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Abstract In this paper, we introduce the first method that (1) can complete kernel matrices
with completely missing rows and columns as opposed to individual missing kernel values,
with help of information from other incomplete kernel matrices. Moreover, (2) the method
does not require any of the kernels to be complete a priori, and (3) can tackle non-linear
kernels. The kernel completion is done by finding, from the set of available incomplete ker-
nels, an appropriate set of related kernels for each missing entry. These aspects are necessary
in practical applications such as integrating legacy data sets, learning under sensor failures
and learning when measurements are costly for some of the views. The proposed approach
predicts missing rows bymodelling both within-view and between-view relationships among
kernel values. For within-view learning, we propose a new kernel approximation that gener-
alizes and improves Nyström approximation. We show, both on simulated data and real case
studies, that the proposed method outperforms existing techniques in the settings where they
are available, and extends applicability to new settings.
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1 Introduction

In recent years, many methods have been proposed for multi-view learning, i.e, learning with
data collected from multiple sources or “views” to utilize the complementary information
in them. Kernelized methods capture the similarities among data points in a kernel matrix.
The multiple kernel learning (MKL) framework (c.f. Gönen and Alpaydin 2011) is a popular
way to accumulate information from multiple data sources, where kernel matrices built on
features from individual views are combined for better learning. In MKL methods, it is
commonly assumed that full kernel matrices for each view are available. However, in partial
data analytics, it is common that information from some sources is not available for some
data points.

The incomplete data problem exists in a wide range of fields, including social sciences,
computer vision, biological systems, and remote sensing. For example, in remote sensing,
some sensors can go off for periods of time, leaving gaps in data. A second example is that
when integrating legacy data sets, some viewsmay not available for some data points, because
integration needs were not considered when originally collecting and storing the data. For
instance, gene expressionmay have beenmeasured for some of the biological samples, but not
for others, and as biological sample material has been exhausted, the missing measurements
cannot be made any more. On the other hand, some measurements may be too expensive to
repeat for all samples; for example, patient’s genotype may be measured only if a particular
condition holds. All these examples introduce missing views, i.e, all features of a view for a
data point can be missing simultaneously.

Novelties in problem definition: Previous methods for kernel completion have addressed
completion of the aggregated Gaussian kernel matrix by integrating multiple incomplete
kernels (Williams and Carin 2005) or single-view kernel completion assuming individual
missing values (Graepel 2002; Paisley and Carin 2010), or required at least one complete
kernel with a full eigen-system to be used as an auxiliary data source (Tsuda et al. 2003;
Trivedi et al. 2005), or assume the eigen-system of two kernels to be exactly the same (Shao
et al. 2013), or assumed a linear kernel approximation (Lian et al. 2015). Williams and Carin
(2005) do not complete the individual incomplete kernel matrix but complete only aggregated
kernels when all kernels are Gaussian. Due to absence of full rows/columns in the incomplete
kernel matrices, no existing or non-existing single-view kernel completion method (Graepel
2002; Paisley and Carin 2010) can be applied to complete kernel matrices of individual views
independently. In the multi-view setting, Tsuda et al. (2003) have proposed an expectation
maximization based method to complete an incomplete kernel matrix for a view, with the
help of a complete kernel matrix from another view. As it requires a full eigen-system of the
auxiliary full kernel matrix, that method cannot be used to complete a kernel matrix with
missing rows/columns when no other auxiliary complete kernel matrix is available. Both
Trivedi et al. (2005) and Shao et al. (2013) match kernels through their Graph Laplacians,
which may not work optimally if the kernels have different eigen-structures arising from
different types of measurements. The method by Shao et al. (2013) completes multiple
kernels sequentially, making an implicit assumption that the adjacent kernels in the sequence
are related. This can be a hard constraint and in generalmay notmatch the reality. On the other
hand, Lian et al. (2015) proposed a generative model based method which approximates the
similarity matrix for each view as a linear kernel in some low-dimensional space. Therefore,
it is unable to model highly non-linear kernels such as RBFs. Hence no conventional method
can, by itself, complete highly non-linear kernel matrices with completely missing rows and
columns in a multi-view setting when no other auxiliary full kernel matrix is available.
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Contributions: In this paper, we propose a novel method to complete all incomplete kernel
matrices collaboratively, by learningboth between-viewandwithin-view relationships among
the kernel values (Fig. 1). We model between-view relationships in the following two ways:
(1) Initially, adapting the strategies frommultiple kernel learning (Argyriou et al. 2005;Cortes
et al. 2012),we complete kernelmatrices by expressing individual normalized kernelmatrices
corresponding to each view as a convex combination of normalized kernel matrices of other
views. (2) Second, to model relationships between kernels having different eigen-systems we
propose a novel approach of restricting the local embedding of one view in the convex hull
of local embeddings of other views. We relate theoretically the kernel approximation quality
of the different approaches to the properties of the underlying eigen-spaces of the kernels,
pointing out settings where different approaches are optimal.

For within-view learning, we begin from the concept of local linear embedding (Roweis
and Saul 2000) applied to the feature vector, and extend it to the kernel matrix by reconstruct-
ing each feature representation for a kernel as a sparse linear combination of other available
feature representations or “basis” vectors in the same view.We assume the local embeddings,
i.e., the reconstructionweights and the basis vectors for reconstructing each samples, are sim-
ilar across views. In this approach, the non-linearity of kernel functions of individual views is
also preserved in the basis vectors. We prove (Theorem 2) that the proposed within-view ker-
nel reconstruction can be seen as generalizing and improving the Nyströmmethod (Williams
and Seeger 2001) which have been successfully applied to efficient kernel learning. Most
importantly, we show (in Theorem 3) for a general single kernel matrix the proposed scheme
results into optimal low rank approximation which is not reached by the Nyström method.

For between-view learning, we recognize that the similarity of the eigen-spaces of the
views plays a crucial role. When the different kernels have similar optimal low-rank approxi-
mations,we show (Theorem4) that predicting kernel values across views is a potent approach.
For this case, we propose a method (MKCapp (25)) relying on a technique previously used
in multiple kernel learning literature, namely, restricting a kernel matrix into the convex hull
of other kernel matrices (Argyriou et al. 2005; Cortes et al. 2012). Here, we use this tech-
nique for simultaneously completing multiple incomplete kernel matrices, while Argyriou
et al. (2005) and Cortes et al. (2012) used it only for learning effective linear combination of
complete kernel matrices.

For the case when the eigen-systems of the different views differ, we propose methods
that, instead of kernel values, translate the reconstruction weights across views. For the cases
where the leading eigen-vectors are similar but eigen-value spectra are different, we show
(Theorem 5) that it is sufficient to maintain one global set of reconstruction weights, used in
thewithin-view reconstructions of all views. In the case of heterogeneous leading eigen-vector
sets across views, we propose to learn the reconstruction weights for each view restricting it
in convex hull of the reconstruction weights of the other views (MKCembd(ht) (24)).

2 Multi-view kernel completion

We assume N data observations X = {x1, . . . , xN } from a multi-view input space X =
X 1 × · · · × X (M), where X (m) is the input space generating the mth view. We denote
by X(m) = {x(m)

1 , . . . , x(m)
N }, ∀ m = 1, . . . , M , the set of observations for the mth view,

where x(m)
i ∈ X (m) is the i th observation in the mth view and X (m) is the input space. For

simplicity of notation we sometimes omit the superscript (m) denoting the different views
when there is no need to refer to several views at a time.
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Fig. 1 We assume N data samples with M views, with a few samples missing from each individual view, and
consequently corresponding rows and columns are missing (denoted by ’?’) in kernel matrices (K(m)). The
proposed method predicts the missing kernel rows/columns (e.g., the t th column in views 1 and m) with the
help of other samples of the same view (within-view relationship, blue arrows) and the corresponding sample
in other views (between-view relationship, green arrows) (Color figure online)

Considering an implicit mapping of the observations of the mth view to an inner product
space F (m) via a mapping φ(m) : X (m) → F (m), and following the usual recipe for
kernel methods (Bach et al. 2004), we specify the kernel as the inner product in F (m). The
kernel value between the i th and j th data points is defined as k(m)

i j = 〈φ(m)
i , φ

(m)
j 〉, where

φ
(m)
i = φ(m)(x(m)

i ) and k(m)
i j is an element of K(m), the kernel Gram matrix for the set X(m).

In this paper we make the assumption that a subset of samples is observed in each view,
and correspondingly, a subset of views is observed for each sample. Let IN = [1, . . . , N ] be
the set of indices of all data points and I (m) be the set of indices of all available data points in
themth view. Hence for each view, only a kernel sub-matrix (K(m)

I (m) I (m) ) corresponding to the

rows and columns indexed by I (m) is observed. Our aim is to predict a complete positive semi-
definite (PSD) kernel matrix (K̂(m) ∈ R

N×N ) corresponding to each view. The crucial task is
to predict the missing (t th) rows and columns of K̂(m), for all t ∈ {IN /I (m)}. Our approach
for predicting K̂(m) is based on learning both between-view and within-view relationships
among the kernel values (Fig. 1). The sub-matrix K̂(m)

I (m) I (m) should be approximately equal to

the observed matrix K(m)

I (m) I (m) , however, in our approach, approximation quality of the two
parts of the kernel matrix can be traded.

2.1 Within-view kernel relationships

For within-view learning, relying on the concept of local linear embedding (Roweis and Saul
2000), we reconstruct the feature map of t th data point φt by a sparse linear combination of
observed data samples

φ̂t =
∑

i∈I
aitφi

where ait ∈ R is the reconstruction weight of the i th feature representation for representing
the t th observation. Hence, approximated kernel values can be expressed as

k̂t t ′ = 〈φ̂t , φ̂t ′ 〉 =
∑

i, j∈I
ait a jt ′ 〈φi , φ j 〉.
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We note that the above formulation retains the non-linearity of the feature map φ and
the corresponding kernel. We collect all reconstruction weights of a view into the matrix
A = (

ai j
)N
i, j=1. Further, by AI we denote the sub-matrix of A containing the rows indexed

by I , the known data samples in the view. Thus the reconstructed kernel matrix K̂ can be
written as

K̂ = A
T

I KI IAI = g(K). (1)

Note that K̂ is positive semi-definite when K is positive semi-definite. Thus, a by-product of
this approximation is that in optimization, PSD property is automatically guaranteed without
inserting explicit positive semi-definiteness constraints.

Intuitively, the reconstruction weights are used to extend the known part of the kernel to
the unknown part, in other words, the unknown part is assumed to reside within the span of
the known part.

We further assume that in each view there exists a sparse embedding in F , given by a
small set of samples B ⊂ I , called a basis set, that is able to represent all possible feature
representations in that particular view. Thus the non-zero reconstruction weights are confined
to the basis set: ai j 	= 0 only if i ∈ B. To select such a sparse set of reconstruction weights,
we regularize the reconstruction weights by the �2,1 norm (Argyriou et al. 2006) of the
reconstruction weight matrix,

‖AI ‖2,1 =
∑

i∈I

√∑

j∈I
(ai j )2. (2)

Finally, for the observed part of the kernel, we add the additional objective that the recon-
structed kernel values closely approximate the known or observed values. To this end, we
define a loss function measuring the within-view approximation error for each view as

Losswi thin = ‖K̂I I − KI I ‖22. (3)

Hence, for individual views the observed part of a kernel is approximated by

K̂I I = A∗T
I I KI IA∗

I I (4)

where the reconstruction weights A∗
I I (here the superscript ∗ indicates the optimum values)

are optimized using (2) and (3) by

A∗
I I = argmin

AI I

‖A
T

I IKI IAI I − KI I ‖22 + λ‖AI I ‖2,1 (5)

where λ is user defined hyper-parameter which indicate the weights of regularization.
Without the �2,1 regularization, the above approximation loss could be trivially optimized

by choosing AI I as the identity matrix. The �2,1 regularization will have the effect of zeroing
out some of the diagonal values and introducing non-zeros to the sub-matrix ABI , corre-
sponding to the rows and columns indexed by B and I respectively, where B = {i |aii 	= 0}.

In Sect. 3we show byTheorem 1 that (5) corresponds to a generalized form of theNyström
method (Williams and Seeger 2001) which is a sparse kernel approximation method that has
been successfully applied to efficient kernel learning. Nyström method finds a small set
of vectors (not necessarily linearly independent) spanning the kernel, whereas our method
searches for linearly independent basis vectors (c.f. Sect. 3, Lemma 1) and optimizes the
reconstruction weights for the data samples. In particular, we show that (5) achieves the best
rank-r approximation of a kernel, when the original kernel has rank higher than r , which is
not achieved by Nyström method (c.f. Theorem 2).

123



718 Mach Learn (2017) 106:713–739

2.2 Between-view kernel relationships

For a completely missing row or column of a kernel matrix, there is not enough information
available for completing it within the same view, and hence the completion needs to be based
on other information sources, in our case the other views where the corresponding kernel
parts are known. In the following, we introduce two approaches for relaying information of
the other views for completing the unknown rows/columns of a particular view. The first
technique is based on learning a convex combination of the kernels, extending the multiple
kernel learning (Argyriou et al. 2005; Cortes et al. 2012) techniques to kernel completion. The
second technique is based on learning reconstruction weights so that they share information
between the views.

Between-view learning of kernel values: In multi-view kernel completion the perhaps sim-
plest situation arises when the kernels of the different views are similar, i.e.,

K̂(m) ≈ K̂(l), ∀ l and m. (6)

In this case predicting kernel values across views may lead to good kernel approximation.
One way to model the similarity is to require the kernels of the different views to have the
similar low-rank approximations. In Theorem 3 we show that optimal rank-r approximation
can be achieved if the kernels have the same ‘true’ rank-r approximation and the kernels
themselves have rank at least r .

However, this is probably an overly restrictive assumption in most applications. Thus,
in our approach we allow the views to have different approximate kernel matrices with a
parametrized relationship learned from data. To learn between-view relationships we express

the individual normalized kernel matrix

(
ktt ′√
ktt kt ′ t ′

)
corresponding to each view as a convex

combination of normalized kernel matrices of the other views. Hence the proposed model
learns kernel weights S = (sml)

M
m,l=1 between all pairs of kernels (m, l) such that

K̂(m) ≈
M∑

l=1,l 	=m

smlK̂(l), (7)

where the kernel weights are confined to a convex combination

S = {S|sml ≥ 0,
M∑

l=1,l 	=m

sml = 1}.

The kernel weights then can flexibly pick up a subset of relevant views to the current view
m. This gives us between-view loss as

Loss(m)
between(K̂, S) = ‖K̂(m) −

M∑

l=1,l 	=m

smlK̂(l)‖22. (8)

Previously, Argyriou et al. (2005) have proposed a method for learning kernels by restricting
the search in the convex hull of a set of given kernels to learn parameters of individual
kernel matrices. Here, we apply the idea to kernel completion, which has not been previously
considered. We further note that kernel approximation as a convex combination has the
interpretation of avoiding extrapolation in the space of kernels, and can be interpreted as a
type of regularization to constrain the otherwise flexible set of PSD kernel matrices.
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Between-view learning of reconstruction weights: In practical applications, the kernels aris-
ing in a multi-view setup might be very heterogeneous in their distributions. In such cases,
it might not be realistic to find a convex combination of other kernels that are closely similar
to the kernel of a given view. In particular, when the eigen-spectra of the kernels are very
different, we expect a low between-view loss (8) to be hard to achieve.

Here we assume the approximated kernel matrices have related eigen-spaces in that the
eigen-vectors of the related kernels can be written as linear combinations of eigen-vectors of
the others, but each of them have their own set of eigen-values. In other words,

K̂(m) = U(m)Σ(m)U(m)T = U(1)T(m)Σ(m)T(m)T U(1)T (9)

where U(m) contains eigen-vectors of K(m) in its column and Σ(m) contains corresponding
eigen-values in its diagonal. T(m) is a linear operator such that U(m) = U(1)T(m). Above the
matrices T(m) allow rotations of the eigen-vectors while the scaling is of them is governed
by the matrices Σ(m).

For this situation, we propose and alternative approach, where instead of the kernel values,
we assume that the basis sets and the reconstructionweights have between-viewdependencies
that we can learn. Theorem 4 claims when kernels of all views satisfy (9) then learning a set
of reconstruction weights, used in in all views, i.e.,

A(1) = . . . = A(M) (10)

gives better approximation than learning a convex combination of kernels as in (7).
However, assuming that kernel functions in all the views have similar eigen-vectors is also

unrealistic for many real world data-sets with heterogeneous sources and kernels applied to
them. On the contrary, it is quite possible that only for a subset of views the eigen-vectors
of approximated kernel are linearly related. Thus, in our approach we allow the views to
have different reconstruction weights, but assume a parametrized relationship learned from
data. This also allows the model to find an appropriate set of related kernels from the set of
available incomplete kernels, for each missing entry.

To capture the relationship, we assume the reconstructionweights in a view can be approx-
imated by a convex combination of the reconstruction weights of the other views,

A(m)

I (m) ≈
M∑

l=1,l 	=m

smlA
(l)
I (m) , (11)

where the coefficients sml are defined as in (7). This gives us between-view loss for recon-
struction weights as

Loss(m)
between(A, S) = ‖A(m)

I (m) −
M∑

l=1,l 	=m

smlA
(l)
I (m)‖22. (12)

The reconstructed kernel is thus given by

K̂(m) =
⎛

⎝
M∑

l=1,l 	=m

smlA
(l)T

I (m)

⎞

⎠ K(m)

I (m) I (m)

⎛

⎝
M∑

l=1,l 	=m

smlA
(l)
I (m)

⎞

⎠ . (13)
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3 Theoretical analysis

In this section, we present the theoretical results underlying our methods. We begin by
showing the relationship and advantages of our within-kernel approximation to the Nyström
method, and follow with theorems establishing the approximation quality of different kernel
completion models.

3.1 Rank of the within-kernel approximation

We begin with analysis of the rank of the proposed within-kernel approximation method,
given in (4) and (5). It approximates the individual kernels as K̂ = A∗T KA∗ where

A∗ = argmin
A

‖A
T

KA − K‖22 + λ‖A‖2,1. (14)

For the purposes of the analysis, we derive an equivalent form that reveals the rank behaviour
of the method more easily. Above, the matrix A simultaneously indicates the position of
feature maps in the underlying subspace and also selects the basis vectors for defining these
subspaces. Hence A can be written as convolution of two operators A = PÂ where P =
diag(p) and p ∈ {0, 1}N . Here p acts as a selector operator such that pi = 1 if i ∈ B or the
i th feature-map is selected as a basis vectors and all other elements of p are assigned zero
values. Â is a matrix of size A, such that Âi∈B = Ai∈B and other elements are zeros.

The �2,1 norm on A in (14) assigns zeros to few rows of the matrix A; equivalently �1
norm on selection operator (p) fulfils the same purpose. Again, after rows selection is done
both Âi∈B and Ai∈B denote reconstruction weights for kernel by using selected rows (B) and
would behave similarly. Therefore the (14) is equivalent to

[Â∗, P∗] = argmin
Â,P=diag(p)

‖Â
T

P
T

KPÂ − K‖22 + λ‖p‖1 +
∑

i

λi‖Âi‖22. (15)

To see the equivalence, note that at optimum, the rows of Â that are not selected by P will be
identically zero, since the value of the first term of the objective only depends on the selected
rows. Again the equivalence in regularization term can be shown as

‖A‖2,1 =
∑

i

‖Ai‖2 =
∑

i

‖pi Âi‖2 where‖Ai‖ indicates the i th column of A

=
∑

i

|pi | +
∑

i

1

4

(
1 −

(
pi

‖Âi‖2
− 1

)2
)

‖ Âi‖22 as pi ∈ {1, 0}

λ‖A‖2,1 = λ‖p‖1 +
∑

i

λi‖ Âi‖22 by equating λi = λ

4

⎛

⎝1 −
(

p∗
i

‖Â∗
i ‖2

− 1

)2
⎞

⎠ (16)

Now, the approximated kernel can be written as

K̂ = Â∗T P∗T KP∗Â∗

= Â∗T
B W∗Â∗

B , (17)

where, W∗ and Â∗
B are non-zero sub-matrices of P∗T KP∗ (corresponding to B rows and B

columns) and Â∗ (corresponding to B rows) respectively.
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Lemma 1 For rank(K) ≥ r , ∃ λ = λr and λÂ∗
i
such that the solution of (15) selects a

W∗ ∈ R
r×r with rank(W∗) = r .

Proof When rank(K) ≥ r then there must exist a rank-r sub-matrix of K of size r × r .
Again, in case of �1 regularization on binary vector p, one can tune λ to λr to have required
sparsity on p, i.e., ‖p∗‖1 = r . Moreover, �1 regularization on binary vector ensures the linear
independence of selected columns and rows when λi is carefully chosen. If a solution of (15)
selects a column which is linearly dependent on other selected columns, then the solution,
from the objective function value of some other solution which selects the same columns
except this linearly dependent column, will raise the value of �1 norm regularization term of
objective function byλwhile keeping the first part of the objective function same and lowering

the third part of (15) by
λi‖Ai‖22

2 . Hence if λi < 2 λ

‖Â∗
i‖22

then that can not be an optimum

solution and if λi is chosen according to the (16) then λi < 2 λ

‖Â∗
i‖22

. This completes the

proof. ��
3.2 Relation to Nyström approximation

Nyström method (Williams and Seeger 2001) approximates the kernel matrix K as

K̂nys = CW−1CT (18)

where the matrix C ∈ R
N×c consists of c randomly chosen columns of kernel K and W ∈

R
c×c is a matrix consisting of the intersection of those c columns with the corresponding

c rows. Due to the random selection, Nyström method, unlike ours (as established above),
does not in general produce linearly independent set of vectors. One can re-write

C =
[

C1

C2

]
=

[
W
C2

]

and then the Nyström approximation as

K̂nys =
[

W
C2

]
W−1

[
W CT

2

]
=

[
W CT

2
C2 C2W−1CT

2

]
. (19)

For non-invertible W, its pseudo inverse can be used instead of W−1.

Theorem 1 The Nyström approximation of K is a feasible solution of (15), i.e., for invertible
W, ∃Â ∈ R

N×c such that K̂nys = Â
T

WÂ.

Proof Equate

Â
T =

[
Ic

C2W−1

]

in (19) where Ic denotes the identity matrix of size c. ��

The above theorem shows that the approach of (15), by finding the optimal feasible
solution, will always produce better kernel approximation with the same level of sparsity as
the Nyström method.
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3.3 Low-rank approximation quality

Nyström approximation satisfies following low-rank approximation properties (Kumar et al.
2009):

– If r = rank(K) ≤ c and rank(W) = r , then the Nyström approximation is exact, i.e.,
‖K − K̂nys‖22 = 0.

– For general K when rank(K) ≥ r and rank(W) = r , then the Nyström approximation
is not the best rank-r approximation of K.

Below, we will establish that our approach will result in the best rank-r approximation also
in the general case where the original kernel has rank higher than r .

Lemma 2 If Kr be the best rank-r approximation of a kernel K with rank(K) ≥ r and W
be a full rank sub-matrix of K of size r ×r , i.e, rank(W) = r . Then ∃Â ∈ R

N×r such that for

the proposed approximation K̂ = ÂT WÂ is equivalent to Kr , i.e., ‖K − K̂‖22 = ‖K − Kr‖22.

Proof Using eigen-value decomposition one can write

Kr = UUT and W = UWUT
W

where U ∈ R
N×r and rank(U) = r and UW ∈ R

r×r and rank(UW ) = r .
Using invertible property of UW , one can express U as U = (UU−1

W )UW .

Kr = UUT

= (UU−1
W )(UWUT

W )(UU−1
W )T

= ÂT WÂ

where ÂT = UU−1
W . ��

Theorem 2 If rank(K) ≥ r , then ∃ λr such that the proposed approximation K̂ in (17) is
equivalent to the best rank-r approximation of K, i.e., ‖K − K̂‖22 = ‖K − Kr‖22, where Kr

is the best rank-r approximation of K.

Proof Lemma 1 proves that there exist a λr for which the optimum solution of (15) results
into aW∗ ∈ R

r×r such that rank(W∗) = r . According to Lemma 2 there exist also a feasible
Â which reconstructs Kr . Let us assume Â∗ is the optimum solution of (15) with λA = 0,
then

‖K − Â∗T W∗Â∗‖22 ≤ ‖K − ÂT W∗Â‖22
‖K−K̂‖22 ≤ ‖K − Kr‖22.

This completes the proof. ��
3.4 Low-rank approximation quality of multiple kernel matrices

In this section, we establish the approximation quality achieved in the multi-view setup,
when the different kernels are similar either in the sense of having the same underlying
‘true’ low-rank approximations (Theorem 3) or more generally similar sets of eigen-vectors
(Theorem 4).
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Theorem 3 Assume K(1), . . . , KM are M kernel matrices such that ∀ m, rank(Km) ≥ r
and that all of themhave the same rank-r approximation, i.e.,K(1)

r = . . . = K(m)
r (assumption

in (6)). Then ∃λr and λA such that the following optimization problem:

min
Â(m),P

M∑

m=1

‖K(m) − Â(m)T P
T

K(m)PÂ(m)‖22 + λr
M∑

m=1

‖p‖1 + λA

M∑

m=1

‖A(m)‖22

s.t. Â(m)T P
T

K(m)PÂ(m) = Â(l)T P
T

K(l)PÂ(l) ∀ m and l

P = diag(p) and pi ∈ {0, 1} (20)

produces the exact rank-r approximation for individual matrices, i.e.,

M∑

m=1

‖K(m) − Â(m)T P
T

K(m)PÂ(m)‖22 =
M∑

m=1

‖K(m) − K(m)
r ‖22.

Proof Each symmetric positive semi-definite kernel matrix can be written as

K(m) = X(m)X(m)T ,

where X(m) ∈ R
N×rank(K(m)) and columns of X(m) are orthogonal to each other.

When all K(m)s have the same rank-r approximation then the first r columns of X(m) are
same for all m. Hence X(m) can be expressed as

X(m) =
[
Xr X(m)

rc

]

where rc denotes the complement of set r . Here Xr ∈ R
N×r is a rank-r matrix and hence it

is possible to find a set of r rows from Xr which together produce a rank-r sub-matrix of size
r × r . Let P∗T be such a selector operator which select r linearly independent rows from Xr ,
i.e., Moreover, according to Lemma 1 there exist a λr for which the optimization problem in
(20) gives the required sparsity in P∗.

Hence,

W(m) = P∗T K(m)P∗ = X(m)
W X(m)

W

T

where X(m)
W = P∗T X(m) = P∗T

[
XrX(m)

r ′
]
and hence X(m)

W contains r linearly independent

rows of X(m) and hence for all m, rank(W(m)) = r.
When the parameter λA is significantly small then, using Theorem 2, we can prove that

for a W(m) with rank(W(m)) = r , there exist a Â(m) which is able to generate exact rank-r
approximation for individual kernel matrix i.e,

‖K(m) − Â(m)T P∗T K(m)P∗Â(m)‖22 = ‖K(m) − K(m)
r ‖22, ∀ m.

This completes the proof. ��

Theorem 4 AssumeK(1), . . . , K(M) are M kernel matrices such that∀ m, rank(K(m)) = r
and all of them have same eigen-space, i.e, eigen-vectors are linearly transferable and
eigen-values are different (assumption in (9)), i.e., K(m) = U(m)Σ(m)U(m)T such that
U(m) = U(1)T(m). Then ∃λr and λA such that the following optimization problem (by the
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assumption in (10))

min
Â,P

M∑

m=1

‖K(m) − ÂT PT K(m)PÂ‖22 + λr
M∑

m=1

‖p‖1 + λA‖Â‖22
P = diag(p) and pi ∈ {0, 1} (21)

selects a rank-r sub-matrix W∗(m) ∈ R
r×r with rank(W∗(m)) = r of each kernel K(m) which

can produce the exact reconstruction for individual matrices, i.e.,

M∑

m=1

‖K(m) − Â∗T W(m)Â∗‖22 = 0

Proof According to assumption in (9) each kernel matrix can be written as

K(m) = U(m)Σ(m)U(m)T = U(1)T(m)Σ(m)T(m)T U(1)T

where U(1) ∈ R
N×r is orthonormal. Hence it is possible to find a set of r rows from U(1)

which together produce a rank-r sub-matrix of size r × r . Let P∗T be such selector operator
which selects r linearly independent rows from U(1). Let r∗ denote the set of indices of such

linearly independent rows of U(1). Hence U(1) =
[

U(1)
r∗

U(1)
rc

]
and U(1)

r∗ is invertible.

According to Lemma 1 there exist a λr for which the optimization problem (21) gives the
required sparsity in P∗T . Hence using the assumption U(m) = U(1)T(m), we get

W∗(m) =P∗T K(m)P∗ =P∗T U(1)
(

T(m)Σ(m)T(m)T
)

U(1)T P∗ =U(1)
r∗

(
T(m)Σ(m)T(m)T

)
U(1)T

r∗

Hence, given λA is significantly small, according to Theorem 2 the optimization problem
(21) selects a sub-matrix W∗(m) such that W∗(m) ∈ R

r×r and rank(W∗(m)) = r . Then each
kernel matrix is expressed in terms of W∗(m) as

K(m) = U(m)Σ(m)U(m)T = U(1)
(

T(m)Σ(m)T(m)T
)

U(1)T

=
(

U(1)U(1)−1
r∗

)
W∗(m)

(
U(1)U(1)−1

r∗
)T

.

Defining Â∗ =
(

U(1)U(1)−1

r∗
)T

(which is possible for significantly small λA), we get

K(m) = Â∗T W∗(m)Â∗. This completes the proof. ��

4 Optimization problems

Here we present the optimization problems for Multi-view Kernel Completion (MKC),
arising from the within-view and between-view kernel approximations described above.

4.1 MKC using semi-definite programming (MKCsdp)

This is themost general casewherewedonot put anyother restrictions onkernels of individual
views, other than restricting them to be positive semi-definite kernels. In this general case we
propagate information from other views by learning between-view relationships depending
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on kernel values in (7). Hence, using (3) and (8) we get

min
S,K̂(m),

m=1,...,M

M∑

m=1

⎛

⎝‖K̂(m)

I (m) I (m) − K(m)

I (m) I (m)‖22 + λ1‖K̂(m) −
M∑

l=1,l 	=m

smlK̂(l)‖22
⎞

⎠

s.t. K̂(m) � 0 ∀m = 1, . . . , M

S ∈ S . (22)

We solve this non-convex optimization problem by iteratively solving it for S and K̂(m)

using block-coordinate descent. For a fixed S, to update the K̂(m)’s we need to solve a semi-
definite program with M positive constraints.

4.2 MKC using homogeneous embeddings (MKCembd(hm))

An optimization problem with M positive semi-definite constraints is inefficient for even a
data set of size 100. To avoid solving the SDP in each iteration we assume a kernel approx-
imation (1). When kernel functions in different views are not the same and kernel matrices
in different views have different eigen-spectra, we learn relationships among underlying
embeddings of different views (10), instead of the actual kernel values. Hence, using (3), (1)
and (10) along with �2,1 regularization on A, we get

min
A,K̂(m),

∀m=1,...,M

M∑

m=1

‖K̂(m)

I (m) I (m) − K(m)

I (m) I (m)‖22 + λ‖A‖2,1

s.t K̂(m) = A
T

I (m)K
(m)

I (m) I (m)AI (m)

S ∈ S (23)

Theorem 4 shows that the above formulation is appropriate when the first few eigen-vectors
for all kernels are same while corresponding eigen-values may be different.

4.3 MKC using heterogeneous embeddings (MKCembd(ht))

When kernel matrices in different views have different eigen-spectra both in eigen-values
and eigen-vectors, we learn relationships among underlying embeddings of different views
( 11), instead of the actual kernel values. Hence, using (3), (1) and (12) along with l2,1
regularization on A(m), we get

min
S,A(m),K̂(m),
∀m=1,...,M

M∑

m=1

⎛

⎝‖K̂(m)

I (m) I (m) − K(m)

I (m) I (m)‖22 + λ1‖A(m)

I (m) −
M∑

l=1,l 	=m

smlA
(l)
I (m)‖22

⎞

⎠

+λ2

M∑

m=1

‖A(m)‖2,1

s.t K̂(m) = A(m)T

I (m) K(m)

I (m) I (m)A
(m)

I (m)

S ∈ S (24)
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4.4 MKC using kernel approximation (MKCapp)

On the other hand when the low rank approximation of related kernels are same (6) then
between-view relationships are learnt on kernel values using (8). In this case the kernel is
approximated to avoid solving the SDP:

min
S,A(m),K̂(m),
∀m=1,...,M

M∑

m=1

⎛

⎝‖K̂(m)

I (m) I (m) − K(m)

I (m) I (m)‖22 + λ1‖K̂(m) −
M∑

l=1,l 	=m

smlK̂(l)‖22
⎞

⎠

+λ2

M∑

m=1

‖A(m)‖2,1

s.t K̂(m) = A(m)T

I (m) K(m)

I (m) I (m)A
(m)

I (m)

S ∈ S (25)

Theorem 3 shows that this method results into the exact rank-r approximation when rank-r
approximation kernels for related views are same. We solve all the above-mentioned non-
convex optimization problems with l2,1 regularization by sequentially updating S and A(m).
In each iteration S is updated by solving a quadratic program and for eachm, A(m) is updated
using proximal gradient descent.

5 Algorithms

Here we present algorithms for solving various optimization problems, described in previous
section.1

5.1 Algorithm to solve MKCembd(ht)

In this section the Algorithm 1 describes the algorithm to solve MKCembd(ht) (24).

Substituting K̂(m) = A(m)T

I (m) K(m)

I (m) I (m)A
(m)

I (m) , the optimization problem (24) contains two

sets of unknowns, S and the A(m)’s. We update A(m) and S in an iterative manner. In the
kth iteration for a fixed Sk−1 from the previous iteration, to update A(m)’s we need to solve
following for each m:

A(m)k = argmin
A(m)

AobjkS (A(m)) + λ2Ω(A(m))

where Ω(A(m))=‖A(m)‖2,1 and AobjkS (A(m))=‖K(m)

I (m) I (m) −
[
A(m)T

I (m) K(m)

I (m) I (m)A
(m)

I (m)

]

I (m) I (m)

‖22 + λ1
∑M

m=1 ‖A(m) − ∑M
l=1,l 	=m sk−1

ml A(l)‖22.
Instead of solving this problem in each iteration we update A(m) using proximal gradient

descent. Hence, in each iteration,

A(m)k = Proxγ λ2Ω

(
A(m)k−1 − γ ∂AobjkS (A(m)k−1

)
)

(26)

where ∂AobjkS (A(m)) is the differential of AobjkS (A(m)) at A(m)k−1
and γ is the step size

which is decided by a line search. In (26) each row of A(m) (i.e., a(m)
t ) can be solved inde-

1 MKC code is available in https://github.com/aalto-ics-kepaco/MKC_software.
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Algorithm 1 . MKCembd(ht)
(
K(m), I (m),∀m ∈ [1, . . . , M])

Initialization:
s0mm = 0, s0ml = 1

M−1 ,

A(m)0

I (m) I (m) = Identity matrix and

a(m)0

t t ′ ∼ uni f orm(−1, 1) for all t, t ′ /∈ I (m)

repeat

for m=1 to M do
for t=1 to N do

a(m)k

t = max

(
0, (1 − γ λ2

‖Δa(m)k−1
t ‖2

)Δa(m)k−1

t

)

[according to (26) and (27)]
[γ is fixed by line search]

end for
end for

for m=1 to M do
skm = argminsm Sobjk

A(m),m=1,...,M (sm )

[according to (28)]
end for

until convergence

pendently and we apply a proximal operator on each row. Following Bach et al. (2011), the
solution of (26) is

a(m)k

t = max

(
0, (1 − γ λ2

‖Δa(m)k−1

t ‖2
)Δa(m)k−1

t

)
, (27)

where Δa(m)k−1

t is the t th row of
(

A(m)k−1 − γ ∂AobjkS (A(m)k−1
)
)
.

Again, in the kth iteration, for fixed A(m)k ’s, the S is updated by independently updating
each row (sm) through solving the following Quadratic Program:

skm = argmin
sm

SobjkA(m),m=1,...,M (sm)

s.t
∑

l 	=m

sml = 1,

sml ≥ 0 ∀l (28)

where Sobjk
A(m),m=1,...,M (sm) = ‖A(m)k − ∑M

l=1,l 	=m smlA(l)k‖22.

Computational Complexity: Each iteration of Algorithm 1 needs to update reconstruction
weight vectors of size N for N data-points for M views and also between view relation
weights of size M × M . Hence the effective computational complexity is O

(
M(N 2 + M)

)
.

5.2 Algorithm to solve MKCsdp

In this section the Algorithm 2 describes the algorithm to solve MKCsdp(22). The optimiza-
tion problem (22) has two sets of unknowns, S and the K̂(m)’s. We update K̂(m) and S in
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an iterative manner. In the kth iteration, for fixed Sk−1 and K̂(m)k−1
, the K̂(m) is updated

independently by solving following Semi-definite Program:

K̂(m)k = argmin
K

KobjkS (K̂(m))

s.t K̂(m) � 0, (29)

where

KobjkS (K̂(m)) = ‖K̂(m)

I (m) I (m) − K(m)

I (m) I (m)‖22 + λ‖K̂(m) −
M∑

l=1,l 	=m

sk−1
ml K̂(l)k−1‖22

+λ

M∑

l=1,l 	=m

‖
⎛

⎝K̂(l)k−1 −
M∑

l ′=1,l ′ 	=l,m

sk−1
ll ′ K̂(l ′)k−1

⎞

⎠ − sk−1
lm K̂(m)‖22

Algorithm 2 MKCsdp
(
K(m), I (m),∀m ∈ [1, . . . , M])

Initiaization:
s0mm = 0, s0ml = 1

M−1 ,

K̂(m)0

I (m) I (m) = K(m)

I (m) I (m) and

k̂(m)0

t t ′ ∼ uni f orm(−1, 1) for all t, t ′ /∈ I (m)

repeat

for m=1 to M do
K̂(m)k = argminK̂(m) KobjkS (K̂(m))

[according to (29)]
end for

for m=1 to M do
skm = argminsm Sobjk[psd]K̂(m),m=1,...,M (sm )

[according to (30)]
end for

until convergence

Again, in the kth iteration, for fixed K̂(m)k ,∀m = [1, . . . , M], S is updated by indepen-
dently updating each row (sm) through solving the following Quadratic Program:

skm = argmin
sm

Sobjk[psd]K̂(m),m=1,...,M (sm)

s.t
∑

l 	=m

sml = 1,

sml ≥ 0 ∀l (30)

Here Sobjk[psd]K̂(m),m=1,...,M (sm) = ‖K̂(m)k − ∑M
l=1,l 	=m smlK̂(l)k‖22.

Computational Complexity: Each iteration of Algorithm 2 needs to optimize M kernel by
solving of M semi-definite programming(SDP) of size N . General SDP solver has computa-
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tion complexity O
(
N 6.5

)
(Wang et al. 2013). Hence the effective computational complexity

is O
(
MN 6.5

)
.

5.3 Algorithm to solve MKCapp

In this section the Algorithm 3 describes the algorithm to solveMKCapp(25) which is similar

to Algorithm 1. Substituting K̂(m) = A(m)T

I (m) K(m)

I (m),I (m)A
(m)

I (m) , the optimization problem (25)

also has two sets of unknowns, S and theA(m)’s and againwe updateA(m) and S in an iterative
manner. In the kth iteration for a fixed Sk−1 from previous iteration, to update A(m)’s, unlike
MKCembd(ht), we need to solve following for each m:

A(m)k = argmin
A(m)

Aobjk[app]S(A(m)) + λ2Ω(A(m)k−1
)

where Ω(A(m)) = ‖A(m)‖2,1 and
Aobjk[app]S(A(m)) = ‖K(m)

I (m) I (m) −
[
A(m)T

I (m) K(m)

I (m) I (m)A
(m)

I (m)

]

I (m) I (m)
‖22

+λ1

M∑

m=1

‖A(m)T

I (m) K(m)

I (m) I (m)A
(m)

I (m) −
M∑

l=1,l 	=m

sk−1
ml A(l)T

I (l) K(l)
I (l) I (l)A

(l)
I (l)‖22.

For this case too, instead of solving this problem in each iteration we update A(m) using
proximal gradient descent. Hence, in each iteration,

A(m)k = Proxγ λ2Ω

(
A(m)k−1 − γ ∂Aobjk[app]S(A(m)k−1

)
)

(31)

Algorithm 3 MKCapp
(
K(m), I (m),∀m ∈ [1, . . . , M])

Initialization:
s0mm = 0, s0ml = 1

M−1 ,

A(m)0

I (m) I (m) = Identity matrix and

a(m)0

t t ′ ∼ uni f orm(−1, 1) for all t, t ′ /∈ I (m)

repeat
for m=1 to M do

for t=1 to N do

a(m)k

t = max

(
0, (1 − γ λ2

‖
a(m)k−1
t ‖2

)
a(m)k−1

t

)

[according to s (31, 32)]
[λ is fixed by line search]

end for
end for
for m=1 to M do

skm = argminsm Sobjk[app]A(sm )

[according to (33)]
end for

until convergence

where ∂Aobjk[app]S(A(m)k−1
) is the differential of Aobjk[app]S(A(m)) at A(m)k−1

and γ is the
step size which is decided by a line search. By applying proximal operator on each row of A
(i.e., at ) in (31)
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a(m)k

t = max

(
0,

(
1 − γ λ2

‖Δa(m)k−1

t ‖2

)
Δa(m)k−1

t

)
, (32)

where Δa(m)k−1

t is the t th row of
(

A(m)k−1 − γ ∂Aobjk[app]S(A(m))
)
.

Again, in the kth iteration, for fixed A(m)k ,∀m = [1, . . . , M], S is updated by indepen-
dently updating each row (sm) through solving the following Quadratic Program:

skm = argmin
sm

Sobjk[app]A(sm)

s.t
∑

l 	=m

sml = 1,

sml ≥ 0 ∀l (33)

where Sobjk[app]A(sm) = ‖A(m)T

I (m) K(m)

I (m) I (m)A
(m)

I (m) − ∑M
l=1,l 	=m smlA

(l)T

I (l) K(l)
I (l) I (l)A

(l)
I (l)‖22.

Computational Complexity: Each iteration of Algorithm 3 needs to update reconstruction
weight vectors of size N for N data-points for M views and also between view relation
weights of size M × M . Hence the effective computational complexity is O

(
M(N 2 + M)

)
.

6 Experiments

We apply the proposed MKC method on a variety of data sets, with different types of
kernel functions in different views, along with different amounts of missing data points. The
objectives of our experiments are: (1) to compare the performance of MKC against other
existing methods in terms of the ability to predict the missing kernel rows, (2) to empirically
show that the proposed kernel approximation with the help of the reconstruction weights also
improves running-time over the MKCsdp method.

6.1 Experimental setup

6.1.1 Data sets:

To evaluate the performance of our method, we used 4 simulated data sets with 100 data
points and 5 views, as well as two real-world multi-view data sets: (1) Dream Challenge
7 data set (DREAM) (Daemen et al. 2013; Heiser and Sadanandam 2012) and (2) Reuters
RCV1/RCV2 multilingual data (Amini et al. 2009).2

Synthetic data sets: We followed the following steps to simulate our synthetic data sets:

1 We generated the first 10 points (X(m)

B(m) ) for each view, where X(1)
B(m) and X(2)

B(m) are

uniformly distributed in [−1, 1]5 and X(3)
B(m) , X(4)

B(m) and, X(5)
B(m) are uniformly distributed

in [−1, 1]10.
2 These 10 data points were used as basis sets for each view, and further 90 data points

in each view were generated by X(m) = A(m)X(m)

B(m) , where the A(m) are uniformly

distributed random matrices ∈ R
90×10. We chose A(1) = A(2) and A(3) = A(4) = A(5).

2 All data-sets and MKC code is available in https://github.com/aalto-ics-kepaco/MKC_software.
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Fig. 2 Eigen-spectra of kernel matrices of the different views in the data sets. It shows that eigen-spectra
of the TOY data-set with two different kernels (TOYLG1) and the real world DREAM data-sets are very
much different in different views Each coloured line in a plot shows the eigen-spectrum in one view. Here,
(r) indicates use of Gaussian kernel on real values whereas (b) indicates use of Jaccard’s kernel on binarized
values (Color figure online)

3 Finally, K(m) was generated from X(m) by using different kernel functions for different
data sets as follows:

– TOYL: Linear kernel for all views
– TOYG1 and TOYG0.1: Gaussian kernel for all views where the kernel with of the

Gaussian kernel are 1 and 0.1 respectively.
– TOYLG1:Linear kernel for the first 3 views andGaussian kernel for the last twoviews

with the kernel width 1. Note that with this selection view 3 shares reconstruction
weights with view 4 and 5, but has the same kernel as views 1 and 2.

Figure 2 shows the eigen-spectra of kernel matrices are very much different for TOYLG1
where we have used different kernels in different views.

The Dream Challenge 7 data set (DREAM): For Dream Challenge 7, genomic charac-
terizations of multiple types on 53 breast cancer cell lines are provided. They consist of
DNA copy number variation, transcript expression values, whole exome sequencing, RNA
sequencing data, DNA methylation data and RPPA protein quantification measurements. In
addition, some of the views are missing for some cell lines. For 25 data points all 6 views are
available. For all the 6 views, we calculated Gaussian kernels after normalizing the data sets.
We generated two other kernels by using Jaccard’s kernel function over binarized exome data
and RNA sequencing data. Hence, the final data set has 8 kernel matrices. Figure 2 shows
the eigen-spectra of the kernel matrices of all views, which are quite different for different
views.

RCV1/RCV2: Reuters RCV1/RCV2 multilingual data set contains aligned documents for
5 languages (English, French, Germany, Italian and Spanish). Originally the documents
are in any one of these languages and then corresponding documents for other views have
been generated by machine translations of the original document. For our experiment, we
randomly selected 1500 documents which were originally in English. The latent semantic
kernel (Cristianini et al. 2002) is used for all languages.

6.1.2 Evaluation setup

Each of the data sets was partitioned into tuning and test sets. The missing views were
introduced in these partitions independently. To induce missing views, we randomly selected
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data points from each partition, a few views for each of them, and deleted the corresponding
rows and columns from the kernel matrices. The tuning set was used for parameter tuning.
All the results have been reported on the test set which was independent of the tuning
set.

For all 4 synthetic data sets as well as RCV1/RCV2 we chose 40% of the data samples
as the tuning set, and the rest 60% were used for testing. For the DREAM data set these
partitions were 60% for tuning and 40% for testing.

We generated versions of the data with different amounts of missing values. For the first
test case, we deleted 1 view from each selected data point in each data set. In the second test
case, we removed 2 views for TOY and RCV1/RCV2 data sets and 3 views for DREAM.
For the third one we deleted 3 views among 5 views per selected data point in TOY and
RCV1/RCV2, and 5 views among 8 views per selected data point in DREAM.

We repeated all our experiments for 5 random tuning and test partitions with different
missing entries and report the average performance on them.

6.1.3 Compared methods

Wecomparedperformanceof the proposedmethods,MKCembd(hm) MKCembd(ht),MKCapp ,
MKCsdp , with k nearest neighbour (KNN) imputation as a baseline KNN has previously
been shown to be a competitive imputation method (Brock et al. 2008). For KNN imputation
we first concatenated underlying feature representations from all views to get a joint feature
representation. We then sought k nearest data points by using their available parts, and the
missing part was imputed as either average (Knn) or the weighted average (wKnn) of the
selected neighbours. We also compare our result with generative model based approach of
Lian et al. (2015) (MLFS) and with an EM-based kernel completion method (EMbased )
proposed by Tsuda et al. (2003). Tsuda et al. (2003) cannot solve our problem when no view
is complete, hence we study the relative performance only in the cases which it can solve.
For Tsuda et al. (2003)’s method we assume the first view is complete.

We also compared MKCembd(ht), with MKCrnd where we assumed the basis vectors are
selected randomly with uniform distribution with out replacement and after that reconstruc-
tion weights for all views are optimizied.

The hyper-parameters λ1 and λ2 of MKC and k of Knn and wKnn were selected with
the help of tuning set, from the range of 10−3 to 103 and [1, 2, 3, 5, 7, 10] respectively. All
reported results indicate performance in the test sets.

6.2 Prediction error comparisons

6.2.1 Average Relative Error (ARE)

We evaluated the performance of all methods using the average relative error (ARE) (Xu
et al. 2013). Let k̂(m)

t be the predicted t th row for the mth view and the corresponding true
values of kernel row be k(m)

t , then the relative error is the relative root mean square deviation.
The average relative error (in percentage) is then computed over all missing data points

for a view, that is,

ARE = 100

n(m)
t

⎛

⎝
∑

t /∈I (m)

‖k̂(m)
t − k(m)

t ‖2
‖k(m)

t ‖2

⎞

⎠ . (34)

Here n(m)
t is the number of missing samples in the mth view.
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6.2.2 Results

Table 1 shows the Average Relative Error (34) for the compared methods. It shows that the
proposedMKCmethods generally predict missing values more accurately thanKnn,wKnn,
EMbased and MLFS. In particular, the differences in favor to the MKC methods increase
when the number of missing views is increased.

The most recent method MLFS performs comparatively for the DREAM data-set and
the data-set with linear kernels (TOYL). But it deteriorates very badly with the increased
of non-linearity of kernels, i.e., TOYG1 and TOYLG1. For highly non-linear sparse kernels
(TOYG0.1) and for RCV1/RCV2 data-set with large amount of missing views the MLFS
fails to predict.

TheEMbased sometimes hasmore than 200%error and higher (more than 200%) variance.
The most accurate method in each setup is one of the proposed MKC’s. MKCembd(hm) is
generally the least accurate of them, but still competitive against the other comparedmethods.
We further note that:

– MKCembd(ht) is consistently the best when different views have different kernel func-
tions or eigen-spectra, e.g., TOYLG1 and DREAM (Fig. 2). Better performance of
MKCembd(ht) than MKCembd(hm) in DREAM data gives evidence of applicability of
MKCembd(ht) in real-world data-set.

– MKCapp performs best or very close to MKCembd(ht) when kernel functions and eigen-
spectra of all views are the same (for instance TOYL, TOYG1 and RCV1/RCV2). As
MKCapp learns between-view relationships on kernel values it is not able to performwell
for TOYLG1 and DREAM where very different kernel functions are used in different
views.

– MKCsdp outperforms all other methods when kernel functions are highly non-linear
(such as in TOYG0.1). On less non-linear cases, MKCsdp on the other hand trails in
accuracy to the other MKC variants. MKCsdp is computationally more demanding than
the others, to the extent that on RCV1/RCV2 data we had to skip it.

Fig. 3 ARE (34) for different proportions of missing samples. Values are averages over views and random
validation and test partitions. The value for TOY are additionally averaged over all 4 TOY data sets

123



736 Mach Learn (2017) 106:713–739

Figure 3 depicts the performance as the number of missing samples per view is increased.
Here, MKCembd(ht), MKCapp and MKCembd(hm) prove to be the most robust methods over
all data sets. The performance of MKCsdp seems to be the most sensitive to amount of
missing samples. Overall, EMbased , Knn, and wKnn have worse error rates than the MKC
methods.

6.3 Comparison of performance of different versions of the proposed approach

Figure 4 shows how relative prediction error (ARE) ofMKCembd(ht),MKCapp andMKCsdp

vary with two properties of given data-sets. Namely, (1) difference among eigen-spectra of
kernel of different views(x axis) and (2) non-linearity of kernels for all views(y axis). For
this experiment, we consider 3rd, 4th and 5th views of TOY data. Here all views have been
generated from same embedding. Non-linearity of kernel function varies with combination
of linear and Gaussian kernel where the kernel with of the Gaussian kernel varies among 5,
1 and 0.1.

The heterogeneity of eigen-spectra of all kernels are calculated as average mean square
difference of eigen-spectra of each pair of kernels. The non-linearity of kernel is indicated by
the average of the 20th eigen-values of all views. Each circle indicates amount of prediction
error by MKCembd(ht), MKCapp and MKCsdp where radius of each circle is proportional
to “log(ARE) + Thr”. A constant “Thr” was required to have positive radii for all circles
for better visualization. We further note that:

– The performance of MKCembd(ht) is the best among these three methods for all most all
cases.

Fig. 4 The changes of prediction error (bigger size of circle indicates the more ARE) for MKCembd(ht)(red),
MKCapp(blue) and MKCsdp(green) with increase of the non-linearity and the heterogeneity of kernel func-
tions used in different views. It show EMbased (red) performed best for almost all cases while for highly
non-linear kernel MKCsdp(green) performed better. Text at center of each circle indicates kernel functions
used in 3 views for that data-set: “L”=linear and “g(w)”= Gaussian with width w (Color figure online)
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Table 2 Average running time over all views and for TOY, over all 4 data sets

Algorithm TOY (mins) DREAM (mins) RCV1/RCV2 (h)

Number of missing views = 1 (TOY and RCV1/RCV2) and 1 (DREAM)

MKCembd(ht) 5.00( ±2.04) 0.86( ±0.29) 45.93( ±2.27)

MKCapp 2.91( ±0.39) 1.89( ±0.62) 16.59( ±0.28)

MKCsdp 14.82( ±4.39) 1.13( ±0.11) –

MKCembd(hm) 0.15( ±0.07) 0.05( ±0.03) 0.28( ±0.02)

MKCrnd 2.71( ±0.53) 0.85( ±0.18) 4.21( ±0.56)

MLFS 0.15( ±0.01) 0.01( ±0.01) 1.72( ±0.11)

EMbased 0.50( ±0.19) 0.03( ± 0.05) 0.03( ±0.00)

Number of missing view = 2 (TOY and RCV1/RCV2) and 3 (DREAM)

MKCembd(ht) 7.58( ±2.18) 1.13( ±0.12) 25.86( ±0.36)

MKCapp 2.78( ±0.68) 1.29( ±0.25) 34.42( ±1.28)

MKCsdp 25.65( ±5.43) 1.97( ±0.34) –

MKCembd(hm) 0.11( ±0.05) 0.03( ±0.01) 0.47( ±0.02)

MKCrnd 1.33( ±0.59) 1.34( ±0.19) 3.63( ±0.50)

MLFS 0.14( ±0.01) 0.01( ±0.02) 2.61( ±1.01)

EMbased 0.45( ±0.08) 0.06( ±0.06) 0.03( ±0.00)

Number of missing views = 3 (TOY and RCV1/RCV2) and 5 (DREAM)

MKCembd(ht) 6.83( ±2.14) 3.39( ±1.11) 24.39( ±2.13)

MKCapp 2.20( ±0.66) 3.64(±1.79) 20.26(±1.72)

MKCsdp 178.1( ±162.9) 4.94( ±2.48) –

MKCembd(hm) 0.12( ±0.08) 0.03( ±0.02) 0.57( ±0.00)

MKCrnd 1.83( ±0.73) 1.31( ±0.20) 2.81( ±0.17)

MLFS 0.07( ±0.05) 0.05( ±0.01) 1.04(±0.40)

EMbased 0.45( ±0.05) 0.10( ±0.05) 0.03( ±0.00)

The running times for Knn and wKnn are around 10−3 mins for all data sets

– Only when all views have similarly high non-linear kernel (top-left corner), MKCsdp

performs best among all. It also shows that the performance of MKCsdp improves with
increase of non-linearity.

– We can also see that with the increase of heterogeneity in kernels (increase of x-axis) the
performance of MKCapp deteriorates and is getting worse than that of MKCembd(ht).

6.4 Running time comparison

Table 2 depicts the running times for the compared methods. MKCapp , MKCembd(ht) and
MKCembd(hm) are many times faster than MKCsdp . In particular, MKCembd(hm) is competi-
tive in running time with the significantly less accurate EMbased and MLFS methods, except
on the RCV1/RCV2 data. As expected, Knn and wKnn are orders of magnitude faster but
fall far short of the reconstruction quality of the MKC methods.

7 Conclusions

In this paper, we have introduced new methods for kernel completion in the multi-view
setting. The methods are able to propagate relevant information across views to predict
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missing rows/columns of kernel matrices in multi-view data. In particular, we are able to
predict missing rows/columns of kernel matrices for non-linear kernels, and do not need any
complete kernel matrices a priori.

Our method of within-view learning approximates the full kernel by a sparse basis set of
examples with local reconstruction weights, picked up by �2,1 regularization. This approach
has the added benefit of circumventing the need of an explicit PSD constraint in optimization.
We showed that the method generalizes and improves Nyström approximation. For learning
between views, we proposed two alternative approaches, one based on learning convex kernel
combinations and another based on learning a convex set of reconstruction weights. The
heterogeneity of the kernels in different views affects which of the approaches is favourable.
We related theoretically the kernel approximation quality of these methods to the similarity
of eigen-spaces of the individual kernels.

Our experiments show that the proposed multi-view completion methods are in general
more accurate than previously availablemethods. In terms of running time, due to the inherent
non-convexity of the optimization problems, the new proposals still have room to improve.
However, the methods are amenable for efficient parallelization, which we leave for further
work.
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