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Abstract
We consider the optimal scheduling problem in a multiserver queue with impatient
customers belonging to multiple classes. We assume that each customer has a ran-
dom abandonment time, after which the customer leaves the system if its service has
not been completed before that. In addition, we assume that the scheduler is not able
to anticipate the expiration of the abandonment times but only knows their distri-
butions and how long each customer has been in the system. Many papers consider
this scheduling problem under Poisson arrivals and linear holding costs assuming
further that both the service times and the abandonment times have exponential dis-
tributions. Even with these additional assumptions, the exact solution is known only
in very few special cases. To tackle this tricky problem, we apply the Whittle index
approach. Unlike the earlier papers, whichwere restricted to exponential service times,
we allow the service time distributions for which the hazard rate is decreasing. The
Whittle index approach is applied to the discrete-time multiserver queueing prob-
lem with discounted costs. As our main theoretical result, we prove that the related
relaxed optimization problem is indexable and derive the correspondingWhittle index
explicitly. Based on this discrete-time result, we develop a reasonable heuristic for
the original continuous-time multiserver scheduling problem. The performance of the
resulting policy is evaluated in the M/G/M setup by numerical simulations, which
demonstrate that it, indeed, gives better performance than the other policies included
in the comparison.
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1 Introduction

We consider the optimal scheduling problem in a multiserver queue with impatient
customers belonging to multiple classes. In some cases, customer impatience is best
described by deterministic deadlines that are known to the scheduler. However, in
this paper, we assume that each customer has a random abandonment time, after
which the customer leaves the system if its service has not been completed before
that. We also assume that the scheduler is not able to anticipate the expiration of the
abandonment times but only knows their distributions and how long each customer has
been in the system. We are interested in optimizing the scheduling policy among all
nonanticipating policies (thus, allowing preemption but ignoring the remaining service
and abandonment times) with an objective function that takes into account both the
average holding costs of the customers in the system and the average abandonment
penalties related to the customers that leave the system before their service has been
completed.

Many papers consider this scheduling problem under Poisson arrivals and linear
holding costs assuming further that both the service times and the abandonment times
have exponential distributions. Evenwith these additional assumptions, the exact solu-
tion is known only in very few special cases, see [7, 8, 10].1 Atar et al. [2, 3] approach
this trickyproblembyfluid-scalingmethods.They introduce amodificationof thewell-
known cμ-rule, called the cμ/θ -rule, which takes into account the abandonments, and
prove that it is asymptotically optimal in overload traffic conditions. Larrañaga et al.
[14] approximate the stochastic model by a deterministic fluid model and derive a
heuristic policy for the original problem, which is a combination of the cμ and cμ/θ

rules.
Another approach applied to tackle the original problem under these exponential

assumptions is based on the so-calledWhittle index, originally developed in the context
of restless bandit problems [26]. The idea is that the original constrained optimization
problemwith a finite upper limit for the scheduled customers in each time epoch is first
relaxed by requiring that the constraint is satisfied just on average in time. This makes
the problemmuch more tractable by decomposing it to separate subproblems per each
customer in the system.However,when applying this approach, it has to be justified that
the related relaxed problem is indexable [26]. Only for such problems, it is possible
to derive a unique Whittle index. If the relaxed problem is indexable, the resulting
Whittle index policy is known to be asymptotically optimal under certain technical
conditions [23, 24]. Larrañaga et al. [15, 23] show that the relaxation of the scheduling
problem is, indeed, indexable under these exponential assumptions, and derive the
related Whittle index. For linear holding costs, the Whittle index policy proves to be
the same cμ/θ -rule as derived in [2, 3] by fluid-scaling methods. The Whittle index
approach is applied also in Ayesta et al. [5, 6] under exponential assumptions and
linear holding costs. Due to some small differences in the model assumptions, they

1 This is due to both multiple parallel servers and customer impatience. For a single-server system without
abandonments, the optimal policy is known to be the cμ-rule under the exponential assumptions [9]. In
addition, for an M/G/1 queue with general service time distributions (but still without abandonments), the
Gittins index policy is optimal minimizing the average holding costs [1, 11, 21] and near-optimal in the
corresponding multiserver case [20].
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end up in a slightly modified version of the cμ/θ -rule when determining the Whittle
index policy.

In some papers, the previous model assumptions are generalized by allowing more
generally distributed abandonment times [12, 16]. However, in this paper, we stick
to the exponential abandonment times but allow more general service times than just
exponential. This setup is considered in [4, 13] but, in both of these papers, the study is
limited to non-preemptive schedulingpolicieswhile our studywill cover all preemptive
policies, as well.

In this paper, we assume that the service times are DHR, i.e., the hazard rate of
the service time distribution is decreasing2 for each class. We apply the Whittle index
approach to find out a reasonable heuristic among the nonanticipating policies for the
optimal scheduling problem with DHR service times and exponential abandonment
times. As far as we know, such results have not been presented earlier. By numeri-
cal simulations, we furthermore demonstrate that the resulting Whittle index policy
outperforms the other scheduling policies included in the comparison.

As in [5], we apply the Whittle index approach in the closed version3 of the cor-
responding discrete-time model with discounted costs (see Sects. 2, 3). The related
relaxed problem is shown to be indexable and the corresponding Whittle index is
derived explicitly in Sect. 4 (see Therorem 1), which is the main theoretical result of
the paper. In Sect. 5, we move from discounted to undiscounted costs. In addition, we
move from the discrete-time setup to the original scheduling problem in continuous
time, and determine the Whittle index policy in this setting. The performance of the
resulting Whittle index policy is evaluated by numerical simulations in Sect. 6, and
Sect. 7 concludes the paper.

2 Scheduling problem in discrete time with discounted costs

We consider the following multiserver optimal scheduling problem in discrete time.
Assume that there are M homogeneous parallel servers. Let the time slots be indexed
by t ∈ {1, 2, . . .}. In the beginning of the first time slot, there are K customers. Let
Sk denote the random service time of customer k, k ∈ {1, 2, . . . , K }, taking values in
{1, 2, . . .}. The service time distribution of customer k is general, and the service times
are assumed to be independent. Let μk(n), n ∈ {0, 1, . . .}, denote the corresponding
discrete hazard rate [22], i.e., the conditional probability that the service time of
customer k is equal to n + 1, given that it is strictly greater than n,

μk(n) = P{Sk = n + 1 | Sk > n}. (1)

In addition, let Dk denote the random life time of customer k, i.e., the time interval
from the beginning until the customer leaves the system due to abandonment (unless

2 In this paper, we use the terms “decreasing” and “increasing” in their weak forms. Thus, e.g., a decreasing
function is not required to be strictly decreasing.
3 Following [25, 26], we call the dynamic setup with Poisson arrivals and K classes of customers as
the open version of the problem, while the closed version refers to the transient case where there are K
(heterogeneous) customers in the system at time 0 and no new arrivals later on.
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4 Queueing Systems (2024) 107:1–30

its service has already been completed prior to that moment). We assume here that
the life time of customer k, Dk , is independently and geometrically distributed taking
values in {1, 2, . . .} with a fixed abandonment probability θk > 0.

Customers are served according to a nonanticipating4 scheduling policy π that
allows preemptions. Let � denote the family of such disciplines. In the beginning of
any time slot t ∈ {1, 2, . . .}, the scheduler chooses at most M of the customers for
service (during that time slot). Denote Aπ

k (t) = 1 if customer k is chosen for service
in the beginning of time slot t ; otherwise, let Aπ

k (t) = 0. Thus, for any policy π and
time slot t , we have the following constraint:

K∑

k=1

Aπ
k (t) ≤ M . (2)

When making the decision in the beginning of a time slot, say t , a nonanticipating
policy π does not know the exact service times Sk nor the abandonment times Dk

but only the attained services of all the customers prior to that time slot t . Let Xπ
k (t)

denote the state of customer k in the beginning of time slot t taking values in

S = {0, 1, . . .} ∪ {A,B}.

If customer k is still in the system in the beginning of time slot t , its state Xπ
k (t) ∈

{0, 1, . . .} refers to the attained service prior to time slot t . However, as soon as cus-
tomer k leaves the system, its state ismarked by symbol A if the reason is abandonment
and by symbol B if the reason is service completion. As for a possible abandonment,
we assume that customer k leaves the system due to abandonment in time slot t if
the service of the customer has not been completed prior to time slot t and Dk = t .
Therefore, even if customer k was scheduled in the beginning of time slot t , it leaves
the system due to abandonment if Dk = t .

For any customer k, holding costs are accumulated at rate hk > 0 until the whole
customer is completed or the customer leaves due to abandonment. In addition, if
customer k leaves the system due to abandonment, it incurs a penalty cost of dk (as
a lump sum). When the customer has left the system, no more costs accumulate any
more. All costs are discounted in time by factor β ∈ (0, 1). The objective function in
our scheduling problem is, thus, given by

E

[ ∞∑

t=1

K∑

k=1

β t−1(hk + dk1{Dk=t}
)
1{Xπ

k (t)∈{0,1,...}}

]
. (3)

The aim is to find the optimal scheduling policy π that minimizes the expected dis-
counted costs (3) subject to the strict capacity constraint (2) for all time slots t and
assuming that the scheduling decisions in each time slot t are based on the states Xπ

k (t)
of all the customers.

4 A nonanticipating scheduling policy is aware of the attained services and the times that the customers
have already spent in the system, but it does not have any knowledge of the remaining service nor the
remaining life times of the customers.
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3 Whittle index approach to the scheduling problem

Due to abandonments, the original optimization problem described in the previous
section belongs, even in the single-server case M = 1, to the class of restless bandit
problems, which are known to be mathematically intractable. In [26], Whittle pro-
posed to relax such problems by first replacing the strict capacity constraint of the
scheduler (such as (2) in our problem) by a time-averaged one, and then considering
the Lagrangian version of the relaxed problem, which makes the problem separable.
If the relaxed problem can be proved to be indexable, this leads to so-called Whittle
index rule, which solves the relaxed problem, and serves as a reasonable heuristic for
the original problem.

In this paper, we apply Whittle’s approach [26], which results in the following
(separate) subproblems for each customer k: Find the optimal policy π that minimizes
the objective function

f π
k,β + νgπ

k,β , (4)

where ν can be interpreted as the unit price of work, f π
k,β as the expected discounted

costs of customer k, and gπ
k,β as the expected discounted amount of work allocated to

customer k,

f π
k,β = E

[ ∞∑

t=1

β t−1(hk + dk1{Dk=t}
)
1{Xπ

k (t)∈{0,1,...}}

]
,

gπ
k,β = E

[ ∞∑

t=1

β t−1Aπ
k (t)

]
.

The separable subproblems (4) are considered in the context of Markov decision
processes. The possible actions ak ∈ A = {0, 1} are “to schedule” (ak = 1) and “not
to schedule” (ak = 0).

Consider any customer k. Let qk(y|x, a) ≥ 0 denote the transition probability from
state x ∈ S to state y ∈ S after action a ∈ A. The nonzero transition probabilities in
our model are as follows:

qk(A|n, a) = θk, n ∈ {0, 1, . . .}, a ∈ A,

qk(n|n, 0) = 1 − θk, n ∈ {0, 1, . . .},
qk(B|n, 1) = (1 − θk)μk(n), n ∈ {0, 1, . . .},
qk(n + 1|n, 1) = (1 − θk)(1 − μk(n)), n ∈ {0, 1, . . .},
qk(x |x, a) = 1, x ∈ {A,B}, a ∈ A.

(5)

Note that the states A and B are absorbing for any policy. Let then ck(x, a) denote the
expected immediate cost in state x ∈ S after action a ∈ A. In our model,

ck(n, a) = hk + θkdk + aν, n ∈ {0, 1, . . .}, a ∈ A,

ck(x, a) = aν, x ∈ {A,B}, a ∈ A.
(6)
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6 Queueing Systems (2024) 107:1–30

Since the state space S is discrete, the action space A is finite, and the expected
immediate costs are bounded, the optimal policy belongs to the class of stationary
policies [19, Thm. 6.3]. For each stationary policy π , the decisions Aπ

k (t) related to
customer k are deterministic depending just on the current state Xπ

k (t),

Aπ
k (t) =

{
1, if Xπ

k (t) ∈ Bπ ,

0, otherwise,

where Bπ ⊂ S is called the activity set of policy π .
Finally, let Vk,β(x; ν) denote the value function for state x ∈ S related to the

minimization of the expected discounted costs (4) with Lagrangian parameter ν. The
corresponding optimality equations [19, Thm. 6.1] read as follows:

Vk,β(x; ν) = min{0, ν} + βVk,β(x; ν), x ∈ {A,B},
Vk,β(n; ν) = hk + θkdk + min

{
β
(
θkVk,β(A; ν) + (1 − θk)Vk,β(n; ν)

)
,

ν + β
(
θkVk,β(A; ν) +

(1 − θk)
(
μk(n)Vk,β(B; ν) + (1 − μk(n))Vk,β(n + 1; ν)

))}
,

n ∈ {0, 1, . . .}.

(7)

In addition, let V π
k,β(x; ν) denote the corresponding value function for policy π .

The policy π∗
k for which

V
π∗
k

k,β(x; ν) = Vk,β(x; ν)

for all x ∈ S is said to be (ν, β)-optimal for customer k.
Let us conclude this section by defining the indexability property, which is not

automatically guaranteed for genuine restless bandit problems [26].

Definition 1 The relaxed optimization problemwith objective function (4) and related
to customer k is indexable if, for any state x ∈ S, there exists Wk,β(x) ∈ [−∞,∞]
such that

(i) decision a = 1 (to schedule customer k) is optimal in state x if and only if
ν ≤ Wk,β(x);

(ii) decision a = 0 (not to schedule customer k) is optimal in state x if and only if
ν ≥ Wk,β(x).

If the problem is indexable, the corresponding index Wk,β(x) is called the Whittle
index.

Note that, according to this definition, the two actions are equally good (and, thus,
optimal) in state x if and only if ν = Wk,β(x).

In the following section, we prove that the relaxed optimization problem with
objective function (4) is, indeed, indexable for any k under the assumption that the
discrete hazard rate μk(n) is a decreasing function of n.
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4 Whittle index for DHR service times

In this section, we solve the relaxed optimization problem with objective function (4)
for a single customer, say customer k. Since we are all the time considering a single
customer, we leave out the related subscript k to lighten the notation. The relaxed
problem is shown to be indexable and the corresponding Whittle index is derived
explicitly (Theorem 1), which is the main theoretical result of the whole paper.

Throughout this section, we assume that the discrete hazard rate μ(n) of the cus-
tomer’s service time distribution is a decreasing function of n, i.e.,

μ(0) ≥ μ(1) ≥ μ(2) ≥ · · · ≥ μ(∞), (8)

where we have defined

μ(∞) = lim
n→∞ μ(n) ≥ 0. (9)

Under this assumption, we prove that the relaxed optimization problem with objective
function (4) is indexable. In addition,we derive the correspondingWhittle index values
Wβ(x) for any state x ∈ S by solving the problem (4) for any ν ∈ (−∞,∞).

Theorem 1 Consider a single customer under assumption (8).5 The relaxed optimiza-
tion problem with objective function (4) is indexable, and the corresponding Whittle
indexes are given by the following formulas:

Wβ(n) = (h + θd)
β(1 − θ)

1 − β(1 − θ)
μ(n), n ∈ {0, 1, . . . , },

Wβ(A) = Wβ(B) = 0. (10)

Proof Note first that, by the DHR assumption, we clearly have

Wβ(0) ≥ Wβ(1) ≥ Wβ(2) ≥ · · · ≥ Wβ(∞), (11)

where we have defined

Wβ(∞) = lim
n→∞ Wβ(n) = (h + θd)

β(1 − θ)

1 − β(1 − θ)
μ(∞) ≥ 0. (12)

The main proof is given below in five parts (1◦–5◦). For the proof, we partition the
possible values of ν into separate intervals and solve the relaxed optimization problem
with objective function (4) in these intervals by utilizing the optimality equations (7).
This is reflected by the five parts of the main proof.

In parts 1◦–4◦, we consider the nonnegative values of ν, ν ≥ 0. From optimality
equations (7), we see that, in this case, theminimumexpected discounted cost Vβ(x; ν)

for the absorbing states x ∈ {A,B} clearly equals 0 and is achieved by the policies π

5 In the sequel, this is called the DHR assumption.

123



8 Queueing Systems (2024) 107:1–30

that choose action 0 in states A and B. It follows that, for any ν ≥ 0, the optimality
equations (7) for the remaining states n ∈ {0, 1, . . .} read as follows:

Vβ(n; ν) = h + θd + min
{
β(1 − θ)Vβ(n; ν),

ν + β(1 − θ)(1 − μ(n))Vβ(n + 1; ν)
}
.

(13)

In the last part 5◦, we consider the nonpositive values of ν, ν ≤ 0. In this case,
the minimum expected discounted cost Vβ(x; ν) for the absorbing states x ∈ {A,B}
equals clearly ν/(1 − β) and is achieved by those policies π that choose action 1 in
states A and B.Moreover, for any ν ≤ 0, the optimality equations (7) for the remaining
states n ∈ {0, 1, . . .} read as follows:

Vβ(n; ν) = h + θd + βθ
ν

1 − β
+ min

{
β(1 − θ)Vβ(n; ν),

ν + β(1 − θ)
(
μ(n)

ν

1 − β
+ (1 − μ(n))Vβ(n + 1; ν)

)}
,

n ∈ {0, 1, . . .}.

(14)

1◦ Let ν ∈ [Wβ(0),∞). We prove that the policy π with activity set

Bπ = ∅,

according to which user k is not scheduled in any state x ∈ S, is (ν, β)-optimal. It
remains to prove that policy π is optimal in any state n ∈ {0, 1, . . .}.

We start the proof by first deriving the value function V π
β (n; ν) for policy π from

the following equations:

V π
β (n; ν) = h + θd + β(1 − θ)V π

β (n; ν), n ∈ {0, 1, . . .}.
(15)

The unique solution of these linear equations is clearly given by

V π
β (n; ν) = h + θd

1 − β(1 − θ)
, n ∈ {0, 1, . . .}. (16)

Let n ∈ {0, 1, . . .}. By (16), the following condition for optimality of π in state n
[based on the optimality equation (13)],

β(1 − θ)V π
β (n; ν) ≤ ν + β(1 − θ)(1 − μ(n))V π

β (n + 1; ν),

is easily shown to be equivalent with

ν ≥ (h + θd)
β(1 − θ)

1 − β(1 − θ)
μ(n). (17)
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This condition is satisfied due to the DHR assumption, since we assumed that

ν ≥ Wβ(0) = (h + θd)
β(1 − θ)

1 − β(1 − θ)
μ(0),

which completes the proof of claim 1◦.
2◦ Let ν ∈ [Wβ(1),Wβ(0)]. We prove that the policy π with activity set

Bπ = {0},

according to which user k is scheduled just in state 0, is (ν, β)-optimal. It remains to
prove that policy π is optimal in any state n ∈ {0, 1, . . .}.

We start the proof by first deriving the value function V π
β (n; ν) for policy π from

the following equations:

V π
β (0; ν) = h + θd + ν + β(1 − θ)(1 − μ(0))V π

β (1; ν),

V π
β (n; ν) = h + θd + β(1 − θ)V π

β (n; ν), n ∈ {1, 2, . . .}.
(18)

The unique solution of these linear equations is given by

V π
β (0; ν) = h + θd

1 − β(1 − θ)

(
1 − β(1 − θ)μ(0)

)
+ ν,

V π
β (n; ν) = h + θd

1 − β(1 − θ)
, n ∈ {1, 2, . . .}.

(19)

By (19), the following condition for optimality of π in state 0,

β(1 − θ)V π
β (0; ν) ≥ ν + β(1 − θ)(1 − μ(0))V π

β (1; ν),

is easily shown to be equivalent with

ν ≤ (h + θd)
β(1 − θ)

1 − β(1 − θ)
μ(0), (20)

where the right hand side equals Wβ(0) by (10).
Let then n ∈ {1, 2, . . .}. Again, by (19), the following condition for optimality of

π in state n,

β(1 − θ)V π
β (n; ν) ≤ ν + β(1 − θ)(1 − μ(n))V π

β (n + 1; ν),

is easily be shown to be equivalent with condition

ν ≥ (h + θd)
β(1 − θ)

1 − β(1 − θ)
μ(n). (21)
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10 Queueing Systems (2024) 107:1–30

This condition is satisfied due to the DHR assumption, since we assumed that

ν ≥ Wβ(1) = (h + θd)
β(1 − θ)

1 − β(1 − θ)
μ(1),

which completes the proof of claim 2◦.
3◦ Let m ∈ {1, 2, . . .} and ν ∈ [Wβ(m + 1),Wβ(m)]. We prove that the policy π

with activity set

Bπ = {0, 1, . . . ,m},

according to which user k is scheduled in states {0, 1, . . . ,m}, is (ν, β)-optimal. It
remains to prove that policy π is optimal in any state n ∈ {0, 1, . . .}.

We start the proof by first deriving the value function V π
β (n; ν) for policy π from

the following equations:

V π
β (n; ν) = h + θd + ν + β(1 − θ)(1 − μ(n))V π

β (n + 1; ν), n ∈ {0, 1, . . . ,m},
V π

β (n; ν) = h + θd + β(1 − θ)V π
β (n; ν), n ∈ {m + 1,m + 2, . . .}.

(22)

The unique solution of these linear equations is given by

V π
β (n; ν) = h + θd

1 − β(1 − θ)

(
1 −

m−n∑

i=0

β i+1(1 − θ)i+1
i−1∏

j=0

(1 − μ(n + j)) μ(n + i)
)

+ ν
( m−n∑

i=0

β i (1 − θ)i
i−1∏

j=0

(1 − μ(n + j))
)
, n ∈ {0, 1, . . . ,m},

V π
β (n; ν) = h + θd

1 − β(1 − θ)
, n ∈ {m + 1,m + 2, . . .}.

(23)

By (23), the following condition for optimality of π in state m,

β(1 − θ)V π
β (m; ν) ≥ ν + β(1 − θ)(1 − μ(m))V π

β (m + 1; ν),

is easily shown to be equivalent with

ν ≤ (h + θd)
β(1 − θ)

1 − β(1 − θ)
μ(m), (24)

where the right hand side equals Wβ(m) by (10).
Let then n ∈ {m + 1,m + 2, . . .}. Again, by (23), the following condition for

optimality of π in state n,

β(1 − θ)V π
β (n; ν) ≤ ν + β(1 − θ)(1 − μ(n))V π

β (n + 1; ν),

123



Queueing Systems (2024) 107:1–30 11

is easily be shown to be equivalent with condition

ν ≥ (h + θd)
β(1 − θ)

1 − β(1 − θ)
μ(n). (25)

This condition is satisfied due to the DHR assumption, since we assumed that

ν ≥ Wβ(m + 1) = (h + θd)
β(1 − θ)

1 − β(1 − θ)
μ(m + 1).

It remains to prove that policy π is optimal in any state n ∈ {0, 1, . . . ,m−1} given
that ν ∈ [Wβ(m + 1),Wβ(m)]. Let n ∈ {0, 1, . . . ,m − 1}. By (23), the following
condition for optimality of π in state n,

β(1 − θ)V π
β (n; ν) ≥ ν + β(1 − θ)(1 − μ(n))V π

β (n + 1; ν),

can, by straightforward but tedious manipulations, be shown to be equivalent with
condition

ν ≤ (h + θd)
β(1 − θ)

1 − β(1 − θ)

∑m−n
i=0 β i (1 − θ)i

∏i−1
j=0(1 − μ(n + j)) μ(n + i)

∑m−n
i=0 β i (1 − θ)i

∏i−1
j=0(1 − μ(n + j))

.

This condition clearly follows from (24) due to the DHR assumption, which completes
the proof of claim 3◦.

4◦ Let ν ∈ [0,Wβ(∞)]. We prove that the policy π with activity set

Bπ = {0, 1, . . .},

according towhich user k is scheduled in states {0, 1, . . .}, is (ν, β)-optimal. It remains
to prove that policy π is optimal in any state n ∈ {0, 1, . . .}.

We start the proof by first deriving the value function V π
β (n; ν) for policy π from

the following equations:

V π
β (n; ν) = h + θd + ν + β(1 − θ)(1 − μ(n))V π

β (n + 1; ν), n ∈ {0, 1, . . .}.
(26)

The unique solution of these linear equations is given by

V π
β (n; ν) = h + θd

1 − β(1 − θ)

(
1 −

∞∑

i=0

β i+1(1 − θ)i+1
i−1∏

j=0

(1 − μ(n + j)) μ(n + i)
)

+ ν
( ∞∑

i=0

β i (1 − θ)i
i−1∏

j=0

(1 − μ(n + j))
)
, n ∈ {0, 1, . . .}.

(27)
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Let n ∈ {0, 1, . . .}. By (27), the following condition for optimality of π in state n,

β(1 − θ)V π
β (n; ν) ≥ ν + β(1 − θ)(1 − μ(n))V π

β (n + 1; ν),

can, by straightforward but tedious manipulations, be shown to be equivalent with
condition

ν ≤ (h + θd)
β(1 − θ)

1 − β(1 − θ)

∑∞
i=0 β i (1 − θ)i

∏i−1
j=0(1 − μ(n + j)) μ(n + i)

∑∞
i=0 β i (1 − θ)i

∏i−1
j=0(1 − μ(n + j))

.

This condition is satisfied due to the DHR assumption, since we assumed that

ν ≤ Wβ(∞) = (h + θd)
β(1 − θ)

1 − β(1 − θ)
μ(∞),

which completes the proof of claim 4◦.
5◦ Finally, let ν ∈ (−∞, 0]. We prove that the policy π with activity set

Bπ = S,

according to which user k is scheduled in all states, is (ν, β)-optimal. It remains to
prove that policy π is optimal in any state n ∈ {0, 1, . . .}.

We start the proof by first deriving the value function V π
β (n; ν) for policy π from

the following equations:

V π
β (n; ν) = h + θd + βθ

ν

1 − β

+ ν + β(1 − θ)
(
μ(n)

ν

1 − β
+ (1 − θ)(1 − μ(n))V π

β (n + 1; ν)
)
,

n ∈ {0, 1, . . .}.

(28)

The unique solution of these linear equations is given by

V π
β (n; ν) = h + θd

1 − β(1 − θ)

(
1 −

∞∑

i=0

β i+1(1 − θ)i+1
i−1∏

j=0

(1 − μ(n + j)) μ(n + i)
)

+ ν

1 − β
, n ∈ {0, 1, . . .}.

(29)

Let n ∈ {0, 1, . . .}. By (29), the following condition for optimality of π in state n
[based on (14)],

β(1 − θ)V π
β (n; ν) ≥ ν + β(1 − θ)

(
μ(n)

ν

1 − β
+ (1 − μ(n))V π

β (n + 1; ν)
)
,
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can, by straightforward but tedious manipulations, be shown to be equivalent with
condition

ν ≤ (h + θd)β(1 − θ)

∞∑

i=0

β i (1 − θ)i
i−1∏

j=0

(1 − μ(n + j)) μ(n + i),

which follows fromour assumption thatν ≤ 0 since the right hand side of the inequality
above is clearly nonnegative. This completes the proof of claim 5◦.

From 1◦ to 5◦ together, we deduce that the relaxed optimization problem with
objective function (4) is indexable in any state x ∈ S and the corresponding Whittle
index is given by (10). �

5 Whittle index policy

In this section, we move from discounted to undiscounted costs. In addition, we move
from the discrete-time setup to the original open version of the scheduling problem in
continuous time, and determine the Whittle index policy in this setting.

Let us first consider undiscounted costs in the discrete-time model. Let Wk,1(n)

denote the Whittle index for customer k in state n related to the undiscounted costs,
which is derived from the discounted-cost Whittle index Wk,β(n) as follows:

Wk,1(n) = lim
β→1

Wk,β(n), n ∈ {0, 1, . . .}.

By (10), we have

Wk,1(n) =
(
hk
θk

+ dk

)
(1 − θk) μk(n), n ∈ {0, 1, . . . , }, (30)

assuming that the discrete hazard rate μk(n) of customer k satisfies the DHR assump-
tion (8).

When considering the continuous-time model related to the open version of the
scheduling problem, the DHR assumption (8) reads as follows:

μk(x) ≥ μk(y) for all x < y, (31)

i.e., the (continuous-time) hazard rate function μk(x) is decreasing for all x > 0 and
all customer classes k.

The continuous-time counterpart of the Whittle index is now determined by letting
the time slot shrink down to 0 while, at the same time, scaling the service comple-
tion and abandonment probabilities accordingly. As the result, we get the following
expression for the continuous-time Whittle index Wk(a) for customer class-k, where
a > 0 refers to the attained service of the customer:

Wk(a) =
(
hk
θk

+ dk

)
μk(a), a > 0. (32)
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Note that, in this continuous-time model, the holding cost rate hk is given per time unit
while the abandonment penalty dk is still a lump sum. Geometric abandonment times
are replaced by exponentially distributed abandonment times so that θk now refers
to the abandonment intensity per time unit (instead of the abandonment probability
per time slot). In addition, the discrete hazard rate is replaced by the continuous-time
hazard rate function μk(a). Note also the similarity with the corresponding Gittins
index for the DHR service times [1]:

Gk(a) = hkμk(a), a > 0. (33)

Definition 2 Consider the original continuous-time scheduling problemwithM homo-
geneous parallel servers and exponentially distributed abandonments. Assume that the
hazard rate functionsμk(x) of all customer classes k satisfy the DHR assumption (31).
At any time t , theWhittle index policy (WHI) chooses to serve

(i) all the customers, if there are at most M customers in the system;
(ii) those M customers that have the highest Whittle indexes Wk(ak) given in (32), if

there are more than M customers in the system.

Asproposed in [20], the correspondingGittins index policy (GIT) for themultiserver
case is defined similarly, just replacing the comparison of Whittle indexes Wk(a) by
the comparison of Gittins indexes Gk(ak) given in (33).

Note also that, in the special case, where customer class k has an exponential service
time distribution with mean 1/μk , the Whittle index Wk(a) is just constant,

Wk(a) =
(
hk
θk

+ dk

)
μk, a > 0. (34)

Thus, if all customer classes have exponential distributions, the Whittle index policy
(WHI) is equivalent to the cμ/θ rule (CMTH) derived in [2, 3, 15, 23].

On the other hand, if there is just one customer class (K = 1) with a DHR service
time distribution, both WHI and GIT reduce to the Forward–Backward policy (FB),6

which is known to be the optimal scheduling policy in the ordinary single-serverM/G/1
queue with DHR service times but without any abandonments [1, 18].

In the following section, we compare, by numerical simulations, the perfor-
mance of the Whittle index policy (WHI) to the GIT, CMTH, and FB schedulers
mentioned above. In addition, we include ordinary (nonanticipating) policies First-
Come-First-Served (FCFS) and Processor-Sharing (PS) in our comparison, as well as
the anticipating policy Earliest-Deadline-First (EDF). Note, however, that the EDF
policy, which is known to be the optimal (anticipating) policy when service times are
exponential and only the abandonment penalties are taken into account [17], utilizes
the remaining life time information, which is not available for the nonanticipating
policy WHI.

6 Scheduling policy FB chooses always the customer with the least attained service. It is also known as
the Least-Attained-Service policy (LAS).
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6 Numerical results

In this section, we evaluate, by numerical simulations, the performance of the Whittle
index policy (WHI) in the M/G/M queue with M servers, DHR service times, and
exponentially distributed abandonments. We demonstrate that WHI gives systemati-
cally better performance than the nonanticipating policies CMTH, FB, PS, and FCFS
mentioned in Sect. 5. As for the Gittins index policy (GIT), the difference in the perfor-
mance is smaller, but still WHI appears to be better more often than GIT. In addition,
we find that WHI even outperforms the anticipating policy EDF, when both holding
costs and abandonment penalties are taken into account.

In our numerical simulations, the customers arrive according to a Poisson process at
rate λ > 0, and they have independent service times. There may be multiple customer
classes, but the service time distribution in each class k is of type DHR satisfying the
continuous-time version (31) of the DHR assumption. In addition, the abandonment
times of the customers in class k are independent and exponentially distributed with
intensity θk > 0. Note also that, due to abandonments, our queueing system is stable
for any λ > 0.

6.1 Single customer class

First we consider the single-server case (M = 1) where all the customers belong to
the same class. For the service time, we apply the Weibull distribution with shape
parameter α > 0 and the scale parameter γ > 0, for which the cumulative distribution
function reads as

F(x) = 1 − e−(γ x)α , x > 0,

and the hazard rate function is given by

μ(x) = αγ (γ x)α−1, x > 0,

which is a decreasing function of x whenever 0 < α ≤ 1. In addition, the mean service
time depends on the parameters as follows:

E[S] = 1

γ



(
1 + 1

α

)
,

where 
(·) refers to the Euler gamma function. Note that theWeibull distribution with
shape parameter α = 1 is, in fact, the same as the exponential distribution with mean
1/γ .

In our numerical experiments, we let the shape parameter α vary but choose the
scale parameter γ = 
(1+ 1

α
) so that E[S] = 1 for any α. In addition, we have fixed

the abandonment rate to be θ = 1/8 so that the mean abandonment time is eight times
longer than the mean service time. Holding costs are accrued at rate h = 1, and the
abandonment penalty cost takes value d = 10.
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Since there is just a single class of customers with DHR service times, the Whittle
index policy (WHI) (as well as the Gittins index policy (GIT)) is the same as the
FB policy. Based on simulations, we have estimated its performance against policies
FCFS, PS, and EDF with varying inverse shape parameter values (1/α ∈ [1, 3]) and
two different loads (λ ∈ {1, 2}). In each simulation run with fixed model parameters
and scheduling policy, we have gathered the system statistics until there are 106 cus-
tomer arrivals. The results for the lower load (λ = 1) are shown in Fig. 1, and for the
higher load (λ = 2) in Fig. 2. In these figures, the mean total/holding/abandonment
costs refer to the estimated mean total/holding/abandonment costs per time unit (and
not per customer).

As seen from these figures, when 1/α = 1 (i.e., the service times are exponential),
the mean total costs, holding costs, and abandonment costs are essentially the same for
the nonanticipating policies FCFS, PS, andWHI, which is in line with theory. For any
1/α > 1 and for both load levels (λ ∈ {1, 2}), WHI is systematically better than FCFS
and PS both in the mean total cost sense as well as for the two components (holding
and abandonment costs) separately. In addition, the performance of PS is much closer
to that of WHI than the performance of FCFS.

When comparing WHI to EDF, we see that EDF typically produces smaller mean
abandonment costs thanWHI,which is also in linewith theory.However, for the higher
load (λ = 2), the difference is very small and almost within the random variations
related to the numerical simulations. On the other hand, themean holding costs of EDF
are systematically much higher than those ofWHI. As a result, WHI outperforms EDF
when both holding costs and abandonment costs are taken into account.

6.2 Multiple customer classes

Next we consider the single-server case (M = 1) where there are two customer
classes. Class-1 customers have exponential services times with mean E[S1] = 1, and
class-2 customers have Weibull services times with a varying inverse shape parameter
1/α2 ∈ [1, 3] but with a fixed mean E[S2] = 1. The system is studied under two
different total loads, λ ∈ {1, 2}, assuming that both classes generate an equal load:
λ1 = λ2 = λ/2. The other parameters are chosen as follows:

1/θ1 = 1/θ2 = 8, h1 = h2 = 1, d1 = 10, d2 = 20.

In this case, the Whittle indexes for the two classes are

W1(x) =
(
h1
θ1

+ d1

)
1

E[S1] = 18,

W2(x) =
(
h2
θ2

+ d2

)
μ2(x) = 28μ2(x),

where the decreasing hazard rate of class-2 customers is given by

μ2(x) = α2γ2(γ2x)
α2−1
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Fig. 1 Single-class case, lower load (λ = 1): simulated average costs for policies FCFS, PS, WHI, and
EDF as a function of the inverse Weibull shape parameter 1/α. a Mean total costs (top), b mean holding
costs (middle), c mean abandonment costs (bottom)
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Fig. 2 Single-class case, higher load (λ = 2): simulated average costs for policies FCFS, PS, WHI, and
EDF as a function of the inverse Weibull shape parameter 1/α. a Mean total costs (top), b mean holding
costs (middle), c mean abandonment costs (bottom)
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Fig. 3 Two-class case:Whittle index as a function of the attained service for exponential distribution (green)
and Weibull distributions with the inverse shape parameters 1/α2 = 2 (blue) and 1/α2 = 3 (red) (Color
figure online)

with γ2 = 
(1 + 1
α2

). Since, for any 0 < α2 < 1,

lim
x→0

μ2(x) = ∞, lim
x→∞ μ2(x) = 0,

there is a unique borderline attained service value a∗(α2) > 0 such that

W1(a
∗(α2)) = W2(a

∗(α2)).

This is illustrated in Fig. 3, where we see the constant Whittle index W1(x) and the
decreasing Whittle indexW2(x) for the inverse shape parameter values 1/α2 ∈ {2, 3}.
The borderline attained services are a∗(1/2) = 1.210 and a∗(1/3) = 0.915, respec-
tively.

Thus, the Whittle index policy (WHI) is as follows for any 0 < α2 < 1. Whenever
there are class-2 customers with attained service less than the borderline value a∗(α2),
they are served in the FB manner. But as soon as the attained services of all class-2
customers are at least the same as the borderline value a∗(α2), the server starts to
serve class-1 customers until there are no longer any class-1 customers or a new class-
2 customer arrives. At this point, the server returns to serve class-2 customers in the
FB manner. Since the Whittle index for any class-1 customer is the same, the way
how the server serves these customers can be any work-conserving discipline. In our
experiment, we apply the robust PS policy for class-1 customers whenever they are
served.

The Gittins index policy (GIT) is very similar. In this case, the unique borderline
attained service value ã(α2) > 0 is determined from equation

G1(ã(α2)) = G2(ã(α2)),
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Fig. 4 Two-class case: Gittins index as a function of the attained service for exponential distribution (green)
and Weibull distributions with the inverse shape parameters 1/α2 = 2 (blue) and 1/α2 = 3 (red)(Color
figure online)

where the Gittins indexes for the two classes are given by

G1(x) = h1
E[S1] = 1, G2(x) = h2μ2(x) = μ2(x).

This is also illustrated in Fig. 4, where we see the constant Gittins index G1(x) and
the decreasing Gittins index G2(x) for the inverse shape parameter values 1/α2 ∈
{2, 3}. The borderline attained services are now ã(1/2) = 0.500 and ã(1/3) = 0.471,
respectively.

In addition, since

(
h1
θ1

+ d1

)
1

E[S1] = 18,

(
h2
θ2

+ d2

)
1

E[S2] = 28,

the cμ/θ rule (CMTH) is in this case a priority policy that gives always full priority
to class-2 customers. As mentioned in the previous section, in the special case α2 = 1
(i.e., with exponential service times in both classes), theWhittle index policy (WHI) is
the same as the cμ/θ rule (CMTH). On the other hand, it is shown in [4] that CMTH is
asymptotically optimal among non-preemptive scheduling policies for general service
times.

Based on simulations, we have estimated the performance of the Whittle index
policy (WHI) against policies FCFS, PS, FB, GIT, and CMTHwith the varying inverse
shape parameter values (1/α2 ∈ [1, 3]) and two different loads (λ ∈ {1, 2}). In each
simulation run with fixed model parameters and scheduling policy, we have gathered
the system statistics until there are 106 customer arrivals. The results for the lower
load (λ = 1) are shown in Fig. 5, and for the higher load (λ = 2) in Fig. 6. In these
figures, the mean total costs refer to the estimated mean total costs per time unit (and
not per customer). Therefore, the classwise mean total costs sum up to the mean total
costs induced by all customers.
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Fig. 5 Two-class case, lower load (λ = 1): simulated average total costs for policies FCFS, PS, FB, CMTH,
WHI, and GIT as a function of the inverse Weibull shape parameter 1/α2. a All customers (top), b class-1
customers (middle), c class-2 customers (bottom)
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Fig. 6 Two-class case, higer load (λ = 2): simulated average total costs for policies FCFS, PS, FB, CMTH,
WHI, and GIT as a function of the inverse Weibull shape parameter 1/α2. a All customers (top), b class-1
customers (middle), c class-2 customers (bottom)
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As seen from these figures, when 1/α2 = 1, the mean total costs (for all customers
or classwisely) are essentially the same for the policies FCFS, PS, and FB. On the
other hand, when 1/α2 = 1, the mean total costs (for all customers or classwisely) are
also essentially the same for the policies WHI and CMTH. Both of these results are
in line with theory.

When comparing WHI to FCFS and PS, we make similar observations as earlier in
the single-class example: WHI is systematically better than FCFS and PS. In addition,
the performance of PS is much closer to that of WHI than the performance of FCFS.
When comparing WHI to FB and GIT, we see that WHI is clearly better than FB and
GITwhen 1/α2 is sufficiently small. For greater values of 1/α2,WHI still outperforms
FB and GIT but the performance difference between the two policies becomes much
smaller. For any 1/α2 > 1,WHI is also systematically better than CMTH. The priority
ruleCMTHclearly favors class-2 customers giving themmuchbetter performance than
for the customers in class 1. The performance of WHI mimics that of CMTH when
1/α2 is sufficiently small, but for greater values of 1/α2, its performance is more
comparable to that of FB and GIT.

6.3 Randommodel parameters

Now we consider the single-server case (M = 1) where we still have two customer
classes but we generate certain model parameters randomly and separately for each
simulation run to study how systematically the performance of different scheduling
policies behaves when compared to each other.

As before, class-1 customers have exponential services timeswithmean E[S1] = 1,
while class-2 customers have Weibull services times with mean E[S2] = 1 and two
different inverse shape parameter values, 1/α2 ∈ {2, 3}. The system is again studied
under two different total loads, λ ∈ {1, 2}, assuming that both classes generate an
equal load: λ1 = λ2 = λ/2. In addition, we fix the holding costs for both classes
(h1 = h2 = 1) but generate the abandonment penalties d1 and d2 separately and
independently from the uniform distribution over the interval [5, 25] and the mean
abandonment times 1/θ1 and 1/θ2 separately and independently from the uniform
distributionover the interval [4, 12].Note that, if such a randomparameter combination
satisfies

1

θ1
+ d1 <

1

θ2
+ d2,

the cμ/θ rule (CMTH) is the priority policy that gives always full priority to class-2
customers. Otherwise it gives full priority to class-1 customers.

Based on simulations, we have estimated the performance of the Whittle index
policy (WHI) against policies FCFS, PS, FB, GIT, and CMTHwith two different loads
λ, two different inverse shape parameter values 1/α2, and N = 50 different random
parameter combinations (1/θ1, d1, 1/θ2, d2). The same parameter combinations are
applied to all competing scheduling policies. In each simulation run with fixed model
parameters and scheduling policy, we have gathered the system statistics until there
are 106 customer arrivals. The performance comparison between the six policies is
based on the estimated mean total costs for each simulation run separately.
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Table 1 Two-class case, inverse shape parameter 1/α2 = 2: Comparison of policiesWHI, GIT, FB, CMTH,
PS, andFCFSwith N = 50 randomparameter combinations. (a) Lower load (λ = 1), (b) higher load (λ = 2)

WHI GIT FB CMTH PS FCFS

(a) λ = 1

Rank 1 31 18 1 0 0 0

Rank 2 17 19 11 3 0 0

Rank 3 2 9 33 6 0 0

Rank 4 0 4 5 7 34 0

Rank 5 0 0 0 34 16 0

Rank 6 0 0 0 0 0 50

Avg rank 1.42 1.98 2.84 4.44 4.32 6.00

Avg cost 4.395 4.425 4.502 4.770 4.660 5.681

Cost diff – 0.72% 2.43% 8.49% 6.04% 29.56%

(b) λ = 2

Rank 1 43 7 0 0 0 0

Rank 2 7 27 11 5 0 0

Rank 3 0 10 32 8 0 0

Rank 4 0 6 7 4 33 0

Rank 5 0 0 0 33 17 0

Rank 6 0 0 0 0 0 50

Avg rank 1.14 2.30 2.92 4.30 4.34 6.00

Avg cost 15.300 15.680 15.974 17.087 16.639 20.991

Cost diff — 2.71% 4.53% 11.45% 8.82% 37.40%

Inverse shape parameter 1/α2 = 2.
Let us first consider the results related to the inverse shape parameter value 1/α2 =

2. The results for the two loads (λ ∈ {1, 2}) are presented in Table 1. After the title
row, the next six rows give the number of different ranks in the policy comparison
covering the 50 parameter combinations. Thus, the second row (Rank 1) indicates how
many times (out of 50) the policy (in a fixed column) has been the best one among the
six policies, while the seventh row (Rank 6) expresses how many times it has had the
worst estimated performance. The following row (Avg rank) gives the average rank,
and the next one (Avg cost) the average estimatedmean total costs over the 50 different
parameter combinations. Finally, in the last row (Cost diff), we have calculated the
relative difference in the average estimated mean total costs between WHI and the
other six policies.

From Table 1, we see that, overall, the Whittle index policy (WHI) outperforms the
other policies having 31 first positions, 17 second positions, and 2 third positions in the
lower load. In the higher load, the difference is even more clear with 43 first positions
and 7 second positions for WHI. The second best policy is clearly GIT taking even 18
first positions in the lower load and 7 of them in the higher load. In the lower load,
the difference between WHI and GIT seems to be quite small. FB, which is the third
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best policy, takes mostly the third position. The cμ/θ rule (CMTH) has some second
positions in both loads but usually it takes just the fifth position, while the PS policy
is usually the fourth one. The worst performance in all the trials is generated by the
FCFS policy. In addition, we observe that the relative difference between WHI and
the other policies is systematically larger in the higher load (when compared to the
lower load).
Inverse shape parameter 1/α2 = 3.

Nowwe consider the results related to the inverse shape parameter value 1/α2 = 3.
The results for the two loads (λ ∈ {1, 2}) are presented in Table 2. The structure of
Table 2 is the same that of Table 1.

In general, the results look very similar to the previous case (1/α2 = 2). From
Table 2, we see that the Whittle index policy (WHI) again outperforms the other
policies having now 30 first positions, 19 second positions, and only 1 third position
in the lower load. In the higher load, the difference is again more apparent with 42
first positions and 8 second positions for WHI. The performance order of the other
policies remains the same: the second best is GIT, then come FB, PS, and CMTH,
and the worst one is again FCFS. In the lower load, the difference between WHI and
GIT seems to be even smaller when compared to the previous case. However, in the
higher load, the relative difference between WHI and all the other policies is again
systematically larger.

6.4 Multiple servers

Finally, we consider the case withmultiple parallel servers (M ≥ 1). All the customers
belong to the same class, and they have Weibull services times with mean E[S] = 1
and inverse shape parameter 1/α = 2. The system is studied under a varying number
of parallel servers, M ∈ {1, 2, . . . , 8}, and two different relative loads, λ/M ∈ {1, 2}.
The other parameters are chosen as follows:

1/θ = 8, h = 1, d = 10.

Since there is just a single class of customers, the Whittle index policy (WHI)
(as well as the Gittins index policy (GIT)) is the same as the FB policy. Based
on simulations, we have estimated its performance against policies FCFS, PS,
and EDF. As before, the system statistics have been gathered until there are
106 customer arrivals. The results for the lower relative load (λ/M = 1) are
shown in Fig. 7, and for the higher relative load (λ/M = 2) in Fig. 8. In these
figures, the mean total/holding/abandonment costs refer to the estimated mean
total/holding/abandonment costs per time unit.

As seen from Fig. 7, the performance order of the four policies remains the same
for any M ∈ {1, 2, . . . , 8} in the lower relative load: WHI being the best and FCFS
the worst. The absolute difference in mean total costs is not changing much for the PS
and FCFS policies (when compared to WHI), while, for the EDF policy, the differ-
ence narrows as M increases. As for the cost components, EDF minimizes the mean
abandonment costs for any M , but its mean holding costs are so high that it just takes
the third position in the overall comparison.
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Table 2 Two-class case, inverse shape parameter 1/α2 = 3: Comparison of policiesWHI, GIT, FB, CMTH,
PS, andFCFSwith N = 50 randomparameter combinations. (a) Lower load (λ = 1), (b) higher load (λ = 2)

WHI GIT FB CMTH PS FCFS

(a) λ = 1

Rank 1 30 19 1 0 0 0

Rank 2 19 24 7 0 0 0

Rank 3 1 7 41 1 0 0

Rank 4 0 0 1 3 46 0

Rank 5 0 0 0 46 4 0

Rank 6 0 0 0 0 0 50

Avg rank 1.42 1.76 2.84 4.90 4.08 6.00

Avg cost 3.551 3.564 3.628 4.082 3.778 5.157

Cost diff – 0.40% 2.11% 15.04% 6.34% 46.03%

(b) λ = 2

Rank 1 42 8 0 0 0 0

Rank 2 8 33 9 0 0 0

Rank 3 0 9 41 0 0 0

Rank 4 0 0 0 4 46 0

Rank 5 0 0 0 46 4 0

Rank 6 0 0 0 0 0 50

Avg rank 1.16 2.02 2.82 4.92 4.08 6.00

Avg cost 11.742 11.892 12.207 14.530 12.816 18.895

Cost diff – 1.34% 3.87% 23.35% 9.02% 61.56%

In the higher relative load, the results are somehow different, as seen from Fig. 8.
TheWhittle index policy (WHI) is still consistently the best when the mean total costs
are compared, but now EDF proves to be the worst. While it is still minimizing the
mean abandonment costs for any M , the mean holding costs are nowmuch worse than
for any other policy in this comparison. Another difference to the lower relative load is
that the absolute difference in the mean total costs is clearly increasing for all policies
(when compared to WHI) as M increases.

7 Conclusions

We considered the optimal scheduling problem in a multiserver queue with impatient
customers belonging to multiple classes with an objective function that takes into
account both holding costs and abandonment penalties. Many papers consider this
scheduling problem under Poisson arrivals and linear holding costs assuming further
that both the service times and the abandonment times have exponential distributions.
Even with these additional assumptions, the exact solution is known only in very few
special cases.

To find a reasonable heuristic solution for this tricky problem, we applied theWhit-
tle index approach. Unlike in the earlier papers, which were restricted to exponential
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Fig. 7 Multiserver case, lower relative load (λ/M = 1): simulated average costs for policies FCFS, PS,
WHI, and EDF as a function of the number of servers M . a Mean total costs (top), b mean holding costs
(middle), c mean abandonment costs (bottom)
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Fig. 8 Multiserver case, higher relative load (λ/M = 2): simulated average costs for policies FCFS, PS,
WHI, and EDF as a function of the number of servers M . a Mean total costs (top), b mean holding costs
(middle), c mean abandonment costs (bottom)
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service times, we allowed the service time distributions for which the hazard rate
is decreasing. We considered the discrete-time multiserver queueing problem with
discounted costs. As our main theoretical result, we proved that the related relaxed
optimization problem indexable and derived the corresponding Whittle index explic-
itly.

Based on this discrete-time result, we developed the Whittle index policy for the
original continuous-time multiserver scheduling problem. The performance of the
resulting policy was first evaluated in the M/G/1 setup by numerical simulations,
which demonstrated that it gives better performance than the other policies included
in the comparison. The nonanticipating Whittle index policy even outperformed the
anticipating EDF policy when both holding costs and abandonment penalties were
taken into account. In addition, we evaluated the performance of the Whittle index
policy in the multiserver setting. Again it outperformed consistently the other policies
included in the comparison.

In future, we would like to study whether it is possible to derive, by the Whittle
index approach, a reasonable scheduling policy for a multiserver queue with impatient
customers where the service time distributions are even more general. Another line of
research is to allow more general holding costs.
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