' Aalto University

Lehtinen, Timo O A; Itkonen, Juha; Lassenius, Casper

Recurring opinions or productive improvements—what agile teams actually discuss in
retrospectives

Published in:
Empirical Software Engineering

DOI:
10.1007/s10664-016-9464-2

Published: 01/10/2017

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:

Lehtinen, T. O. A,, Itkonen, J., & Lassenius, C. (2017). Recurring opinions or productive improvements—what
agile teams actually discuss in retrospectives. Empirical Software Engineering, 22(5), 2409—-2452.
https://doi.org/10.1007/s10664-016-9464-2

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

https://doi.org/10.1007/s10664-016-9464-2
https://doi.org/10.1007/s10664-016-9464-2

Empir Software Eng (2017) 22:2409-2452 @ CrossMark
DOI 10.1007/s10664-016-9464-2

Recurring opinions or productive
improvements—what agile teams actually discuss
in retrospectives

Timo O. A. Lehtinen' - Juha Itkonen' -
Casper Lassenius '

Published online: 3 November 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Team-level retrospectives are widely used in agile and lean software development,
yet little is known about what is actually discussed during retrospectives or their outcomes. In
this paper, we synthesise the outcomes of sprint retrospectives in a large, distributed, agile
software development organisation. This longitudinal case study analyses data from 37 team-
level retrospectives for almost 3 years. We report the outcomes of the retrospectives, their
perceived importance for process improvement and relatVed action proposals. Most discus-
sions were related to topics close to and controllable by the team. However, the discussions
might suffer from participant bias, and in cases where they are not supported by hard evidence,
they might not reflect reality, but rather the sometimes strong opinions of the participants.
Some discussions were related to topics that could not be resolved at the team level due to their
complexity. Certain topics recurred over a long period of time, either reflecting issues that can
and have been solved previously, but that recur naturally as development proceeds, or
reflecting waste since they cannot be resolved or improved on by the team due to a lack of
controllability or their complexity. For example, the discussion on estimation accuracy did not
reflect the true situation and improving the estimates was complicated. On the other hand,
discussions on the high number of known bugs recurred despite effective improvements as
development proceeded.

Communicated by: Magne Jorgensen, Mika Méntyld, Paul Ralph and Hakan Erdogmus

>4 Timo O. A. Lehtinen
timolehtinen @iki.fi

Juha Itkonen
juha.itkonen @aalto.fi

Casper Lassenius
casper.lassenius @aalto.fi

Department of Computer Science, Aalto University School of Science, P.O. BOX 15400,
FI-00076 Aalto, Finland

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10664-016-9464-2&domain=pdf

2410 Empir Software Eng (2017) 22:2409-2452

Keywords Retrospective - Software engineering - Scrum - Agile - Continuous improvement -
Longitudinal case study

1 Introduction

Retrospectives, also known as ‘post-mortems’ and ‘post-project reviews’ have often
been proposed as a tool for making improvements in software development activities
due to their theoretical capability to generate learning and recognise the success and
failure of software engineering practice (Dingseyr 2005).

Modern software development methods, such as Scrum (Schwaber and Sutherland
2011), have emphasised the role of retrospectives during the development period as
opposed to after it has ended in helping enable continuous learning and process
improvement. In agile development, retrospectives are recommended to be applied
continuously; for example, sprint retrospectives can be applied after each sprint review
when using the Scrum method (Schwaber and Sutherland 2011), and some authors
suggest spending 1 h every other week reflecting on working habits (Cockburn 2002).
Since applying retrospectives in this way requires considerable effort from the soft-
ware teams, it is important to understand the results of such a practice in order to
assess its value.

Despite this need for and the widespread use of retrospectives, their tangible
outcomes have received little research attention. Prior studies have certainly noted
the need for retrospective and introduced various methods for conducting them (see
section 2 for details). However, what actually is discussed and decided in retrospec-
tives — negative and positive observations as well as corrective actions — have not
been reported, synthesised or compared in previous studies. More importantly, prior
studies have not analysed how the outcomes of the retrospectives change over time.
Such a longitudinal perspective can help us understand the extent to which the
reported observations and corrective actions keep repeating themselves and how the
topics and improvement ideas change over time. This will help experts evaluate the
role of continuous retrospectives for process improvement and knowledge elicitation.

In this article, we start to fill in this gap in the existing literature by analysing the
outcome of team-level retrospectives in a longitudinal case study of a large, distrib-
uted Scrum organization. We analyse the discussion topics and their evolution over
time as well as the developed corrective actions. The data consist of the retrospective
diagrams recorded by the participants in the team-level retrospective meetings. The
raw statements extracted from the retrospective diagrams are categorised based on the
process areas and topics. Our analysis is based on these categorisations and a
qualitative analysis of the contents of the retrospective statements.

The rest of the paper is organised in the following way. Section 2 introduces related work
regarding different types of retrospective methods and the motivators for conducting analyses
on positive and negative software development experiences. Section 3 presents the research
questions and the case study design, including the retrospective techniques used in the case
organisation. Section 4 presents the case study results together with the discussion based on the
research questions. Section 5 provides a discussion on the implications the research findings
and presents a validity evaluation of the research. Section 6 concludes the study and discusses
opportunities for future research.

@ Springer

Empir Software Eng (2017) 22:2409-2452 2411

2 Related Work
2.1 Methods for Conducting Retrospectives in Software Engineering

Retrospective methods have been defined as ‘collective learning activities’ (Dingseyr 2005),
which are used to recall software development experiences and problems in order to make
improvements to future software development practice. Generally speaking, retrospectives aim
to recognise software engineering successes and failures and to link the related experience to
action proposals that will improve future successes and decrease the likelihood of future
failures. The tangible outcome of a retrospective is a report (Dingseyr 2005), which may
include positive and negative experiences (Bjernson et al. 2009), detected problems (Lehtinen
et al. 2011; Stalhane et al. 2003), voting results (Lehtinen et al. 2011) and action proposals
(Lehtinen et al. 2011). Retrospectives are used at various levels, including the level of software
teams, organisations and companies (Lehtinen 2014). They can be mapped onto development
phases, eg in the form of ‘planning post-mortems’, ‘design/verification post-mortems’ and
“field post-mortems’ (Tiedeman 1990).

Agile software development methods emphasise the importance of using retrospectives
continuously according to agile principles: ‘At regular intervals, the team reflects on how to
become more effective, then tunes and adjusts its behavior accordingly’ (Cockburn 2002).
Such retrospectives have to be constructive and lightweight in terms of the effort expended and
the required calendar time (Glass 2002). In agile retrospectives, it is common to reflect on the
experiences of the past development iteration within the team, identify what has worked well
and what are the problems and their causes, and then to make decisions on what improvements
to make (Derby et al. 2006; Cockburn 2002). A typical agile retrospective is the sprint
retrospective in Scrum, where the Scrum team has a roughly three-hour, time-boxed retro-
spective meeting after each development sprint (Schwaber and Sutherland 2011). Agile
retrospectives in general can adopt a variety of techniques and tools for analysing the
development successes and challenges, such as the five whys, fishbone diagrams and voting
techniques (Derby et al. 2000).

Retrospective methods often include three steps: 1) target definition, 2) reflection (some-
times referred to as ‘root cause analysis’) and 3) corrective action development. These steps
have been discussed in detail in a study by (Lehtinen 2014). The target definition aims to focus
the scope of the retrospective analysis on a relevant and important topic. Such topics have
included the causes of software defects (Jalote and Agrawal 2005; Card 1998; Lehtinen et al.
2014a), the detection of negative and positive development experiences (Schwaber and
Sutherland 2011; Bjernson et al. 2009), analysis of the requirements problems (Tiedeman
1990; Jin et al. 2007), lead-time problems (Lehtinen et al. 2014a), installation problems
(Lehtinen et al. 2014a) and expectation mismatches (Lehtinen et al. 2015b).

Reflection is the step where negative and positive experiences are identified and analysed.
At this stage, methods such as root cause analysis can be used (Collier et al. 1996; Derby et al.
2006; Dingseyr 2005; Card 1998). Reflection makes it possible to structurally investigate a
problem and recognise the underlying causes needed to prevent it from occurring in the future.
With retrospectives, root cause analysis has been applied with lightweight diagramming
techniques using a team investigation process that aims to understand why and how the target
problem occurred. Root cause analysis has also been used to explore the factors of positive
software development experiences. While the existing literature discusses these methods, little
has been said about what they actually produce, how well that matches with reality and if the

@ Springer

2412 Empir Software Eng (2017) 22:2409-2452

problems are actually being solved or if they simply recur over and over again when
conducting continuous retrospectives.

Corrective action development is the third step used in retrospective methods. This step
can be initialised by having the retrospective participants vote on the identified causes
(Lehtinen et al. 2014a). Voting helps steer the process of developing corrective actions in
the direction of defining improvement targets that the participants perceive as being worth-
while to achieve. Corrective action development techniques are the least studied area in the
context of software engineering retrospectives (Lehtinen 2014). Researchers have suggested
that such techniques should also include brainstorming and brainwriting exercises as well as
the use of interviews after the retrospective meetings as feasible approaches for developing
corrective actions.

2.2 The Outcomes of Lightweight Software Engineering Retrospectives

To the best of our knowledge, the tangible outcomes of software engineering retrospectives
have been rarely studied. The main gaps in the existing literature include an understanding of
the continuous retrospective practice, what the outcomes are and how the outcomes change
over the time. Additionally, there is lack of knowledge about retrospective outcomes that focus
on positive experiences. None of the studies we identified recognised the links between the
different types of discussion topics and the development of corrective actions, which would be
valuable for steering the discussions into constructive process improvement topics.

Dingsayr et al. (2001) has presented the outcome of lightweight retrospectives in the form
of sample outcomes from two software companies. The outcomes indicate problems in various
process areas (contract, estimation, planning, etc.) and related to various actors (customer,
project manager, developer, etc.). Stdlhane (2004) has likewise presented the outcomes from
two retrospective approaches in a software company. His results also include problems
encountered in various process areas, including delivery, development, management and
organisation. Similarly, Lehtinen et al. (2014a) focused on retrospectives in four medium-
sized software companies. Their findings are in line with those of Dingseyr et al. (2001) and
Stilhane (2004), indicating that retrospectives can reveal problems from various software
development process areas (sales & requirements, management, implementation work, etc.)
and with respect to various types (cooperation, existing product, resources & schedules, etc.).
Furthermore, Lehtinen et al. (2014a) indicate that retrospectives can reveal perceived causal
mechanisms between the detected problems interconnecting the retrospective outcomes. The
outcomes from the two retrospectives introduced by Stilhane et al. (2003) support this
hypothesis.

There is a gap in the existing literature regarding retrospective outcomes, especially over
time. A detailed analysis of the topics of discussion and corrective actions as the outcome of
retrospectives has not been performed. There is a lack of understanding of the interrelation-
ships between the discussion topics and the corrective actions, what topics are discussed a
great deal and what topics best lend themselves to corrective actions. Furthermore, there is a
need to study how the retrospective outcomes change over time; the team-level retrospectives
should be applied as a continuous practice in agile software development. It is beneficial to
study whether or not continuous retrospectives remain productive over time, as well as
whether the same discussions keep recurring over time. To the best of our knowledge, no
existing study has covered the outcome of continuous retrospective practice or analysed how
the retrospective outcomes change over time, if at all.

@ Springer

Empir Software Eng (2017) 22:2409-2452 2413

Studies on retrospective outcomes with respect to positive software development experi-
ences are largely missing. Bjernson et al. (2009) presented the outcomes of team-level
retrospectives via two examples. However, they did not thoroughly analyse the outcomes.
Nonetheless, the study illustrates the retrospective outcomes of positive experiences, which
other studies have not done.

In a previous study, we developed and evaluated the root cause analysis methods used in
software project retrospectives (Lehtinen et al. 2011). We applied the methods to an analysis of
the causal mechanisms leading to failures or critical problems in software projects and product
development (Lehtinen et al. 2014a, 2015b). We also developed a supporting tool to assist in
recording the retrospective outcomes (Lehtinen et al. 2014b). In these studies, the root cause
analysis method was applied in the context of focused organisation-level retrospectives that
analysed a specific critical problem. Our results indicated that the use of root cause analysis
can improve the retrospective outcomes by providing in-depth analysis for important software
engineering problems, and we suggested that root cause analysis was perceived as a feasible
approach for conducting software project retrospectives. In our earlier studies, the retrospec-
tives were organised as a single event consisting of one or more retrospectives facilitated by
the researchers. In this article, we study a continuous, team-level retrospective practice using a
longitudinal approach by analysing retrospective outcomes from several teams over a three-
year period. One of the case organisations from our earlier work (Lehtinen et al. 2015b) is the
same as the case in this study, but the dataset in this study is different. The software tool that
was developed in our earlier work was also used in the retrospectives by the teams working in
the case organisation in this study.

3 Case Study Design

This paper is based on a longitudinal case study (Yin 1994) in a single case organisation. The
study is longitudinal (Runeson et al. 2012) because observations of the studied phenomenon
were collected over a long period of time and, in addition, the researchers had a prolonged
involvement in the case company through research collaboration over multiple years. A
longitudinal case study is an appropriate means to study research questions concerned with
the outcomes of team-level retrospectives when applied as a continuous practice in every
development sprint over a long period of time.

In this section, we first present the research objective and the detailed research questions.
After that, we introduce the case study context, the case organisation and the retrospective
methods applied in the case organisation. Finally, we describe the data collection process and
analysis methods.

3.1 Research Objective and Questions

Our objective was to create descriptive knowledge about the outcomes of team-level sprint
retrospectives by synthesising and analysing a longitudinal dataset on the retrospectives done
in a single software development organisation. Our goal was both to describe and categorise
the outcomes of the retrospectives and to analyse how they evolve over time when applied as a
continuous practice.

We refer to the recorded retrospective statements, both positive and negative, and the
developed corrective actions as the outcomes of a retrospective. In our terminology, a team-

@ Springer

2414 Empir Software Eng (2017) 22:2409-2452

level retrospective refers to a retrospective conducted by the software development team
members, such as sprint retrospectives or team-level post-mortem analysis (Schwaber and
Sutherland 2011; Bjernson et al. 2009).

We formulated the following research questions with respect to the case organisation:

RQ 1 What discussion topics are covered in the team-level retrospectives?

RQ 1.1 What development process areas do the discussions concern?

RQ 1.2 What topic types do the discussions concern?

RQ 1.3 To what degree are the discussion topics related to negative and positive
experiences’?

With the first research question, we aim at descriptive results concerning the topics
mentioned in the retrospective discussions in the case organisation. The main analytical
viewpoints are the process areas and the types of discussion topics. We used and extended a
previously developed taxonomy for discussion topics, described in the section 3.5: Data
analysis. In addition, we study the amount and types of negative and positive experiences,
since retrospectives typically cover both.

RQ 2 For which discussion topics are corrective actions developed?

RQ 2.1 What discussion topics most often result in the development of corrective
actions?
RQ 2.2 What types of corrective actions are developed?

With the second research question, we aim to understand what discussion topics attract the
most ideas for corrective actions and describe the developed corrective actions using the same
analytical framework as for the discussion topics in general in RQ 1.

RQ 3 How do the discussion topics evolve over time?

RQ 3.1 How do the discussion topics change over time?
RQ 3.2 What discussions keep recurring over time?
RQ 3.3 What corrective actions are developed for the recurring discussions?

With the third research question, we aim to understand the longitudinal evolution
of the retrospective discussions when the retrospectives are applied as continuous
practice over a period of several years. Retrospective meetings should be applied as
a continuous and frequent practice by development teams. We investigate how the
discussion topics evolve over time and identify the changes in the topic types and the
process areas. To obtain more insight into how often the retrospective discussions
recur, we analyse to what extent the retrospective meetings repeat the same discus-
sions and analyse in detail the types of discussions that keep recurring and the related
corrective actions.

RQ 4 How well do the retrospective discussions correspond to the development repository
data?

@ Springer

Empir Software Eng (2017) 22:2409-2452 2415

The fourth research question focuses on how well the retrospectives reflect the actual
development status in the organisation. We investigate the available software development
repository data to obtain insight into the development status. We focus in our analysis on the
recurring retrospective discussions because we were able to analyse longitudinally those
particular discussions for the duration of the study timeline and compare the changes in the
discussions to the changes in the repository data. In this way, we were able to conduct a more
reliable analysis than if we had focused on snapshots of a single or a few retrospectives.

Based on this empirical analysis we aim to state implications and research hypotheses
regarding the team-level retrospective practices and the contribution of the retrospective
practice to organisational knowledge creation and process improvement (see section 5).

3.2 The Case Organisation

Our research focuses on the team-level sprint retrospective practices in a distributed develop-
ment organisation consisting of approximately 30 employees. The total size of the case
company is 800 employees. The organisation develops complex software systems integrated
into customer-specific software with varying business logic and into customised hardware
provided by the company’s partners. The study can be classified as a holistic single case study
because the case and the unit of analysis are the same (Yin 1994).

The case was selected based on our stated research goals. The main goals guiding case
selection were, first, to gain access to the continuous team-level retrospective practices and
their longitudinal outcomes and, second, to study the large-scale context in contrast to a single
team setting. We selected a revelatory case (Yin 1994), which enabled us to study a yet
unstudied phenomena. This case enabled us to study, over a long period of time, the outcomes
of continuous team-level retrospectives conducted by distributed Scrum teams in a complex
software engineering context. The case setting provided us with access to an industrial real
case setting with a relatively long history of recorded data on continuous team-level retro-
spectives that were carried out using similar methods as those applied in our earlier research.
This is a rarely studied empirical context for retrospective studies and, as such, the research
dataset is unique.

The organisation’s representatives informed us that they were using the Scrum method
(Schwaber and Sutherland 2011), which they had introduced about a year prior to the start of
our study. At the same time they started to use the Scrum method, they also started to collect
the outcomes from the retrospectives, data that was later provided to the researchers.

The development organisation includes software developers, lead developers, Scrum mas-
ters and product owners. Though the skillsets of the developers varied slightly, they did not
have any specific developer roles; instead, the Ul design and architecture were handled, for
example, by the cross-functional development teams. The organisation also included testers
who were not part of the development teams. From its very start, the organisation has
distributed software systems to three European countries, each having one local product owner
and several software developers. The product owners convey the customers’ needs to the
developers, which enables quick face-to-face collaboration for those working in the different
development roles, if needed.

The organisation grew during the 3 years of using Scrum, a major challenge for software
development work. During the first year, the developers worked in one distributed software
development team (referred to as stage [in the results and analysis section of this paper).
Later, in the beginning of the second year, the developers were divided into two distributed

@ Springer

2416 Empir Software Eng (2017) 22:2409-2452

teams (stage 2). Finally, during the third year the developers were divided into six country-
specific, distributed teams (stage 3). In this study, we collected retrospective outcomes from
seven individual teams, including all teams in stage 1 and stage 2 and four teams in stage 3.
The stages of organisational growth and the retrospectives are illustrated in Table 1.

The release cycle of the organisation is 1 month and the teams use two-to-four-week
development sprints. They also conduct daily stand-ups, sprint demonstrations and retrospec-
tives. In stage 1, the length of the sprints varied between 2 and 3 weeks (development and
testing work were integrated). In stage 2, the sprints were lengthened into 3 weeks (develop-
ment and testing work were integrated). In stage 3, the sprints started with 3 weeks of
development work and continued with 1 week of testing work (see the timeline of the
retrospectives, sprints and stages of the team structure in Table 1).

3.3 The Retrospective Methods Used in the Case Organisation

The case organisation used a continuous retrospective approach for making improvements in
its software development work at the team level.

The team-level retrospectives were conducted at the end of the software development
sprints (Schwaber and Sutherland 2011) along with sprint demonstrations and planning events.
The retrospectives were one-hour-long, face-to-face meetings conducted separately in each
development team. The results of the retrospectives were used for engaging in continuous
reflection and making process improvements in the software development practices. The
retrospective meetings were attended by all available team members, which meant approxi-
mately 3—5 people in each meeting, and they were facilitated by the Scrum masters. However,
the product owners did not regularly participate in the retrospective meetings.

The retrospective practices followed the principles of post-mortem analysis and consisted of
three main themes: positive experiences, negative experiences and improvement ideas. The
focus was on the experiences from the latest development sprint. First, the positive experi-
ences, successes and achievements were identified and recorded onto a diagram. These
findings and their relationships were discussed. Second, the negative experiences and per-
ceived problems were identified and recorded onto the diagram. The participants were
additionally asked to express the causes for their findings by using root cause analysis
(RCA), as suggested by (Bjernson et al. 2009). During the RCA phase, the team members
first listed underlying causes onto the diagram. Then, they discussed the findings and tried to
detect deeper level causes. Third, each participant voted on the most important improvement
targets. Fourth, corrective actions were developed for the target problems that received the
most votes. Finally, the improvement ideas were discussed.

In all of the retrospectives, a retrospective support tool was used for collecting and
recording the findings onto the RCA diagram in collaborative manner. The outcomes of each

Table 1 Research timeline showing the stages of the organisation’s team structure, the sprint lengths and the
retrospective dates

Sprint . . -3 weeks +
length 2-3 weeks 3 weeks 1 week integration test

Stage 1: Stage 2: Stage 3:
Teams 1 team 2teams 6 teams

ol 0 2 5 4 5 6 7 8 9 10 12 13 14 15| 16 17 18 19 20 20 21 21 22 22 23 23 24 26 26| 27 28 28 28 28 30 31 7
Retrosp.| o
number|
Retrosp. Q§ &
late &

o v L0 2 P I SR I R GRS
§FoF & § §FEF s fFFddFsss
F A TS e

I RS A AN A A

@ Springer

Empir Software Eng (2017) 22:2409-2452 2417

retrospective were used for making improvements in the development organisation, but the
recorded outcomes of the previous retrospectives were not used as input for the forthcoming
retrospective meetings.

3.4 Case Study Methods and Data Collection

Data collection and analysis were carried out in multiple steps. The data consist of two datasets
collected by the team members as part of their normal team retrospective and development
work over the course of 3 years, 2012-2014. The datasets were retrieved at the end of 2014
and analysed in 2015.

The first dataset consists of documented outcomes from 37 team-level sprint retrospectives.
This dataset was collected by the company personnel and the data collection process was
carried out by using a retrospective support tool, the ARCA-tool," during the retrospective
meetings. Figure 2 provides an example of the collected data. The retrospectives were
facilitated by the Scrum masters, and the authors were not present during these meetings.
All of the retrospective meetings from which data are available are listed in Table 1.

The team members used the software tool to register their findings and collaborate with
other team members during the meeting. The tool provided the team members with features to
record the retrospective statements onto a diagram, form relationships between the statements,
vote for particular statements and record corrective actions. In addition, the tool made it
possible for them to organise and classify the statements directly onto the created diagram.
All participants can access the same diagram simultaneously and collaboratively. The tool does
not affect the retrospective practices to any significant degree. It does not force users to apply
any of the features, and in the case organisation each retrospective was started with an empty
diagram. This tool was developed as part of our earlier research project (Lehtinen et al. 2014b),
and the tool is in constant use, even though it is still not widely used in the industry.

The second dataset includes the task repository of the case organisation. The data were
collected by the authors to evaluate whether the retrospective outcomes, especially the
recurring discussion topics, were reflected in the company’s task repository. The company
was using Jira® to manage its development tasks. We collected information from the repository
on the development tasks implemented over the three-year study period. We studied the
organisation’s defects and task backlogs in order to analyse the number of open defects and
the estimation accuracy.

In addition to the primary datasets, we collaborated with the company’s representatives
during the study. We interviewed one of the Scrum masters in order to better understand the
software development activities. This interview was not used directly as data to answer the
research questions. It confirmed and detailed the researchers’ understanding of the case
organisation, its work practices and the evolutionary stages and major milestones in the
organisation over the three-year timeline of the study. We also introduced some of the
preliminary findings of the analysis to the company’s representatives in order to validate the
results.

The data collection methods were selected to take advantage of the best possible evidence
from the retrospective meetings over a long period of time. We could not rely on the
participants’ recollections regarding activities that had taken place a few years back. The

! https:/github.com/WiRCA/ARCA-tool
2 Issue and project tracking tool (https://www.atlassian.com/software/jira)

@ Springer

https://github.com/WiRCA/ARCA-tool
https://www.atlassian.com/software/jira

2418 Empir Software Eng (2017) 22:2409-2452

researchers were not present in the retrospective meetings and the meetings were not audio or
video recorded. This study and its results rely purely on the documented outcomes that the
team members recorded during the meetings.

The data analysis followed the steps outlined in Fig. 1. First, the raw retrospective data were
collected and saved into a custom database that was created for the purposes of analysis. The
raw data included the contents of the retrospective diagrams from the company sprint
retrospective meetings. All individual retrospective statements were imported into the data-
base, with reference to the particular retrospective meeting that the statements originated from.
All data that were directly available in the raw diagrams was saved. This included the number
of votes given and the classification of negative statements, positive statements and corrective
actions as well as the relationships between the retrospective statements (see section 3.5.1).

Second, the recorded retrospective statements were coded by using and extending an
existing coding scheme. Based on the coding categories, a quantitative analysis was performed
with respect to the topic types and process areas that were discussed in the retrospectives and
the types of topics and areas for which corrective actions were developed.

Third, the coding and quantitative analysis was used to create a synthesis of the all the discussion
topics and their interrelationships. The statement coding and quantitative analysis, together with the
synthesis of the relationships, were used to answer research questions RQ 1 and RQ 2.

Fourth, all retrospective statements were connected to a timeline based on the retrospective
meeting dates. The timeline was used to analyse the evolution of the retrospective discussions
during the three stages of the case organisation’s history. This analysis was used to answer RQ 3.

Fifth, after connecting the retrospective data to the timeline, the recurring discussions were
identified. This was done by qualitatively identifying similar statements in each discussion

Dataset:

Raw retrospective diagrams
created in sprint
retrospectives

[€<— 1. Importing the raw retrospective
diagrams into a database for
analysis

2. Coding the retrospective
statements

3. Synthesis of the discussion
N topics and their relationships

v

4. Connecting the discussions in
the timeline

5. ldentifying the recurring
discussions

v

T

T

v

T

v

v

'€ 6. Analysing how the recurring Dataset:)
discussions corresponded to Task repository data
[~>{ evidence from the task repository

Continuous collaboration with the company representative

Fig. 1 Research methodology overview illustrating the research steps, methods and datasets

@ Springer

Empir Software Eng (2017) 22:2409-2452 2419

topic category. Discussions occurring in more than 10 % of the retrospective meetings were
selected for further analysis. The share of recurring discussion topics and the developed
corrective actions were analysed quantitatively. In addition, the discussions were qualitatively
analysed based on the statement texts. How often the discussions recurred was illustrated by
connecting the number of times a statement was repeated during discussions to the timeline.
Our analysis of recurring discussions was used to answer RQ 3.

Sixth, after identifying the recurring discussions, these particular discussions were validated by
comparing the contents of the recurring discussions to the task repository data based on the number
of'times the individual statements occurred on the timeline. This analysis was used to answer RQ 4.

The first two authors were involved in all research design and data analysis activities
throughout the study, working as a pair. The first author coded the raw data, step 2 in Fig. 1.
Both the first and second author were involved in collaborating with the case organisation. The
third author had more of a supporting and commenting role in the data analysis process and
contributed more to commenting on and writing the manuscript.

3.5 Data Analysis

We analysed the data using both quantitative and qualitative methods. Section 3.5.1 describes
the research data and presents the concepts and categorization system that we used to
characterise the raw data and compare the various retrospectives. Section 3.5.2 discusses
how the quantitative analyses made use of the categorisation system to summarise and
compare the number of discussion topics raised during the retrospectives. Finally, section 3.5.3
describes the methods applied in the qualitative analysis.

3.5.1 Retrospective Data and the Categorisation System

The raw data from the retrospective meetings included retrospective statements, which were
arranged into a cause-effect diagram (see Fig. 2 for an example of such a diagram) in the
retrospective meetings. A retrospective statement refers to the raw data before coding or

{" Poor task definition }
leading to incomect |
estimate

i activities (Sprint for |
our terminal s : N1 —

| | | \.\ { Allowed concentrating }

£ Toomanylocal | . i onTCSJUSONIF

{ © ¥ i]

development) | { Trouble acquiing }

~~~~~~~~~~~~~~~~~~~~~~ p i somelanguage |
localization's

""""""""""" { " Ddthefist
| integrastion test with |
i json TCS interface |

Fig. 2 An example of an output diagram from a team-level retrospective, created using the retrospective tool in
the case organisation. The diagram includes a cause-effect diagram, voting results (‘points’) and corrective
actions (registered into the yellow-coloured nodes)

@ Springer



2420 Empir Software Eng (2017) 22:2409-2452

interpretation by the researchers. Figure 3 presents the main concepts related to the research
data and the categorization system. The main concepts are as follows:

*  Retrospective statement — refers to the exact verbatim statements that the retrospective
participants recorded into the diagrams. There are four data points for each statement, all of
which are directly available from the raw diagrams: 1) the statement text, 2) the number of
votes the statement received in the meeting, 3) the outcome class; negative statements,
positive statements or corrective actions, and 4) the relationships (links) between the
statements. The relationships include statement-to-sub-statement relationships and
statement-to-corrective action relationships.

*  Process area — each retrospective statement belongs to one process area (see Table 2).

*  Topic type — each retrospective statement belongs to one type of topic (see Table 3).

*  Discussion topic — each retrospective statement belongs to one discussion topic, which is a
combination of the process area and topic type of that statement.

A categorisation system was used to analyse the topics discussed in the retrospective meetings.
The categorisation system consists of two dimensions, process area and topic type. Together,
these two categories characterise the discussion topic of each retrospective statement. The process
area expresses where in the software development process that the retrospective statement is
referring to, eg ‘sprint planning’ or ‘implementation work’ (see Table 2). The topic type
characterises the object of the statements, eg ‘learning’ or ‘task estimations’ (see Table 3). Thus,
the combination of the process area and the type categories represents the discussion topic, eg
‘task estimations in the implementation work’. The discussion topic is the concept that we study
in this study and the process-area and topic-type categorisations are used to operationalise the
concept and make it possible to analyse a large volume of natural language data.

We used the categorisation system introduced in our prior work (Lehtinen et al. 2014a,
2015b) as a starting point for developing the categorisation system used in this study. The
categorisation system has been used to state hypotheses regarding the factors affecting the
outcome of software projects (Lehtinen et al. 2014a). The categories reflect the general factors

sub-statement /
corrective action

Retrospective statement
- The statement text

- Number of votes

- Outcome class:

{positive | negative | corrective}

belongs to belongs to

Process Area Topic Type

Discussion Topic

Fig. 3 The concepts used to categorise and analyse the retrospective data

@ Springer



Empir Software Eng (2017) 22:2409-2452 2421

Table 2 Process-area categorisation

Process Area

Characterisation

Sample statements

General Management

Sales &
Requirements

Product Owner
Scrum Master

Sprint Planning

Implementation

Software Testing

Deployment

Personal Life

Unknown

Company support and the way the
project stakeholders are managed
and allocated to tasks.

Requirements and input from
customers.

The product owner’s actions.
The Scrum master’s actions.

Planning work, including estimations,
prioritisation, task descriptions
and scoping

The design and implementation of
features,
including the fixing of defects.

Test design, execution and reporting.

Releasing and deploying the product.

Everything that is related to personal
life outside the company.

Topics that cannot be focused on in
any specific process area.

Still a lot of ad-hoc tasks

Unexpected duties occurred
during sprint

Lack of accurate specifications

Specifications obtained too late

PO did not have enough time
PO answer’s not available

SM is busy
SM has difficult role combination

All developers did not participate

to the planning
Bad planning during sprint planning
Daily Scrums are not started on time
Install scripts were broken

Problems with dev-test held us back
for 2 days

Bugs often lack information that is
necessary

Old code in production

Issues in CI (continuous integration server)

Holiday season before sprint

Lot of contacts outside the company
while part time.

People too busy to help

Too many meetings

affecting the outcome of software system development (McLeod and MacDonell 2011), and
the system has been presented as feasible for describing how the factors are related to one
another (Lehtinen et al. 2014a). For this study, we extended the existing categorisation system
by adding new process area categories to it. This was done iteratively by categorising the
outcomes of the retrospectives into the existing system and modifying the system if needed.

3.5.2 Quantitative Analysis

For the quantitative analysis, we categorised the retrospective statements according to the
categorisation system. This categorisation was then used to analyse and compare the topics
raised during the retrospective discussions. During the retrospective meetings, the team
members divided the retrospective statements into three outcome classes: 1) positive software
development experiences, 2) negative software development experiences and 3) corrective
action. Thus, the retrospective statements in the data were divided into these three classes and
the number of retrospective statements were analysed as a whole as well as in the three
outcome classes.

After recording all of the raw data into a database, the researchers qualitatively coded (the
arrows in Fig. 3) each retrospective statement by applying two categorisation dimensions:
topic types and process areas. There were occasionally retrospective statements that included
two sentences with a different process area or topic type in the same raw statement. In these

@ Springer



2422

Empir Software Eng (2017) 22:2409-2452

Table 3 Topic-type categorisation

Topic type / Sub-
type

Characterisation

Sample statements

People (P)

P1 Instructions

P2 Experience

P3 Learning

P4 Values &
Responsibilities
P5 Cooperation

P6 Motivation

P7 Policies

Tasks (T)

T1 Task Monitoring

T2 Task Priority

T3 Task Allocation

T4 Task Outcome
T5 Task Difficulty

T6 Task Risk

T7 Task Progress

T8 Task Missing
T9 Task Estimations

Methods (M)

M1 Process

@ Springer

This topic type includes statements
regarding human aspects

Documentation and instructions

Skills and experience

Learning new techniques, etc.

People’s attitude and taking
responsibility

Collaboration and communication

Motivation to act

Following the rules of the
organisation

This topic type includes the
task-related statements

Monitoring of the task progress

The priorities of the work

The allocation of the work

The quality and concrete outcome
of work

The required effort, or time, or task
complexity

The risks related to the work

The progress of the work items

Tasks that are missing from the
work

The effort and schedule estimations
for the work

This topic type includes the
methodological statements

Process of the related work

Lack of information about stories
1 was able to acquire all necessary
info to complete the story

Still lacking knowledge of the entire
system

We managed without X
(name of the key person removed)

Lack of training on how to use them
Learned a lot of new stuff’

Sprint work is slow to start
People do not focus on daily [Scrum)

Not enough help available
Got enough help

Frustration over inexperience and too
vague story guidelines

Enjoyed doing story

Meeting room was not available all
time despite the reservation

Daily scrums are not started on time

[Difficulties in] monitoring and QA things
Some monitor scripts to check that X

usage is unified
Priority changes
Focus on fixing bugs
Unclear roles — Who is responsible for what?
[There were] clear roles and own

tasks for everyone

A lot of bugs
Task definition was clear

Hard to plan for this sprint
Lots of easy bugs to fix

A lot of potential bugs can occur,
even when implementing
simple message transformation

Had to remove one story from sprint
We managed to get bug count low

Translation of the new localisation keys
is not a task in a sprint

No planning was done for this

Efforts were not accurate

Completed tasks had accurate
estimates

We do not have any localisation process
Process works pretty smoothly



Empir Software Eng (2017) 22:2409-2452 2423

Table 3 (continued)

Topic type / Sub- Characterisation Sample statements
type

M2 Work Practices  Practices used to conduct the work — Developer should test that the implementation
fulfils the requirement
Code reviews went well

M3 Tools Software tools used in the work X does not have any good plugins for Y
X helped a lot
Environment (E) This topic type includes statements
about the environment
E1 Existing Product The existing product that was Very large system that takes time to learn
implemented Quality debt in the sofiware
E2 Resources & The available resources and given  Sick leaves
Schedules schedules Finished sprint in time
E3 Customers & Customers’ and users’ expectations [Customers] do not follow standards
Users and needs. Lacking support & info from [customers]

cases the statement was split into two statements during the analysis in order to categorise it
correctly. The first author coded the raw data using the categorisations.

We compared the shares of the statements across the topic types and process areas. This enabled
us to characterise the common discussion topics for the retrospective outcome classes and recognise
changes in the discussion topics over time. We identified the discussion topics that were commonly
presented as a target for corrective actions and compared the number of corrective action targets and
actual corrective actions for the topic-type and process-area categories.

We analysed how the discussion topics evolved over the retrospective timeline. We grouped
the retrospectives into three stages based on the team structures at the time that the retrospectives
were conducted. The stages are stage 1 (first year, one team), stage 2 (second year, two teams) and
stage 3 (third year, many teams). We compared the distributions of discussion topics over the
stages in order to recognise any possible change in the discussion topics as the organisation grew.

We studied how often the discussions recurred in the retrospectives. After qualitatively
recognising the recurring discussions (see section 3.5.3), we analysed the number and fre-
quency of the recurring discussions.

In addition to the retrospective statements, we used the task repository data to analyse
measurable changes in the bug counts and estimation accuracy. We compared the task
repository data with the recurring retrospective statements regarding high or low bug counts
and poor or successful task estimates. This comparison was done during the specific time
periods when the related retrospective discussions occurred. Regarding the bug counts, we
used the number of open bugs as the measurement. The changes in the bug count were
analysed using a line chart over time. Regarding estimation accuracy, we measured the share of
the reported effort per the estimated effort for each task in a development iteration. The
changes in the estimation accuracy were analysed using a box plot.

3.5.3 Qualitative Analyses
We used qualitative techniques to synthesise how the retrospective statements were related
throughout the process areas. Due to the use of root cause analysis in the retrospectives, the

raw data included perceived cause-effect relationships. We explored the cause-effect

@ Springer



2424 Empir Software Eng (2017) 22:2409-2452

relationships in the raw data and drew conclusions regarding how they were interconnected in
the process areas.

We also used qualitative techniques to recognize whether a retrospective statement occurred
continuously, which enabled us to develop our hypotheses regarding the recurring discussions.
We also analysed the corrective actions in order to recognise whether a corrective action was
developed multiple times. Furthermore, we analysed the corrective actions developed for the
recurring discussions in order to characterise how the team members tried to resolve them.

We began the analysis by focusing on the discussion topics that were continuously covered
in the retrospectives. The categorisations were used as a technique for selecting the retrospec-
tive statements (ie the raw data) for further investigation. We considered all statements, which
were categorised into same discussion topic (process area and topic type). We analysed each
discussion topic category in order to recognize similar, recurring statements by exploring every
statement in the discussion topic category. The recurring statements were combined to create a
comprehensive description of the recurring discussions. Finally, the recurring statements were
mapped onto the retrospective timeline in order to visualise how often the recurring discus-
sions were occurring during the retrospectives.

4 Results and Discussion

This section presents our results together with the discussion. The section is structured
according to the four main research questions (see section 3.1). The results are presented for
each research question, followed by a discussion of the results for each main research question
under the reflective subsections.

The analysis is based on the raw statements that were directly recorded in the retrospective
meetings by the participants using a software tool. The statements, in the raw data, were
classified into negative experiences, positive experiences and corrective actions. In addition,
the data includes interrelationships between statements and the number of votes each statement
received in the retrospective meeting. The quantitative analysis is based on our categorisation
of the retrospective statements into process areas and topic types. The combination of process
area and topic type is called the discussion topic in this article. See section 3.5.1 for a detailed
description of the concepts and classifications used in the analysis.

4.1 What Discussion Topics are Covered in the Team-Level Retrospectives? (RQ 1)

This section presents our analysis of the topics that the team-level retrospectives in the case
organisation discussed during the study period. We divided the analysis into three sub-
questions regarding the process areas that the retrospective statements concern, the topic types
and the degree of positive and negative discussions. Table 4 presents a summary of the most
common positive discussion topics, negative discussion topics, discussion topics that the
participants voted for and corrective actions. In the table, common discussion topics (the
combination of process area and topic type, see Fig. 3) are described and illustrated together
with concrete examples from the retrospective statements. The progress of implementation
work was one of the most common discussion topics. The tools and resources & schedules for
the implementation work were also commonly discussed both positively and negatively, but
they did not result in many related corrective actions. Learning about the implementation work
was mostly discussed based on positive experiences and rarely mentioned in the negative, and

@ Springer



2425

Empir Software Eng (2017) 22:2409-2452

“Jqap Gynb ayp 1of
Aod 0y purds ur 2w aa4sa.4, 39 (G) SurNPAyYos

" suoyvdificads 12112q [paau am],

39 ‘() syuowannbar 29 SI[ES JO SOWONN(Q)
* Sysoy Suruuvyd
ynm aoudriadxa y3noua jou Jjis,

“oyonposd uy 177,

39 “(8) yuawikojdop jonpoid jo ssa1o1d (]

' Y3noua d1fidads
Jou a4p spudua.nbai, 39 ‘(11) " Junod 3nq moj, 39

29 S00IN0saI yTom uonejudwd[dwr oy Suraoxduy 39 ‘(1) >pom Suruueyd yum ooudadxyg  syuowonnbax 29 s9[es Jo sawoAnQ  (6) SHom uonejusw[duw Jo sswony 6
paysuyf SA0LID 2JAS YIYD pUD SIUIUIUIOD
* Bunupyd Jurids 2.40f2q 101ssas y3nodyy  aq jou pmod uoyvudw)dil a.unnaf mau, 2pod .10f J111S $Y22Yd> NAS " SyLom vapy [y, 3d
03, 39 “(g) ssooo1d Juruueld sppom oy Surroxdwy 8o ‘(11) yrom uonejudwodur Jo ssaiford ou, 39 ‘(¢1) Sunsa) aremyos 10 sjool,  (Q]) SHom uoneuowd(dwil 10 S[00], 8
* soyrioLid jnogn " uondridsap s3nq ul * Sdodojpaap mau " Jjom
S42UMO 1onpod M UONDIIUNUIUIOD dao4duil, S} BUIXIf 2402q | < duU > 1ODI0D,,, A0f uoypudwno0p ou, 39 ‘(1) JuaM SMa142.4 apod, Td ‘(T1) Iom
392 “(g) uoneroqe[jod Joumo-jnpoid Suraroiduy 32 (¢1) Sunse) aremyos Jo sawoon Iom uonejudweduir 10} suonoNISuy uonejudw[dur jo soonoerd y1o0p £
' DpudSy uspLimaid 1noyim  W2ISAS 241U2 YY) * SYSD]
p1ay 2q ppnoys Sunaaur umop-jis ou, 39 (g) Jo maria0/03pajmouy Suyovy jjus, 39 Ano 2121dwiod jou pinod, 39 (1) ' $ajewns? pood, 39 (g1) y1om
soonoeid y1om sjuowoSeuew [e1oudd Juraordwy (¢) SHom uoneudwRIdWI PIM doudLIRdXT siom uoneyuswejdur Jo sserSord  uonejuowd[dwil Joj suoneWINSd JSel, 9
" SpuLids Supuiiso pup Suixoqaull) UdaYm " 2In4n2opul a1nb [ “JoA vapy rijjoruy Susn
JUNn022D U1 UIYD] 2q PINOYS SaNP pajdadxaun, 140ffo $2110)S 423.41] SuyPUIS, 3D ‘(4]) 1 21041242 JoU, 39 (Y1) SIOM " Sysvp-qns fo dn jiyds poo3,
32 ¢(9) sawooino yjom Suruueld oy Sutaoxdw]  10Mm uoneIUSWR[dWI 10} SUOHBWINSD YSe], uonejudwRdwnr jo soonoerd y10A 59 (£]) 1om Suruued jo sswoon ¢
' 2]q1svaf jou udlfo 240l s paaouduir 2q pinod sysvy/sassvjo
poidaid Sunyvpdn fi 1s23-a2p uo aiout 3533, I UO UOYDIUDUNIOP PUD UOYDULIOfUT, T * L1018 U1 2502 25N OU, " papaau [ uaym djay 103 I, 39 (61)
“(01) soonoeid yzom Sunssy aremyos ayy Surroxdwy  (67) SHom uonejudwdun 1oy suononnsu] 39 ‘(6]) SHom Suruueld Jo owonp yiom uonejuowodw Ul UONRIOQR[[0)  §
* JOPDAD[ SO UOYDIUIUNIOP 21SDq 2Ui0SFD (TT) 21dxa 01 3u103 s1 25UIDN 2]qIONL)),, * suoypu1isa pnq, 39 (17) SHom  Adfsun.y a3pajmouy poo3, 39 ‘(6])
suononnsul sppom uonejuowd[dwr ayy Suraoiduy 32 (07) >Hom uoneyuowdldu Jo sjoo],  uonejudwR[dwr 10§ suonewnsd yse, Spom uonejuow[dwr Jjnoqe Surwed ] ¢
" 1 ut jou [Sunaawt dn puvys] *.0p 0F yonut * PPOPYAOM Ju1D1YJinS,
Apwp 42Yfp swajqoad aajosal, I s Juiids 1.10ys 001, 39 {((07) SHom 001, 39 ‘(1) om uonejusweldu 32 “(61) 1om uoneyudw[duur
{(41) seonoeid y1om uonejuowaduwn o) Sutaoidwy  uonejuowd(dun Jo SUINPAYIS 29 SIIIMNOSIY JO SuInpayds 29 SAINOSAY JO Surnpayds 29 sA0MOSRY ¢
s JuLids opun * SuIsn ain am
* 852 1d220D A0/pUD SA2qQUINY 12331G 2IDUILISD, uayvy (41018 sD) $31do> UIAD .10 ‘SILIOIS YM §]00] 122u102 0} wid]qod, 3o " §8nq o s30] x1f 01 padvupus om, 39
39 {(07) soonoeid syrom Juruueld oy Suraoxdw]  S1g 00y, 39 ‘(97) 1om Suruueld Jo swoon)  “(67) Jom uonejudwedu 10§ sjoo], ‘(L) SHom uonejudwodun Jo ssaifold |
(syuowdje)s Jo u) (S910A JO wWINS) (syuowdpeys jo u) sordoy (syuowdyess Jo u) sordoy
SUOT)OB 9AIIALIO)) 501d0) UOISSNISTP PAJOA UOISSNOSIP dANBTIN UOISSNOSIP QADISOJ  #

syuowole)s dry1oads Jo sojdurexa a1e sajonb A, 'SOANOAdSONAT [OAS[-WIES) [[B UI ‘SOJOA PIAISIAI JO “PAIINGI0 J1d0) UOISSNOSIP OB JBY) SO} JO JQUINU [B)0) ) 9JedIpul
sasayjuaIed ur sIquUINU Y} Y} WYY "vaip ssa004d pue adA} 21doy Yy )SIIy ‘SSPNIOUL [[30 J[qr) YOB "(SUWNJ0D) SSE[O dWOINO Yord ul sOIdo) UOISSNOSIP UOUIOD JSOW 3],  I[qelL

pringer

Qs



Empir Software Eng (2017) 22:2409-2452

2426

(yeap1/wod sureiqpal mamm,/:sdny) 100} JuawdopAdp € 0} SIAJY .

PISO[OSIP JOU OUIBU S UOSId] |

* 2onpoadol
01 Moy ul Sdas pajIviap aloul 2qLIdSAP, T
‘(g) sawoono Sunsay aremiyos Ay Juraoxduy

*asdoa o3 widnyd 2)A3s-y22y2 ay) ppv, I

“(S) s100} y10m uoneyuswdun dyy Juraoxdury
" 2p02 Afipout nod uaym uoyPIUIUNIOP
ampdn nod oy ssasoud v aavy, 39

‘() ssa001d x10m uoneyuswedun oYy Suraorduuy

*83nq fo jo1 v, 39
(6) SHom uonejuawaldwr jo swoan)
“PIoy
Jou op suoyvooyp [puos.ad, 3 (6)
SHom uonejuawRdw J0] UONEIO[[E ySe],
" oM
pauupjdun qua3.n Jo junown a3.vj, 39
‘(6) JUAWASRURW [RIDUST JO SAWOANNQD

' 83nq [p.o4as

poy ansst L1242 jsoup, 39 “(01)
SHom uonejuawRldwr Jo swoAn)

($42D0]q [D.1242S 31 “UD2]D

J0uU 240 SANLIOL, T {((]) YoM
uonejudw(dun 10y sonuoud yse],

* Aipssadou

1101y} uonDULLOfu1 Yov] Ud1J0 SING,
39 “(11) Sunsa) areMOS JO SAWOIINO

s ouy sayvy pup Surfouun si

[wagsds juarpo ayg], 30 (11) J1om
uonejuowdwl Jo ANIIp Yse],

el
* BU1IS3] UOIDSUD.L) SNOJID YI1YM
‘dn jos mou S1 U0122UU0D JU1)Say,
39 ¢(g) Sunsay aremos 10 S[00L, 71

" 83nq 3uixif uo snoof, 39 (L) pom

uonejuowe[dun 10y sopuoud ysel ]

(sjuswdje)s Jo u)
SUOTIOR QAIIOALIO))

(S910A JO wINS)
$01d0) UOISSNISIP PAJOA

(syuowdyess jo u) sordoy
UOoISSNOSIP dANEION

(syuawdyess Jo u) sordoy
UOISSNOSIP QANISOJ  #

(ponunuod) § alqe,

pringer

N


https://www.jetbrains.com/idea/

Empir Software Eng (2017) 22:2409-2452 2427

it resulted in few corrective actions. Software testing tools was commonly discussed based on
negative experiences and rarely mentioned in the positive, and it did not result in many related
corrective actions. Furthermore, the (lack of) experience with implementation work was a
common discussion topic, one that the participants voted as important, but still it was rarely
discussed and rarely formed the basis for the presented corrective actions. Most corrective
actions were related to work practices.

4.1.1 What Development Process Areas do the Discussions Concern? (RQ 1.1)

The total numbers of retrospective statements recorded during the whole research period are
summarised in Table 5. The table also shows the distribution of the statements across process
areas and with respect to the positive, negative and corrective action classes. The data reveal
that the discussions included statements regarding almost all process areas. The bulk of the
statements concern the areas of sprint planning, implementation work and software testing,
together comprising 75 % of all statements.

Figure 4 shows how offen statements regarding each process area were mentioned in the
retrospective meetings. The diagram indicates the percentage of all retrospectives where at
least one statement was made regarding a certain process area. All retrospectives included
statements related to implementation work. Statements concerning sprint planning and soft-
ware testing were detected in more than 60 % of the retrospective meetings, meaning that the
frequency distribution follows a similar profile over the process areas as the total numbers of
statements.

Figure 5 shows how much each process area was discussed in the retrospective meetings.
The diagram indicates the average number of statements in the retrospective meetings in which
at least one statement was made regarding a specific process area. Participants allotted a similar
amount of attention to all process areas. Implementation work stands out also in this data as a
topic that received more emphasis. In addition to implementation work, participants discussed
and voiced more positive experiences with the product owner and the sales and requirements
areas than they did with other areas.

Table 5 Number of retrospective

statements in all retrospectives dis- Process area Positive Negative Corrective Total %

tributed across each of the process actions

areas
Sales and 3 28 11 42 5%

Requirements

General Management 3 24 10 37 4%
Product Owner 4 17 18 39 4%
Scrum Master 0 4 1 5 1 %
Sprint Planning 25 51 40 116 13 %
Implementation work 170 198 60 428 49 %
Software testing 24 59 28 I 13%
Deployment 16 32 8 56 6%
Unknown 9 32 4 45 5%
Total 254 445 180 879
% 29% 51 % 20 %

@ Springer



2428 Empir Software Eng (2017) 22:2409-2452

o 100 100 97 100
£ 9%
% 80
E 70 62 61 62 64
20
© 42 42
g % 35 36 36 36 38
2 40
o 30 19 19
-] 16
e 20 6
2o B2 n:i [
* 0 — | —
Sales and General Product Owner  Sprint Planning  Implementation ~ Software Testing Deployment
Requirements Management work

m Negative experiences m Positive experiences m Corrective actions

Fig. 4 The occurrence of retrospective statements in meetings for each of the process areas (% of retrospective
meetings)

4.1.2 What Topic Types do the Discussions Concern? (RQ 1.2)

The distribution of the retrospective statements across each of the topic types is presented in
Table 6. The data show that the topic types most often discussed were work practices, task
outcome and progress, and resources & scheduling, as well as cooperation, instructions and
learning. The least discussed topics were task risks, task monitoring, policies and customers &
users. The task types (denoted with the letter T in Table 6) were most common in both positive
(45 %) and negative (39 %) statements, whereas the types of methods (denoted with the letter
M) represented almost half (49 %) of the corrective actions.

Figure 6 presents a synthesis of the retrospective outcomes. The three most common
process areas in the discussions were closely interconnected to one another with respect to
perceived cause-effect relationships, which indicates that the retrospectives also included
discussions on the workflow related to planning, implementation and testing. Interestingly,
discussions about the general management, the product owner and deployment were discon-
nected from the other areas.

4.1.3 To What Degree are the Discussion Topics Related to Negative and Positive
Experiences? (RQ 1.3)

Overall, negative statements were more common than positive statements, as the total number
of positive statements in retrospective discussions comprised only 57 % the total number of
negative statements (see Table 5). All retrospectives included negative experiences related to
the implementation work. The detection of negative experiences was frequent in other process
areas, too. In contrast, the detection of positive experiences was more frequent for

g 60 5.4
‘E 4.9
nE, o 5.0 40
2% 40
2% 4
S 9 3.0 28
8 2.7

2E 30 23 24 26 27 2323
c 2 3
oz 17 18, .. 1.9 1.8 2.0
%g 2.0 12 5 1. 1.4

-
1 | [ ] 1 Il i
o
gt 00 ) ) ) .
5 Sales and General Product Owner ~ Sprint Planning  Implementation ~ Software Testing ~ Deployment
2 Requirements Management work

m Negative experiences M Positive experiences m Corrective actions

Fig. 5 The average number of statements per retrospective for each of the process areas

@ Springer



Empir Software Eng (2017) 22:2409-2452 2429

Table 6 Number of retrospective statements in all retrospectives distributed across each of the topic types (see
Table 3)

Topic type Positive Negative Corrective actions Total %
M2 Work Practices 13 57 57 127 14 %
T4 Task Outcome 32 72 18 122 14 %
E2 Resources & Scheduling 28 54 16 98 11 %
M3 Tools 18 57 14 89 10 %
T7 Task Progress 56 27 0 83 9 %
P5 Cooperation 28 13 18 59 7 %
P1 Instructions 3 23 16 42 5%
P3 Learning 32 5 3 40 5%
T9 Task Estimations 13 21 2 36 4 %
T5 Task Difficulty 4 29 0 33 4 %
P2 Experience 2 22 2 26 3%
M1 Process 1 7 17 25 3%
T2 Task Priority 7 13 3 23 3%
E1 Existing Product 4 14 0 18 2 %
P4 Values & Responsibility 3 7 6 16 2 %
P6 Motivation 7 5 0 12 1 %
T3 Task Allocation 2 4 3 9 1 %
T8 Task Missing 0 4 3 7 1%
E3 Customers & Users 1 4 0 5 1%
P7 Policies 0 3 1 4 0 %
T1 Task Monitoring 0 3 1 4 0 %
T6 Task Risk 0 1 0 1 0 %
Total 254 445 180 879

% 29 % 51 % 20 %

implementation work than for the other process areas (see Fig. 4). The distribution of the
positive and negative statements is quite similar throughout the process areas, with the
exception of the sales & requirements, general management and product owner areas, each
of which received only a few positive statements in the retrospective meetings (see Table 5 and
Fig. 4). Fig. 5 reveals, however, that those rare positive statements led to similar amounts of
discussion as did other areas brought up in the meeting.

Regarding the topic types, the most positive topics were task outcome, task progress,
cooperation and resources & scheduling. These topics were also commonly focused upon in
the negative statements, possibly reflecting a certain level of satisfaction when a team succeeds
in activities that the team members feel they frequently struggle with. The topics of task
progress, learning, cooperation and motivation all received more positive than negative
statements; learning especially received only a few negative statements, but it received the
second highest number of positive statements. Many purely negative topic types received only
a few or no positive statements at all. It seems that the positive statements cover topics that are
closely related to a team’s progress and achievements in its implementation work, such as task
progress and outcomes. Topics that participants discussed frequently, but mostly in the
negative, were instructions, task difficulty, process and experience.

@ Springer



2409-2452

S0ULIAXD P2)O2IaP Y] UINIDq d1YSUOND]AA J2fJo-2SNDD Pad1ddad D 0) S42fa4 («—) MOLID WY JuDLIOdul Su1dq SV 22UdLIdAXD
ayy 40f pajoa spundidn.nd aa12adso.a.4 Jpy) SUDIUL | "PII2IP 2420 SPIUILIIAXD AU DY) SUDIUL - "PIJIIIIP A4dN SIIUILIRAXD dA1ISOd IDY] SUDAUL + “SUOIID 2411224400 Padojanap
0] SA2fo.4 L2quINU D YJIM ploq ul 71X} 21 ] "s3undow aAnd3dsonar ayy Suump papiodar syuedionied oy suonedyisse[d pue sdiysuonela J101dxa ) U PIseq AL SUONEBIISSE[O UALIAAX
aane3ou pue aapisod oy pue sdigsuonelar 109JJa-osned paardorad oy, -9onoeld JuawWdo[oAdp 2IBMIJOS Y} JO MITAIDAO UR SIPIA0Id SaA1I00dSONAI [9AS[-WEI) Y JO SISOYIUAS 9 S

uoew.oul 1939J9p
juepodwi buissi|y

Empir Software Eng (2017) 22

2430

20eLI9)UI-IasN -
shejap -
3pod p|o -

sanss| |e
sa.njie) uoNPoLd

(i) swajqoud
uoPNPOId

-

(i'+'-) ssaiboud >sey -
(=) Aanougp xses -

(-) Burojiuow >sey -
(+'-) npoud Bunsixs -
(+) Bulusea) -

(-) seouaLadx> - (i’+*~) s19SN @ SIBWOISND -
(g'i'+'-) swomno yse; - [4 -) 1npoud bupsixs - o dmms w somen -
P (2) "dsa1 13 sanjea -
(1) Mpoud sisey - | ;) sbng (i+'-) uonearow - (i) seuoss Jeapd (1/i’-) seouaiiadx® -
(2'i'+'-) 1003 - 40301 ¥~_| (i) seouspiedxe - [ (%21) butuueid uuds
e _ siag i - . _
(01'+"-) seanoead oM - | (2i'+'-) uonewnss ysey (i) buidoos

(g’-) ssad0.d -

(¥'i'+'-) "yos 8 sad4nosad -
(€'i+’-) uoneioqe|jod -
(T'+'~) suonpnysui -
(%€T) bunsaL

A/:v 939|dwodul

suones||eso

SR B

(i'+'-) ssa1boud ysey -

(+'-) Auoud »sey -
(i‘+'-) npoud Bunsixa -
(+) Buluiea) -

(+) soousuadxe -

(-) suononnsul -
(v'+'-) sjo03 -

(1’-) sad1oead xiom -
(1’-) ssadoud -

(1) "yos  sadunosau -
(1) uonesoqe)jod -
(%’ £) uswAhoidag

(i"-) ANnoiIp sses - 03 51094V
(i'+'-) awo23n0 se3- \

(i) Aynouyip »sey ay3 uo,
suopesadxa Buoip

(i) Atonsodau

uoISIaA 3|geIsun

(i’+'-) ssa4bo.d ysey -
(i’-) >su ysey -

(i*+-) Aynoyyip xsel -
(i’+’-) awod3no ysey -
(-) Buojuow >sey -

(g’-) Buissiw ysey -
(g'i’+'-) uoneoojje ysey -
(2'i'+'-) Atond yisey -
(s‘i’+’-) sjo03 -

(1'i‘+'-) seonoead ylom -
(s'i’+-) ssad04d -
(S'i’+'-) "yos 3 sadinosai -
(1'i’-) sanyjod -

A

(i) suoneoyads
INOYIM SIS
/

i) @biej 00y —
opew aJe sal0IS

(i) sauo1s (9
buiddepan0™ | (02‘i’+’-) seonoead yiom -

i’+/-) awod3no jyse) -

(€’-) "yas 3 sad4nosau -

(-) Buissiw sey -
(i"+-) AjInoip xse -
(+) uoneanow -

(+) buiuies) -

(-) suomonaisul -

(g) ssa9%0u4d - —

l—
T:V sysey Jespun

s1onplioD.

\

(€'i’+'-) uonesoqe)jod -
(g'+*-) "dsai g sanjeA -
(2'i‘+’-) buluaes) -
(z1'i’+'-) suondnasu; -
(%St) d1om uonejuawa|dwy

03 s}aYY

I

(-) Ajnoiyip visey -
(i’-) sjoo3 -
(-) "uyos @ S324N0OSAI -
(1’-) uoneuoqe]od -
(%6°0) J21SeW WNIDS

(i’-) @woIno sey -

(-) "yos g s224nosal -

(+) uoneioge||od -

(1) Buniojiuow jysey -
(T'i’+’-) sjo03 -

(s'i’-) s@dnoead yiom -
(1) ssao0ud -

(2) suondnysul -

(%t°S) Juswabeuew [e1ausD

0} SPRYY-

v

(1’-) "dsau g sanjen -
(€'i’~) awod3no ysey -
(v’-) ssonoeuad xiom -

(€) ssao0.4d -

(1T'+4’~) "yos 1 sad4nosad -
(s’+’-) uonesoqe|jod -
(1) suononaysul -

(%8°€) VO B 42UMO 1oNpold

[QRUCEITLET

[—— a.e sjuswalinbay

(i) sasea-asn buissiy

01 5109y

(i'-) "yos g sedinosal -

(+) Buluies) -

(¥'i’+’-) @woono yse; -
(2'i*-) s1003 -

(2'i’~) s@anoeuad yiom -
(Z'+-) uoneioqejjod -
(1'-) saouanadxa -

(%T7°9) syuawadinbai g sajes

pringer

N



Empir Software Eng (2017) 22:2409-2452 2431

4.1.4 Reflections

Our results show that team-level retrospectives greatly emphasise topics in the process areas close
to the interests of the team members. For each outcome class (positive experiences, negative
experiences and corrective actions), the discussions were commonly related to sprint planning,
implementation work and software testing. This emphasis seems natural for team-level retrospec-
tives since these process areas are closely related to the everyday work of the development teams.

The existing literature has presented a wide array of factors affecting the software develop-
ment outcomes (McLeod and MacDonell 2011). Prior studies show that the factors are related
to the entire software development lifecycle; for example, the factors of better understanding the
sales, user and customers (Keil et al. 1998; Molekken-@stvold and Jergensen 2005; Drew
Procaccino et al. 2002; Cerpa et al. 2010), of determining the requirements (McLeod and
MacDonell 2011), and of focusing on quality control and software testing (Jones 2008; Kaur
and Sengupta 2011; Egorova et al. 2010). Based on our results, however, it seems that team-
level retrospectives are weak at recognising issues and successes related to the process areas that
are external to the concerns of the teams (eg sales & requirements, general management and the
product owner). In our results, the three process areas most closely related to the interests of the
teams accounted for 75 % of the retrospective statements. Many of the earlier works are review
studies or surveys covering multiple cases and organisations, with the aim of collecting the full
variety of factors, which explains their stronger emphasis on factors beyond the scope of the
development teams. Such studies have collected data from different organisational levels, thus
providing a wider, more comprehensive picture of all the factors that affect project outcomes or
failures. Our results, in contrast, provide a descriptive account of the factors that are emphasised
when the analysis is conducted at a team level by the development team.

Prior studies have divided software engineering issues into internal and external factors based
on their controllability for the team members (Xiangnan et al. 2010). We have chosen to use the
terms local causes and bridge causes to express the extent to which the factors are dependent
upon organisational issues across process areas (Lehtinen et al. 2014a). The team members
recognised internal factors based on the planning work, implementation work and software
testing. Their findings represent the local causes and bridge causes affecting across these process
areas. Such a rich discussion was not conducted for the process areas external to the interests of
the team members. In terms of the external process areas, the team members mainly recognised
the existing problems and could not identify any positive experiences. Such problems could be
better considered in an organisation-level retrospective because a team-level retrospective might
not be an effective forum for discussing problems that are not under the team’s control. In our
earlier study, we presented an analysis of the organisation-level retrospectives and identified the
areas of product owner, sales and requirements as well as a lack of communication and bridging
relationships to development practices as being important (Lehtinen et al. 2015b).

In terms of the outcome classes, the number of positive experiences was less than the number
of negative experiences, suggesting that most of the discussion was related to the negative
experiences. Participants emphasised people factors most often when recounting positive expe-
riences, whereas they most commonly mentioned methodology factors with respect to negative
experiences and the need for corrective actions. The results presented in section 4.1.3 highlight the
fact that the positive retrospective statements emphasise learning, cooperation, resources &
schedules, task outcome and task progress, ie topic types that characterise people factors and
the accomplishments of the team. The negative statements, in contrast, emphasise work practices,
resources & schedules, task outcome, tools and task progress, ie topic types that characterise

@ Springer



2432 Empir Software Eng (2017) 22:2409-2452

methodology factors and task failures. Our prior study on software project failures recognised that
software engineering problems are equally related to people and methodology factors (Lehtinen
et al. 2014a). It also found that when selecting improvement targets, management prioritises
people factors, whereas the employees emphasise the methodology factors. The results of this
study corroborate these earlier findings, showing that the development teams tend to find people
factors as more positive and avoid stating themselves as a target for improvement.

4.2 For Which Discussion Topics are Corrective Actions Developed? (RQ 2)

In this section, we present the results regarding the developed corrective actions. First, we
present our analysis of the discussion topics that were most often the subject of corrective
actions in the retrospective meetings. Second, we provide a description of the process areas
and topic types with respect to the corrective actions themselves.

4.2.1 What Discussion Topics Most Often Result in the Development of Corrective
Actions? (RQ 2.1)

Tables 7 and 8 show the number of corrective actions that were developed based on the
negative statements for each topic type and process area, respectively.

The corrective actions were mostly developed for topics that received numerous negative
statements. Negative statements regarding such topic types as fask outcome, work practices,
task difficulty and instructions received high number of corrective actions. All topic types that
received numerous corrective actions also had a large number of negative statements. How-
ever, some topic types received a relatively high amount of negative discussion, but only a few,
or no, suggestions for corrective actions. These topic types included cooperation, task
progress, task priority, experience, existing product and tools.

Overall the voting practice that was applied in the retrospective meetings guided the
development of corrective actions. The majority (66 %) of corrective actions were developed
based on the negative statements that participants voted for.

We also analysed the distribution of the topic types with respect to the negative
target statements, ie the negative statements that the corrective actions were developed
for. This analysis is relevant since it shows how the corrective actions often represent
other types than the actual negative statement the corrective action is developed for.
Table 9 illustrates the differences between the targets of the corrective actions and the
actual developed corrective actions. Two groups of topic types are highlighted in the
table. First, common types of corrective actions that are not commonly listed as the
target statements are shown. Second, common target statements that are not commonly
listed as corrective actions are shown.

The developed corrective actions were most commonly in types work practices,
cooperation, task outcome and process. Of these topic types, task outcome and work
practices were also commonly mentioned in the target statements. The topic types of
cooperation and process were virtually non-existent as target statements, even though
both represented approximately 10 % of the corrective actions. Similarly, fools and
values & responsibility were clearly less frequently discussed as targets than their
share of the corrective actions would suggest.

On the other hand, task outcome, task estimation, policies, and task difficulty appeared more
frequently as the target statements for corrective actions than as corrective actions themselves.

@ Springer



Empir Software Eng (2017) 22:2409-2452 2433

Table 7 Number of negative

statements and corrective actions Topic type Number of Number of
developed for each of the topic negative cor.rectlve
types statements actions developed

for the statements

T4  Task Outcome 72 62
M2  Work Practices 57 36
TS5  Task Difficulty 29 19
Pl  Instructions 23 18
E2  Resources & 54 15
Scheduling
T9  Task Estimations 21 15
M3 Tools 57 6
P7  Policies 3 6
P6  Motivation 5 4
E1  Existing Product 14 3
T7  Task Progress 27 2
P2 Experience 22 2
T2  Task Priority 13 2
P3  Leaming 5 2
T8  Task Missing 4 2
M1  Process 7 1
E3  Customers & Users 4 1
T3  Task Allocation 4 1
P5  Cooperation 13 0
P4 Values & 7 0
Responsibility
T1  Task Monitoring 3 0
“A total number of 180 corrective ~ T6  Task Risk 1 0
ac.tions had 197 relations to neg- Total 445 197"
ative statements
Table 8 Number of negative
statements and corrective actions Process area Number of Number of corrective
developed for each of the process negative statements actions developed
areas for the statements
Implementation Work 198 79
Sprint Planning 51 32
Software Testing 59 25
Unknown 32 15
Product Owner 17 14
Sales and Requirements 28 13
General Management 24 12
Deployment 32 7
Scrum Master 4 0
Total 445 197

@ Springer



2434 Empir Software Eng (2017) 22:2409-2452

Table 9 Comparison of the topic-

type distribution of the negative Topic type Target statements Corrective actions
target statements and corrective ac- (%) (%)

tions (the target statements = the

negative statements that the correc- P2 Work Practices 18.27 31.67

tive actions were developed for). P5  Cooperation 0.00 10.00

The largest differences are

highlighted in bold T4 Task Outcome 31.47 10.00
M1 Process 0.51 9.44
P1  Instructions 9.14 8.89
E2 Resources & Scheduling  7.61 8.89
M3 Tools 3.05 7.78
P4 Values & Responsibility  0.00 333
P3  Learning 1.02 1.67
T3  Task Allocation 0.51 1.67
T8  Task Missing 1.02 1.67
T2  Task Priority 1.02 1.67
P2 Experience 1.02 1.11
T9 Task Estimations 7.61 1.1
P7  Policies 3.05 0.56
T1  Task Monitoring 0.00 0.56
E3  Customers & Users 0.51 0.00
El Existing Product 1.52 0.00
P6 Motivation 2.03 0.00
T7 Task Progress 1.02 0.00
TS5 Task Difficulty 9.64 0.00
T6 Task Risk 0.00 0.00

4.2.2 What Types of Corrective Actions are Developed? (RQ 2.2)

In terms of the process areas, the number of corrective actions followed the overall profile for
the number of negative statements. The product owner and sprint planning areas represent
somewhat higher shares, and implementation and deployment represent lower shares of
corrective actions in comparison to the number of negative statements (see Figs. 4 and 5
and Table 5). Table 6 lists the number of corrective actions in each topic type, while Table 7
lists the number of negative statements and corrective actions developed for them in each topic
type. The most common corrective actions were work practices. Other common corrective
actions were related to cooperation, task outcome, process, resources & schedules, instruc-
tions and tools. Some topic types received many negative statements, but did not receive many
corrective actions. These topic types include experience, existing product and the topics related
to development tasks, ie task progress, task estimation, task difficulty and task priority.

4.2.3 Reflections

Our results show that in terms of the process areas, the distribution of corrective actions
follows the distribution of negative experiences (see Fig. 4 and Table 5). The most common
process areas for corrective actions were planning work, implementation work and sofiware
testing.

@ Springer



Empir Software Eng (2017) 22:2409-2452 2435

The corrective actions were commonly developed for certain topic types (see Table 7).
These included task outcome, work practices, task difficulty, instructions, resources & sched-
ules, and task estimation. One explanation for why these topics attracted many corrective
actions is that the team members perceived these topic types as being controllable. The team
was able to change its work practices, improve its information exchange, change its estimation
methods and consider the available resources and schedules. On the other hand, it is remark-
able that there were many discussion topics that only received a few, or no, suggestions for
corrective actions at all, even though there were many related negative statements. These
included cooperation, task priorities, task progress, existing product, experience and process.
It seems that solving these problems would have required external support (eg collaboration
with external stakeholders) and business critical decision making (eg refactoring the existing
product and reprioritising the development of new features). This supports the hypothesis that
in team-level retrospectives, the participants tend to focus on solving problems that they feel
are under the team’s control (see section 4.1.4). Some of these problems were also problems
that are inherently difficult to solve, such as estimations, or those related to task progress,
difficulty and priority, which are more symptoms of underlying causes rather than controllable
root causes.

When we compared the target statements that the corrective actions were developed for and
the actual corrective actions (see Table 9), we recognised that the distribution of corrective
actions did not follow the distribution of target statements. For example, participants often
selected negative task outcome statements as a target for corrective actions, but the corrective
actions did not focus on the task outcome quite as often. Instead, the related corrective actions
suggested the need to make changes in the work practices, cooperation and process, topics that
ultimately caused problems with respect to the task outcome, but that are separate from the task
outcome itself. Another example is cooperation, which was never a set target. However, 10 %
of the corrective actions were cooperation actions. This indicates that in team-level retrospec-
tives, the root cause analysis does not uncover the actual causes of the negative experiences,
but deals more with the visible symptoms. However, as the participants possessed knowledge
about the causal mechanisms behind the symptoms, they still felt that they were able to
develop the appropriate corrective actions without explicating the exact ‘root causes’ (Lehtinen
et al. 2011). As an example, when they were talking about a negative experience regarding
poor task estimates, they directly proposed corrective actions for improving the cooperation
between product owners and developers, without considering this lack of cooperation as a
cause of the poor estimates. This behaviour might be a problem, since we do not know if the
implicit inferences regarding the causes are comprehensive or correct.

4.3 How do the Discussion Topics Evolve Over Time? (RQ 3)

We studied how the retrospective discussions evolved over time using two approaches. First,
we compared the discussion topics throughout the three stages covered in the study timeline,
each of which represents a distinct phase in the case organisation’s history (see section 3.2).
Second, we identified the recurring topics of discussion persistent throughout the study
timeline. The first approach demonstrated at a higher level how the discussion topics changed
over time in terms of the process areas and topic types. The second approach yielded a more
detailed analysis of the types of discussions that kept recurring over time, how frequently they
occurred and the detailed contents of the discussions. Finally, we also identified the corrective
actions developed by the participants with respect to those recurring discussions.

@ Springer



2436 Empir Software Eng (2017) 22:2409-2452

4.3.1 How do the Discussion Topics Change Over Time? (RQ 3.1)

Figure 7 shows the most salient changes in the distribution of the retrospective statements over
time (see the description of the stages in section 3.2). The figure includes changes where the
percentage of statements in a certain topic type or process area changed nine or more
percentage points from one stage to the next during the evolution of the case organisation.
Regarding the process areas, see Fig. 7a and b. The figure shows that the share of negative
statements and corrective actions in the software testing process area increased greatly in stage
2, while the share of corrective actions remained high in stage 3. During stage 3, the share of
negative statements and corrective actions in the implementation area dropped, while the share
of statements in the product owner area increased. There were no changes of greater than nine
percentage points in the shares of positive statements regarding the process areas.

Regarding the topic types, see Fig. 7c and d. The figure shows that the share of negative
statements in the fask progress and task outcome types increased during stage 2 and decreased
again during stage 3. The share of positive statements regarding task progress followed a
similar pattern, whereas the statements on resources and scheduling followed the opposite
pattern and were more common as negative topic types in stages 1 and 3 and decreased during
stage 2 at the same time that positive discussions on fask priority and task progress increased.
Other changes in the positive topic types included a decreasing trend with respect to learning
and a high share of cooperation discussions in stages 1 and 3, with almost no positive
cooperation discussions occurring during stage 2. There were no changes of greater than nine
percentage points in the share of corrective actions regarding the topic types.

As a summary, stage 1 and 2 were characterised by a clear focus on the implementation
work in retrospective discussions. Stage 2 further emphasised software testing as an

Negative statements over process areas Negative statements over topic types

I
3

51

40

W STAGE 1
W STAGE 1

W STAGE 2

W STAGE 2  STAGE 3

W STAGE 3

Task progress Task outcome Res. & Sched.
Topic type

Product Owner  Implementation  Software testing
work

% of all negative statements in stage Q)
% of all negative statements in stage &

Process area

Cc Corrective actions over process areas d Positive statements over topic types
Q
-
@ 50 50
£ 40 =
g 40 38 .; “0 .
K a
g £
: 30 E 30 24
2 3 3 2 B STAGE 1 8 2 HSTAGE 1
9 20 82 18
e = STAGE 2 3 H STAGE 2
H g 12 14
o 1 STAGE 3 B 09 I STAGE 3
= 0 g 10
"6 2-
X 00 T o
Implementation work Software testing o Learning Cooperation Task priority Task progress
x

Process area

Topic type

Fig. 7 The most salient changes (9 percentage points or more) in the distribution of statements over the process
areas (a and b) and topic types (b and c) in stages 1-3 (no salient changes were observed in terms of the positive
statements regarding the process areas or corrective actions regarding the topic types)

@ Springer



Empir Software Eng (2017) 22:2409-2452 2437

improvement area and the discussions focused more on task progress and outcomes and
priorities. The task-related topics were common in both negative and positive discussions.
Finally, during stage 3 the emphasis on implementation work decreased and testing improve-
ments continued. In addition, task-related discussions decreased, while negative discussions on
resources and scheduling and positive discussions on cooperation took place.

4.3.2 What Discussions Keep Recurring Over Time? (RQ 3.2)

We studied how often discussions kept recurring by identifying similar recurring retrospective
statements in the team-level retrospectives. A total of 43 individual statements occurred more
than once during the study period. The recurring statements were more common when
participants discussed positive experiences (23 % were recurring).

The share of recurring statements when participants discussed negative experiences was
9 %. The recurrence of corrective actions was rare — a total of seven actions reoccurred twice,
while two actions reoccurred up to three times.

We analysed in detail the ten statements that recurred most often to identify how frequently
specific discussions kept recurring in the retrospectives. Each of the ten statements occurred in more
than 10 % of the retrospectives. Table 10 summarises the recurring statements that form three distinct
recurring discussions. These discussions consisted of the explicit retrospective statements and
represent more specific instances than the discussion topics. Figure 8 presents the occurrence
distribution for the ten statements that recurred most often throughout the retrospective timeline.

All three discussions included both positive and negative statements. The discussions on
the state of bug fixing were related to the number of open defects and how successfully they
were fixed. The recurring retrospective statements were as follows: fixed a lot of bugs
(repeated in 38 % of the retrospectives), a lot of bugs (18 %) and low bug count (15 %).
The discussions on the accuracy of estimations were related to the challenges and achieve-
ments in completing the tasks within the sprint schedules. The retrospective statements
included completed all tasks (repeated in 45 % of the retrospectives), too much to do
(15 %), efforts were not accurate (35 %) and good estimates (30 %).

Regarding the need for clarifying instructions, the retrospective statements were as follows: 7 got
help when I needed it (repeated in 15 % of the retrospectives), incomplete specifications (13 %) and
lack of information on how the system should work (13 %). These discussions obviously concerned
missing instructions for the development tasks and a lack of information on the requirements.

4.3.3 What Corrective Actions are Developed for the Recurring Discussions? (RQ 3.3)

A total of 19 % of all corrective actions were developed for the recurring discussions. Table 11
presents the developed corrective actions and the related recurring discussions (corrective
actions were only developed for the negative experiences). The greatest number of corrective
actions were developed for the discussions on estimation accuracy (8 % of all corrective
actions) and the state of bug fixing (6 %). Despite the developed corrective actions, the
statements on the recurring topics kept repeating themselves.

4.3.4 Reflections

Based on the results presented in this section, we conclude that the discussion topics varied
over time and they also reflected the evolution of the development organisation. In a

@ Springer



2438 Empir Software Eng (2017) 22:2409-2452

Table 10 The recurring discussions and statements (categorised into process areas and topic types, and the
percentage of retrospective meetings in which each statement occurred)

Discussion Statement Process Area Topic Type Recurrence %

The state of bug fixing

1) A lot of bugs Implementation work  Task outcome 18 %

2) Low bug count Implementation work  Task outcome 15 %

3) Fixed a lot of bugs Implementation work  Task progress 38 %
Estimation accuracy and task completion

4) Efforts were not accurate Implementation work ~ Task estimations 35%

5) Good estimates Implementation work ~ Task estimations 30 %

6) Too much to do Implementation work ~ Resources & scheduling 15 %

7) Completed all tasks Implementation work ~ Task progress 45 %
The need for clarifying instructions

8) Incomplete specifications Sales and requirements Task outcome 13 %

9) Lack of information on how Implementation work  Instructions 13 %

the system should work

10) 1 got help when I needed it Implementation work  Cooperation 15 %

longitudinal analysis, stage 1 represents a small software organisation with only one develop-
ment team. The organisation adopted Scrum at the beginning of the observation period. The
retrospective discussions focused on instructions, learning, cooperation and tools — logical
topics for an incipient software organisation. During stage 2, the organisation consisted of two

a a A A A A A10

A A A A A A9
-
c
)

13 A A A A A Ag
7]
1
©

® o 0 0 o o o o ° o © 0 0 0 0 0 O O o7
o
c

£ ° ° ° ° * ° 96
H
o

8 [= I = I = I = R o [= =] 5] o oo =13
o
4

= ] [ B B BN ] [ ] [ B I ] [ I | [ B ] ] 4
-
2

= oo 0 o0 e o0 ° ° ° o o ° ° o 03
°
£

o e ° ° ° o 02

° ° ] ° @1

0 2 3 4 5 6 7 8 9 10 12 13 14 15 16 17 18 19 20a 20b 21a 21b 22a 22b 23a 23b 24 26a 26b 27 28a 28b 28c 28d 30 31 37

Stage 1 Stage 2 Stage 3
Retrospective number

A 1="A lot of bugs" (7) 3 6="too much to do" (6)

A 2="Low bug count" (6) B 7="Completed all tasks" (18)

A 3="Fixed a lot of bugs” (15) 0 8="Incomplete specifications" (5)

9 4="efforts were not accurate" (14) 0 9="Lack of information on how the system should work" (5)
9 5="Good estimates" (12) © 10="| got help when | needed" (6)

Fig. 8 Recurrence of similar retrospective statements over the retrospective timeline. The y-axis lists the recurring
statements numbered 1-10, colour coded as follows: negative =red and positive = green. The total number of
recurrences are in parentheses. The shape of the marker groups together statements from the same discussion

@ Springer



Empir Software Eng (2017) 22:2409-2452 2439

Table 11 Corrective actions for dealing with recurring negative experiences (share = the share of corrective
actions out of a total of 180 corrective actions)

Discussion' Statement Corrective actions (retrospective number, see Table 1 and Fig. 8)  Share
Estimation Inaccurate efforts - One way to help estimation could be WBD? (R5), 8 %
accuracy - Add timeltasks for design, then implementation

will be more straightforward (RS),

- Stick to the time-boxed values and do not accept
more stories (R19),

- Average story points from 10 sprints (R19),

- Estimate bigger numbers and/or accept less (R19),

- Kanban-style dev (R22),

- Budget time for doing prototypes (R23),

- Familiarising (developers) with the stories beforehand (R23),

- Factor the uncertainty factor into the time estimation (R23),

- More clear requirements (R23),

- Monitor the time that you spend and learn from your own
estimates (R23),

- When getting a new large story, allocate design and analysis
story for the sprint (R23),

- Make dedicated investigation task for features planned in
next sprint (R23),

- Estimation should be added on getting familiar with the
projectlcomponent (R26b),

- Those who know about the area of the story should tell
about the work that is needed (R31).

Too much to do - Include realistic amount of work in the sprint and leave 1 %
some time to settle quality debt (R2),
- Use previous sprint as a reference of how much story
points we can handle (R14).

State of bug A lot of bugs - Enforce check-style on commit (R2), 6 %
fixing - Enforce the check-style checks before commit: add the

plugin to the development tool (R2),

- Reserve more time for testing when implementing new
features (R21b),

- Fixing debt about PARAM < component > verification (R21b),

- Developer should reserve more time for testing and be more
careful with it (R21b),

- Remember to test all X methods/APIs that are related to
your changes (R21b),

- Test, test, test.. (R31),

- Test the issue in the actual application at least once (R31),

- Testing in different environment: make testing in local environment
and then in dev-test (R31),

- More testing: the bigger the story is the more testing is

required (R31).
Clarifying Incomplete - Use cases: a better understanding what is asked and 1 %
instructions specifications what is needed to be achieved (R28b),

- Create UML diagrams from source code to pin-point
problems and design (R28b).

Information on the - Architecture spec is missing and needs to be made (R4), 3%
system - Add system overview descriptions/depictions to intranet (R4),
- Add stories to current Sprint to add missing design document (R6),
- Add JAVADOC tags wherever they are missing (R6),
- Fast diagrams: draw diagrams on whiteboard, take picture
and attach it to story (R6).

! See section 4.3.2 for a description of the specific recurring discussions
2WBD refers to the Wideband Delphi estimation method

@ Springer



2440 Empir Software Eng (2017) 22:2409-2452

software development teams and faced the challenge of rapid growth during the second year.
In comparison to stage 1, the retrospective discussions emphasised task outcome and task
progress. In terms of the task outcome, the team members started to discuss the increasing
number of software defects; they often mentioned the problem of ‘a lot of bugs’. They also
repeated the negative statement on task progress: ‘too much to do’. Furthermore, stage 2
discussions rarely referred to positive experiences regarding task completion or progress.
These problems eventually drove the organisation to lengthen the sprints to 3 weeks. During
stage 3, the organisation had six teams and the duration of the sprints was further lengthened to
4 weeks by adding one additional week for testing. During that time, the recurring discussions
on the high amount of bug fixing and open defects ended. During stage 3, the retrospective
topics included somewhat similar topic types as in stage 2, but cooperation became a common
topic type once again. Positive experiences with software testing also became more common.
Additionally, the team members kept repeating the following points: ‘I got help when I needed
it’ and I ‘completed all tasks’. The statements reflect positive software engineering experiences
important for the successful development work.

Our analysis revealed that certain discussions recurred over a long period of time. In the
context of lean development, the problem of repeatedly regenerating the same list of retro-
spective findings is also recognised (Poppendieck and Poppendieck 2007). The recurring
discussions in this case had to do with estimation accuracy, the state of bug fixing and the
need for clarifying instructions. We hypothesise that the problems behind these three repeating
discussions are different in nature.

We call the first recurring problem type ‘trivial scapegoat’ problem. For example, strive for
better specifications and information about the system was such a problem. Here, a rather
simple solution is desired as a solution to a complex problem. This discussion kept recurring
because a simple problem was used to conceal the more complex phenomena behind it, and
the root causes could not be solved without tackling the complex phenomena. In this case, the
actual problem was related to poor communication and understanding of the system features.
This problem arose from multiple levels, starting with the need to gather the required
information from customers and understanding it correctly at the product-owner level. Fur-
thermore, the communication problems between product owners and development teams
increased the overall lack of required knowledge among the development teams. For this
problem, a trivial scapegoat was presented in the retrospectives by stating that the specifica-
tions are poor or lacking. This problem kept recurring because the underlying challenges were
much more complex than simply improving the specifications and documentation involving,
for example, working practices and resourcing.

The second type of recurring problem is the ‘unsolvable problem’. The estimation accuracy
discussion was a combination of the previously described trivial scapegoat problem and unsolv-
able problem. Poor estimation accuracy is a complex problem that includes many uncontrollable
factors on the team level. The whole concept of estimations was somewhat unclear for the team
members. They thought that development would be much easier if the estimates were more
accurate. However, this seems to be just an easy way of concealing a complex problem, such as a
lack of communication, resourcing challenges and scheduling problems; thus, participants used
estimation accuracy as a trivial scapegoat for a larger problem. In addition, the estimation
accuracy seemed also to be an unsolvable problem. The inherent uncertainty of task estimations
and constant changes in the estimated tasks cause inaccuracy. Considering all the uncertainties of
software development and the organisational communication challenges, it is unrealistic to
assume that it would be possible for the developers or product owners to be able to achieve

@ Springer



Empir Software Eng (2017) 22:2409-2452 2441

highly accurate task estimates. The high number of developed corrective actions without any
significant effect during the course of 3 years corroborates the fact that the estimation problems
were extremely difficult for the team members to solve.

The third type of problem leading to recurring retrospective discussions was a ‘naturally
recurring problem’. An example of this type of problem is the high number of bugs. In software
development, bugs occur naturally and constantly, and the development team is well in control of
temporarily improving this problem and decreasing the number of open bugs by investing in bug
fixing and early testing activities. However, the problem kept recurring since the teams were
incapable of solving the real causes due to external factors, including overly tight schedule
pressures. The related discussions lasted for approximately 2 years. After the organisation invested
enough effort in software testing and bug fixing, the problem stopped recurring in the discussions.

A fifth of all corrective actions were developed as a result of the recurring discussions (see
Table 11). The team members developed the highest number of corrective actions for the
estimation problems, and despite the repeating discussions and numerous corrective actions,
the estimation accuracy did not improve. The team members also developed a high number of
corrective actions for the software quality problems and, in contrast to the estimation problems,
these actions had an effect and the problems decreased during the observation period. As a
conclusion for our analysis of how the retrospective discussions evolved over time, we state
that it is useful to identify the types of recurring discussions in the retrospective meetings. The
recurrence could be a sign of unproductive discussions and ineffective corrective action
innovations in the cases of trivial scapegoat problems or unsolvable problems. In the case of
naturally recurring problems, identifying such a phenomenon could help target the analysis
towards issues that cause the recurrences, not just the causes and corrective actions for the
problem itself.

4.4 How Well do the Retrospective Discussions Correspond to the Development
Repository Data? (RQ 4)

We studied how well the retrospective discussions related to the actual development status in
the organisation. We analysed the recurring retrospective discussions and compared the
changes in discussion topics to the task backlog system and the bug repository (see section 3.4).
We focused our analysis on two recurring discussions, estimation accuracy and the state of
bug fixing, each of which was described in section 4.3.2. These discussions were selected
based on the availability of repository data that could be compared with the discussions.

4.4.1 Estimation Accuracy

Figure 9 presents the level of task estimation accuracy in the development sprints and maps it
together with the outcomes from the team-level retrospectives. The data cover the timeline from
the 20 retrospective (stage 2) to the 37t retrospective (stage 3). The task estimate data were only
available for stages 2 and 3, since the company did not record the estimates and actual efforts
during stage 1. The results show that the retrospective statements are somewhat contradictory.
During stage 2, statements made in the 20™ and 21™ sprint retrospectives focused on ‘good
estimates’, whereas in the 22™ and 23™ sprint retrospectives the statements more reflected the
opinion that ‘efforts were not accurate’. The estimations were relatively accurate in 2 1m sprint and
inaccurate in the 23" sprint, which are in line with the statements. However, the estimation
accuracy is similar for the 20™ and 22™ sprints, whereas the retrospectives found the opposite

@ Springer



2442 Empir Software Eng (2017) 22:2409-2452

250 —
52
180 *134 *
- * *151
§ 200 108
g o139 ©
K 130
E O117
S 150 157 o
o
-
|: —
E 100 E é H []
2
e
g 50 - 183 I 1
- * 158 132
< © 116
o T | NN NURVANY N N VAN AN

T T T T T T T T T T T
S20G2 S21G2 S822G2 S23G2 S24G2 S26G3 S27G3 S28G3  S30G3 S31G3  S37G3
Sprint and stage

Fig. 9 Boxplot of the actual task estimation accuracy vs. the outcomes from retrospectives for the development
sprints. Notation on x-axis: SxxGy = Sprint number xx stage y. Triangles: striped = ‘good estimates’; checker-
board = ‘efforts were not accurate’; black=both statements were made; white =no statement regarding the
estimates (the circles denote outliers and the stars extreme outliers)

perceptions. The retrospectives did not reveal a high degree of measured estimation accuracy in
the 24" sprints retrospective. Furthermore, in the 27™ sprint retrospective, participants perceived
‘good estimates’ and in the 28" and 31" sprint retrospective that the ‘efforts were not accurate’.
These results are also contradictory due to the fact that the estimation accuracy in the 27™ sprint
was not clearly different than it was in the 28™ and 31™ sprints. Additionally, the retrospective for
26™ sprint found that the estimations were both inaccurate and accurate. Obviously, the retro-
spective statements do not reflect the estimations for all tasks in a sprint, since the deviation in the
estimation accuracy is high, as is visible in the numerous outliers in Fig. 9.

4.4.2 State of bug Fixing

Figure 10 maps the retrospective statements on the state of bug fixing into the timeline of open
bugs (data from the bug repository). It seems that these statements are in line with the real-
world status of open bugs. When the number of open bugs increased (in comparison to the
past), the related retrospective found that ‘a lot of bugs’ were present. In contrast, when the
number of open bugs decreased, the related retrospective found that the company had ‘fixed a
lot of bugs’. Furthermore, the statement ‘low bug count’ occurred when the number of open
bugs was approximately 90 or less. The teams did not demonstrate the actual bug counts
before the retrospectives. The figure also divides the timeline into stages 1-3. It seems that in

@ Springer



Empir Software Eng (2017) 22:2409-2452 2443

S1R15 S2R21b

S1R12
S2R19 S2R22

220 !

o s1re STRO | | | S2R23p | | | |
IR I\|sorir| )\ /SR spreep | | SR3T | S3RET
) NN VL fsrany S
120 \\A/V'\ | | | | N/ | |
i i i | A 1 -k 1 1 ! A\
| iy |

0 3 : : \/

I
f0|S1R2 ‘ 1 -\ A (Ve il
noy /SR sREzSRB eR0 WL
0

Apr2012  Jul2012  Oct2012 Jan2013 Apr2013 Jul2013 Oct2013 Jan2014 Apr2014 Jul2014  Oct 2014

| Stage 1 } Stage 2 } Stage 3 {

Fig. 10 Line chart showing the timeline of bug counts in the task repository and related retrospective
discussions. Blue curve = the number of open defects; red = an increasing number of defects were discussed in
the retrospectives; black=a decreasing number of defects were discussed in the retrospectives; green label
pointers =that a ‘low bug count’ was mentioned in the retrospectives. Labels: S<x>R<n>= stage x,
retrospective number n

stage 3, the number of open bugs stabilised at less than 90 open bugs, which could explain
why the number of statements on the high number of bugs also decreased.

4.4.3 Reflections

We analysed the correspondence between the retrospective discussions and the repository data
from the task repositories. This analysis revealed that certain discussions, such as remarks on
the high or low number of bugs, rather accurately reflected the state of development depicted by
the repository data. Other discussions, such as the comments on poor estimation accuracy, did
not match the situation reflected by the task repository data on task estimates and actual efforts.
In our analysis, we identified several phenomena related to these two recurring discussions.

Our first finding was that these recurring discussions were related to different types of
problems and that the reasons for the recurrences were different. In the case of the discussions
on the high number of open bugs, the problem was easy for the team members to recognise
and they were able, at a team level, to react to the problem. The problem kept recurring and the
related discussions lasted for approximately 2 years matching the measured open bug trends.
The team members also developed a high number of corrective actions for the software quality
problems. In comparison to the estimation problems, these problems did reflect reality and the
problem did decrease during the observation period, when the number of open bugs levelled
off at below 90 (see Fig. 10). However, we cannot explain why participants felt that less than
90 open bugs was a low bug count.

The other recurring discussion regarding estimation accuracy concerned a problem that was
different in nature. The problem was extremely difficult, if not impossible, for the team to
solve. These difficulties with the estimation concept caused team members to use the estima-
tion accuracy as an excuse, a trivial scapegoat. This was visible in the way that participants
hoped the better estimates would solve such problems as a lack of communication between the
team and product owners. The retrospective discussions on estimation accuracy were contra-
dictory in comparison with the estimation accuracy data from the task repository. In addition,
despite the high number of repeating discussions and corrective actions for the estimation
problems, the estimation accuracy did not improve (see Fig. 9).

Furthermore, the repeating discussions on the need for clarifying instructions were also a
problem, with complex uncontrollable factors being easy to blame in the case of failure. Even
though we did not have triangulating data to further explain this finding, our earlier study

@ Springer



2444 Empir Software Eng (2017) 22:2409-2452

revealed that the case organisation struggled with the collaboration problem with respect to
stakeholders (Lehtinen et al. 2015b). It resulted in a lack of information exchange between
sales & requirements, the product owners and developers. The underlying problem was related
to the complexity of the business domain, including the high number of customers and the fact
that third parties were difficult to control and collaborate with.

The outcome of an individual retrospective provided only a narrow sample of the problems
and corrective actions regarding the software development practice. When the retrospective
outcomes were combined over a longer period of time, they collectively provided both a more
detailed and broader view of the perceived issues and relationships interconnecting the
planning work, implementation work and software testing process areas (see Fig. 6). Such a
collective software engineering knowledge base has been presented as a valuable asset (Anbari
et al. 2008). Due to the specific temporal context and human factors affecting the outcome of
each individual retrospective, the combined overview does not accurately illustrate the current
situation. The past was not equal to the present. For example, the combined overview did show
that there had been a problem with the high number of bugs. However, it did not show that the
problem decreased over time. Additionally, the combined overview showed that the teams
have problems with estimations. However, the deviations in the overall estimation accuracy
(see Fig. 9) reveal that significant differences between the stated ‘accurate’ and ‘inaccurate’
development sprints in fact barely existed.

5 Implications and Evaluation of the Research

In this section, we discuss the implications of the results of this study for team-level
retrospective practice. In addition, we evaluate the validity of this research study and discuss
potential validity threats.

5.1 Implications for Continuous Retrospective Practice

Based on the results and discussion presented in this paper, we identified several phenomena
that could affect the outcome and efficiency of the team-level retrospectives. Steering the focus
and development of process improvement proposals in the retrospectives in the direction of
controllable and valid problems would be valuable with respect to preventing the team
members from producing retrospective waste by discussing and trying to solve invalid, overly
complex or uncontrollable problems.

We identified four central viewpoints that can be used to provide guidance for the practical
implementation of team-level retrospectives. These viewpoints work both as a set of heuristics
for retrospective facilitators and as initial hypotheses for further empirical research. Table 12
summarises these viewpoints.

The first viewpoint is bias. One of the problems with the case organisation’s retrospective
outcome had to do with the participants’ biased understanding of the current development situation.
The outcomes of the case organisation’s retrospectives did not always correspond to the evidence
from the development repositories. The reliability problem of learning from experience has been
identified in earlier studies. For instance, Jorgensen and Sjeberg (2000) have described different
biases that affect how people apply their experience when learning from past events. They argue that
without knowledge of and reflection on the potential biases, experience-based knowledge will
include much incorrect information and invalid causal relationships. They suggest that the

@ Springer



Empir Software Eng (2017) 22:2409-2452 2445

Table 12 Summary of the study implications and initial hypotheses

Viewpoint Hypothesis

Bias Lack of individual knowledge and biases in interpreting personal experiences correctly leads to
incorrect experience-based information in retrospective discussions and invalid inferences
regarding causal mechanisms if participants are not aware of the potential biases and
fact-based evidence is not used to support the analysis.

Controllability The team-level retrospectives tend to focus on topics that the development team can control, and
the team’s improvement proposals for issues beyond the control of the team tend to remain
ineffective. Teams require support in resolving issues that are beyond their control.

Complexity Some problems are too complex to be solved through team-level retrospective practice, and a
team’s improvement suggestions for such complex problems tend to remain ineffective.
Teams require support in resolving issues that are highly complex.

Recurrence In continuous retrospectives, certain discussions occur repeatedly. Repeating discussions are
potential signs of waste in the retrospective practice due to issues of controllability,
complexity or a natural recurrence of the discussed problems. It is useful to identify the
recurring discussions and guide the retrospectives to avoid repeating the unproductive
discussions.

experience providers would need to consider alternative perspectives and critique their own
judgments, and in addition, they should use training and increase awareness about the limitations
and biases in experience-based learning. One approach to improving the validity of retrospective
analysis is to introduce fact-based evidence to the retrospective in order to base the analysis on a
more objective picture of the real situation instead of the potentially biased personal experiences of
the participants. Bjarnason et al. (2014) have proposed using evidence-based timelines that provide
participants with a visual timeline of project events with factual evidence that serves as a memory
prompt in discussions. These timelines should be constructed before the retrospective meeting from
various sources. In our case, the defect data and the estimation accuracy measures could have been
good examples of evidence to present in the timelines to support retrospective discussions. In this
case, the evidence was not used, even though the bug data in particular would have been readily
available.

The second viewpoint is controllability. We recognised that the team-level retrospectives
resulted in corrective actions that the team members were able to control (eg the work practices
of the team). We also recognised that part of the retrospective outcome could not be controlled
at the team level, but that it could be controlled at the organisation level (eg processes and
testing resources). Resolving such findings requires organisational support. Furthermore, part
of the retrospective outcome was external to the whole software organisation (eg customers &
users) and requires extensive collaboration both within and outside of the company.

The third viewpoint is complexity. Solving a problem through retrospective practice requires
controlling its causes. Some problems are caused by a complex network of causes that are too
complicated to be correctly analysed and resolved within the context of a team-level retrospective.
Such problems have the potential for causing waste in terms of valuable time and effort on the part
of the team in the retrospective meetings. If the problem is too complicated to solve, the
discussions tend to repeat themselves, and ineffective corrective actions accumulate over time
without any real effect. Therefore, in order to prevent waste it would be beneficial to recognise
such complex problems and find better methods and different forums for addressing them.

The fourth viewpoint is recurrence. Our analysis identified different types of recurring discus-
sions in the retrospective meetings. The software organisation should recognise the retrospective

@ Springer



2446 Empir Software Eng (2017) 22:2409-2452

discussions that keep recurring. These discussions could reflect a problem requiring organisational
support (or external support). The discussions might also reveal trivial scapegoat problems. In any
case, the repeating of such problems indicates potential waste in the retrospective practice.

5.2 Evaluation of the Research

This section discusses the validity of our empirical results using a validation scheme
presented by Runeson and Host (2009). We will present the construct validity in
section 5.2.1 and the external validity in section 5.2.2 and focus on the reliability of
the study in section 5.2.3.

5.2.1 Construct Validity

Construct validity concerns how accurately the applied operational measures truly represent
the concepts that researchers are trying to study (Runeson and Host 2009). In this study, these
included the retrospective outcomes and the task backlog.

Our results are limited to the documented outcomes, which do not capture all the
details covered in the face-to-face retrospectives. We were not able to confirm the
detailed face-to-face discussions. The researchers were not present in the team-level
retrospectives and the discussions were not tape-recorded. There is a threat that the raw
data do not accurately represent all the discussions that took place in the retrospective
meetings and it is likely that the practitioners did not document all the discussions that
took place during the meetings. The documented outcomes of the retrospectives in-
cluded the cause-effect diagrams, together with the voting results and the related
corrective actions. Due to the detailed retrospective statements, we feel that such raw
data made it feasible to synthesise the retrospective discussion topics and compare the
change in topics over time. This validity threat affects the total number of retrospective
statements; however, it is unlikely that there would be missing categories at the level of
process areas or topic types since the teams documented the discussions by collabora-
tively using the software tool during the discussions. In other words, the documentation
process is not dependent on the recollections or interpretations of a single individual.

The teams used a specific software tool to assist them in collaboratively collecting
and documenting the retrospective outcomes in diagram form. The tool probably made
it easy for the participants to record all the relevant statements, but we do not know
how the tool affected the retrospective meetings. In our earlier work (Lehtinen et al.
2015a), we compared the use of diagrams and structural lists in retrospectives, and
those results indicate that diagrams might well increase the number of findings and
relationships in the outcomes and help in organising the findings. Diagrams were also
perceived to be visually more attractive.

The use of the categorisation system might also bias the results. It dissipates details
and emphasises similarity, and thus our analysis of the discussion topics does not
represent the full discussion content. This threat applies to our analysis of the process-
area and topic-type categories. In our analysis of the recurring discussions and their
correspondence to the repository data, we analysed the detailed retrospective state-
ments. We used qualitative techniques to consolidate the results on the outcomes from
the retrospectives, and we also modified the categorisation system to correspond with
the raw data.

@ Springer



Empir Software Eng (2017) 22:2409-2452 2447

The facilitators of the team-level retrospectives varied. At least four different Scrum masters
facilitated the retrospectives and led the discussions. Most of these facilitators were present at
all retrospective stages (stage 1, stage 2 and stage 3). There is a threat that the facilitators
personally affected the outcome of the retrospective meetings, but variation in the facilitators is
unavoidable in a longitudinal industrial research setting.

The task backlog was used to investigate the retrospective discussions on bug
counts and estimation accuracy in relation to the repository data. We compared the
retrospective discussions and the actual estimation accuracy and the number of open
bugs over time. There is a threat with respect to construct validity in terms of the
reliability of the task backlog. It is possible that sometimes the realised effort was
reported as being equal to the planned effort, which would bias the analysis in terms
of the actual estimation accuracy. In most cases, the realised effort differed from the
planned effort. Similarly, the actual state of open bugs was based on the number of
open bugs reported.

5.2.2 External Validity

External validity is concerned with the generalisability of the findings (Runeson and
Host 2009). Our results are based on the findings from one distributed Scrum
organisation only. Thus, we cannot generalise about the exact quantities, only about
the theories and explanations describing the outcomes of the team-level retrospectives
in similar case contexts.

We believe that the external validity of the discussion topics covered in the team-level
retrospectives in similar case contexts is high. It is reasonable to claim that the team-level
retrospectives consider the experiences close to the team members. It is also reasonable to
claim that the outcomes reflect common software development challenges and successes, as
presented in prior literature. Furthermore, the retrospective statements will likely keep recur-
ring if the problems are not solved or if the experiences themselves keep recurring. In contrast,
the detailed discussions and distributions of the retrospective statements across the topic types
and process areas likely vary in different cases. It is also possible that new case contexts could
extend the discussion topics already recognised. As we concluded in our prior study (Lehtinen
et al. 2014a), the case contexts vary and therefore a case-specific analysis is likely needed
every time a failure occurs.

5.2.3 Reliability

Reliability considers the extent to which the data and analysis are dependent upon the
researcher (Runeson and Host 2009). The level of reliability regarding the raw data is
high due to the fact that it was provided by the case organisation. Therefore, the
threats to reliability are mostly related to data analysis and the ultimate conclusions
drawn as a result.

The study results are based on a qualitative categorisation (coding) of the retrospective
statement data by the researchers. The use of a modified categorisation system was not evaluated.
However, we studied the inter-rater agreement of the original categorisation system in our prior
study (Lehtinen et al. 2014a). Kappa values for the process-area and topic-type dimensions were
0.65 and 0.55, respectively, which we concluded were good and moderate agreements. It is
possible that the new categories that emerged during this study are more researcher dependent.

@ Springer



2448 Empir Software Eng (2017) 22:2409-2452

The modified dimensions do not equal those used in the prior study, but the modifications
were minor. The process area categorisation was extended by adding a few new categories.
The categories used in both studies were sales & requirements, management, implementation
work, testing and deployment. We found that the level of agreement for these areas remained at
a similar level. The new, Scrum-specific process areas include sprint planning, product owner
and Scrum master. Similarly, the changes in the topic-type categories were minor. Most of the
types remained the same and only minor improvements were added; for instance, the prior
study includes a topic type called instructions & experiences, whereas the modified version
includes instructions and experience as two separate topic types.

The results for the recurring discussions could be validated by triangulating the repository
data only regarding the discussions on the number of bugs and the estimations accuracy. No
data were available to validate the recurring discussions concerning the instructions and
specifications. This is a validity threat since triangulating data regarding the third type of
discussion could reveal new findings. The lack of triangulating data does not invalidate the
finding regarding the recurrence or frequency of the third discussion, but it does prevent us
from drawing further conclusions based on the nature of the recurrences. Finally, the final
results were not verified by the study participants; only preliminary findings were discussed
with a company representative.

6 Conclusions and Future Work

This was a longitudinal case study on team-level retrospective outcomes that emphasises the
change over time and the recurrence of the outcomes. The study makes five contributions.
First, we synthesised and made generalisations about the discussion topics that occurred in the
team-level retrospectives. We found that continuous retrospectives provide a detailed analysis
of both the positive and negative experiences of the software development teams. However,
the discussions in the team-level retrospectives focused heavily on the areas close to the
development team and topics that were directly related to the implementation work. The
positive discussions were even more strongly focused on the implementation work.

Second, we analysed the links between the developed corrective actions and the retrospective
discussions. We found that the corrective actions were commonly developed for certain topic
types. These included task outcome, work practices, task difficulty, instructions, estimations and
resources & schedules. We hypothesise that these topic types revealed problems, which were
perceived as controllable by the team members. To ensure effective results, the team-level actions
should be guided to target the controllable problems, but the team should simultaneously make
sure that important problems are not discarded because of a lack of control at the team level.

The third contribution was our analysis of the changes in the retrospective discussions over
time. We found that as the young, single-team organisation grew over time, the emphasis moved
first even more heavily into implementation work and software testing and that discussions
typically focused on the topics of task progress and task outcome. Later, as the organisation grew
more, the discussion moved from implementation work to a wider coverage of the process areas,
including resources and scheduling, the product owner and cooperation. We conclude that the
retrospective discussions do change over time and reflect the evolution of the organisation over
time, which should be taken into account when analysing retrospective data over long time periods.

Fourth, based on our analysis we found that recurring discussions exist in contin-
uous retrospectives and are a potential cause of waste in retrospective practice. We

@ Springer



Empir Software Eng (2017) 22:2409-2452 2449

recognised three repeating discussions in the case organisation: estimation accuracy
and task completion, the state of bug fixing and the need for clarifying instructions.
We identified that the nature of the problems leading to these repeating discussions
were different. The problems included complex problems that are practically unsolv-
able at the team level, naturally recurring problems and ‘trivial scapegoat’ problems,
ie problems that are easy to identify and difficult to solve. Our analysis of recurring
discussions also revealed that the reliability of the retrospective outcome varies, and
incorrect interpretations and discussions exist. A large number of corrective actions
were developed for the recurring discussions. The issue of recurrence should be
addressed and potential unproductive discussions handled as part of the retrospective
practice.

Fifth, we propose four viewpoints, which could be useful for evaluating the retrospective
outcomes. These viewpoints are bias, controllability, complexity and recurrence. The reliabil-
ity of the problems presented in the retrospectives should be verified via evidence in order to
avoid repeating the same discussions based on biased interpretations or incorrect understand-
ings. Controllability and the complexity of the problems are important to consider in order to
select appropriate actions for resolving them. Furthermore, it would be reasonable to analyse
the recurring retrospective findings to spot potential waste and detrimental effects in terms of
repeating, but unproductive discussions.

We call for future work and replicating studies to increase the external validity and
reliability of our results. It would be important to empirically study and validate our initial
viewpoints and hypotheses on how to use our findings to guide continuous retrospective
practice. In addition, comparative research on team-level and organisation-level retrospectives
would be beneficial for understanding how to facilitate the development of corrective actions
and implement them at the correct level of organisational control.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.

References

Anbari FT, Carayannis EG, Voetsch RJ (2008) Post-project reviews as a key project management competence.
Technovation 28:633—643

Bjarnason E, Hess A, Berntsson Svensson R et al (2014) Reflecting on evidence-based timelines. [EEE Softw
31(4):37-43

Bjernson FO, Wang Al, Arisholm E (2009) Improving the effectiveness of root cause analysis in post mortem
analysis: a controlled experiment. Inf Softw Technol 51(1):150-161

Card DN (1998) Learning from our mistakes with defect causal analysis. IEEE Softw 15(1):56-63

Cerpa N, Bardeen M, Kitchenham B et al (2010) Evaluating logistic regression models to estimate software
project outcomes. Inf Softw Technol 52(9):934-944

Cockburn A (2002) Agile software development. Addison-Wesley

Collier B, DeMarco T, Fearey P (1996) A defined process for project post mortem review. IEEE Softw 13(4):65-72

Derby E, Larsen D, Schwaber K (2006) Agile retrospectives: making good teams great. Pragmatic Bookshelf Raleigh, NC

Dingseyr T (2005) Postmortem reviews: purpose and approaches in software engineering. Inf Softw Technol
47(5):293-303

Dingseyr T, Moe NB, Nytre @ (2001) Augmenting experience reports with lightweight postmortem reviews. In:
Anonymous PROFES ‘01 Proceedings of the Third International Conference on Product Focused Software
Process Improvement, p 167-181

@ Springer



2450 Empir Software Eng (2017) 22:2409-2452

Drew Procaccino J, Verner JM, Overmyer SP et al (2002) Case study: factors for early prediction of software
development success. Inf Softw Technol 44(1):53-62

Egorova E, Torchiano M, Morisio M (2010) Actual vs. perceived effect of software engineering practices in the
Italian industry. JSS 83:1907-1916

Glass RL (2002) Project retrospectives, and why they never happen. IEEE Softw 19(5):111-112

Jalote P, Agrawal N (2005) Using defect analysis feedback for improving quality and productivity in iterative software
development. In: Anonymous proceedings of the information Science and communications technology (ICICT
2005) Infosys technologies limited Electronics City, Hosur Road, Bangalore, India, p 701 - 714

Jin ZX, Hajdukiewicz J, Ho G et al (2007) Using root cause data analysis for requirements and knowledge
elicitation. In: Anonymous international conference on engineering psychology and cognitive ergonomics
(HCII 2007). Germany Springer Verlag, Berlin, pp 79-88

Jones C (2008) Software tracking: the last defense against failure. Crosstalk J Def Softw Eng 21

Jorgensen M, Sjoberg D (2000) The importance of NOT learning from experience. In: Anonymous Proc. Of
European Softw. Process Improvement, EuroSPI’2000, p 2.2-2.8

Kaur R, Sengupta J (2011) Software process models and analysis on failure of software development projects. Int
J Sci Eng Res 2(2):2-3

Keil M, Cule PE, Lyytinen K et al (1998) A framework for identifying software project risks. Commun ACM
41(11):76-83

Lehtinen TOA (2014) Development and evaluation of a lightweight root cause analysis method in software
project retrospectives, Aalto University

Lehtinen TOA, Méntyld MV, Vanhanen J (2011) Development and evaluation of a lightweight root cause analysis
method (ARCA method) — Field studies at four software companies. Inf Softw Technol 53(10):1045-1061

Lehtinen TOA, Méntyld MV, Vanhanen J et al (2014a) Perceived causes of software project failures — an analysis
of their relationships. Inf Softw Technol 56(6):623—643

Lehtinen TOA, Virtanen R, Viljanen JO et al (2014b) A tool Supporting root cause analysis for synchronous
retrospectives in distributed software teams. Inf Softw Technol 56(4):408-437

Lehtinen TOA, Méntyld MV, Itkonen J et al (2015a) Diagrams or structural lists in software project retrospectives
— an experimental comparison. J Syst Softw 103(May):17-35

Lehtinen TOA, Virtanen R, Heikkild VT et al (2015b) Why the development outcome does not meet the product
owners’ expectations?. In: Anonymous Agile Processes, in Software Engineering, and Extreme
Programming Springer, p 93-104

McLeod L, MacDonell SG (2011) Factors that affect software systems development project outcomes: a survey
of research. ACM Comput Surv 43(24):24-55

Molekken-@stvold K, Jorgensen M (2005) A comparison of software project overruns - flexible versus
sequential development models. IEEE Trans Softw Eng 31(9):754-766

Poppendieck M, Poppendieck T (2007) Implementing lean software development: from concept to cash. Pearson
Education

Runeson P, Host M (2009) Guidelines for conducting and reporting case study research in software engineering.
Empir Softw Eng 14(2):131-164

Runeson P, Host M, Rainer A et al (2012) Case study research in software engineering: guidelines and examples.
John Wiley & Sons, Hoboken, NJ, USA

Schwaber K, Sutherland J (2011) Scrum guide. Scrum Alliance

Stalhane T (2004) Root cause analysis and gap analysis - a tale of Two methods. In: anonymous EuroSPI 2004,
Trondheim, Norway, vol 3281. Springer Verlag, Berlin Heidelberg, pp 150-160

Stalhane T, Dingseyr T, Hanssen G, et al (2003) Post mortem—an assessment of two approaches. Empirical
Methods and Studies in Software Engineering :129-141

Tiedeman MJ (1990) Post-mortems - methodology and experiences. IEEE J Selected Areas Commun 8(2):176-180

Xiangnan L, Hong L, Weijie Y (2010) Analysis failure factors for small & medium software projects based on
PLS method. In: Anonymous The 2nd IEEE International Conference on Information Management and
Engineering (ICIME), p 676-680

Yin RK (ed) (1994) Case study research: design and methods, vol 2nd. SAGE Publications, United States of America

@ Springer



Empir Software Eng (2017) 22:2409-2452 2451

Timo O.A. Lehtinen is a science adviser at the Academy of Finland. He received D.Sc. in software engineering
from Aalto University, Finland in 2015. He is a former postdoctoral researcher at Aalto University and his
research work have focused on retrospective methodologies and outcome, which he has studied both in the
software industry and education contexts. He has years of software project management experiences in industry.

Juha Itkonen works as a postdoctoral researcher at the Department of Computer Science, Aalto University,
Finland. His research interests focus on experience-based and exploratory software testing and human issues in
software engineering, including quality assurance in agile context. In his current research, he is working also on
continuous software engineering practices and quality assurance in large-scale agile context. He conducts
empirical research relying both on qualitative and quantitative methods and prefers research in industrial context.
He received his D.Sc. degree in software engineering in 2012 from Aalto University.

@ Springer



2452 Empir Software Eng (2017) 22:2409-2452

Casper Lassenius is an associate professor at Aalto University. His current research interests include agile and
lean software development, global software engineering, and software quality assurance. He has a D.Sc. degree
from Aalto University.

@ Springer



