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ABSTRACT: Bridges exposed to extreme environmental conditions are susceptible to damage 
and even failure during service life. Traditional monitoring techniques may necessitate the installa
tion of numerous sensors on the bridge, which can be time-consuming and costly. Instead, the 
indirect method typically employs several accelerometers attached to the passing vehicle, which is 
more economical and more accessible to operate. To promote the development of the indirect 
method, this paper proposes a novel vehicle vibration-based method for classifying bridge damage 
of varying severity using cutting-edge deep learning techniques. Initially, the framework for 
damage classification based on the responses of a single vehicle and 1-dimensional convolutional 
neural networks (1-D CNNs) is appropriately designed and introduced. Then, the proposed 
approach is evaluated using a steel continuous beam and a model truck in the laboratory, which 
is utilized to simulate a vehicle-bridge interaction (VBI) system in engineering applications. The 
experimental results indicate that the bridge’s damage severity can be predicted by the CNN with 
high accuracy, thereby validating the inclusion of bridge damage information in the passing 
vehicle’s responses. Furthermore, it is determined that employing multiple responses from the 
vehicle facilitates the improvement of damage classification accuracy. Heavier vehicles are condu
cive to the transfer of more bridge-damaged information and are therefore recommended in 
engineering.

1 INTRODUCTION

Bridge structures play a vital role in European transportation systems, yet their aging and 
deterioration pose significant challenges. Over the past decades, the need for structural health 
monitoring (SHM) of bridges has become increasingly apparent. Traditional monitoring heav
ily relies on visual inspections by experienced engineers, but this approach becomes impracti
cal for newly constructed bridges spanning tens or even hundreds of meters. In the 21st 
century, a promising and expedient solution to bridge health monitoring has emerged through 
the vibration-based approach (Hou and Xia, 2021). This method involves monitoring the 
modal parameters throughout the bridge’s service life, offering insights into potential damage 
occurrences. However, the conventional approach mandates the installation of a large number 
of sensors, including temperature sensors, accelerometers, strain gauges, etc. directly on the 
bridge (referred to as the direct method) to establish a sensing network. Undoubtedly, this 
solution incurs a high cost and is typically reserved for significant projects rather than short- 
and mid-span bridges.

Over the past two decades, researchers worldwide have developed the indirect method, 
involving the installation of sensors on passing vehicles rather than directly on bridges (Mal
ekjafarian et al., 2022; Wang et al., 2022; Xu et al., 2024; Yang et al., 2024). This approach is 
characterized for its economic efficiency and convenient applications. Numerous numerical 
simulations and experiments have demonstrated the viability of extracting bridge modal 
parameters from vehicle responses (Feng et al., 2023; Li et al., 2023a). However, practical 
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engineering observations reveal that modal parameters of bridges may not be highly sensitive 
to damage due to the influence of operational conditions, such as temperature effects and 
ongoing traffic. Consequently, bridge health monitoring based on changes in modal param
eters may face essential challenges.

In recent years, artificial intelligence (AI) has made significant strides across various 
domains, notably enhancing bridge health monitoring. Traditional direct methods initially 
employed intelligent techniques such as supervised deep learning (DL) and transfer learning 
(TL), yielding robust results in bridge health monitoring. When applying the indirect method, 
vehicle responses typically include vehicular information, road roughness, and bridge vibra
tions, with the latter being particularly challenging to identify (González et al., 2023). DL 
techniques are good at extracting essential features, making them valuable for identifying 
bridge information from passing vehicle responses. Malekjafarian et al. (2019) developed 
a machine learning approach using vehicle accelerations to detect and quantify bridge 
damage. Two strategies, involving time-domain or frequency-domain responses from multiple 
vehicle runs, successfully identified damage occurrences and provided references for damage 
severity. Corbally and Malekjafarian (2022) improved this method by incorporating contact- 
point (CP) frequency responses into artificial neural networks (ANNs), demonstrating super
ior performance in identifying bridge damage. The proposed method underwent robust testing 
with variations in vehicle speeds, ambient temperatures, and road roughness levels. In 2023, 
Li et al. (2023b) emphasized the importance of considering both low and high-frequency 
responses of passing vehicles for extracting bridge damage-sensitive features. Furthermore, 
their findings verified that short-time vibrations during vehicular passage contain valuable 
information for determining the bridge’s health state (Li et al., 2023c). To overcome the chal
lenges that DL techniques typically require a large number of samples, a physics-guided 
framework was proposed by Lan et al. The results verified the effectiveness of the proposed 
method in damage indication, quantification, and localization (Lan et al., 2024). Despite these 
advancements, most studies have simplified vehicles into a quarter-car model during training 
(Corbally and Malekjafarian, 2023). The vehicle’s response along with one degree of freedom 
(DOF) is considered. In practice, vehicles have multiple DOFs, and each can contain bridge- 
related information (Li et al., 2023d). Therefore, for improved accuracy in the training pro
cess, responses from multiple positions of the vehicle need to be considered.

This paper introduces an innovative approach to damage classification using 1-dimensional 
convolutional neural networks (1-D CNNs) to advance the monitoring process. Sensors are 
strategically positioned on various locations of a passing vehicle, collecting its accelerations as 
it traverses the bridge. Subsequently, the time-domain vehicular accelerations obtained from 
multiple positions are transformed into the frequency domain. These frequency-domain 
responses are then employed as inputs across different channels of the 1-D CNN for damage 
severity classification. To illustrate the effectiveness of the proposed method, an experimental 
study involving a U-shape beam and a scaled truck is conducted. The subsequent sections of 
this paper are structured as follows: Section 2 delves into the theoretical foundation of 
employing 1-D CNNs for damage classification within the indirect method. Section 3 outlines 
the laboratory experimental setups for the vehicle-bridge interaction (VBI) system and intro
duces artificial damage cases. Results and discussions are offered in Section 4. Finally, Sec
tion 5 provides the conclusion of this paper, summarizing the key findings and potential 
avenues for future research.

2 THEORY FOUDATION

2.1  Vehicle’s multiple responses

This paper introduces a novel approach using multiple responses of the vehicle, distinguishing 
itself from existing studies. Assuming a vehicle equipped with N accelerometers, denoted as €zi 

for the accelerations measured by the ith sensor, this study advocates optimal sensor place
ment aligning with the 3-D vehicle’s seven degrees of freedom, as detailed in the reference (Li 
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et al., 2023d). However, practical challenges arise in accurately localizing the vehicle body’s 
gravity center and capturing vibrations from the vehicular wheels, particularly given the intri
cate suspension systems. As an initial study, this paper employs a pragmatic solution, utilizing 
only two accelerometers strategically placed on the front and rear axles, denoted as N = 2.

Further, in order to remove the influence of unrelated information about the bridge, only 
when the vehicle is on the bridge will the vehicle’s accelerations be recorded. This can typically 
be achieved by installing GPS sensors on the passing vehicle (Lan et al., 2023). Signals col
lected by the vehicle could be truncated according to location information. Assume that the 
vehicle’s rear wheels enter the bridge at Tin and its front wheels leave the bridge at Tout, and 
only the vehicle’s accelerations within Tp will be utilized, where Tp is the vehicle’s passing time 
and is shown in Eq. (1),

2.2  1-D CNNs

In contrast to traditional 2-D CNNs tailored for image analysis, 1-D CNNs specialize in 
handling single-dimensional inputs. While standard images possess three channels—R, G, 
and B—the proposed method incorporates multiple signal channels derived from diverse 
positions on the moving vehicle. The architecture of 1-D CNNs encompasses convolu
tional layers, 1-D max-pooling/average pooling layers, and fully connected layers. The 
computations within the convolutional layers can be expressed by Eqs. (2) and (3) 
(Abdeljaber et al., 2018),

where xl
k means the input of the lth layer. bl

k represents the bias of the kth neuron at layer l. 
CONV (·) denotes the 1-D convolution without zero padding. wl� 1

ik is the 1-D kernel from the 
ith neuron at layer l − 1 to the kth neuron at layer l. f means the activation function. Typical 
activation functions include rectified linear unit (ReLU), Sigmoid, and Tanh.

1-D max-pooling/average-pooling layers efficiently down-sample the data by selecting the 
maximum/average value within a defined neighborhood. Interested readers can find further 
details in the reference (Murray and Perronnin, 2014). The resulting output is flattened into 
one dimension before being connected to fully connected layers. The ultimate output of the 
fully connected layer corresponds to the different damage severities in this paper. 

Figure 1.  Data collection and model training.
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3 LABORATORY EXPERIMENTS

3.1  Vehicle models

This paper employs a meticulously scaled model truck to simulate real-world engineering 
vehicles. Figures 2 and 3 illustrate the truck, its system and installed accelerometers. The 
employed truck model is the Tamiya Mercedes-Benz 1850L, with a scale ratio of 1:14. 
The truck’s self-mass, denoted as T0, is 4.305 kg, and to simulate heavy vehicles, an 
additional mass of 5.157 kg is added (referred to as T5). A guide-wire system ensures 
the truck follows a straight path without colliding with the beam’s flange. The bottom 
view of the scaled truck is depicted in Figure 3, showcasing its scaled suspension system, 
engine, connecting shaft, and more. Driven by a 540-brushed electric motor powered by 
a Tamiya Ni-MH 7.2 V–3000 mAh battery, the vehicle introduces engine noise that inev
itably affects acceleration data collection in engineering. Two Brüel & Kjær accelerom
eters (type 4371) are attached to the front and rear axles (Figure 3), with a sampling 
frequency set at 10 kHz. The vehicle, remotely controlled, exhibits slight speed variations 
across runs due to battery constraints. However, to allow for optimal vibrations, the 
wire tension is deliberately kept loose, resulting in slightly varied passing traces during 
multiple beam crossings.

3.2  Bridge model

In this experiment, a single continuous beam with three supports is employed for the bridge 
configuration, as shown in Figure 4. The utilized beam is a UPE 300 with a cross-sectional area 
of 5660 mm2, a span length of 5.7 m, a support length of 0.15 m, and a mass of 248.64 kg. To 
maintain a relatively constant speed as the truck traverses the beams, acceleration and deceler
ation runways are positioned at the beam ends. For comparison purposes, accelerometers are 
also installed at the bottom of the beam to capture its vibrations concurrently with the truck’s 
passage. Additionally, to clearly identify the beam’s modal frequencies, impulse excitation using 
an impact hammer is applied. Employing FFT analysis, the natural frequencies of the beam are 
obtained, as illustrated in Figure 5, revealing the first two frequencies as 30.75 and 42.53 Hz.

3.3  Damage scenarios

In practical engineering, the occurrence of damage can lead to a decrease in a bridge’s natural 
frequencies. An effective experimental method for simulating damage involves adding mass to 
the bridge, a process known to cause a reduction in natural frequencies (Cerda et al., 2014). 

Figure 2.  Model truck (lateral). Figure 3.  Model truck (bottom).
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This approach offers the advantage of easy recovery, allowing the beam to return to an 
undamaged state when necessary. In this study, various masses are applied to the bridge to 
simulate different artificial damage scenarios. Damage degrees are represented by the ratios of 
added masses to the beam’s mass. For example, when there are two 5 kg masses and two 
hooks (4 kg) added to the beam’s two spans, the damage degree is (5+5+4)/248.64 =5.6%. 
Table 1 summarizes all scenarios (S0-S6), where S0 means an undamaged bridge, while scen
arios S1-S6 represent varying degrees of damage.

4 RESULTS AND DISCUSSIONS

4.1  Model training and testing

In this study, runs of T0 or T5 are divided into two groups. 70% of runs are utilized for training 
and the rest are for testing. As outlined in Section 2, the vehicle’s time-domain signals on the 
bridge are transformed into the frequency domain. To mitigate contamination from environmen
tal noises, only vehicle frequency-domain responses within 100 Hz are utilized for training, as val
idated in previous work (Li et al., 2023c). Zeros padding is applied to align input time-domain 
signals, resulting in an FFT frequency resolution of 0.0763 Hz, yielding 1310 response points 
within the 0-100 Hz range. The training is conducted on an Aalto University workstation 
equipped with Intel Core i7-9750 CPUs, 16 GB RAM, and an NVIDIA GTX 1650 graphic card 
for tensor computation acceleration. All code is implemented in Python 3.9 with the PyTorch 
package. The model architecture, detailed in Table 2, employs hyperparameters including 
a learning rate of 1e− 4, Adam optimizer, cross-entropy loss, batch size of 16, and 200 epochs. 

4.2  Damage classification using 1-D CNNs

When utilizing the vehicle’s frequency-domain responses within 0-100 Hz for training, loss 
curves for T0 and T5 vehicles have been plotted in Figures 6 and 7. Notably, for both T0 and 
T5 vehicles, employing responses from two axles yields smaller losses compared to using 
responses from only one axle. The difference is relatively minor for T0, as the lighter vehicle 

Figure 4.  Bridge model. Figure 5.  Bridge frequency spectrum.

Table 1. Damage scenarios.

Scenarios S0 S1 S2 S3 S4 S5 S6

Added mass/kg 0 5 10 15 20 25 30
Damage degree 0 5.6% 9.6% 13.7% 17.7% 21.7% 25.7%
T0 runs 50 49 50 42 51 51 47
T5 runs 57 56 57 56 57 56 57
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may not induce strong vehicle-bridge interaction responses, resulting in less bridge informa
tion transferred to the vehicle. Despite including responses from another axle in the training, 
the model’s ability shows marginal improvement. In contrast, for the heavier T5 vehicle, the 
inclusion of responses from two axles significantly reduces the loss. This is attributed to the 
incorporation of valuable bridge damage information in the vehicle’s axles’ responses, enhan
cing the model’s damage classification capabilities.

To evaluate the capability of the trained model, some criteria listed in Eq. (4) are utilized,

where True Positive (TP) refers to a sample belonging to the positive class being classified cor
rectly; True Negative (TN) refers to a sample belonging to the negative class being classified 
correctly; False Positive (FP) refers to a sample belonging to the negative class but being clas
sified wrongly as belonging to the positive class; False Negative (FN) refers to a sample 
belonging to the positive class but being classified wrongly as belonging to the negative class. 
The damage classification accuracy using T0 and T5 are plotted in Figures 8 and 9.

We can see that for both T0 and T5 vehicles, employing responses from both axles yields 
higher accuracy compared to using responses from a single axle. Notably, with T0, accuracy 
stabilizes below 80% after 50 epochs. Conversely, Figure 9 illustrates that when a heavier 
vehicle is employed, accuracy consistently exceeds 95%. Consequently, in practical engineering 

Table 2. Architecture of the 1-D CNNs.

Layer Pooling Output shape Batch normal Activation

Conv1d – 1310×20 Yes ReLU
Conv1d – 1310×20 Yes ReLU
Conv1d Max 655×20 Yes ReLU
Conv1d – 655×40 Yes ReLU
Conv1d – 655×40 Yes ReLU
Conv1d Max 327×40 Yes ReLU
Conv1d – 325×60 Yes ReLU
Conv1d – 325×40 Yes ReLU
Conv1d Avg 65×20 Yes ReLU
Flattened – 1300 No –
Fully Connected – 7 No –

* Conv1d: 1-dimenasional convolutional layer, ReLU: Rectified linear unit

Figure 6.  Loss curve using T0 vehicle. Figure 7.  Loss curve using T5 vehicle.
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applications, it is advisable to recommend the use of heavier vehicles, as they can gather more 
damage-related information about the bridge.

To assess the predictive capabilities of the trained DL model for damage severity classifica
tion, we employ the confusion matrix (CM), a widely used tool, to show the best bridge 
damage classification results. Figures 10 and 11 illustrate the CMs for T0 and T5, respectively.

From Figure 10, we can see that with the use of a light vehicle, the overall damage classification 
accuracy reaches 79%. Across most damage scenarios, Recall values range between 50% and 95%, 
though certain instances, such as S3, exhibit low Recall, indicating inaccuracies in predicting 
damage severity. Contrastingly, when employing a heavier vehicle, as shown in Figure 11, Recall 
values can consistently approach or exceed 90%, with some cases achieving 100% Precision and 
Recall values. The overall accuracy of damage classification across all scenarios increases signifi
cantly to 96.1%. Therefore, we can conclude that in practical engineering, heavier vehicles are 
recommended for the indirect bridge health monitoring using responses of passing vehicles.

4.3  Further discussions

In this study, we employ a scaled truck and a U-shaped beam to simulate real VBI scenarios. 
The road roughness, primarily caused by the wheels’ tread, is relatively good compared to 
practical engineering cases. To alleviate the influence of road roughness, various techniques, 
such as CP responses and residual CP responses between wheels or connected vehicles, can be 

Figure 8.  Damage classification accuracy (T0). Figure 9.  Damage classification accuracy (T5).

Figure 10.  Damage classification results (T0). Figure 11.  Damage classification results (T5).

1661



examined. Furthermore, it is noted that as an initial investigation, this paper mainly explored 
the superior capability when responses of multiple positions of the vehicle are utilized. To 
overcome the challenges that labeled damaged data are difficult to obtain in engineering, 
semi-supervised or unsupervised DL techniques deserve further studies.

5 CONCLUSIONS

This paper proposed a bridge damage classification strategy using responses of the passing 
vehicle’s multiple positions and 1-D CNNs. Firstly, the fundamental theories about CNNs are 
introduced. Then, the proposed method was verified via a scaled truck and continuous beam 
in laboratory experiments. The experimental results indicate that the bridge’s damage severity 
can be predicted by the CNN with high accuracy, and some concluding remarks are drawn 
below:

(1) The passing vehicle’s responses on multiple positions can contain bridge damage informa
tion. Therefore, in the DL model training process, the responses from more DOFs are 
supposed to be included to increase its damage classification capability.

(2) Heavier vehicles can make the VBI interaction responses stronger. Through this, more 
bridge damage-related information can be transferred to the passing vehicles’ vibrations, 
resulting in boosted damage classification accuracy.

Even though there are some key findings, some important influence factors, such as ongoing 
traffic and very poor road roughness, have not been checked. Our future studies will include 
these factors and further unsupervised DL models before engineering applications.
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