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ABSTRACT The concept of Reconfigurable Intelligent Surfaces (RIS) has emerged as a promising method
for communications and the localization of aeronautical vehicles. In this paper, we explore the impact of
hardware impairments on three-dimensional (3D) drone localization within a single-input single-output
(SISO) system assisted by RIS. Our methodology begins by modeling the channel from the base station
(BS), equipped with a single-antenna transmitter, to each RIS at known positions. This model accounts
for hardware impairments at the BS, particularly beam downtilt, which influences the accuracy of drone
location estimation. Moreover, we model the channel from the RIS to the drone, employing exhaustive beam
sweeping in both azimuth and elevation angles to estimate the Angles of Departure (AODs) from the RIS to
the drone. We adopt a unique phase noise (PN) model for each element within the RIS and assess the impact
of these impairments on angle and location estimation accuracy through extensive simulations. Additionally,
we examine the effects of RIS configuration and the Inter-Site Distance (ISD) between two RIS units on
localization performance. An Unscented Kalman Filter (UKF) algorithm is integrated for tracking of the
drone trajectory. Our simulation results demonstrate that the RIS-assisted 3D drone localization approach
achieves significant accuracy despite various impairments. The findings of this paper underscore the potential
of RIS-enabled 3D drone localization to maintain high accuracy under hardware impairments, paving the
way for future research in RIS-enabled drone localization systems.

INDEX TERMS AOD, localization, RIS, UKF, drone.

I. INTRODUCTION
Drones are increasingly essential for various applications,
with accurate localization and tracking being critical to
their operation. Traditional localization methods, like Global
Positioning System (GPS), face challenges in urban envi-
ronments due to non-line-of-sight (NLOS) cases. The use
of radio frequency (RF) signals for drone localization has
been extensively explored in literature [1], [2], [3], [4],
[5]. Researchers are investigating Reconfigurable Intelligent
Surface (RIS) methods as an alternative to base stations (BS)
for drone localization. Recently, there has been an increasing
trend in utilizing RIS in communication technologies due

The associate editor coordinating the review of this manuscript and
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to their flexibility, cost-effectiveness, and energy efficiency.
These surfaces enhance wireless communication perfor-
mance by modifying signal propagation path in transmitters
and receivers [6]. Specifically in radio localization, the
deployment of Reconfigurable Intelligent Surfaces (RISs)
creates additional reflected signal paths, providing new
degrees of freedom to the localization model [7], [8]. The RIS
primarily performs two operations: it aggregates and directs
the energy from its elements [9], and it concentrates incoming
electromagnetic waves towards the drone’s location [10].

A. RELATED WORKS
Research conducted in [11] and [12] shows that RIS-enabled
technologies are considered one of the key enablers of
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localization, with further investigations into RIS-assisted
localization presented in [13]. The study in [14] addresses
the challenge of joint three-dimensional localization with
its synchronization in a single-input single-output (SISO)
system using a RIS. Simulation results demonstrate the
capability of RIS-assisted wireless systems to provide
accuracy of sub-meter in positioning, even with a single
antenna both at the base station (BS) and the user equipment
(UE). Furthermore, this study highlights the impact of the RIS
element count on positioning accuracy.

Extensive research has developed in the field of RIS-
aided localization, producing numerous publications [15],
[16]. RISs offer significant benefits for solving complex
localization issues, especially in single-antenna systems at
the UE and BS, in both line-of-sight (LoS) and NLoS
environments [14], [15]. The concept of applying a Large
Intelligent Surface (LIS) to millimeter-wave (mmWave)
positioning method is introduced in [16]. This body of work
investigates the theoretical limits of positioning accuracy and
examines the influence of LIS element count and phase shifter
configurations on location estimation accuracy.

The paper [17] thoroughly explores bi-static sensing for
positioning in single-input single-output systems, in which
the position of both the transmitter and receiver are known
locations. It derives the Cramer-Rao Bounds (CRBs) for
estimation errors in both the position and orientation of RIS,
and the time of arrival (TOA) in the transmitter-RIS-receiver
path. Additionally, the paper proposes a multiple stage with
low-complexity estimator employed for RIS localization, and
it examines factors affecting location accuracy, including
RIS size, system bandwidth, and the position of the RIS
and orientation. In our preceding study [18], we detailed
experiments on GPS-independent drone localization using
two synchronized 4 × 4 rectangular antenna arrays. A single
transmitting antenna was attached at the drone, and Multiple
Signal Classification (MUSIC) algorithm was utilized to
determine the Angle of Arrival (AOA) in the two arrays. Fur-
thermore, an Extended Kalman Filter (EKF) was employed
to continuously track the position of the drone over time.

The study in [19] presents a novel method for posi-
tioning estimation assisted by RIS in an asynchronous
millimeter-wave SISO system. This method primarily
focuses on designing the RIS phase and estimating channel
parameters using the Inverse Fast Fourier Transform (IFFT)
and the quasi-Newtonmethod. It also involves positioning the
user based on the spatial broadband effect of millimeter-wave
technology. The research demonstrates through simulation
that this localization method outperforms traditional narrow-
band positioning techniques, especially at higher bandwidths,
offering more significant improvements in accuracy. RISs
possess the ability to enhance positioning accuracy.

The study in [19] explores a positioning system that
comprises a BS and a RIS with known locations to estimate
the positions of Mobile Stations (MSs). The research
introduces an novel method Cooperative Positioning (CP)
designed to address this challenge. Here, the RIS applies

beam sweeping to search the main beams towards areas
of interest. Each MS measures the strength of the signal
received from these directed beams, thereby ascertaining its
relative direction with respect to the RIS. The study presented
in [20] explores the utilization of RIS to demonstrate the
joint location estimation and synchronization are achievable
only with downlink MISO transmissions. Despite the fact
that AOA method is not applied in MISO system, location
estimation is still possible based on Angle of Departure
(AOD) measurements [21], [22]. In this paper, we examine
the impacts of hardware impairments on RIS-aided 3D drone
localization as well as tracking. Our system incorporates a
BS that transmits signals to the RIS units. The RIS then
performs beam sweeping within the drone’s area of interest.
The localization process involves estimating the AOD from
each RIS to the drone, and these AOD estimations are utilized
in triangulation for three-dimensional (3D) drone localization
and the Unscented Kalman Filter (UKF) for tracking.

B. CONTRIBUTIONS OF THIS PAPER
The primary contributions of this paper include:

• Introducing an RIS-assisted drone localization system
model, including an analysis of BS and RIS geometry
on estimation performance with numerical results.

• Examining the effects of beam down-tilting from the BS
to the RIS on AOD and 3D location accuracy.

• Demonstrating the principles of beam sweeping on the
RIS for AOD estimation and the impact of the beam
sweeping area on drone location accuracy.

• Modeling the phase noise (PN) on each element of the
RIS and studying its impact on AOD and 3D location
accuracy.

• Investigating the effects of system localization configu-
ration, such as Inter-Site Distance (ISD), beam sweeping
angle range, number of samples, and number of RIS
elements.

• Validating AOD estimation performance by comparing
the Cramér-Rao Lower Bound (CRLB) with the simu-
lated variance of AOD estimation from the RIS to the
drone.

• Validating the Position Error Bound (PEB) for 3D drone
localization and evaluate the impact of the impairments.

C. GOAL
The primary aim of this study is to estimate the location of
a drone equipped with a single antenna, operating within
a SISO system, and assisted by two RISs with hardware
impairments. This is achieved by analyzing signals received
at the drone from the BS via the RIS.

D. ORGANIZATION OF THE PAPER
The detailed structure of this paper is organized as follows:

• Section II: This section introduces the general system
model for localization, encompassing the configuration
of the RIS, drone, and BS, alongside their channel
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modeling. It offers a comprehensive mathematical
formulation for the RIS and discusses the localization
impairments considered. Additionally, we outline the
scope of the paper and the assumptions considered.

• Section III: Detailed in this section is the proposed
methodology for drone localization. It covers beam
sweeping techniques, AOA estimation, 3D location
estimation, and employed tracking algorithm.

• Section IV: Evaluation of localization performance is
presented here, with a particular focus on the CRLB in
the context of hardware impairments at the RIS.

• Section V: This section shares our simulation results,
discussing the location estimation performance under
various scenarios, including those with and without
impairments. The efficacy of the proposed methodology
for drone localization is evaluated using multiple
metrics.

• Section VI: This final section draws the main conclu-
sions of the paper and outlines directions for future
research.

II. SYSTEM MODE
This section presents a model for RIS-assisted drone
localization systems, as illustrated in Fig. 1. In this work,
we emphasize the channel model from the BS to the RIS and
from the RIS to the drone, taking into account the effects
of hardware impairments on both the AOD and 3D drone
location estimation.

A. RIS-ASSISTED DRONE LOCALIZATION SCENARIO
We consider a drone localization and tracking system,
as presented in Fig. 1, which consists of one BS positioned
at a known location B = [bx , by, bz]T , equipped with a single
antenna transmitter, and two RIS positioned at known 3D
locations (Xi,Yi,Zi), i ∈ {1, 2}. Each RIS is equipped with
Uniform Planar Arrays (UPAs) of M = Mx × My antenna
elements, and the drone is mounted with a single antenna
receiver at an unknown location. The BS communicates
with the drone exclusively through the RIS. We assume
the LoS path is obstructed. This scenario operates within a
SISO system, featuring a single antenna at both the BS for
transmission and the drone for reception.

B. SIGNAL MODEL
In this work, we focus only on the non-line-of-sight (NLoS)
path. As illustrated in Fig. 1, the drone receives signals from
the two RIS via reflection from the RIS. The signal received
Yi at the drone can be modeled by the equation [23]:

Yi = αiHH
i 8iGiS + Ni, (1)

where Yi ∈ CNr is the signal received at the drone from the
ith RIS (i ∈ {1, 2}), S ∈ CNt×1 is the signal transmitted from
the BS,Gi ∈ CM×Nt is the channel matrix from the BS to the
ith RIS,Hi ∈ CNr×M is the channel matrix from the ith RIS to
the drone, Ni ∈ CNr represents the Additive White Gaussian

Noise (AWGN) vector at the drone from the ith RIS. αi is the
complex channel gain for the paths via the ith RIS [24], [25].
The phase-shift matrix, with phase noise impairment, of ith

RIS can be modeled as:

8i = 2i2̂i ∈ CMi×Mi , (2)

where 2i represents the diagonal phase-shift matrix of the
RIS, which can be written as:

2i =


β1ej[ϑi]1 0 · · · 0

0 β2ej[ϑi]2 · · · 0
...

...
. . .

...

0 0 · · · βMie
j[ϑi]Mi

 ∈ CMi×Mi , (3)

In this model, ϑm represents the phase shift, and βm the
reflection coefficient, of the mth antenna element within the
RIS. We assume a constant reflection coefficient (βm = 1),
as supported by the research papers in [23], [26], and [27].
The phase noise for each element of the ith RIS is modeled as
2̂i = diag

([
ej[φi]1 , ej[φi]2 , . . . , ej[φi]Mi

])
, discussed in [28].

C. CHANNEL MODEL
In this work, we consider a geometric channel model
comprising angle of arrivals (AOAs) and angle of departures
(AODs), along with the corresponding NLoS propagation
paths [29]. This well-known channel parameter model is
thoroughly discussed in [30] and [31]. The channel modelGi,
representing the channel from the BS to the RIS and defined
in (1), is detailed as follows:

Gi = αx(θt,i, φt,i) ⊗ αy(θt,i, φt,i), (4)

where Gi ∈ CN×1 the array response vectors from the
transmitting BS to the ith RIS, and the θ1t,i φ

1
t,i, are the AOAs

in elevation and azimuth of the ith RIS, respectively and it
is represented in diagram in Fig.2. The corresponding array
response vectors can be given as [32], [33]:

αx
(
θt,i, φt,i

)
=


1

ej
2πd1,x

λ cos(θt,i) sin(φt,i)

...

ej
2πd1,x

λ (Mx−1) cos(θt,i) sin(φt,i)

 ,

αy
(
θt,i, φt,i

)
=


1

ej
2πd1,y

λ sin(θt,i) sin(φt,i)

...

ej
2πd1,y

λ (My−1) sin(θt,i) sin(φt,i)

 , (5)

where Mx and My denote the active antenna elements in the
RIS across the x-axis and y-axis, respectively, and d1,x and
d1,y represent their corresponding inter-space element.
Using similar concept given in (4), the channel from the

RIS to the drone Hi, can be also written as:

Hi =
[
αx
(
θr,i, φr,i

)
⊗ αy

(
θr,i, φr,i

)]H
, (6)
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FIGURE 1. Physical illustration of the proposed RIS-assisted 3D drone localization
model. The direct path from the BS to the drone is blocked.

FIGURE 2. The AOAs (azimuth and elevation) arriving from the
transmitting BS towards the RIS and the AOD (azimuth and elevation)
originating from the RIS towards the drone.

where φr,i, θr,i are the associated AODs in azimuth and
elevation from the ith RIS towards the receiving drone. The
other parameters are defined similarly to those described
in (5).

D. PROBLEM FORMULATION
Traditionally, GPS-based methods have been the standard
for aeronautical system localization. However, the absence
of a strong LoS communication link can cause GPS-based
positioning to fail, a critical limitation that has garnered
significant attention from wireless communication and posi-
tioning researchers. Solutions involving AOA, TOA, and
Received Signal Strength (RSS) have been explored, all
typically requiring extensive BS infrastructure. Yet, this
infrastructure is particularly costly for drone localization
in rural areas. In this paper, we introduce a RIS-assisted
localization approach using a single BS and examine the
impact of various impairments on drone localization and
tracking performance.

E. ASSUMPTIONS
• For simplicity, we assume the attenuation path loss from
the BS transmitter to the RIS is negligible.

• The receiver has sufficient Signal-to-Noise Ratio (SNR).
• The beam sweeping speed is significantly faster than the
speed of the drone.

F. SCOPE OF THE STUDY
The scope of our study mainly focuses on:

• We consider 3.5 GHz frequency band as it is widely used
for 5G whereas only very few operators have deployed
mmWave and the current 5G mmWave beam tracking
algorithm are not well suited for fast mobile users such
as drone. It offers a good balance between coverage and
capacity, making it suitable for both urban and suburban
environments, particularly for drone communication and
positioning.

• While there are existing studies on MIMO-based
localization in RIS-aided systems [34], and leveraging
localization for RIS-aided mmWave MIMO commu-
nications [35], in our study, we consider equipping
the receiving drone with a single antenna due to its
lightweight nature. To increase the gain from the BS
to the RIS, we sectorized the antenna. Therefore,
the focus of the paper is examining the introducing
hardware imperfections at the RIS, and evaluate the
impact of the drone location estimation within SISO
configuration.

• We assume the drone is flying at a high altitude maintain
LoS with the two RIS, thereby eliminating the effects
of hills, obstacles, and multipath fading. In this work,
we only consider the path loss associated with the
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FIGURE 3. Flowchart of the proposed RIS-assisted 3D drone localization and tracking methodology,
organized into two main phases: (i) the localization phase, which includes the estimation of AOD
from the RIS to the drone (highlighted in green) and the estimation of the 3D drone position
(indicated in red); (ii) the tracking phase, which utilizes the estimated 3D drone position as the
measurement model for the UKF.

distance from the RIS to the drone. This assumption
allows us to easily realize the impact of the introduced
error.w

III. PROPOSED DRONE LOCALIZATION METHOD
In this section, we outline the methodology employed in
our research study, divided into two main phases. Initially,
we model the channel path from the BS transmitter to the
RIS, considering the effects of antenna downtilt and the
associated AOAs. We then model the path from the RIS to
the drone, incorporating the AODs from both RISs through
exhaustive beam sweeping. Following this, we apply the
half-line intersection method to estimate the drone’s 3D
position.

In the second phase, we examine the impact of the consid-
ered impairments on drone tracking. We apply the Unscented
Kalman Filter (UKF) for drone tracking, processing each
received signal. Here, the 3D location estimation serves as
a measurement model for the tracking algorithm. A flow
diagram illustrating this process is presented in Fig. 3.

A. BS ANTENNA SECTOR
In this paper, we consider a single antenna at the BS that
is sectorized in such a way that the main beam covers both
RIS units. We measure the azimuth angles from the BS
towards the two RIS units, aiming for improved antenna gain
in their direction. The coverage of the sectored beam from
the transmitting BS towards the two RIS, along with the red
and black asterisks marking the positions of the first and
second RIS at 106◦ and 79◦, respectively, relative to the BS
transmitter, is illustrated in Fig. 4. Once the main beam from
the BS to the RIS is appropriately sectorized, we examine

the impact of beam downtilting at various elevations on the
accuracy of AOD estimation from the RIS to the drone.
Contour plots in Fig. 4 demonstrate how the beam pattern
from the BS transmitter to the RIS is affected by downtilt
in the elevation angle. It is observed that further downtilting
of the beam results in decreased gain at the RIS, which makes
the AOD estimation worsen.

B. AOD ESTIMATION
After the signal is emitted from the transmitting BS to the
RIS, the channel matrix or gain Gi can be modeled given the
known locations of the transmitter and the RIS. The signal
reflection towards the drone is optimized by adjusting the
phase shifts of the RIS elements to enhance signal reception.
To maximize the received signal at the drone, optimal phase
shifts for each RIS element are determined through beam
sweeping [36], aiming to optimize the model described
by (1). This process is mathematically represented as:

(θ̂ , φ̂) = argmax
θ,φ

∥Yi∥
2, (7)

where ∥Yi∥
2 denotes the norm squared of the received signal

at the drone from the ith RIS. Here, θ̂ and φ̂ are the estimated
elevation and azimuth angles corresponding to the peak
received signal, representing the AOD from the RIS towards
the drone.
In this paper, we have applied beam sweeping in both

azimuth and elevation from the RIS to the drone, utilizing
a predefined set of angles for beam sweeping [19]. After
performing exhaustive beam sweeping, the drone estimates
the index of the beam signal with the highest reception
from each RIS. For simplicity purpose, we assume identical
angle steps for sweeping in both azimuth and elevation. The
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FIGURE 4. Three contour representing radiation pattern of the BS transmitter towards the RIS in azimuth and elevation under three beam tilt
conditions. The plots in a). down-tilting with 0o, b). down-tilting with 5o and c). down-tilting with 10o.

FIGURE 5. Impact of sweeping angle steps on AOD estimation for the
drone from the first RIS at [20, 100, 3]: (a) Azimuth estimation;
(b) Elevation estimation.

solution to the problem defined in (7) yields the estimated
AOD in terms of azimuth and elevation angles. The impact of
the sweeping step angle, in the absence of any impairments,
is illustrated in Fig.5.

C. LOCATION ESTIMATION
Once the AODs in both azimuth and elevation angles are
estimated, the next step involves computing the 3D location
estimation based on the 3D AOD and the known location
information of the RIS. The 3D location of the drone can be
estimated using either the intersection or the Least Squares
(LS) method, both of which are applied to the two half-lines
that extend from each RIS towards the drone.

After estimating the AODs from both RIS using exhaustive
beam sweeping, we employed the intersection of lines based
on the known RIS locations and the estimated AOD at the
drone. Let the coordinates (Xi,Yi,Zi), i ∈ (1, 2) represent
the known locations of the stationary, identical RIS, and
let θ̂i,k and φ̂i,k respectively denote the estimated elevation
and azimuth angles from the RIS to the drone over time.
Let (xk , yk , zk ) represent the unknown coordinates of the
hovering drone at time k , where k denotes the sampling time.

The 3D position of the drone can be estimated using the
AODs from both stationary RIS to the drone and the 3D
positions of the RIS. As shown in Fig. 1, the 3D position of the
drone can be estimated from the lines through the two RIS,Ri,
in the direction of (θ̂i,k , φ̂i,k ) in a spherical coordinate system.
We can formulate two half-line functions from the two RIS
towards the drone in 3D space, and the intersection of these
lines provides the estimated 3D location of the drone.

To define the direction of the reflected signal from the RIS,
let us express it using Cartesian coordinates:xi,kyi,k

zi,k

 =

cos(θ̂i,k ) cos(φ̂i,k )cos(θ̂i,k ) sin(φ̂i,k )
sin(θ̂i,k )

 , (8)

and we can formulate the line from the first RIS (X1,Y1,Z1)
to the unknown 3D position of the drone in parametric form:

xk − X1
a1

=
yk − Y1
a2

=
zk − Z1
a3

= t, (9)

where a1, a2, a3 are the direction vectors toward the drone,
and t is a parameter describing a point on the line.
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Considering again the second RIS (X2,Y2,Z2), we have a
symmetrical relation:

xk − X2
b1

=
yk − Y2
b2

=
zk − Z2
b3

, (10)

where b1, b2, and b3 are the direction vectors from the
second RIS toward the estimated 3D location of the drone.
By substituting (10) into (9) and solving for t , the estimated
3D position of the drone is evaluated in the Cartesian
coordinate.

D. TRACKING WITH UNSCENTED KALMAN FILTER
The noise of Gaussian processes can be characterized by
random variables that follow normal distribution functions.
Typically, the Kalman filter is employed to track the state
of linear systems because it provides optimal estimation
in environments where the processes are linear and the
noise is Gaussian [37]. However, Kalman filter is not
suitable for nonlinear system models, which yields to the
development of the EKF to address this limitation. The
EKF approximates the nonlinear model as a Gaussian
random variable with first-order Taylor series method of
linearizing during its prediction process. However, for
systems with significant nonlinearity, this approximation
can introduce substantial noises in the estimated posterior
mean and covariance, ultimately diminishing the accuracy
of the tracking performance [38]. Despite the limitations in
estimation accuracy, we applied a combination of MUSIC
and EKF for positioning and tracking respectively, as detailed
in our previous papers [18], [39].
The algorithm of Unscented Kalman Filter (UKF) employs

the Unscented Transform (UT), a stochastic linearization
technique that uses a weighted statistical linear regression
approach. Within this transformation, the selection of sigma
points is fundamental, as they are instrumental in capturing
true mean and covariance of the probability distribution for
more accurate state estimation [40]. In this paper, we present
a model where the drone’s trajectory is a nonlinear function
varying in three-dimensional space over time. We assume
the estimated three dimensional location from the RIS to be
the measurement model utilized by the UKF. Tracking using
UKF involve two main steps described below.

1) UKF ALGORITHM
Consider the following nonlinear system equations:

xk = f (xk−1, uk ) + wk−1

yk = h(xk ) + vk

}
(11)

where f (, ) and h(, ) represent the nonlinear function, and
xk , uk and yk represent the state vector, the input and
output vectors at time instant k , respectively. wk and vk
are the process noise and measurement noise that are not
correlated,respectively. In this paper, we follow the UKF
algorithm explained in [41] and [42]. Let us consider each
step separately.

a: SIGMA POINTS GENERATION STAGE
The use of generating sigma points is to estimate accurately
the mean and covariance of the state estimate. These points
are selected from the mean to the left and right with the same
distance in the axis.

χk−1 = [x̂k−1,

x̂k−1 + (
√
(λ + L)Pk−1)i, i = 1, . . . ,L

x̂k−1 − (
√
(λ + L)Pk−1)i, i = L + 1, . . . , 2L]

(12)

where x̂k−1 represents the state estimate, Pk−1 denotes the
covariance of the state estimate, respectively. The L and λ are
the dimension of the state and scaling parameter, respectively.

b: PREDICTION STAGE
This stage has two main steps. First, the generated sigma
points are propagated through the nonlinear state function:

χk|k−1 = f (χk−1,uk−1), (13)

to predict the next state sigma points.
The second step involves computation of the predicted state

mean and covariance as:

x̂−

k =

2L∑
i=0

Wm
i χ i

k|k−1, (14)

P−
xk =

2L∑
i=0

W c
i

(
χ i
k|k−1 − x̂−

k

) (
χ i
k|k−1 − x̂−

k

)T
+ Qk , (15)

where W (m)
i and W (c)

i defines the weights for the mean
and covariance, respectively, and Qk is the process noise
covariance.

c: UPDATE STAGE
This stage also has two main steps. The first step involves
propagating the sigma points through themeasurementmodel
to predict the measurement:

Zk|k−1 = h(χk|k−1), (16)

ẑ−k =

2L∑
i=0

Wm
i Z

i
k|k−1. (17)

Kk = Pxk zkP
−1
zk zk , (18)

xk|k = x̂−

k + Kk (zk − ẑ−k ), (19)

Pk|k = P−
xk − KkPzk zkK

T
k . (20)

The second step in the UKF update process involves
updating the state estimate and covariance with the actual
measurement. To compute the kalman gain, we need first to
calculate cross-covariance matrix and measurement predic-
tion covariance separately. The cross-covariance matrix Pxk zk
presents the correlation between the state and measurement
predictions,given as follows:

Pxk zk =

2L∑
i=0

W c
i (χ

i
k|k−1 − x̂−

k )(Z
i
k|k−1 − ẑ−k )

T , (21)
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FIGURE 6. Comparison of the CRLB and the simulated variance of AOD estimates under phase noise impairments, given the parameters (Nt = 1,
representing a single transmitter antenna; M = 100, denoting the number of reflecting elements; ISD = 80 meters; d = 0.5λ, with λ being the
wavelength): (a). azimuth CRLB; (b). elevation CRLB.

where χ i
k|k−1 are the generated sigma points for the state

at time step k predicted from time step k − 1, Z ik|k−1 also
denote the sigma points for the measurement predicted from
the state predictions, x̂−

k is the predicted state vector, ẑ−k is the
predicted measurement vector.

The measurement prediction covariance Pzk zk also shows
the expected accuracy of the measurement predictions, which
is computed as:

Pzk zk =

2L∑
i=0

W c
i (Z

i
k|k−1 − ẑ−k )(Z

i
k|k−1 − ẑ−k )

T
+ Rk , (22)

where Rk is the measurement noise covariance matrix at
time k . The Kalman gain, the estimated state, and the
covariance matrix are given, respectively, as follows:

IV. LOCALIZATION PERFORMANCE BOUNDS
The accuracy of AOD and 3D position estimation is crucial
for evaluating localization performance. The effectiveness
of the employed estimation algorithm can be assessed by
comparing the estimates with ground truth and analyzing
the variance of these estimates. The CRLB is defined as a
lower bound on the variance, or mean square error (MSE),
of any unbiased estimator of a parameter, such as angle and
location. It can be expressed as the inverse of the Fisher
Information Matrix (FIM). Hence, to assess the accuracy of
AOD estimates from the two RIS to the drone, we employ the
derived expressions for the FIM for both angle and position
estimates, as discussed in [43] and [44].

A. CRLB ANALYSIS FOR AoA ESTIMATION
The channel AOD estimation state–vector at the ith RIS
at time–step k , denoted by ζ ik ∈ R2, can be written

as [43], [45]:

ζ ik =

[
θ ik φik

]T
. (23)

Given the signal model, the general deterministic CRLB
on the covariance matrix of unbiased channel parameter
estimator of ζ is given as:

CRLBζ =
σ 2
w

2

{
ℜ

{
S†D†5⊥

A DS
}}−1

, (24)

where 5⊥
A denotes the projection onto nullspace of A

represented as 5⊥
A = I − A(A†A)−1A†, and A represents

the beampattern of m far–field sources, and D also denotes
the partial derivative of steering vector A with respect to ζ ,
both expressed as:

A = [a(θ1, φ1), a(θ2, φ2, ), . . . , a(θm, φm)], (25a)

D = [a′1, a′2, . . . , a′m], (25b)

where a′m =
∂am
∂θm

.
Fig. 6 illustrates the CRLB for AOD in azimuth and

elevation, calculated using (24), and compares it with the
simulated sample variance of AOD estimation for the second
RIS, both with and without PN impairments. This plot shows
howAOD estimation variance, in both azimuth and elevation,
fluctuates with each drone movement within the area of
interest. Variance is affected by the random generation of
Gaussian noise and the varying signals transmitted from the
BS, which change with each drone movement. Consequently,
the variance of AOD estimation differs each time the drone
receives the reflected signal from the RIS, showing the
dynamic nature of AOD estimation under the simulation
parameters.
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FIGURE 7. Comparison of the PEB and the simulated variance of 3D
drone positioning estimates under phase noise impairments.

B. POSITION ERROR BOUND (PEB) ANALYSIS
Let (xi, yi, zi) denote the coordinates of the ith RIS as seen
from the k th position of the drone, whose orientation is known
with respect to a reference point at the origin. The state vector
of the drone is given as:

pk = [Xk ,Yk ,Zk ]T (26)

The least squares estimator, which relates measurements
and parameters of interest non-linearly, is defined as follows:

ri =

[
arctan

(
yi−Yk
xi−Xk

)
, arctan

(
zi−Zk
d2Dki

)]T
(27)

where d2Dki =
√
(xi − Xk )2 + (yi − Yk )2 is the 2D distance

between the drone and the ith RIS in the xy plane. The
deterministic CRLB on the covariance matrix of an unbiased
position estimator of pk is given as [15], [46], [47], [48]:

CRBpk =
σ 2
w

2

((
∂ri
∂pk

)† (
Q[k]

i

)−1 ∂ri
∂pk

)−1

(28)

The Position Error Bound (PEB) can then be derived from the
CRLB as:

PEBk =

√
trace(CRBpk ) (29)

V. SIMULATION RESULTS AND DISCUSSIONS
In this section, we introduce the simulation setup, including
the configuration of the BS, the RIS, and trajectory of the
drone. We also present numerical results to demonstrate
the performance of the proposed localization and tracking
approach, and discuss the impact of impairments on angle and
location estimation accuracy.

A. SIMULATION SETUP
To assess the performance of RIS-assisted drone localization,
we established a simulation environment as shown in Fig. 9.

FIGURE 8. Simulation results for AOD accuracy without impairments for
both RIS, with parameters set to Nt = 1, M = 100, ISD = 80 meters, and
d = 0.5λ: (a) azimuth estimation accuracy; (b) elevation estimation
accuracy.

TABLE 1. Main simulation parameters.

The BS and two RISs are positioned at coordinates
(50, 0, 3)meters, (20, 100, 3)meters, and (80, 100, 3)meters,
respectively. To examine the impact of varying ISD between
the RISs on estimation accuracy, we positioned the RISs at
ISDs of 80 m, 100 m, and 140 m, analyzing the effects on
angle and location accuracy. The simulation parameters are
detailed in Table 1.

B. AOD ESTIMATION PERFORMANCE
In this section, we assess the AOD estimation accuracy from
both RIS units. Given that the precision of 3D location
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FIGURE 9. The simulation setup for SISO RIS-assisted drone positioning employing a BS transmitter with Nt antennas, a RIS of dimensions
Mr × Mc , and a drone equipped with an Nr antenna receiver; (a). Position of the two RISs, BS and actual drone trajectory; (b). SNR values at the
drone in its different 3D positions.

FIGURE 10. CDF plots depicting the impact of beam sweeping angle
increments on the accuracy of 3D localization evaluation. Parameters are
set to Nt = 1, M = 100, ISD = 80, d = 0.5λ.

estimation for the drone is largely contingent upon the
resolution of the AOD estimation, we initially determine
the azimuth and elevation angles from both RIS units in
relation to the drone. We quantify the accuracy by evaluating
the absolute deviation between the estimated AOD and
the ground truth, which is derived from the drone’s actual
trajectory.

The AOD estimation results for both RIS units are depicted
in Fig. 8. These results indicate the potential for a maximum
estimation error of up to 2o in azimuth and up to 1o in
elevation for both RIS units. These results are without
impairments and with the simulation parameters given in
Fig. 8. Fig. 9b shows the SNR at the drone as a function
of the distance from the drone to the RIS locations. It can

be observed that the SNR decreases as the distance from the
drone to each RIS increases.

C. POSITIONING PERFORMANCE EVALUATION
In this section, we will discuss the impact of some
some parameters on localization and tracking algorithm
performance. Such as the ISD between the two RIS,
PN at each antenna elements of the RIS, down tilting the
main beam from the BS to the RIS, step size of beam
sweeping.

In this section, numerical results are provided to evaluate
the performance of RIS aided drone localization and tracking
for a given impairments.

1) IMPACT OF STEP ANGLE OF BEAM SWEEPING
The performance of RIS-assisted localization also depends
on the angle sweeping steps from the RIS towards the drone
equipped with receiver. In this section, we conducted our
simulation with different angle step sizes and evaluate the
3D drone positioning. The CDF plot shown in Fig. 10,
demonstrates 90% of the distribution accuracy of 1.92
m, 2.83 m, 4.5 m for sweeping a angles 1◦, 2◦, 3◦

respectively.

2) IMPACT OF NUMBER OF ELEMENTS ON THE ACCURACY
The number of elements used to construct the RIS can
significantly impact the accuracy of location estimation.
Therefore, we investigate the performance of our approach
with respect to different numbers of antenna elements in the
RIS. As demonstrated in Fig. 11, we can achieve the 90th

percentile error of 4.5 m with only 64 elements arranged in
a square configuration. In contrast, by increasing the number
of antenna elements in the RIS to 100 and 144, we achieve
90th percentile errors of approximately 2.7 m and 2.4 m,
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FIGURE 11. CDF plots presenting the impact of impairments on the accuracy of 3D localization evaluation, with parameters set to: Nt = 1,
ISD = 80m, d = 0.5λ. (a). Effects of the number of elements at the RIS; (b). Effect of beam tilting at the BS transmitter.

FIGURE 12. CDF plots depicting the impact of impairments on the accuracy of 3D localization evaluation, with parameters set to:
Nt = 1,M = 100, ISD = 80m, d = 0.5λ. (a). Influence of the PN at the elements of the RIS; (b). Effect of ISD between the two RIS.

respectively. It can be concluded that location estimation
accuracy improves with the increasing antenna elements in
the RIS.

3) IMPACT OF ANTENNA TILTING
In this paper, we equip the BS transmitter with a single
antenna and increase the gain of the transmitting antenna
towards the RIS by sectorizing it. This sectorization ensures
that the two RISs units are covered by the sectored beam,
as shown in Fig. 4. To study the impact of antenna tilting
on location accuracy, we tilt the main transmitter beam and
evaluate the localization performance under different tilt
values. Fig. 4 presents the effect of downward tilting of the
main beam on the coverage of the two RIS units.

Fig. 11b displays the localization accuracy of a system
without beam tilting, where 90% of the position errors are

less than 2.5m. However, introducing a 5o beam tilt and a 10o

beam tilt results in 90% accuracy dropping to under 3.0m and
3.4 m, respectively. This comparative analysis demonstrates
that greater beam tilting angles lead to diverge in localization
performance.

4) IMPACT OF PHASE NOISE
In this paper, we also consider the impact of phase noise on
RIS-assisted SISO localization. We introduce phase noise at
each elements of the RIS and evaluate its effect on the AOD
and the accuracy of 3D location estimation. As the beam
sweeping covers a range of directions, the impact of phase
noise on any single antenna is insignificant or minimized
when considering the overall beam pattern. The CDF plot
shown in Fig. 12 demonstrates that the effect of phase noise
on 3D location accuracy is minimal. Any small impact that
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TABLE 2. 90th Percentile of AOD, 3D positioning (m) and tracking (m) errors under different impairments.

FIGURE 13. CDF plot for evaluating the accuracy of drone positioning and
tracking in simulations, with parameters set as follows:Nt = 1, ISD = 80,
M = 100, and d = 0.5λ.(a) shows a comparison between the true 3D
trajectory and the estimated paths, with and without phase noise (PN).
(b) presents the CDF of positioning and tracking accuracy under scenarios
with and without PN.

does occur is due to the random noise inherent in the signal
and noise.

5) IMPACT OF ISD BETWEEN THE RIS
We consider flying the drone with 3D positional variation
over time, starting from a height of 10 m above the ground

and descending to 6 m. We observe the effect of the ISD
between the two RISs on the the accuracy of 3D drone
position estimation.

The CDF shown in Fig. 12b depicts the impact of the ISD
between the two RIS units on the accuracy of drone location
estimation. With ISDs set at 60m, 100m, and 140m, the 90th

percentile of 3D drone location accuracy is achieved at 2.5m,
3.5 m, and 5 m, respectively.

The 90th percentile errors for the AOD in azimuth and
elevation, 3D location, and tracking for both RIS units are
provided in Table 2.

D. TRACKING PERFORMANCE EVALUATION
After evaluating the performance of our proposed RIS-
assisted drone localization approach, we implemented the
UKF algorithm to track the drone at each sampling point
during signal reception. The 3D location, estimated from
the information of the estimated AOD and the known RIS
location, was used as the measurement model for the UKF
algorithm. The 3D plot in Fig.13a presents the true trajectory
with the estimated 3D position and tracking, demonstrating
that the positioning and tracking without PN closely follow
the true trajectory. But, the positioning and tracking with PN
has a some diverges.

In the 3D plot shown in Fig. 13a, we can observe that,
although there are minor divergences in some parts of the
trajectory with PN, the majority of the trajectory closely
follows the true trajectory. This can be seen in the CDF plot
in Fig. 13b, where the positioning and tracking accurately
reflect the true trajectory of the drone.

Fig.13 illustrates the positioning and tracking errors both
with and without phase noise, demonstrating that a median
error of less than 1 m can be achieved in both positioning and
tracking in the absence of phase noise. With phase noise, the
median error remains less than 2 m.

VI. CONCLUSION
This paper has investigated a wireless 3D drone localization
and tracking system through simulation, employing a SISO
system assisted by two RISs at known positions. Our
study builds on existing RIS-assisted localization research,
filling the gap where hardware impairments have not
been thoroughly considered. We have shown that hardware
impairments influence the accuracy of RIS-aided 3D drone
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localization and tracking, providing insights into navigating
these challenges.

Extensive simulations have revealed that high accuracy in
both AOD estimation and 3D drone localization and tracking
is achievable. Despite substantial ISD between RISs, and
potential hardware impairments such as phase noise on RIS
elements and downtilt at the BS, a RIS-assisted localization
system can still achieve reasonable accuracy. Specifically,
considering PN impairments,We demonstrated that the 3D
location median error is approximately less than 2 meters
for all the considered phase noise levels These outcomes
affirm that high-probability 3D positioning accuracy is
feasible, evenwith impairments, within an RIS-assisted drone
localization system.Moving forward, further exploration into
practical RIS-assisted drone localization could yield addi-
tional insights, setting the stage for real-world applications
of our findings.
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