
early and late fusion variants, we have also analyzed how different
attention layers affect the performance of waypoint prediction. For this
purpose, in our study we have selected 2, 6, 8 and 12 attention layers for
the transformer encoder and analyze the effect of those attention layers
on the waypoint prediction’s performance. For the proposed method,
the configuration with 12 attention layers was established as yielding
the most favorable results in both open-loop and closed-loop scenarios,
as indicated in Table 10, Table 11, and Table 12. Similarly, we have
also performed the comparative analysis for the early and late fusion
approaches as illustrated in Table 11, and Table 12 respectively for both
open-loop and closed-loop settings. The analysis led to the conclusion
that the attention layers play a pivotal role in the learning of feature
dependencies, which is crucial for accurate waypoint prediction.

7. Discussion about real-world application and future work

In this section, we delve into the integration of our proposed method
within real-world applications and explore potential avenues for future
research building upon our framework. Our proposed framework, de-
veloped and validated within a simulated environment, demonstrates
significant potential for real-world application in autonomous driving
systems. The simulation-based approach offers a controlled setting to
rigorously test the system’s capabilities and robustness under diverse
conditions that can be challenging to replicate in the real world. To
bridge the gap between simulation and real-world deployment strate-
gies such as data augmentation and domain adaptation is pivotal,
enabling the model to reflect the intricacies of real-world scenarios
better. A notable challenge in leveraging our model, which relies on
multi-camera views and BEV (Bird’s-Eye View) semantic maps, is the
real-time acquisition of BEV maps. The reliance on off-the-shelf BEV
generation methods poses a significant computational hurdle. A viable
solution to circumvent this issue involves the utilization of vector maps
to provide an efficient BEV representation of the surroundings. Addi-
tionally, the integration of a safety feedback layer is vital for the precise
translation of waypoint predictions into actionable commands for ve-
hicle actuators, ensuring actions are executed safely and effectively.
This safety layer, serving as an indispensable link between high-level
decision-making and actuator-level execution, significantly enhances
the framework’s utility and dependability for real-world autonomous
driving applications.

Future research endeavors present exciting prospects for enhancing
the framework’s perception capabilities and driving policy predictions.
While the current model leverages RGB cameras and BEV semantic
maps for environmental perception, incorporating additional sensing
modalities such as radar and LiDAR could significantly enrich the
perception module. This expansion would bolster the system’s en-
vironmental awareness and its ability to navigate complex driving
scenarios with increased accuracy and safety. Another promising area
of exploration involves refining the contextual representation of the
environment, mainly through the integration with neural network-
based controllers that provide an extra layer of safety for deploying
the currently proposed method to real-world implementation. These
potential research directions could further enhance the framework’s
capabilities and contribute to the advancement of autonomous driving
systems.

8. Conclusion

In this work, we explore the use of contextual information for
learning driving policies in an end-to-end manner for autonomous
driving. Drawing inspiration from the human neural map represen-
tation of the environment, we employ three RGB cameras coupled
with a top-down semantic map to achieve a holistic understanding
of the surroundings. This environmental representation is then chan-
neled through a self-attention-based perception module, subsequently
processed by a GRU-based waypoint prediction module for generating
the waypoints. The proposed method is experimentally evaluated for
both open-loop and closed-loop settings, illustrating better performance
than state-of-the-art methods. Moreover, to underscore the proficiency
of our proposed technique, we have conducted ablation studies to
evaluate how various elements of the architecture influence waypoint
forecasting accuracy and the impact of different BEV generation meth-
ods on the proposed method’s efficacy. Likewise, we have examined
the ramifications of implementing early and late fusion strategies as
variants of the proposed method on waypoint prediction outcomes.
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Table 10
Impact of Backbone Networks and Attention Layers on L2 Distance Error: The comparative analysis presents L2 distance errors at 1 s,
2 s, and 3 s time horizons, along with the average, for the proposed method, and its early and late fusion variants. Different configurations of
backbone networks (ResNet18, ResNet34, ResNet50) and attention layers (2, 6, 8, 12) were evaluated to determine their effect on the accuracy
of waypoint prediction.

Network Parameters Value L2 (m)

1 s 2 s 3 s Avg 1 s 2 s 3 s Avg 1 s 2 s 3 s Avg
(Proposed Method) (Early Fusion) (Late Fusion)

Backbone Network
ResNet18 0.49 0.72 1.23 0.81 1.68 2.47 3.21 2.45 0.54 0.91 1.31 0.92
ResNet34 0.41 0.66 1.12 0.73 1.62 2.33 3.10 2.35 0.46 0.82 1.23 0.84
ResNet50 0.35 0.61 1.01 0.66 1.55 2.25 2.99 2.26 0.42 0.74 1.15 0.77

Attention Layers

2 0.44 0.70 1.16 0.77 1.67 2.41 3.18 2.42 0.51 0.82 1.27 0.86
6 0.40 0.66 1.11 0.72 1.62 2.35 3.09 2.35 0.45 0.79 1.22 0.82
8 0.38 0.63 1.04 0.68 1.57 2.29 3.03 2.29 0.44 0.77 1.18 0.80
12 0.35 0.61 1.01 0.66 1.55 2.25 2.99 2.26 0.42 0.74 1.15 0.77

Table 11
Evaluation of Backbone Networks and Attention Layers on Town05 Long Benchmark: This quantitative analysis showcases the driving
score (DS), route completion (RC), and infraction score (IS) metrics for the proposed method and the early and late fusion variants. The
evaluations are conducted using different backbone networks (ResNet18, ResNet34, ResNet50) and varying numbers of attention layers (2, 6,
8, 12) to assess their influence on the performance of each method.

Network Parameters Value Metrics

DS ↑ RC ↑ IS ↑ DS ↑ RC ↑ IS ↑ DS ↑ RC ↑ IS ↑

(Proposed Method) (Early Fusion) (Late Fusion)

Backbone Network
ResNet18 58.21 87.35 0.65 46.52 72.56 0.59 52.78 80.15 0.62
ResNet34 65.47 91.56 0.69 49.39 78.47 0.64 57.25 85.47 0.68
ResNet50 68.30 96.50 0.75 52.74 80.12 0.65 60.35 87.45 0.72

Attention Layers

2 60.55 89.15 0.63 40.63 69.18 0.55 51.85 79.55 0.65
6 65.74 92.54 0.68 45.87 73.62 0.59 55.73 81.36 0.67
8 66.45 96.15 0.71 47.31 76.54 0.63 59.68 85.43 0.70
12 68.30 96.50 0.75 52.74 80.12 0.65 60.35 87.45 0.72

Table 12
Evaluation of Backbone Networks and Attention Layers on Longest6 Benchmark: This quantitative results showcases different backbone
networks (ResNet18, ResNet34, ResNet50) and varying numbers of attention layers (2, 6, 8, 12) to assess their influence on the performance
of each method.

Network Parameters Value Metrics

DS ↑ RC ↑ IS ↑ DS ↑ RC ↑ IS ↑ DS ↑ RC ↑ IS ↑

(Proposed Method) (Early Fusion) (Late Fusion)

Backbone Network
ResNet18 57.45 74.23 0.71 41.20 58.63 0.58 50.95 64.37 0.71
ResNet34 63.32 77.56 0.78 46.47 61.35 0.63 55.49 69.54 0.74
ResNet50 67.43 80.54 0.81 47.35 65.50 0.69 59.15 71.73 0.77

Attention Layers

2 59.31 70.10 0.69 40.00 58.43 0.59 48.96 63.54 0.68
6 62.67 73.21 0.73 42.71 61.53 0.62 51.47 66.19 0.71
8 64.15 78.95 0.79 45.17 64.10 0.67 56.78 69.27 0.74
12 67.43 80.54 0.81 47.35 65.50 0.69 59.15 71.73 0.77
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