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Abstract
This work introduces a stabilised finite element formulation for the Stokes flow prob-
lem with a nonlinear slip boundary condition of friction type. The boundary condition
is enforced with the help of an additional Lagrange multiplier representing boundary
traction and the stabilised formulation is based on simultaneously stabilising both the
pressure and the traction. We establish the stability and the a priori error analyses, and
perform a numerical convergence study in order to verify the theory.

Keywords Finite element method · Stokes problem · Nonlinear slip condition ·
Stabilisation

Mathematics Subject Classification 65N30 · 65N12 · 76M10

1 Introduction

The Stokes problem is a well known and extensively studied linear model for creep-
ing flow. There exist various physically justified and mathematically valid boundary
conditions that can be directly applied. For instance, some components of the velocity
field umay be prescribed while the other components are free to vary subject to a zero
stress condition. In the classical linear slip boundary condition, the normal velocity is
equal to zero and the tangential velocity remains unspecified.

However, in some cases a more involved nonlinear interaction takes place between
the fluid and its surroundings. Think, e.g., of a membrane leaking only if the pres-
sure becomes large enough. Another example is a slip flow in which the tangential
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velocity at the boundary becomes nonzero if and only if the shear stress exceeds a
prescribed, or velocity-dependent, friction threshold. This inequality-type of friction
laws have been suggested, e.g., for the flow of glaciers over the bedrock [24]. Besides,
given that the Stokes flow problem is analogous to the equations of linear elasticity
in the incompressible limit [17], nonlinear slip conditions could be used for modeling
frictional contact of incompressible solids. See also Rao and Rajagopal [22] for more
examples on the use of slip boundary conditions in flow problems.

In this work, we focus on the nonlinear slip condition with a prescribed Tresca
friction threshold. The nonlinear slip (and leak) boundary conditions of friction type
were first considered for incompressible fluids by Fujita [10]—see also the discussion
on slip boundary conditions for fluid flow problems in Le Roux [18]. These prob-
lems can be written as variational inequalities of the second kind, cf. Fujita [10], or,
alternatively, as mixed variational inequalities by expressing the boundary traction as
a Lagrange multiplier λ which enforces the inequality constraint, cf. [3]. Here, we
adopt the second formulation and propose a stabilised finite element method for its
numerical approximation.

Regarding the numerical approximations, Kashiwabara [16] has proven error esti-
mates for the velocity-pressure pair (u, p) using Taylor–Hood P2–P1 finite elements
but with the inf-sup constant for the tangential component λt , approximated using
the trace space of P2, still depending on h. The lack of uniform stability means that
it is not possible to achieve optimal error estimates for λt . However, the value of λt

is needed in finding the active constraints at each iteration step of the solution algo-
rithm. Therefore, it is reasonable to aim at uniform stability for the three unknowns
(u, p,λ).

Achieving uniform stability simultaneously for λ and p can be done by different
means, e.g., by a specific choice of finite element spaces. The work of Ayadi et al.
[1–3] is based on the use of P1 bubble–P1–P1 triplet as a stable choice of mixed finite
element spaces. This is a reasonable choice since P1 bubble–P1 for (u, p) is known
to be stable in the case of the standard Stokes problem and P1–P1 element for (u,λ)

has been implemented to impose boundary conditions using Lagrange multipliers—
although we would expect that minor modifications of the basis functions are needed
in the case of mixed boundary conditions [13]. Other works based on mixed methods,
with or without an explicit Lagrange multiplier for the boundary condition, include
Djoko et al. [6, 8] and Fang et al. [9].

The present work focuses on residual stabilisation [4, 25], i.e. the inclusion of
additional residual terms in the variational formulation to circumvent the Babuška–
Brezzi condition. If these residual terms are consistent and scaled properly, it is possible
to have stability for the (p,λ) variables, no matter which finite element spaces are
considered for discretisation. This will greatly improve the flexibility in choosing
the finite element spaces and allows for discretisations beyond those based on the
boundary conditions. In this work, the stabilisation allows us to use the lowest order
P1–P1–P0 element in our numerical experiment, a triplet which would otherwise be
unstable.

Residual stabilisation has been considered in Djoko and Koko [7] but only for the
velocity–pressure pair and, hence, without estimates for λ. A stabilisation technique
through pressure projection has been presented in Li and Li [20], and discussed in
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Qiu et al. [21] and Li et al. [19], but again without estimates for λ. Using residual
stabilisation for both Lagrange multipliers, p and λ, we establish here a uniform
stability estimate for all three variables. This is shown to lead to a quasi-optimality
result, i.e. a best approximation result with an additional term due to the unknown
location of the slip boundary, which is further refined into an a priori error estimate
for the lowest order method.

The work is organized as follows. In Sect. 2, we present the strong formulation of
the problem and in Sect. 3 derive the corresponding weak formulation. The stabilised
finite element method is presented and its stability analysed in Sect. 4. In Sect. 5,
the quasi-optimality estimate is proven and shown to provide an optimal priori error
estimate for the lowest order method. In Sect. 6, we derive a solution algorithm for the
discrete variational inequality and, in Sect. 7, report on the results of our numerical
experiment which aims at corroborating the theoretical convergence rates.

2 Strong formulation

Let Ω ∈ R
d , d ∈ {2, 3} denote a polygonal (polyhedral) domain with a Lipschitz

boundary ∂Ω and let u : Ω → R
d be the fluid velocity field. Denoting the symmetric

part of the velocity gradient by

D(u) = 1

2
(∇u + ∇uT ),

we introduce the differential operator

Au = u − div (2μD(u)),

where μ > 0 is the kinematic viscosity. Letting p : Ω → R be the pressure field,
the balance of linear momentum for an incompressible, homogeneous and linearly
viscous fluid reads as

Au + ∇ p = f , (2.1)

where f : Ω → R
d denotes the resultant of external forces. Equation 2.1 holds

together with the incompressibility constraint

div u = 0. (2.2)

Remark 1 We are considering here the "generalized" Stokes system 2.1–2.2 for expe-
diency. In particular, using the operator Au, instead of −div (2μD(u)), allows us to
impose the slip boundary condition on the entire ∂Ω . Considering different boundary
conditions at different parts of the domain requires resorting to the trace space H1/2

00
[26] for the normal components of the velocity field trace which, in our opinion, is an
unnecessary technical difficulty.We also note that the generalized equation is relevant,
as such, for the implicit time discretization of the time-dependent Stokes equations,
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and that the solvers presented in this work and available at [11] can be applied to the
standard Stokes system by simply removing the additional term.

Next, let us introduce the boundary conditions. Denoting the Cauchy stress tensor
by

σ (u, p) = −p I + 2μD(u), (2.3)

and the normal and tangential components of u as un = u · n and ut = u − unn,
where n : ∂Ω → R

d is the outward unit normal to Ω , we divide the normal stress
vector σ (u, p)n into its normal and tangential components σn and σ t defined through

σn(u, p) = σ (u, p)n · n

and

σ t (u, p) = σ (u, p)n − σn(u, p)n.

On the boundary ∂Ω , we impose the following (nonlinear) slip boundary condition

un = 0, |σ t | ≤ κ, σ t · ut + κ|ut | = 0, (2.4)

where κ : ∂Ω → (0,∞) is a positive threshold function denoting an upper limit for
the tangential stress before slip occurs. In other words, if |σ t | < κ then the tangential
velocity is zero and if |σ t | = κ then the tangential stress and velocity vectors are
collinear with opposite directions. In case the boundary condition is imposed with the
help of Lagrange multipliers, the definition

λ = σ (u, p)n (2.5)

implies that

λnun = 0, |λt | ≤ κ, λt · ut + κ|ut | = 0, (2.6)

where λn = λ · n denotes the normal component of the Lagrange multiplier and
λt = λ − λnn its tangential component.

Remark 2 Note that there exists an analogous interpretation of the above problem in
solid mechanics. It is well known that the Stokes problem 2.1–2.2 can be obtained
from the equations of linear elasticity by defining "pressure" as the product of the
first Lamé parameter and the divergence of the displacement field and then letting
the first Lamé parameter approach infinity, corresponding to the incompressible limit.
Consequently, in solid mechanics, the condition 2.4 can be referred to as the Tresca
friction condition [14].
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3 Mixed variational formulation

We will now present a mixed variational formulation for problem 2.1,2.2, 2.4. We use
the following notation for the L2 inner products

(a, b) =
∫

Ω

ab dx, (a, b) =
∫

Ω

a · b dx,

define the velocity and pressure spaces through

V = H1(Ω)d , Q = {q ∈ L2(Ω) : (q, 1) = 0},

and denote the trace space byW = H1/2(∂Ω)d , d ∈ {2, 3}. The space for theLagrange
multiplier, defined in 2.5, is

Λ = {μ ∈ M : −〈μt , v〉 ≤ (κ, |vt |)∂Ω ∀v ∈ W},

where M = W ′ and 〈., .〉 denotes the duality pairing between M andW . In particular,
for μ ∈ M and v = (vnn + vt ) ∈ W we can write

〈μ, v〉 = 〈μn, vn〉 + 〈μt , vt 〉,

where 〈μn, vn〉 = 〈μnn, vnn〉; cf. [29].
The mixed variational formulation of problem 2.1,2.2, 2.4 now reads as follows:

find (u, p,λ) ∈ V × Q × Λ such that

⎧⎪⎨
⎪⎩
a(u, v) − (div v, p) − 〈λ, v〉 = ( f , v) ∀v ∈ V ,

(div u, q) = 0 ∀q ∈ Q,

−〈μ − λ, u〉 ≤ 0 ∀μ ∈ Λ.

(3.1)

The existence, uniqueness and regularity of solutions of the variational problem (with-
out the Lagrange multiplier) has been studied in [10] and [23]. The inequality in 3.1 is
equivalent to −〈μt − λt , ut 〉 ≤ 0 (when μn = λn) which follows from the definition
of the space Λ and the last equality in 2.6.

Defining the bilinear form

B(w, r , ξ ; v, q,μ) = a(w, v) + (q, divw) − (r , div v) − 〈ξ , v〉 − 〈μ,w〉

where

a(w, v) = (w, v) + (2μD(w), D(v)),

we can write the problem 3.1, by summing the three parts in 3.1, in the following
compact form:
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Problem 1 (Continuous variational form) Find (u, p,λ) ∈ V × Q × Λ such that

B(u, p,λ; v, q,μ − λ) ≤ ( f , v) ∀(v, q,μ) ∈ V × Q × Λ.

The following norm will be used in our analysis:

|||(w, r , ξ)|||2 = ‖w‖21,Ω + ‖r‖20,Ω + ‖ξ‖2− 1
2
, (3.2)

where ‖·‖1,Ω and ‖·‖0,Ω are the usual norms in the Hilbert spaces H1(Ω) and L2(Ω)

and

‖ξ‖− 1
2

= sup
w∈W

〈ξ ,w〉
‖w‖ 1

2

and ‖w‖ 1
2

= inf
v∈(H1(Ω))d

v|∂Ω=w

‖∇v‖0.

Note that there exist C, c > 0 such that

c‖w‖21,Ω ≤ a(w,w) ≤ C‖w‖21,Ω . (3.3)

In the following, we write a � b (or a � b) if there exists a constant C > 0, which
is independent of the finite element mesh, but possibly varying from step to step, and
satisfies a ≤ Cb (or a ≥ Cb).

The proof of the following result can be inferred, e.g., from [2].

Theorem 1 (Continuous stability) For every (w, r , ξ) ∈ V × Q × Λ there exists
(v, q,μ) ∈ V × Q × Λ satisfying

B(w, r , ξ ; v, q,μ) � |||(w, r , ξ)|||2

and

|||(v, q,μ)||| � |||(w, r , ξ)||| .

4 Stabilised finite element method

We consider finite element spaces based on a shape regular triangulationTh ofΩ with
the mesh parameter h. We denote by Eh the internal facets and by Gh the boundary
facets ofTh , respectively. The finite element spaces are denoted by V h ⊂ V , Qh ⊂ Q,
Mh ⊂ M, and, in addition, we define the discrete counterpart of Λ as follows:

Λh = {μ ∈ Mh : |μt | ≤ κ}.

Our analysis is based on the conformity assumption Λh ⊂ Λ which means that we
must be able to enforce the condition |λh,t | ≤ κ strongly. In practice, this means, e.g.,
that κ and λh are constants elementwise. We note that while the conformity is required
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by our analysis, the resulting algorithm gives reasonable results also for nonconstant
κ where the condition |λh,t | ≤ κ holds only, e.g., at element midpoints or at the nodes
of the mesh.

Let α1, α2 > 0 be stabilisation parameters. The finite element method is written
with the help of the stabilised bilinear form

Bh(w, r , ξ ; v, q,μ) = B(w, r , ξ ; v, q,μ) − α1S
1
h (w, r; v, q)

−α2S
2
h (w, r , ξ ; v, q,μ)

where

S 1
h (w, r; v, q) =

∑
T∈Th

h2T

∫
T
(Aw + ∇r) · (Av − ∇q) dx

and

S 2
h (w, r , ξ ; v, q,μ) =

∑
E∈Gh

hE

∫
E
(ξ − σ (w, r)n) · (μ − σ (v, q)n) ds.

The stabilised linear form is given by

Lh(v, q) = ( f , v) − α1Fh(v, q)

where

Fh(v, q) =
∑
T∈Th

hT

∫
T
f · (Av − ∇q) dx .

This type of nonsymmetric residual stabilisation for the Stokes operator can be found,
e.g., in [5].

The stabilised finite element method corresponds to solving the following varia-
tional problem.

Problem 2 (Discrete variational form) Find (uh, ph,λh) ∈ V h × Qh ×Λh such that

Bh(uh, ph,λh; vh, qh,μh − λh) ≤ Lh(vh, qh) ∀(vh, qh,μh) ∈ V h × Qh × Λh .

In our analysis, we will use the following inverse and trace estimates, easily proven
by a scaling argument [25].

Lemma 1 (Inverse estimates) For any (wh, rh) ∈ V h × Qh, there exist constants
CI ,1,CI ,2 > 0 such that

CI ,1

∑
T∈Th

h2T ‖Awh‖20,T ≤ a(wh,wh)
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and

CI ,2

∑
E∈Gh

hE‖σ (wh, rh)n‖20,E ≤ a(wh,wh).

Lemma 2 (Discrete trace estimate) For any wh ∈ V h, there exists CT > 0 such that

CT

∑
E∈Gh

hE‖2μD(wh)n‖20,E ≤ ‖wh‖21,Ω .

The following discrete counterpart of the norm defined in 3.2 is instrumental in the
stability analysis of the discrete problem.

∣∣∣∣∣∣(wh, rh, ξ h)
∣∣∣∣∣∣2

h = ∣∣∣∣∣∣(wh, rh, ξ h)
∣∣∣∣∣∣2 +

∑
T∈Th

h2T ‖∇rh‖20,T +
∑
E∈Gh

hE‖ξh‖20,E .

(4.1)

Note, in particular, that

∣∣∣∣∣∣(wh, rh, ξ h)
∣∣∣∣∣∣

h ≥ ∣∣∣∣∣∣(wh, rh, ξ h)
∣∣∣∣∣∣ .

Existence and uniqueness of solutions to the discrete variational problem follows
from the discrete stability estimate proven below.

Theorem 2 (Discrete stability) Let α1
CI ,1

+ α2
CI ,2

< 1. For every (wh, rh, ξ h) ∈ V h ×
Qh × Λh there exists (vh, qh) ∈ V h × Qh satisfying

Bh(wh, rh, ξ h; vh, qh,−ξ h) �
∣∣∣∣∣∣(wh, rh, ξ h)

∣∣∣∣∣∣2
h (4.2)

and

∣∣∣∣∣∣(vh, qh,μh)
∣∣∣∣∣∣

h �
∣∣∣∣∣∣(wh, rh,μh)

∣∣∣∣∣∣
h ∀μh ∈ Λh .

Proof (Step 1.) Choosing (vh, qh,μh) = (wh, rh,−ξh) gives

Bh(wh, rh, ξ h;wh, rh,−ξ h)

= a(wh,wh) − α1

∑
T∈Th

h2T ‖Awh‖20,T − α2

∑
E∈Gh

hE‖σ (wh, rh)n‖20,E

+ α1

∑
T∈Th

h2T ‖∇rh‖20,T + α2

∑
E∈Gh

hE‖ξh‖20,E .

Using the inverse estimates of Lemma 1 and the bound 3.3 we get

Bh(wh, rh, ξ h;wh, rh,−ξ h)
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≥
(
1 − α1

CI ,1
− α2

CI ,2

)
c‖wh‖21,Ω + α1

∑
T∈Th

h2T ‖∇rh‖20,T + α2

∑
E∈Gh

hE‖ξh‖20,E .

(Step 2.) As a consequence of Theorem 1, for any (rh, ξ h) ∈ Qh × Λh there exists
v ∈ V such that

(rh, div v) + 〈ξh, v〉 ≥ C1(‖rh‖20,Ω + ‖ξh‖2− 1
2
) (4.3)

and

‖v‖21,Ω ≤ C2(‖rh‖20,Ω + ‖ξh‖2− 1
2
) (4.4)

where C1,C2 > 0. Let ṽ ∈ V h be the Clemént interpolant of v with the properties

⎛
⎝ ∑

T∈Th

h−2
T ‖v − ṽ‖20,T

⎞
⎠

1/2

+
⎛
⎝ ∑

E∈Gh

h−1
E ‖v − ṽ‖20,E

⎞
⎠

1/2

≤ Ci,1‖v‖1,Ω (4.5)

and

‖̃v‖1,Ω ≤ Ci,2‖v‖1,Ω . (4.6)

Choosing (vh, qh,μh) = (−ṽ, 0, 0) gives

Bh(wh, rh, ξ h;−ṽ, 0, 0)

= −a(wh, ṽ) + (rh, div ṽ) + 〈ξh, ṽ〉 + α1S
1
h (wh, rh; ṽ, 0)

+ α2S
2
h (wh, rh, ξ h; ṽ, 0, 0).

(4.7)

The first term in 4.7 can be bounded using the continuity of a, Young’s inequality with
a constant δ1 > 0, and the interpolation property 4.6. This leads to the bound

− Ccont.δ1

2
‖wh‖21,Ω − Ccont.Ci,2

2δ1
‖v‖21,Ω . (4.8)

The second and the third terms are bounded using integration by parts, Cauchy–
Schwarz inequality, the bound 4.3 and the properties of the Clemént interpolant as
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follows:

(rh, div ṽ) + 〈ξh, ṽ〉
= −(rh, div (v − ṽ)) − 〈ξh, v − ṽ〉 + (rh, div v) + 〈ξh, v〉
≥ −

∑
T∈Th

hT ‖∇rh‖0,T h−1
T ‖v − ṽ‖0,T −

∑
E∈Gh

h1/2E ‖ξh‖0,Eh−1/2
E ‖v − ṽ‖0,E

+ C1(‖rh‖20,Ω + ‖ξh‖2− 1
2
)

≥ −
⎛
⎜⎝

⎛
⎝ ∑

T∈Th

h2T ‖∇rh‖20,T
⎞
⎠

1/2

+
⎛
⎝ ∑

E∈Gh

hE‖ξh‖20,E
⎞
⎠

1/2
⎞
⎟⎠Ci,1‖v‖1,Ω

+ C1(‖rh‖20,Ω + ‖ξh‖2− 1
2
).

(4.9)

After applying Young’s inequality with constants δ2, δ3 > 0, we finally obtain

(rh, div ṽ) + 〈ξh, ṽ〉
≥ −Ci,1δ2

2

∑
T∈Th

h2T ‖∇rh‖20,T − Ci,1δ3

2

∑
E∈Gh

hE‖ξh‖20,E

−
(
Ci,1

2δ2
+ Ci,1

2δ3

)
‖v‖21,Ω + C1(‖rh‖20,Ω + ‖ξh‖2− 1

2
).

(4.10)

Next, we bound the two stabilisation terms in 4.7. The first can be bounded from below
as follows:

α1S
1
h (wh, rh; ṽ, 0) = α1

∑
T∈Th

h2T (Awh + ∇rh, Aṽ)T

≥ −α1

⎛
⎝ ∑

T∈Th

hT ‖Awh‖0,T +
∑
T∈Th

hT ‖∇rh‖0,T
⎞
⎠ ∑

T∈Th

hT ‖Aṽ‖0,T

≥ −α1

⎛
⎜⎝

⎛
⎝ ∑

T∈Th

h2T ‖Awh‖20,T
⎞
⎠

1/2

+
⎛
⎝ ∑

T∈Th

h2T ‖∇rh‖20,T
⎞
⎠

1/2
⎞
⎟⎠

·
⎛
⎝ ∑

T∈Th

h2T ‖Aṽ‖20,T
⎞
⎠

1/2

.

Given that

∑
T∈Th

h2T ‖Awh‖20,T ≤ C−1
I ,1a(wh,wh) ≤ CC−1

I ,1‖wh‖21,Ω, (4.11)

123



BIT Numerical Mathematics            (2024) 64:23 Page 11 of 22    23 

and similarly for ṽ, we conclude, using Young’s inequality, 4.4 and 4.6, that

α1S
1
h (wh, rh; ṽ, 0)

≥ −α1CC
−1
I ,1

⎛
⎝δ4

2
CC−1

I ,1‖wh‖21,Ω + δ5

2

∑
T∈Th

h2T ‖∇rh‖20,T

+C2
i,2C2

(
1

2δ4
+ 1

2δ5

) (
‖rh‖20,Ω + ‖ξh‖2− 1

2

))
.

(4.12)

The second stabilisation term in 4.7 is bounded using Lemmas 1 and 2, Young’s
inequality as well as bounds 4.4 and 4.6.

α2 S
2
h (wh, rh, ξ h; ṽ, 0, 0) = α2

∑
E∈Gh

hE
(
ξh − σ (wh, rh)n,−σ (̃v, 0)n

)
E

= −α2

∑
E∈Gh

hE
(
ξ h, 2μD(̃v)n

)
E + α2

∑
E∈Gh

hE (σ (wh, rh)n, 2μD(̃v)n)E

≥ −α2
δ6

2

∑
E∈Gh

hE‖ξh‖20,E − α2C
−1
I ,2C

δ7

2
‖wh‖21,Ω

+ C2
i,2C2C

−1
T

(
1

2δ6
+ 1

2δ7

) (
‖rh‖20,Ω + ‖ξh‖2− 1

2

)

(Step 3.) Finally,we combine steps 1 and 2by showing that ifwe choose (vh, qh,μh) =
(wh − ε̃v, rh,−ξh), we can guarantee that ε > 0 and the other constants δi , i =
1, . . . , 7, remaining from application of Young’s inequalities can be chosen in such a
way that the coefficients of the terms comprising the norm |||.|||h remain positive.

5 Error analysis

Let f h be the L2-projection of f onto V h and, for T ∈ Th , define

oscT f = hT ‖ f − f h‖0,T , osc f =
⎛
⎝ ∑

T∈Th

(oscT f )2

⎞
⎠

1/2

.

Below we denote by T (E) ∈ Th the element which has E ∈ Gh as one of its facets.
The proofs of the following lemmas can be found, e.g., in [14] and [27, 28].

Lemma 3 (Lower bound for the boundary residual) For any (wh, rh, ξ h) ∈ V h ×
Qh × Λh it holds that

⎛
⎝ ∑

E∈Gh

hE‖ξh − σ (wh, rh)n‖20,E
⎞
⎠

1/2
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�
∣∣∣∣∣∣(u − wh, p − rh,λ − ξ h)

∣∣∣∣∣∣ +
⎛
⎝ ∑

E∈Gh

(oscT (E) f )2

⎞
⎠

1/2

.

where (u, p,λ) ∈ V × Q × Λ is the solution to 3.1.

Lemma 4 (Lower bound for the interior residual) For any (wh, rh) ∈ V h × Qh it
holds that

⎛
⎝ ∑

T∈Th

h2T ‖Awh + ∇rh + f ‖20,T
⎞
⎠

1/2

� ‖u − wh‖1 + ‖p − rh‖0 + osc f

where (u, p) ∈ V × Q is the solution to 3.1.

We can now show the quasi-optimality of the method, i.e. a best approximation
result with an additional term due to the inequality constraint.

Theorem 3 (Quasi-optimality) For any (wh, rh,μh) ∈ V h × Qh × Λh, it holds

|||(u − uh, p − ph,λ − λh)|||
�

∣∣∣∣∣∣(u − wh, p − rh,λ − μh)
∣∣∣∣∣∣ + √〈μh − λ, u〉 + osc f ,

(5.1)

where (uh, ph,λh) denotes the solution to Problem 2.

Proof Let (wh, rh,μh) ∈ V h×Qh×Λh be arbitrary. Then by the discrete stability esti-
mate 4.2 there exists (vh, qh) ∈ V h×Qh , with the property

∣∣∣∣∣∣(vh, qh,λh − μh)
∣∣∣∣∣∣

h =
1, such that

∣∣∣∣∣∣(uh − wh, ph − rh,λh − μh)
∣∣∣∣∣∣

h

� Bh(uh − wh, ph − rh,λh − μh; vh, qh,μh − λh)

� Bh(uh, ph,λh; vh, qh,μh − λh) − Bh(wh, rh,μh; vh, qh,μh − λh)

� Lh(vh, qh) − B(u, p,λ; vh, qh,μh − λh)

+ B(u − wh, p − rh,λ − μh; vh, qh,μh − λh)

+ α1S
1
h (wh, rh; vh, qh) + α2S

2
h (wh, rh,μh; vh, qh,μh − λh),

(5.2)

where in the last step we have used the discrete variational form and written out the
discrete bilinear form. The first two terms on the right-hand side of 5.2 can be written
as

L (vh, qh) − B(u, p,λ; vh, qh,μh − λh) − α1Fh(vh, qh)

= (u,μh − λh)∂Ω − α1Fh(vh, qh)

≤ 〈μh − λ, u〉 − α1Fh(vh, qh)

where the inequality follows from the inequality in 3.1. The third term is bounded
using the continuity of the bilinear form B and the final two stabilisation terms are
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bounded using Cauchy–Schwarz inequality and Lemmas 1, 3 and 4. The proof is
completed using the trivial bound

∣∣∣∣∣∣(uh − wh, ph − rh,λh − μh)
∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣(uh − wh, ph − rh,λh − μh)

∣∣∣∣∣∣
h

and the triangle inequality.

Using a continuous pressure, we can consider the finite element spaces

V h = {v ∈ V : v|T ∈ Pk(T )d ∀T ∈ Th}, (5.3)

Qh = {q ∈ Q ∩ C(Ω) : q|T ∈ Pl(T ) ∀T ∈ Th}, (5.4)

Mh = {μ ∈ M : μ|E ∈ Pm(E)d ∀E ∈ Gh}, (5.5)

where k, l ≥ 1 andm ≥ 0 are the polynomial orders. Alternatively, we may consider a
discontinuous pressure which, however, requires a quadratic velocity, k ≥ 2. It is also
possible to use a continuous Lagrange multiplier together with any valid velocity–
pressure combination.

Remark 3 The analysis up to this point is valid for d ∈ {2, 3} and for any k, l ≥ 1
and m ≥ 0. However, proving an optimal a priori error estimate based on the quasi-
optimality result shown in Theorem 3 requires further assumptions. For instance, in the
two-dimensional case, assuming that λ ∈ H1/2(∂Ω)2, then |λt | ≤ κ holds pointwise
and it should be clear that also |(
Mhλ)t | ≤ κ where 
Mh is the L2-projection onto
Mh . This implies that 
Mhλ ∈ Λh and, consequently, allows us to write the bound

‖λ − μh‖− 1
2

= ‖λ − 
Mhλ‖− 1
2

≤ ‖λ − 
Mhλ‖0,Ω � h.

Assuming, moreover, that u ∈ H2(Ω)2, one thus obtains an optimal a priori estimate
for the lowest order elements given that

√
(μh − λ, u)∂Ω

= √
(
Mhλ − λ, u)∂Ω

= √
(
Mhλ − λ, u − 
V hu)∂Ω

≤ √‖λ − 
Mhλ‖0,∂Ω‖u − 
V hu‖0,∂Ω � h,

where 
V h denotes the Lagrange interpolant onto V h .

6 Solution algorithm

We next derive our solution algorithm, also known as Uzawa iteration, following the
steps given in He and Glowinski [15]. The derivation is given in detail because the
algorithm includes additional terms due to the stabilisation.
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The discrete variational problem can be split into

Bh(uh, ph,λh; vh, qh, 0) = Lh(vh, qh) (6.1)

and

−
∫

∂Ω

uh · (μh − λh) ds − α2

∑
E∈Gh

hE

∫
E
(λh − σ (uh, ph)n) · (μh − λh) ds ≤ 0.

(6.2)

Combining the two terms we equivalently have

−
∫

∂Ω


Mh (uh + α2h∂Ω(λh − σ (uh, ph)n)) · (μh − λh) ds ≤ 0,

where h∂Ω is the boundary mesh size function and 
Mh is the L2-projection onto
Mh . Now multiplying by an arbitrary ρ > 0, and adding and subtracting λh leads to

∫
∂Ω

(λh − ρ 
Mh (uh + α2h∂Ω(λh − σ (uh, ph)n)) − λh) · (μh − λh) ds ≤ 0.

The above form implies that λh is equal to the orthogonal projection of

λh − ρ 
Mh (uh + α2h∂Ω(λh − σ (uh, ph)n))

onto the constrained space Λh . The orthogonal projection can be written explicitly as

P(ξ) = (ξ · n)n + κ(ξ − (ξ · n)n)

max(κ, |ξ − (ξ · n)n|)
which can be interpreted as enforcing themaximum length of the tangential component
to κ . As a conclusion, the inequality constraint 6.2 can be reformulated as the equality
constraint

λh = P(λh − ρ 
Mh (uh + α2h∂Ω(λh − σ (uh, ph)n))) a.e. on ∂Ω. (6.3)

Algorithm 1 (Uzawa iteration) Let (u0h, p
0
h,λ

0
h) be an initial guess, T OL > 0 be a

stopping tolerance and set i ← 1.

1. Calculate λih = P(λi−1
h − ρ 
Mh (u

i−1
h + α2h∂Ω(λi−1

h − σ (ui−1
h , pi−1

h )n)).
2. Solve for (uih, p

i
h) inBh(uih, p

i
h, 0; vh, qh, 0) = Lh(vh, qh) + 〈λih, vh〉.

3. Stop if ‖λih − λi−1
h ‖0/‖λih‖0 < T OL. Otherwise set i ← i + 1 and go to Step 1.

Remark 4 An assumption is made in Step 1 of Algorithm 1 that the orthogonal pro-
jection P can be performed directly on the discrete function. This is true, e.g., if the
Lagrange multiplier is approximated by a piecewise constant function or a discontin-
uous, piecewise linear function.
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Fig. 1 Some meshes from the uniform sequence

Fig. 2 The velocity magnitude
(top) and the pressure (bottom)
computed using the finest mesh
in the uniform sequence

7 Numerical experiment

The numerical results are calculated with the help of the software package scikit-
fem [12]. The source code is available in [11].
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Fig. 3 The components of the discrete Lagrange multiplier solution at the boundary x = 1 plotted for four
different meshes from coarsest (top) to finest (bottom)
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Fig. 4 The convergence of the error in the velocity

Fig. 5 The convergence of the error in the pressure

7.1 Convergence study

In the first example, we consider the lowest order method with k = l = 1, m = 0,
and solve the problem within the domain Ω = (−1, 1)2 using the material parameter
values κ = 0.3, μ = 1, and the loading function

f = (−y, x).
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Fig. 6 The convergence of the error in the Lagrange multiplier

We have set the numerical parameters to ρ = 0.4, α1 = α2 = 10−2, T OL = 10−5

and solve the same problem using a sequence of uniformly refined meshes; cf. Fig. 1.
The Uzawa parameter ρ = 0.4 is close to its upper bound (see, e.g., [15] for more
information) which we have found by trial-and-error in order to reduce the number
of iterations required. The stabilisation parameters α1 and α2 have been chosen, for
simplicity, to be equal while α2 is close to its upper bound, as given by Theorem 2.

The components uh and ph of the discrete solution, calculated using the finest mesh
in the sequence, are visualized in Fig. 2 while the discrete Lagrange multipliers for
some of the meshes are given in Fig. 3. As seen in the Figures, the fluid, which is
flowing counterclockwise, is slipping along the middle part of all four sides of the
boundary.

In the absence of an analytical solution, we have calculated the relative errors in the
discrete solutions between two subsequent meshes in Figs. 4, 5 and 6. Note that the
relative error can be shown to converge at similar rates as the absolute error by using
the triangle inequality, e.g.,

‖u2h − uh‖1,Ω = ‖u2h − u + u − uh‖1,Ω ≤ ‖u2h − u‖1,Ω + ‖u − uh‖1,Ω ≤ Ch.

The numerical results suggest that the total error converges linearly as the observed rate
is linear for the velocity and the pressure, and superlinear for the Lagrange multiplier.

7.2 Curved boundary

In the second example, we demonstrate how the lowest order method performs with
curved boundaries. The domain is now chosen as the half unit circle

Ω = {(x, y) : x2 + (y − 0.5)2 < 1, y < 0.5},
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Fig. 7 The mesh (top), the velocity magnitude (middle) and the pressure (bottom) for the curved boundary
experiment
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Fig. 8 The magnitude of the tangential Lagrange multiplier on the top and the bottom boundaries for the
curved boundary experiment. Note that the Lagrange multiplier is elementwise constant and here the values
are sampled at the element midpoints

and the parameters κ = ρ = 0.1. The other parameters are as in the previous exam-
ple. The resulting velocity and pressure fields are depicted in Fig. 7. The tangential
Lagrange multipliers are depicted in Fig. 8.

8 Conclusions

We have introduced a stabilised finite element method for the mixed approximation of
the Stokes problem with a nonlinear slip boundary condition of friction type. We have
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proven the stability of the method and provided an a priori error estimate, together
with numerical experiments demonstrating the lowest order variant.
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