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Abstract

Objective: To develop new standardized eye tracking based measures and metrics for infants’ gaze dynamics in the face-
distractor competition paradigm.

Method: Eye tracking data were collected from two samples of healthy 7-month-old (total n = 45), as well as one sample of
5-month-old infants (n = 22) in a paradigm with a picture of a face or a non-face pattern as a central stimulus, and a
geometric shape as a lateral stimulus. The data were analyzed by using conventional measures of infants’ initial
disengagement from the central to the lateral stimulus (i.e., saccadic reaction time and probability) and, additionally, novel
measures reflecting infants gaze dynamics after the initial disengagement (i.e., cumulative allocation of attention to the
central vs. peripheral stimulus).

Results: The results showed that the initial saccade away from the centrally presented stimulus is followed by a rapid re-
engagement of attention with the central stimulus, leading to cumulative preference for the central stimulus over the lateral
stimulus over time. This pattern tended to be stronger for salient facial expressions as compared to non-face patterns, was
replicable across two independent samples of 7-month-old infants, and differentiated between 7 and 5 month-old infants.

Conclusion: The results suggest that eye tracking based assessments of infants’ cumulative preference for faces over time
can be readily parameterized and standardized, and may provide valuable techniques for future studies examining
normative developmental changes in preference for social signals.

Significance: Standardized measures of early developing face preferences may have potential to become surrogate
biomarkers of neurocognitive and social development.
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Introduction

The emergence of core attention processes (e.g., visuospatial

orienting) and preferential attention to social cues (e.g., faces)

during the first postnatal months provide foundations for cognitive

and social brain networks, and may be critical in initiating the

developmental process that leads to a full repertoire of human

social skills [1]. In recent year, there has been increasing interest in

charting the typical developmental time course of these processes

in human infants [2]–[4], and in deviations from the typical

trajectory as a potential marker of certain neurodevelopmental

disorders [5].

The endeavors to characterize the early development of

attention and face preferences in infants are critically dependent

on methods that i) can be successfully implemented with poorly co-

operating infants of various postnatal ages, ii) enable standardized

and, preferably, automated acquisition of metrics for the cognitive

processes of interest, and iii) will eventually allow sufficient norms

to be collected for the measures of interest to effectively

characterize the performance of individual infants. In this context,

it is interesting to note that recent development of semi- or fully

automated eye tracking systems based on infrared reflections from

the cornea has provided laboratories with more objective indices

of infant gaze behavior [6], and that these methods have been

successfully used to measure infants’ visuospatial orienting [3], [4],

[7], [8] and attention to the eyes [5] or faces [2] in complex social

scenes.
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In the present study, our purpose was to further develop eye

tracking based assessment of infant cognition in the context of the

classic overlap paradigm [9]. Studies using this paradigm have

typically examined the latency and/or frequency of infants gaze

shift from the first (centrally presented) stimulus to the second

(lateral) stimulus, putatively reflecting the active process of

attention disengagement and visuospatial orienting. These pro-

cesses undergo rapid developmental improvements during the first

months of life and reach apparent stability at around six months of

age [3], [4], [10], [11]. Sensitivity to faces and facial expressions in

the overlap paradigm emerges at 5 and 7 months of age and is

manifested as a delayed latency and reduced probability of gaze

shifts in the context of faces, particularly when the face displays a

fearful expression [12]–[14].

Infant gaze shifts in the overlap paradigm have been analyzed

by using manual scoring of eye movements from video records

[14], by using electro-oculogram [15], and more recently, by using

eye tracking [3], [8], [16]. Compared to other, mostly manual

techniques, eye tracking has the advantage of offering the

possibility for completely automated acquisition and analysis of

eye movements at a high spatial and temporal resolution.

However, the practice of such analyses is still complicated by

several limitations that surround current eye tracking technologies

and affect data quality [16]–[20], and may require several

verification routines to be implemented successfully in poorly co-

operating participants [21].

Our goal in the present study was to further develop the eye

tracking based assessment of infants gaze behavior in the overlap

paradigm. First, our objective was to implement the eye tracking

testing in a clinical environment by using automated testing and

data analysis protocols. Second, we extended previous analyses

focusing on infants’ first gaze shifts [9], [13] by exploring the

dynamics of infants gaze movements over a longer time period,

covering the entire trial time. Evidence from a previous study [22]

shows that infant’s initial gaze shift from a face stimulus to a lateral

distractor is routinely followed by a quick re-engagement of

attention with the face, and that the latency of this re-engagement

is modulated by facial expression. Other prior studies have

suggested that cumulative preference for social over non-social

stimuli [23], as well as the tendency to look back at a person after

momentary distraction [24] may reflect important aspect of early

social development. Taken together, these lead to prediction that

eye tracking based parameterization of this phenomenon may

provide useful metrics for the assessment of infants’ face

preferences.

Given that our the analyses beyond the first gaze shift were

highly explorative in nature, we examined whether the results

obtained from the analysis of our primary data from 7-month-old

infants could be replicated in an independent sample of infants of

the same age, and whether the hereby introduced parameter

would be sensitive to the known developmental difference in face

preference between 7- and 5-month-old infants [2], [25]. These

analyses were important for testing the feasibility of the new

metrics in future, larger scale studies to establish normative data

on the early development of visual attention and face preferences,

and the potential use of such norms to detect deviations from the

typical developmental trajectory in early infancy.

Materials and Methods

Participants
The primary sample consisted of 13 infants tested at the

Helsinki University Hospital (N = 13; 10 females; age range 7.1–

8.0 months, mean = 7.50). The data from an additional three

infants were excluded from the analyses due to technical

difficulties in eye tracking (n = 2) or medication (n = 1). To test

the metrics developed in the analyses of the primary sample, we

analyzed data from an additional sample of 7-month-old and 5-

month old infants (total n = 54); for a detailed description, see

Dataset S1). All infants were born full term and reported to have a

typical development. The Ethics Committee of the Hospital

District of Helsinki and Uusimaa approved the study protocol in

Helsinki, and the Boston Children’s Hospital Committee on

Clinical Investigation approved the study in Boston. The parents

signed an informed consent. The individual shown in figure 1 of

this manuscript has given written informed consent (as outlined in

PLOS consent form) to publish her photograph.

Test procedure
Infants were placed sitting in a baby carrier attached on their

parent’s chest, and a sequence of visual stimuli were presented on

17-inch TFT monitor integrated in an eye tracker device. The

ambient light was kept dim, and the participants (baby and

caregiver) were separated from the experimenter by light walls (see

figure 1A). Before running the actual study protocol, a calibration

procedure was performed as explained in detail in the Supple-

mentary data (information S1 and figure S1).

Each trial consisted of two phases, which together lasted for

4000 ms (figure 1C). The trial began by first attracting child’s

attention to the center of the screen using simple audiovisual

animations, for example a gradually expanding red circle

(diameter from 0.3u to 4.2u) with recurring sound. The trial was

programmed to start automatically only after the eye tracking

device had reported 600 ms of continuous fixation onto the

predefined ‘fixation area’ (diameter 4.2u) around the animation

stimulus (see figure 1C) resulting in variable interstimulus interval

between successive trials (M = 3090 ms, SD = 590 ms). During the

first 1000 ms, a face image was shown on the center of the screen.

During the remaining 3000 ms, a peripheral stimulus (hereafter

called ‘‘target’’) was added into the edge of the screen 10.2u away

from the face, equiprobably on the left or right. The trials (32

altogether) alternated randomly between four different face

images, each followed by a peripheral target. Each face stimulus

was presented eight times with the only constraints being that the

same face was presented no more than twice in a row, and the

target was no more than three times in a row shown on the same

side of the screen. An example video clip of typical progression of

consecutive trials is presented among the Supplementary data

(video S1).

Stimuli
We used two sets of face images (figure 1B) copied from prior

studies [26], each consisting of three different facial expressions

(i.e. a colour image of a female model with neutral, happy, or

fearful facial expression) and a sham face (i.e. phase-scrambled

face that retained the amplitude and colour spectra as well as the

contour of the face stimulus but was not identifiable as face). At the

average viewing distance of 55 cm, the face stimuli covered visual

angle measuring 8.2u horizontally and 11.7u vertically. The target

stimuli were black-and-white vertically arranged circles or a

checkerboard pattern, measuring 11.2u vertically and 3.2u
horizontally.

All stimuli were presented electronically using E-Prime software

(version 2.0.8.22, Psychology Software Tools, Pittsburgh, PA) and

E-Prime Extensions for Tobii (version 2.0.1.5), interfacing with the

eye tracker hardware.

Eye Tracking-Based Cognitive Test of Infants
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Eye tracking system
The eye tracker system used in our study was Tobii T120 (Tobii

Technology AB, Stockholm, Sweden) that is equipped with an

integrated 17’’ TFT display (refresh rate: 60 Hz, response time:

4 ms, screen resolution: 128061024 pixels). The system samples

eye tracking data at 120 Hz (i.e. temporal accuracy is 8.3 ms),

operates at 50–80 cm distances from the eyes, and can follow head

movements within a window of 30622cm (at 70 cm from the

screen). According to the manufacturer, this system has a spatial

accuracy in the order of 0.5 degrees, which corresponds to 4.4–

6.9 mm on screen at the allowed viewing distance. In order to

verify these accuracy measures in our present context, we ran

additional testing of spatial accuracy as explained in detail in the

Supplementary data (information S2 and figure S2).

Tobii eye tracker system is based on Pupil Centre Corneal

Reflection (PCCR), that is, near infrared illumination and its

reflections from the cornea relative to the center of the pupil. The

light reflections are captured by two cameras and a general 3D

model of the eye and the angles, distances and other geometrical

features of the reflections are used to calculate the positions of the

eyes and the direction of gaze.

Data Analysis
Our present work proceeded in four overlapping and partly

reiterating steps. First, we replicated previous studies by examining

the latency and probability of gaze shifts from the face to the

lateral distractor. Second, we extended these analyses by

investigating time varying changes in gaze after the initial

disengagement from the face stimulus in the context of different

facial stimuli. This analysis was performed in a completely data-

driven fashion, with the only preset criteria being the exclusion of

trials with technically unreliable tracking or an absence of gaze

shift from the face to peripheral target (see below). Third, we

assessed different strategies in parameterizing the time-varying

changes in attention beyond the initial disengagement. Fourth, we

examined the replicability of the metrics extracted from the

primary sample (Helsinki) in an independent sample of 7-month-

old infants (Boston, 7-month sample), and the sensitivity of the

metrics to developmental differences by comparing the primary

data with data collected from 5-month-old infants (Boston, 5-

month sample).

All data analysis was performed offline in MATLAB environ-

ment (version R2010a, The MathWorks, Natick, MA) in a way

that will allow later straightforward automatization of the analytic

procedure.

Structure of the raw data. The eye tracking data was

written into an ASCII file that contains multiple time series

sampled at 120 Hz. These series include 1) x- and y-coordinates

for the point of gaze on the screen, 2) timestamps for each data

sample at microsecond accuracy, 3) ‘validity codes’ for each eye

indicating the reliability of tracking at each time point (out of codes

0–4 we only used time samples with validity code 0 or 1, which

were taken to indicate technically reliable gaze tracking), and 4)

additional index that characterizes the exact timing of changes in

stimulus presentation.

Areas of interest (AOI) and AOI-transformed gaze

data. Our analysis was based on quantifying the amount of

time that the infant gazed at the face or the target. To this end, we

defined areas of interest (AOI) around the stimuli (see also

Figure 1. Eye tracking setup and the paradigm. A) The photograph shows the whole study setup where infant is placed into a baby carrier
attached to the chest of the caregiver (right), and the experimenter (left) is sitting behind a light wall with one-way transparency (not visible on the
photograph) to allow observation of the infant during test protocol. One-way transparency was created by tinting the window and having higher
lighting level on baby’s side. B) The two sets of face stimuli used in our study. Every infant was presented stimuli from one set only (chosen
randomly). Both sets included a face with happy, neutral, and fearful expressions, as well as a noise (or ‘non-face’) stimulus that was created by a
phase-scrambling of a face image to retain many physical image properties. Peripheral distractors (called ‘target’) consisted of checkerboards and
other geometrically simple high-contrast stimuli. C) Content of a trial. Each trial was preceded by showing a fixation cue in the center of the screen to
attract infant’s attention. The trial started only after infant’s fixation in the central area (small square around the dot) had lasted 600 ms. Then, the
face stimulus was shown for 1000 ms, followed by adding the target to either side of the screen for the remaining 3000 ms. The stippled lines depict
areas of interest (AOI) used for computing MD and DT metrics. The AOIs were deliberately defined to be larger than the original stimuli to cancel out
effects of measurement inaccuracies and to reduce unnecessary noise in DR traces (see also figure 2 and Discussion on spatial accuracy in
Supplementary data).
doi:10.1371/journal.pone.0097299.g001
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figure 2A) and converted the 2D gaze tracking data coordinates

into binary streams for each AOI (1 = gaze within the AOI;

0 = gaze outside of AOI). No fixation filter was applied on the raw

point of regard data. After inspection of a considerable amount of

full time series of gaze data, we concluded that only negligible

amount of gaze data would fall outside the face or the target. This

allowed us to deliberately widen the margins of AOIs around face

and target (by 3.4u visual angle, see figure 2A), leading to a

substantial reduction of measurement noise that comes from

inaccuracies in eye tracking near AOI margins especially with

infants with suboptimal calibration. Figure 2A shows an example

of the AOI-transformed data in one trial and the effect of the size

of the AOIs on the AOI time-series.

Gaze disengagement time (DT) and probability

(DP). Disengagement time (DT) and probability (DP) are the

conventional measures in this test paradigm [25], [26]. DT is

defined as the latency from the target onset to the time when the

infant shifts gaze from the face to the target. DP is the proportion

of gaze shifts out of all accepted trials (i.e., trials with a gaze shift

and trials on which the gaze shift was not observed within 1000 ms

after the onset of the peripheral stimulus). Consistent with prior

studies, all infants with $2 scorable DTs per condition were

retained in the DT analysis (N = 10, range 2–8, Means 4.0–6.1)

and all infants with $3 scorable trials per condition in the DP

analysis (N = 13, range 6–8 trials, Means 7.7–7.9).

Time-varying characteristics of gaze after initial

disengagement – the novel dynamic response (DR). In

order to evaluate the dynamics of infants’ gaze after initial

disengagement, we calculated the mean responses for each subject

from AOI-transformed binary time series of all accepted time

points in all trials. In this analysis, data from each trial was first co-

aligned in time according to the moment when gaze first reached

the lateral distractor AOI (i.e., post disengagement). The resulting

time series constitutes the dynamic response (DR) reflecting the

time-varying characteristic of infant gaze between the distractor

and face AOIs. The averaging for each participant was performed

either separately for every stimulus to produce four stimulus-

specific responses (happy, neutral, fear, and phase-scrambled face)

or jointly for all face stimuli yielding one face response averaged

from larger (up to n = 24; phase-scrambled face excluded) number

of trials. We omitted trials where gaze shift (face to target) did not

happen (36.9% of all trials with face stimuli; more details in table

S1). The trial retention rate is similar to that in previous studies

using the same paradigm with typically developing children and

children with developmental disorders (e.g. [27]). The averaged

time series were further median filtered (with a window of 15

samples, equals 125 ms in time) in order to moderate abrupt,

mostly technical artefacts (spikes and drops; see figure 2A).

Consequently, the DR results are robust against noisy data or

technically missing (invalid) data points.

In the DR traces, the value at each time point represents the

estimated probability of the gaze being at the face AOI. For

example, a probability value of 0.8 in the average response curve

means that the infant’s gaze was directed to the face in 80% of the

trials at this given moment. Here, the ‘‘vertical’’ step size

(resolution) of the response is inversely proportional to the number

of trials taken into the average (figure 2B).With the maximum of

24 trials (from all face stimuli) the step size would be 0.042 units of

probability.

Computation of Mean Deviance (MD). For the dynamic

response (DR), we devised a measure of mean deviance that

quantifies how much participant’s DR (when locked to the DT-

time) deviates from the normative DR responses during the given

time window. This is expressed as the average (in time)

displacement of DR under the primary sample median DR

expressed in percentiles of the DR distribution in primary sample

(figure 3B). The best matching percentile for each DR value was

calculated by interpolating the primary sample distribution

(figure 3A). Because we were especially interested in downward

deviations all DR values above the 50th percentile (median) would

count as 50 in the averaging. Such score is a measure of mean

deviance’ (MD), and it will give 50 if the participant’s response is

entirely within the upper 50 percentiles whereas values decreasing

below 50, in turn, would imply increasing deviations from the

normative range. Figure 3F demonstrates the difference between

group median response and 90th, 75th, 25th, and 10th percentiles,

as well as an example of a DR of an individual infant.

Statistical procedures. The first set of statistical analyses

examined how the conventional dependent variables (DT and DP)

were affected by the facial expression condition, using data from

the primary sample. Different facial expression conditions were

compared by using Friedman test, followed by post-hoc testing

with Tukey’s test. Bonferroni correction was used in multiple

comparisons when appropriate. Test was considered significant if

p,0.05. Second, we examined whether the MD varied as a

function of facial expression by using similar statistical tests as

those used in the analysis of DT and DP. We also examined

whether the distribution of MD scores obtained from the primary

data could be used to identify i) a new sample of 7-month-old

infants as similar (suggesting replication) and ii) younger, 5-month-

old infants as different given developmental differences in face

preference between 7 and 5-month-old infants [14]. Chi-Square

test was used for comparing two groups in a contingency table.

The analyses provided a preliminary test of whether the obtained

distributions of MD scores could be used to compare an

individual’s data to an a priori defined control distribution. As

discussed later in the chapter ‘‘Barrier to entry…’’, however, the

present results cannot be regarded as genuine normative data.

Data availability. The data used in the current analyses are

available from the authors upon request.

Results

Descriptive results and analyses of initial gaze
disengagement

Inspection of the gaze data in the primary sample revealed two

distinct time windows that reflect the main components of infants’

stereotypic gaze pattern during the trial: i) gaze fixation to the face

followed by transition to the peripheral target, and ii) possible

return of the gaze back to face. Traditionally, studies using the

overlap paradigm in infants have focused on measuring the

frequency and latency of the first gaze transition to the peripheral

target as the primary dependent variable [13], [22], [25]. Analyses

of these transitions in our primary sample (see figure S3 and table

S1) showed that a rapid saccade from the central to the lateral

stimulus (M = 388 ms, SD = 72 ms) was observed on the majority

of trials, although the proportion of missing saccades varied

substantially between individuals (range 6–78%, M = 44%,

SD = 22%). The results also showed the predicted effect of facial

expression on disengagement probability, x2 = 15.1, df = 3, p,

0.01. Consistent with prior studies [13], the proportion of missing

saccades was lowest in the non-face control condition (M = 27%,

SD = 23%), intermediate in the neutral (M = 42%, SD = 26%) and

happy (M = 47%, SD = 28%) conditions, and highest in the fearful

(M = 58%, SD = 27%), although it is noteworthy that none of the

pairwise conditions were significant after correction for multiple

testing in this small sample of 7-month-old infants (N = 13).

Disengagement times (DT) varied significantly by facial expression

Eye Tracking-Based Cognitive Test of Infants
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condition, x2 = 8.4, df = 3, p,0.05, with faster DT in the control

condition (M = 343 ms, SD = 90 ms) than in face conditions

(Neutral, M = 424 ms, SD = 89; Happy, M = 396 ms, SD = 82 ms;

Fearful M = 403 ms, SD = 78 ms). Yet again none of the pairwise

comparisons was significant after correction for multiple testing.

Novel dynamic response (DR)
Inspecting the DR distribution from all infants, we found that in

86.3% of all trials (where gaze had initially shifted to the target),

the infants looked back from the target to the face, and the gaze

was variably alternating between the face and the target. This is

clearly reflected in the shape of DR distributions in the DT-locked

DR traces (figures 3A,B), and it gave us the motivation to

Figure 2. Nature of the eye tracking data. A) These two graphs demonstrate how widening AOIs (shown in the right hand side) affect the binary
time series computed from the same eye tracking data of one single trial. using Widening the additional horizontal margins of face AOI from 0u (top
graph) to 3.4u (120 pixels; bottom graph) removes the spiky appearance in the face and target AOIs (blue and green, respectively). This we consider as
‘‘measurement noise’’ due to many uncontrollable factors, and we reason that the dynamically more stable AOI time series with wider AOI margins
would better reflect the cognitive phenomena of our interest. For instance, infant’s gaze is first directed to the face, but switches to peripheral target
for a period between 250 and 700 ms translating into the disengagement time (DT) of 250 ms. If narrower margins were applied (top), a slightly
delayed DT would be measured, and the dynamics of the last 2000 ms in trial would be highly distorted. B) A representative example of a dynamic
average responses of one participant with different number of trials taken into the averaging (1, 8, and 32). The response resolution (step size) in
vertical axis is always inversely proportional to the number of trials included in the averaging. C) An example of disengagement time-locked dynamic
responses. Prior to averaging, each trial time series is shifted in time according to the moment when gaze first reached the target AOI (DT time-
locking) and the data before that is omitted. This approach offers better representation of gaze changes where DT may be variable across trials. Note
that the data presented here is from the same experiment as in figures A and B.
doi:10.1371/journal.pone.0097299.g002
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Figure 3. Statistical characteristics of the eye tracking data. A–B) Properties of the DT time-locked face AOI dynamic response (DR). The
summary graph of DR average responses over all individuals (A) reveals clear changes of distribution within the trial time. These distributions were
used in the graph B where we computed bootstrapped estimates (5000 samples) of the grand median DR (black solid line) as well as the 10th, 25th,
75th, and 90th percentile ranges (black stippled lines). The percentiles used in computation of the mean deviance (MD metric) of an individual DR
trace (blue) were however from the original DR data of the control group, not from the bootstrapped distribution. C) DT time-locked average
dynamic responses (DR) for each stimulus condition. The non-face stimulus (blue) yielded generally lower DR values, and the DR trace after fearful
face (red) was generally higher. There were only marginal differences if the traces were compared for each time point. The smoothed time-series of p-
values of non-parametric Friedman’s tests (shaded area, right side vertical axis) computed for each time point (8-ms time frame) reveals one local
minimum that yields p-values under 0.05.This occurs between 350 and 500 ms from the disengagement which is a typical time frame for the gaze to
return from the distractor. D) Comparison of stimulus-specific Mean Deviances (MD) derived from the individual DR. There was a significantly lower
MD with non-face stimulus (noise) compared to combined face condition (p = 0.05; Mann-Whitney U test). MDs were computed from the 13 infants of

Eye Tracking-Based Cognitive Test of Infants
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subsequently build an index that reflects the cumulative deviation

of gaze from a normative range.

In order to better understand the gaze changes within the trial

time window, and to potentially use that information in infant

testing, we calculated distributions of DR traces over time. There

were striking time-varying differences in the shapes and scales of

distribution of DR traces across the time course of the trial

(figures 3A,B). For example, the distance between the 10th

percentile and the median DR ranged from close to zero in the

beginning of the trial up to 0.3 later on (figure 3B). This

encouraged us to bind the mean deviance metric to dynamically

evolving percentiles rather than some a priori defined limit. The

DR distributions remained stable also at the end of the trial,

however the number of trials contributing to the DR average was

somewhat reduced due to DT time-locking. We hence extended

the time window for MD calculations from 0 ms to 2200 ms (from

the disengagement) that covers all later phases of the trial.

The DR traces varied slightly between the stimuli, being

generally lower for the non-face control stimulus than to faces

(especially faces displaying a fearful expression, figure 3C). We

then compared the stimulus-specific Mean Deviances (MD)

computed from the DR traces. The MDs computed from the 13

infants (dataset from Helsinki) is presented in figure 3D, and it

shows that non-face stimulus (noise) yields significantly lower MDs

compared to the combined face condition (p = 0.05; Mann-

Whitney U test). No significant differences were found between

facial expressions, which may be partly explained by the limited

numbers. These results are consistent with prior studies [13] and

the a priori hypothesis of differential patterns of gaze behavior for

non-face control stimuli and faces, and motivated us to include

only trials with face stimuli in the subsequent analyses.

Replication in an independent sample
In order to assess the replicability of our measures for the

classification of individual infants, we used an independently

collected infant sample of same age from the laboratory in Boston

(see Dataset S1 for details). These infants were found to be

comparable to the infant cohort from Helsinki based on observing

no significant differences in the conventionally studied measures,

the mean DT and DP (all p-values .0.25; Mann-Whitney U test).

Likewise, the median and the overall distribution of MD values

were very compatible between the two datasets as there were no

statistical differences between the groups (figure 4A). The dataset

from Boston had one ‘‘outlier’’ participant with markedly lower

MD values. Based on study logbooks, we are confident that the low

MD value was not due to technical factors from the recording

session or the analysis, or limited number of trials included in the

MD calculation (n = 17 in figure 4B). Despite of this outlier, the

group level variance (expressed as IQR in the graph) was smaller

in the Boston dataset, which may be readily explained by chance

effects in small datasets.

Sensitivity to age-specific differences
Previous research has shown that preference to faces is

strengthened between 6 and 9 months of age (e.g. [2]). We used

this prior knowledge to test the potential of our MD metrics to

detect known developmental changes in infant’s face processing.

Our premise was that a reasonably sensitive test should distinguish

younger (5-month-old) infants from the older (7-month-old)

infants. Our current dataset is obviously too limited to provide

definitive normal ranges and thereby to estimate sensitivity/

specificity figures. However, the findings in figure 4A clearly show

how MD values in a large proportion of the younger infants fall

below the range of the older infants. For demonstration purposes,

we might choose an arbitrary MD threshold, e.g. 24, at the lower

bound of the MD distribution in 7-monts-old infants. Using this

threshold, three (7%) out of 45 older (7 months; data from both

laboratories combined) infants and ten out of 22 younger (5

months) infants would be considered deviant. This difference

between groups was significant (p,0.05; Chi-Square test). Closer

inspection of the MD results in younger infants suggests that they

may fall into two subgroups, one with MD value comparable to

the older group, and the other with MD value clearly below them.

It will be a subject of further study to determine the neurodevel-

opmental correlates of these subgroups, yet the data suggests

intriguing possibility of distinct developmental trajectories at this

age. Taken together, the current results lend support for the idea

that the relative developmental stage of infant’s visual attention

could be assessed in an objective and automated manner by using

MD-based metrics from eye tracking time series.

Stability of the metrics
We then wanted to assess how much the performance of infants,

as well as our eye tracking –based metrics vary within a single

study session. Theoretically thinking, it is possible that the infant

performance changes systematically due to e.g. exhaustion,

habituation, or contingency learning. A systematic change can

be readily estimated by looking at the change in the metric as a

function of trial number within the session, which we computed

over all subjects pooled together (figure S4A-C). We employed

Sign test on split half data (first vs. last half of the trials) to analyze

whether the direction of change is similar, and hence predictable

across the infant group (figure S4D-F). This was motivated by the

idea that finding a consistent direction of change would give a

possibility to device a correction mechanism in future analyses.

Finally, we also analyzed whether splitting the individual datasets

into odd and even trials would give subsets that are statistically

comparable. Computing the linear correlation between odd and

even values shows whether our paradigm can be considered stable

enough for presenting multiple conditions that are equally

dispersed throughout the study session.

The possibility that child’s performance changes systematically

during a test session was estimated from the disengagement

probability analysis. After pooling all data together, we found that

DPs decline as a function of trial number (figure S4A; r = -0.79, p,

10‘-7; Pearson). Moreover, DPs were significantly higher in the

first half compared to the last half (figure S4D; p,10‘-6; n = 66).

Correlation between Odd and Even trials was strong (r = 0.77, p,

10‘-13). Our observations further suggested that infants’ tendency

to reduce gaze shifts during the test session might be linked to the

disengagement times at individual level. When the DTs of the

seven infants whose DP values declined the most across the session

were compared to the seven infants with weakest DP decline a

clear difference was observed; mean DTs being 461 ms (SD

61 ms) and 370 ms (SD 70 ms), respectively.

the Helsinki control group and are presented in the boxplot graphs on the left. E) Post-hoc analysis (Tukey’s test) comparing MDs of the stimulus
conditions. Each condition is represented by the group mean rank (circle) and the associated confidence interval. No significant differences are found.
Lack of significant differences between facial expressions was probably due to the limited numbers of i) subjects in comparison and ii) trials inside
MDs (max 8).
doi:10.1371/journal.pone.0097299.g003
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The possibility of a systematic change during a test session was

then assessed separately for disengagement times and mean

deviations. There was a significant decline in mean DTs during

the course of study session (figure S4B; r = -0.74, p,10‘-5),

however the Sign test between first and second half of the trials

was nonsignificant (p = 0.18; n = 28) indicating that there is no

consistent direction of change at individual level (figure S4E).

There was also a strong correlation between Odd and Even trials

(r = 0.63, p,0.001).

Also MD values tend to decrease as a function of trial number

although the correlation is weaker compared to DP and DT

analyses above (figure S4C; r = -0.38, p = 0.03). Sign test between

first and second half of experiments was nonsignificant (p = 1;

n = 28) as well, indicating that the direction of MD change during

the trial was variable at individual level (figure S4F). There was

also a strong correlation between Odd and Even trials (r = 0.82,

p,10‘-7). Moreover, the MD metric seems robust in terms of

individual variation in the number of trials included in the DR

calculation with figure 4B presenting MD values as a function of

number of trials failing to reveal apparent trends within any

participant group.

Discussion

The present results are compatible with previous findings in

showing lowered probability of gaze disengagements from faces

and, particularly, faces displaying a fearful expression (see [14],

[28] for further discussion of this finding). The main purpose of

our study was to extend these analyses by systematically

characterizing infants gaze behavior after the initial gaze shift

(i.e. disengagement) from face, by devising novel metrics to

quantify this behavior, and by demonstrating how these metrics

vary by stimulus condition (emotion) and age. In the following, we

discuss differences between the conventional attention disengage-

ment and the new metrics reflecting attentional re-engagement

processes, and evaluate the potential suitability of each of these

metrics for prospective use in normative studies and assessments of

individual infants.

Measures for attention and face preference
The main novel contribution in our work was related to

characterizing infant’s visual exploration during the latter half of

the trial period, when both the face and target stimuli are available

for viewing. To parameterize these data, we used dynamic

response analysis to create a metric (MD) that reflects infants’

cumulative allocation of attention to the central stimulus (as

opposed to lateral geometric shape). We believe that this metric

may differ from the conventional disengagement both in terms of

its statistical properties and also by tapping different attentional

systems.

Specifically, instead of resorting to a single numerical value of

gaze shift latencies (cf. DT above), we reasoned that this time

interval within the trial is about infant’s preferential choices in a

more dynamic manner. Conceivably, the situation compares to

the traditional sustained attention paradigms that assess infants’

capacity to resume and sustain attention with a primary stimulus

after momentary distraction (e.g. [29]). The situation is also

analogous to common behavioral testing where the experimenter,

such as psychologist or pediatrician, is estimating the overall

pattern of infant’s behavior rather than any particular point in

time. Technically speaking, examiner’s perception of normality is

essentially a time integral of infant’s behavior, and its translation to

our eye tracking paradigm would be the temporally cumulating

deviation of visual exploration (i.e., gaze) from the expected range.

Based on this rationale, we devised the measure MD that was

calculated in relation to the time-varying distribution of the eye

tracking data in our sample of typically developing infants. The

obvious advantages of this approach are that i) it is insensitive to

single outlier values in each trial (removed by median filter of the

Figure 4. Individual and group level findings of the MD scores. A) Summary of MD findings in all three infant groups: 7-month-old Helsinki
(H-7mo) and Boston infants (B-7mo), and 5-month-old Boston infants (B-5mo). Scores of individual infants’ are illustrated with coloured circles with
the underlying boxplot depicting the median and IQR, and the whiskers showing the total score extent neglecting the outliers (max length 1.5*IQR
from the box edge).Comparison of MD scores between younger and older infants revealed age-related differences (** and * indicate p-values under
0.02 and 0.01 respectively; Mann–Whitney U test). B) Comparison of MD score and the number of trials available from each infant shows no
systematic change in MD with an increase in trial numbers. The colour coding of circles depicts individual scores as shown in figure A.
doi:10.1371/journal.pone.0097299.g004
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gaze tracking data and averaging over multiple trials), ii) it can be

adjusted to allow detection of even marginal abnormalities (by

changing the threshold), and iii) it is able to measure cognitive

operation (gaze attention) over extended period of time instead of

single time point like the conventional DT.

As for the underlying neurocognitive processes and attentional

systems, it can be speculated that the initial disengagement of gaze

from the face to the lateral stimulus (DT in our analysis), and

subsequent (prolonged) re-engagement with the face (MD in our

analyses) reflect partially different aspects of attention. For

example, the initial disengagement may be based on subcortical

systems important for reflexive orienting responses in infants [15],

[30] whereas the latter may engage more voluntary and goal-

directed attentional control mechanisms, centered in the dorsal

parietal and frontal cortex [30], [31]. Clearly, further research is

needed to tease apart between these explanations, but it is

interesting to note that our results showed strikingly similar MD

score in two independent sample of 7 month-old infants, and a

clearly differentiated these two groups from younger, 5-month-old

infants. Moreover, our observation (figure 4) suggests that MD

may even be able to identify different developmental subgroups in

the young infants that are just approaching the age when the tested

behavior is developing. Our present data, however, is not able to

confirm this, or identify its wider correlates, yet the results suggest

that MD might be sensitive to developmental differences.

Barriers to entry into larger scale field studies or clinical
diagnostics

Our work developed such quantifiable metrics of the face-

distractor competition paradigm that could be carried further to

eventually become research tools in larger scale developmental

studies or even clinical screening. While we find the overall

concept applicable to such use, we can identify multiple potential

or actual barriers to entry, which need further attention:

Suitability of disengagement paradigm as a general

measure of individual’s cognition. The genuine value of

clinical diagnostic method comes from its performance at

individual level, and such accuracy would also greatly benefit

methods used in larger scale population studies. Prior works in

both infant and adults populations have shown how disengage-

ment paradigm can identify and predict abnormal neurocognitive

function at the group level [32], [33], however there is a shortage

of experience from the use of this (or any comparable) paradigms

at the individual level assessment. Indeed, a major obstacle in

obtaining such experience comes from the challenges related to

conventional analyses, and we trust that the quantifiable, already

partly automated analysis methods presented in our work could

facilitate future prospective studies needed to provide evidence

about how the study paradigms may perform at individual level.

Practical considerations of disengagement paradigm

setup in studying infants. Bringing a test paradigm from

basic science laboratory to field testing, or testing on compromised

infants, requires that all parts of the paradigm ranging from the

physical recording set up to time constraints and analysis pathways

are compatible with often suboptimal conditions. The physical

recording setup used in our work consists of an eye tracker device

integrated to the computer screen, which can be readily mounted

on any office table (see figure 1). We are now piloting with even

lighter design where the eye tracker device is a light portable bar

that can be attached on the top of any computer screen. Given

that the study procedures were automated, running this system

requires less than an hour training from people with average

computer skills. The cost of eye tracking devices has been an issue,

but recent development of consumer applications for eye tracking

technology has already dropped the pricing to the level of any

smaller medical devices. Another major issue is the time needed

for testing, which in the infants is limited by their short attention

span and vigilance state cycles. Our work showed, in full

agreement with prior studies, that the group of healthy 7-month-

old infants demonstrated a consistent pattern in the dynamic

attentional response, and they can be readily studied from

individual infants using only relatively few trials. It was hence

possible to run the full test procedure within a few minutes, which

we find very tolerable for practical settings.

The remaining practical consideration relates to data analysis,

which in this study needed special signal analysis expertise. The

present work was to create metrics that can be implemented as an

automated script, and we believe that the most plausible

implementation in larger scale studies would come via develop-

ment of scripts that immediately output the analyses in the end of

the test session.

It is notable in this context that our present work was carried

out in a specialized hospital clinic (Helsinki) or in a science

laboratory (Boston). Hence future studies will be needed to gain

experience from running the paradigm in less equipped environ-

ment and by less skilled people. To this end, we are currently

piloting this paradigm as a fully automated setup (from running

the trials to its full analysis) in a basic health care facility.

Potential needs to improve or simplify the

paradigm. The utility and power of a paradigm in any larger

scale use depends partly on how well it is optimized for the task.

Regarding the choice of stimuli, we showed that our metrics

indicated expected differences between genuine face vs. non-face

stimuli (cf. [27], [34]–[38]), and the fearful face was most

distinctive of different facial expressions (see also [13], [22], [25],

[26]). These observations suggest that the paradigm could be

simplified to consist of one facial expression only to be combined

with non-face in order to offer the most robust estimate of infant’s

preference to social relevance of the stimulus (cf. [23], [27], [39]).

Regarding the geometrically shaped targets used in this work, we

believe that they could be made more attractive (e.g. simple

animations) that would increase the frequency of gaze shifts. The

practical advantage of this would be to reduce heterogeneity in the

proportion of initial gaze shifts and increase the number of

accepted trials, i.e. the statistical robustness of the study session.

Modifications of this kind are readily implemented in the stimulus

settings and they won’t imply any change in the analysis paradigm,

yet they hold promise for expediting the study procedure and

improving the statistical validity of the findings.

Challenges in validation of the study paradigm. Novel

methods are validated by providing evidence of their utility for the

given use. One key measure is the ‘‘accuracy’’ of the new method,

which would be conventionally evaluated by measuring its

sensitivity and specificity in detecting a given feature of cognition.

While such approach would be an obvious aim for our present

paradigm as well, it is important to note that formal assessment of

sensitivity and specificity measures do require as yet non-existent,

reliable and quantifiable criterion variable or ‘‘ground truths’’ of

the feature of interest. Indeed, the lack of such ground truths in

neurocognitive assessment was a major underlying driver for our

present work. The genuine validation of this and other future tests

of core cognitive functions in infants (e.g. [40]) will thus come from

the test of time: the ability i) to outperform conventional

behavioral assessments in study cohorts, and ii) to provide a

perceived added value to studies seeking early developmental

biomarkers (cf. [41]–[43]). Validation in this way will be based on

larger scale recruitments of both typically and atypically develop-

ing infants, which is already running in our and other laboratories.
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Creation of reference (normative) data. Individual level

assessment is based on comparing the findings with normative

data. Our present study focused on testing the repeatability of our

metrics in an independent dataset, as well as the ability of the

metric to detect age-related differences between older and younger

infants. However, these cohorts were not suitable for establishing

normative values, because the datasets were too small and we did

not have complete enough information about the ultimate

neurocognitive development of these babies. While we found our

pilot observations encouraging, we acknowledge that future

prospective studies with standardized cohort characterization will

be needed to establish genuine normative values and their

developmental trajectories.

Conclusions
Our present work showed that novel analysis of eye tracking

data during the face-distractor competition paradigm reveals

sustained attention for faces in infants, and are sensitive to known

developmental changes in infants’ face processing between 5 and 7

months of age. Our work further showed that the test paradigm

and data analysis can be implemented in a standardized and

automated manner outside of neurocognitive laboratories, such as

a well-equipped pediatric hospital clinic. Together with a

multitude of prior studies [5], [27], [32], [44], our results call for

exploiting eye tracking based paradigm(s) as a potential candidate

for studying neurocognitive development of individual infants at

the age when conventional neuropsychological testing is challeng-

ing. Development of early biomarkers of cognition holds promise

for disclosing elusive causal relationships in cognitive development,

which is crucial to better understand the environmental (epige-

netic) effects on cognition, pathophysiological mechanisms under-

lying neurocognitive morbidities [45], or even guide development

of very early and targeted neurocognitive therapies [8].

Supporting Information

Figure S1 Calibration of the eye tracking system.
Example screenshot from a calibration session demonstrating

how Tobii Studio software shows the offset of gaze during

calibration procedure.

(TIF)

Figure S2 Assessment of the practical spatial accuracy
of Tobii eye tracking system. The figure shows combined

results of all 25 trials on practical spatial accuracy of our eye

tracking system. The three red circles are the fixation targets, blue

crosses show the actual measured point of gaze data while

watching the fixation dots, and the black stippled lines depict 51

pixel margins around each dot that included 99.9% of gaze

tracking. Green circles represent the average point of gaze at each

target.

(TIF)

Figure S3 Supplementary results for DT and DP
analysis. A-B) The boxplot graphs on the left indicates gaze

shifts probabilities in face and non-face (noise) stimulus conditions.

The initial gaze shift from the face to the target was significantly

more frequent (p = 0.03; Mann-Whitney U test) when the infant

was presented with the non-face as opposed to the face stimulus

(medians 88% and 46%, respectively). No such difference was

found between the conditions when the returning (from target to

face) gaze shifts were studied. There was also no significant

difference in the mean DTs between the face and the noise

condition (medians were 413 ms and 320 ms, respectively). C-E)

Distribution of DTs across trials (C) shows that the distribution is

strongly skewed with a long tail extending to the right (note, only

those trials were used where infant’s gaze eventually turned to the

target). Comparisons of infants with different numbers of

successful trials show that the mean and the standard deviation

of DTs are relatively insensitive to the number of trials (D and E,

respectively).

(TIF)

Figure S4 Stability of the metrics. A-C) The three graphs

present scores for DP, DT and MD depicted as function of trial

number within the session, which were computed over all subjects

(N = 67, including the Boston datasets) pooled together. These

trial-by-trial analyses reveal systematic changes in metrics during

course of eye tracking session. D-E) The graphs present split half

analyses for DP, DT and MD metrics to illustrate the direction of

possible changes during the time course of the eye tracking session

at the individual level. Each participant is presented with one line

that connects the measure of the first half to the second half. Note

how the direction of change is highly variable. For the DT and

MD graphs, we only used participants with 12 or more scorable

trials (N = 28).

(TIF)

Dataset S1 Description of the independent sample from
Boston Children’s Hospital. To test the developed metrics,

we analyzed the data from an additional sample of 7-month-old

(N = 32) and 5-month-old infants (N = 22) who had participated in

an independent study in Boston Children’s Hospital.

(DOC)

Information S1 Calibration of the eye tracking system.
Description of the calibration procedure of the eye tracking system

performed at the beginning of each study session using the

workflow within the Tobii Studio software. See also figure S1.

(DOC)

Information S2 Assessment of the practical spatial
accuracy of Tobii eye tracking system. Description of the

simple accuracy test that was performed to evaluate the practical

spatial accuracy of the eye tracking system. See also figure S2.

(DOC)

Video S1 Example video of typical progression of
consecutive trials. The short video clip illustrates how infant’s

gaze typically moves across the screen during four trials. Here the

tracked gaze path is visualized by red circles overlaying the

stimulus images. The growth of the circles represents the durations

of successive fixations. The video was compiled using Tobii Studio

software that in our case permits only use of static images. Thus,

the fixation cue at the very beginning of each trial is static in the

video as opposed to the animations used in our actual experiment

designed using E-Prime.

(AVI)

Table S1 Disengagement probability and time in each
participant group. The tables contain group level results of the

conventional eye tracking measures in the face-distractor compe-

tition paradigm (DP and DT) that are presented for each

participant group and each stimulus condition separately.

(DOC)
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