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State Observer for Grid-Voltage Sensorless Control
of a Converter Under Unbalanced Conditions

Jarno Kukkola and Marko Hinkkanen, Senior Member, IEEE

Abstract—This paper deals with grid-voltage sensorless syn-
chronization and control under unbalanced grid conditions. A
three-phase grid-connected converter equipped with an LCL fil-
ter is considered, and no other signals than the converter currents
and the DC-link voltage are measured for control. An augmented
adaptive state observer is proposed for estimation of the positive-
and negative-sequence components of the grid voltage. Dynamic
performance limitations of the proposed method and effects of
parameter errors are analysed. The proposed observer is tested as
a part of a sensorless control system. Experimental results show
that the proposed method works well even in highly unbalanced
grid conditions.

Index Terms—Active front-end rectifier, grid-voltage sag, LCL
filter, line-voltage sensorless, small-signal linearization.

I. INTRODUCTION

Grid-voltage sensorless control has been an interesting
research topic during the last decades [1]–[20]. Replacing AC-
voltage sensors with estimation is a relevant option, e.g., in
pulse-width-modulated rectifiers [1]–[6], since reducing the
number of the sensors can improve the reliability against
electrical noise and reduce costs of the system. Furthermore,
the grid-voltage sensorless operation has been proposed for
distributed generation [8], [9]. Sensorless control, in parallel
with the conventional operation, could increase reliability of
a converter in renewable energy production, since a failure in
measurement sensors, wires, or interfaces does not necessar-
ily mean the end of production. In addition, a grid-voltage
estimator might be useful in the islanding detection [11].

In the distributed generation, dynamic grid support, such
as fault ride-through, is often required in high- and medium-
voltage grids, but might be required in low-voltage grids
as well in the future [21]. Furthermore, the converters may
operate, at least temporarily, in unbalanced grid conditions
[22], [23]. With careful design, unbalanced conditions can be
also handled in grid-voltage sensorless control [4], [6], [9],
[12]–[15], [19].

An LCL filter between the converter and the grid is an
attractive option for filtering out the switching harmonics,
because of its higher attenuation per volume or cost in com-
parison with the conventional L filter. Grid-voltage sensorless
methods for converters equipped with the LCL filter have been
proposed in [5], [8]–[10], [13]–[20]. The sensorless operation
can be based on instantaneous power theory [10], virtual
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flux models, [5], [14]–[16], and model-based observers [8],
[13], [17]–[20]. However, only a few of these methods take
unbalanced grid conditions into account [9], [13]–[15], [19].

For the unbalanced grid conditions, a direct power control
method has been developed in [14], but additional capacitor
current measurements are needed for the active damping of
the LCL-filter resonance. Additional capacitor current mea-
surements have been used in [13] as well, where the grid-
voltage estimation method is based on an adaptive algorithm
[8]. In [9], an adaptive neural-network estimator has been pro-
posed for disturbance and grid-voltage estimation. However,
expertise in neural networks is needed in order to implement
this type of estimator and to guarantee its stability. In [19],
an adaptive model-based state observer has been used in
grid-voltage sensorless control, but only the positive-sequence
component of the grid voltage is estimated. In [15], grid-
voltage sensorless operation is based on a virtual-flux model
using a second-order generalized integrator as a fundamental
building block. The method in [15] is an extension for the
estimator proposed in [12].

This work [24] deals with grid-voltage sensorless synchro-
nization and control of a grid-connected converter under unbal-
anced grid conditions. A converter equipped with an LCL filter
is considered, and the only measured quantities for control are
the converter currents and DC-link voltage. Main contributions
of this work are: 1) an augmented adaptive state observer is
proposed for estimation of the positive- and negative-sequence
components of the grid voltage; 2) tuning expressions for the
observer are derived based on a small-signal linearized model
and direct pole placement; 3) dynamic behavior of the observer
is analyzed using the linearized model; 4) effects of parameter
errors on steady-state estimation errors are examined; and 5)
the proposed observer is experimentally tested as a part of
a grid-voltage sensorless control system in unbalanced grid
conditions.

II. SYSTEM MODEL

The equivalent circuit model of the LCL filter between the
converter and the grid is shown in Fig. 1(a). The converter
voltage is us

c and the converter current is isc, where the
superscript s indicates stationary coordinates. The voltage
across the filter capacitor is us

f , the grid voltage is us
g, and

the grid current is isg. Complex-valued, matrix, and vector
quantities are marked with boldface symbols.

In the case of unbalanced grid conditions (e.g. during a
single- or two-phase fault), the grid-voltage vector

us
g(t) = u

s
g+(t) + u

s
g−(t) = ejϑg+(t)ug+ + ejϑg−(t)ug− (1)
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Fig. 1. (a) Space-vector circuit model of the LCL filter between the converter and the grid. (b) Grid-voltage sensorless control system.

has the positive-sequence and negative-sequence components,
us
g+ and us

g−, respectively. The positive-sequence magnitude
is ug+ and the angle is

ϑg+(t) =

∫
ωg+dt (2)

where ωg+ is the fundamental angular frequency of the grid
voltage. For the negative-sequence component, ug− is the
magnitude, ϑg− = −ϑg+ + φg− is the angle, and φg− is the
phase shift.

A state-space model is formed from the equivalent circuit
of the LCL filter [Fig. 1(a)]. The state vector is selected as
xs = [isc,u

s
f , i

s
g]

T. Moreover, the model is written in positive-
sequence coordinates (marked with the superscript p). In these
coordinates, the state vector is xp = e−jϑg+xs, and other
vector quantities are transformed in similar fashion. When
the modeling principles presented in [25] are followed, the
dynamics of the converter current ipc become

xp(k + 1) = Φxp(k) + Γcu
p
c (k) + Γg+ug+(k)

+ Γg−u
p
g−(k)

ipc (k) = Ccx
p(k)

(3)

where Cc = [1, 0, 0] is the output vector, Φ is the state-
transition matrix, Γc is the input vector for the converter
voltage, and Γg+ and Γg− are the input vectors for the
positive- and negative-sequence components of the grid volt-
age, respectively. Symbolic expressions for calculating the
model matrices are given in Appendix A.

In the discrete-time domain, the positive-sequence angle (2)
is

ϑg+(k + 1) = ϑg+(k) + Tsωg+ (4)

where Ts is the sampling time. Furthermore, in positive-
sequence coordinates, the rotating negative-sequence compo-
nent satisfies the difference equation

up
g−(k + 1) = e−2jωg+Tsup

g−(k) (5)

For the purposes of disturbance estimation, the system
model (3) is augmented with the negative sequence (5) as
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Fig. 2. Augmented adaptive observer.

a disturbance state. The augmented state vector is xp
a =

[ipc ,u
p
f , i

p
g ,u

p
g−]

T, and the augmented system model is

xp
a(k + 1) =

[
Φ Γg−
0 e−2jωg+Ts

]
︸ ︷︷ ︸

Φa

xp
a(k) +

[
Γc

0

]
︸ ︷︷ ︸
Γca

up
c (k)

+

[
Γg+

0

]
︸ ︷︷ ︸

Γga

ug+(k)

ipc (k) =
[
Cc 0

]︸ ︷︷ ︸
Ca

xp
a(k)

(6)

III. AUGMENTED ADAPTIVE OBSERVER

The proposed augmented adaptive observer is a part of a
sensorless control system shown in Fig. 1(b). The structure
of the proposed observer is shown in Fig. 2. While the
augmented state vector xp

a is estimated based on the model
(6), the angular frequency ω̂g+, positive-sequence angle ϑ̂g+,
and positive-sequence magnitude ûg+ are estimated using
adaptation mechanisms that are explained later.

The observer operates in estimated positive-sequence coor-
dinates (marked without any superscripts). According to (4),
the positive-sequence angle estimator is

ϑ̂g+(k + 1) = ϑ̂g+(k) + Tsω̂g+ (7)
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The estimated positive-sequence coordinate system is gen-
erally different from the actual positive-sequence coordinate
system due to the possible estimation error ϑ̃g+ = ϑg+− ϑ̂g+,
as illustrated in Fig 3.

In estimated coordinates, the augmented state vector is xa =
[xT,ug−]

T, and according to (6), the augmented state observer
is

x̂a(k + 1) = Φ̂ax̂a(k) + Γ̂cauc(k) + Γ̂gaûg+(k)

+ Ko[ic(k)− îc(k)]
(8)

where Φ̂a, Γ̂ca, and Γ̂ga are the adaptive model matrices that
are obtained by replacing the actual angular frequency ωg+

with the estimated angular frequency ω̂g+ in (6). Furthermore,
Ko is the observer gain vector and îc(k) = Cax̂a(k).

A. Estimation-Error Dynamics
The estimation-error dynamics, derived in the following,

play a key role in the tuning of the proposed observer. First,
from (4) and (7), the dynamics of the angle estimation error
become

ϑ̃g+(k + 1) = ϑ̃g+(k) + Tsω̃g+, (9)

where ω̃g+ = ωg+− ω̂g+ is the estimation error of the angular
frequency. The system model (6) and the observer (8) are in
different coordinates. For calculation of the state estimation
error, the system model is transformed into estimated positive-
sequence coordinates, where the observer operates (cf. Fig. 3).
The transformation of the state vector is

xp
a(k) = e−jϑ̃g+(k)xa(k) (10)

and up
c and ipc are transformed similarly. The state vector at

k + 1 is transformed as xp
a(k + 1) = e−jϑ̃g+(k+1)xa(k + 1).

Together with (9), the transformed system model becomes

xa(k + 1) = ejTsω̃g+(k)Φaxa(k) + ejTsω̃g+(k)Γcauc(k)

+ ejϑ̃g+(k+1)Γgaug+(k)

ic(k) = Caxa(k)

(11)

The estimation error of the augmented state vector is x̃a =
xa−x̂a. From (8), (9), and (11), the estimation-error dynamics
become

x̃a(k + 1) = (Φ̂a −KoCa)x̃a(k)

+
(
ejTsω̃g+(k)Φa − Φ̂a

)
xa(k)

+
(
ejTsω̃g+(k)Γca − Γ̂ca

)
uc(k) + Γ̂gaũg+(k)

+
(
ej[ϑ̃g+(k)+Tsω̃g+(k)]Γga − Γ̂ga

)
ug+(k)

(12)

where ũg+ = ug+−ûg+ is the estimation error of the positive-
sequence magnitude. The estimation-error dynamics (12) are
complicated and nonlinear with respect to the estimation
errors ϑ̃g+ and ω̃g+. Nonlinear elements are also hidden in
the matrices marked with a hat, which are indirectly func-
tions of ω̃g+, since they are functions of ω̂g+. For example,
Φ̂a(ω̂g+) = Φ̂a(ωg+ − ω̃g+).

B. Small-Signal Linearization

The nonlinear estimation-error dynamics (12) are lin-
earized at an equilibrium point (generally a trajectory). The
equilibrium-point quantities are marked with the subscript 0.
If the accurate equivalent circuit parameters (Lfc, Cf , Lfg) are
assumed in the observer, the system (12) has an equilibrium
point {x̃a0 = 0, ũg+,0 = 0, ω̃g+,0 = 0, ϑ̃g+,0 = 0}, where the
steady-state estimation errors are zero. Close to the equilibrium
point, the dynamics are described by a linear state equation

x̃a(k + 1) = (Φa −KoCa)x̃a(k) + Γgaũg+(k)

+ jΓgaug+,0ϑ̃g+(k) + Γωω̃g+(k)
(13)

where Γω is the input vector for the angular-frequency estima-
tion error. These linearized dynamics are derived in Appendix
B.

In order to simplify the tuning of the adaptive observer, the
linearized dynamics can be further simplified by approximat-
ing Γω ≈ 0. The approximation is reasonable, since the impact
of the input ω̃g+(k) on x̃a(k+1) is small1 in comparison with
the other inputs (ũg+ and ϑ̃g+). The simplified dynamics are

x̃a(k + 1) ≈ (Φa −KoCa)x̃a(k) + Γgaũg+(k)

+ jΓgaug+,0ϑ̃g+(k)
(14)

The converter-current estimation error ĩc = Cax̃a is the
input for the positive-sequence frequency and magnitude esti-
mators, cf. Fig. 2. In order to tune the estimators, the impact
of ũg+ and ϑ̃g+ on ĩc is studied. From (14), the pulse-transfer
function from ũg+ to ĩc becomes

Giu(z) =
ĩc(z)

ũg+(z)
= Ca(zI−Φa + KoCa)

−1Γg+ =
b(z)

a(z)
(15)

where

a(z) = det(zI−Φa + KoCa) (16)

and b(z) is the numerator of the transfer function. Similarly,
the pulse-transfer function from ϑ̃g+ to ĩc becomes

Giϑ(z) =
ĩc(z)

ϑ̃g+(z)
=

jug+,0 · b(z)
a(z)

(17)

1The impact of the inputs at k on x̃a(k+1) can be evaluated by calculating
the gains ‖Γω‖ and ‖Γga‖. Starting from the equilibrium x̃a(k) = 0, the
change ||x̃a(k + 1)|| in the states caused by the change equal to unity
in ω̃g+(k) is ‖Γω‖. For example, with the parameters of Table I and
symmetrical grid-voltage conditions, the gain ‖Γω‖ = 0.01 p.u. whereas
the gain ‖Γga‖ = ‖jΓgaug+,0‖ = 0.56 p.u.
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C. Adaptation Laws

The proposed algorithms for estimating the positive-
sequence angle ϑ̂g+, magnitude ûg+, and frequency ω̂g+

are based on the small-signal linearized model (14). The
estimator for the positive-sequence angle is given in (7), and
the estimator for the positive-sequence magnitude is

ûg+(z) =
ki,u
z − 1︸ ︷︷ ︸
Fu(z)

Re

{
a1

b1
ejφĩc(z)

}
(18)

where ki,u is the gain, and φ, a1, and b1 are explained at the
end of this subsection. The estimator for the angular frequency
is

ω̂g+(z) =
1

ug+,0

(
kp,ω +

ki,ω
z − 1

)
︸ ︷︷ ︸

Fω(z)

Im

{
a1

b1
ejφĩc(z)

}
(19)

where ug+,0 is the positive-sequence voltage at the operating
point, and kp,ω and ki,ω are the estimator gains. Furthermore,
the integral part of (19) provides a naturally filtered frequency
estimate, e.g., for monitoring purposes [19]

ω̂gf(z) =
1

ug+,0

ki,ω
z − 1

Im

{
a1

b1
ejφĩc(z)

}
(20)

The constants φ, a1, and b1 are obtained from the quasi-
steady-state analysis of the linearized model, as explained in
[19]. These constants describe the steady-state gain from ũg+
and ϑ̃g+ to ĩc as follows

ĩc = e−jφ(b1/a1)︸ ︷︷ ︸
Giu(1)

ũg+ + jug0e
−jφ(b1/a1)︸ ︷︷ ︸
Giϑ(1)

ϑ̃g+ (21)

and they are obtained by making z = 1 in (15) and (17). The
constants are

φ = (3/2)ωg+Ts

a1 = ωg+CfLfcLfg(ω
2
g+ − ω2

p)

· (1−αo1)(1−αo2)(1−αo3)(1−αo4)

b1 = 4(1− e−2jωg+Ts) sin(ωg+Ts/2)

· [cos(ωg+Ts)− cos(ωpTs)]

(22)

where ωp =
√
(Lfc + Lfg)/(CfLfcLfg) is the resonance

frequency of the LCL filter and αo1, αo2, αo3, and αo4 are the
discrete-time poles (tuning parameters) of the state observer.

TABLE I
SYSTEM PARAMETERS

Param. Value Param. Value
ug

√
2/3 · 400 V (1 p.u.) Lfc 3.3 mH (0.081 p.u.)

ωg+ 2π · 50 rad/s (1 p.u.) Lfg 3.0 mH (0.074 p.u.)
iN

√
2 · 18 A (1 p.u.) Cf 8.8 µF (0.036 p.u.)

fsw 4 kHz Ts 1/(2fsw) = 125 µs

D. Tuning of the Observer

The proposed observer is tuned based on direct pole place-
ment. Two sets of poles are placed: poles of the state observer
and poles of the adaptation loops.

1) Poles of the State Observer: The gain Ko is calcu-
lated by selecting the pole locations of the augmented state
observer. These poles are the roots of (16). Four complex
poles αo1 . . .αo4 can be placed resulting in the desired
characteristic polynomial

a(z) = (z −αo1)(z −αo2)(z −αo3)(z −αo4) (23)

Analytical expressions for the observer gain Ko are calculated
by equalizing (16) and (23). The resulting expressions are
functions of αo1 . . .αo4 and the elements of Φa.

In order to simplify the selection of the pole locations,
the discrete-time poles are mapped via the continuous-time
polynomials (s2 + 2ζodωods + ω2

od)(s
2 + 2ζorωors + ω2

or)
resulting in

αo1,2 = exp[(−ζod ± j
√
1− ζ2od)ωodTs]

αo3,4 = exp[(−ζor ± j
√
1− ζ2or)ωorTs]

(24)

where the natural frequencies (ωod, ωor) and damping ratios
(ζod, ζor) determine the location of the poles. Following the
direct pole-placement principle proposed in [25], the natural
frequency ωod is here set twice as fast as the bandwidth
of current control. The natural frequency ωor is set to the
resonance frequency of the LCL filter, i.e., ωor = ωp. It is
to be noted that this selection is a practical example, and a
designer has the full freedom to change the pole locations
depending on the dynamic performance specifications and
conditions. In other words, dynamic behavior and robustness
against parameter errors are related to the location of the
poles. For example, if the measured current ic is noisy,
the natural frequencies can be reduced in order to increase
measurement-noise rejection and robustness. Alternatively, the
natural frequencies of the poles can be increased if a faster
dynamic response is desired.

2) Poles of the Adaptation Loops: Since the adaptation
mechanisms are slow in comparison with the state observer,
the quasi-steady-state approximation (21) of the linearized
dynamics can be used for tuning of the positive-sequence
magnitude, frequency, and angle estimators. The estimators
(7), (18), (19) form loops together with (21), as shown in Fig.
4. The gains for the estimators are calculated by selecting the
pole locations of these closed adaptation loops. The resulting
gain of the positive-sequence magnitude estimator is

ki,u = 1− exp(−ωuTs) (25)
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where ωu is the natural frequency of the pole of the magnitude-
estimation loop. Furthermore, the gains of the angle-estimation
loops become

kp,ω = 2[1− exp(−ζωωωTs) cos(
√
1− ζ2ωωωTs)]/Ts

ki,ω = [exp(−2ζωωωTs)− 1]/Ts + kp,ω
(26)

where ωω is the natural frequency and ζω is the damping ratio
of the complex pole pair of the angle-estimation loop.

The natural frequencies ωu and ωω and the damping ratio
ζω are the tuning parameters of the loops, and the natural
frequencies can be thought as approximate bandwidths. It is
worth noticing that the linearized system [(15) and (17)] has
a zero (z = e−2jωg+Ts ) at the unit circle2 that limits the
maximum values of ωu and ωω .

IV. STABILITY AND ESTIMATION ERROR ANALYSES

A. Small-Signal Stability

The small-signal stability of the proposed observer is ana-
lyzed in the nominal operation point. In the stability analysis,
ũg+(k) = ug+(k)− ûg+(k), ω̃gf(k) = ωg+(k)− ω̂gf(k), and
ω̃g+(k) = ωg+(k)− ω̂g+(k), where ug+ and ωg+ as external
disturbances can be set to zero. Considering (9), (13), and
(18)–(20), the small-signal model for the closed-loop system
is obtained as follows

x̃a(k + 1) = (Φa −KoCa)x̃a(k) + Γgaũg+(k)

+ jΓgaug+,0ϑ̃g+(k) + Γωω̃g+(k)

ũg+(k + 1) = ũg+(k)− ki,u Re
{
a1

b1
ejφCax̃a(k)

}
ω̃gf(k + 1) = ω̃gf(k)−

ki,ω
ug+,0

Im

{
a1

b1
ejφCax̃a(k)

}
ϑ̃g+(k + 1) = ϑ̃g+(k) + Tsω̃g+(k)

(27)

2This corresponds to an imaginary-axis zero in continuous time. In other
words, the zero is in the closed right-half plane, which limits the bandwidth
of the system [26].

where

ω̃g+(k) = −
kp,ω
ug+,0

Im

{
a1

b1
ejφĩ(k)

}
+ ω̃gf(k) (28)

A numerical example of the observer tuning is presented.
The system parameters are given in Table I. The tuning
parameters of the state observer are: ωod = 2π · 1000 rad/s,
ωor = ωp, ζod = 0.9, and ζor = 0.7. Fig. 5 shows the poles of
the closed-loop system (27), when ωu is increased from 2π ·5
rad/s to 2π · 100 rad/s, ωω = ωu, and ζω = 1. The adaptation
mechanisms change the original location of the state-observer
poles determined by Ko. Two state observer poles drift outside
of the stable region (unit circle) when ωu = ωω > 2π · 65
rad/s. On the other hand, when ωu = ωω < 2π · 35 rad/s, the
damping ratios of the all poles are greater than 0.4. This means
that the estimation-error dynamics have a reasonable damping.
Moreover, with ωu = ωω ≥ 2π · 35 rad/s, the 5-% settling
times for the estimation errors of the grid-voltage magnitude
and angle are fast (less than a 20-ms fundamental cycle of the
voltage) for a step change in the actual grid-voltage magnitude
or angle [19].

At the equilibrium point, when the linearized sytem is
strictly stable or unstable, the actual nonlinear system is also
locally stable or unstable, respectively [27]. However, the local
stability cannot guarantee the global stability, and the linerized
model does not necessary describe the behaviour of the system
for large deviations from the equilibrium point. Nevertheless,
the information obtained from the small-signal analysis is
important for understanding limitations of the system. More
information is acquired by means of computer simulations and
experiments.

B. Steady-State Estimation Errors

The stability analysis of Section IV-A is accurate with the
accurate circuit parameters (L̂fc = Lfc, Ĉf = Cf , L̂fg = Lfg),
i.e., when the steady-state estimation errors are zero (x̃a0 =
0, ũg+,0 = 0, ω̃g+,0 = 0, ϑ̃g+,0 = 0). In real applications, the
circuit parameters of the LCL filter have some manufacturing
tolerances or uncertainties. Hence, the model parameters in the
observer are erroneous (L̂fc 6= Lfc, Ĉf 6= Cf , and L̂fg 6= Lfg).
Then, the steady-state estimation errors x̃a0, ũg+,0, ϑ̃g+,0 are
not necessarily zero. Nevertheless, the steady-state estimation
error of the converter current ĩc0 is zero, since the integrators
of the adaptation mechanisms drive ĩc to zero. In addition,
the estimation error of the angular frequency ω̃g+ is zero in
steady state, which originates from the steady-state condition
ϑ̃g+(k + 1) = ϑ̃g+(k), cf. (9).

Since the steady-state feedback signal of the observer is
ĩc0 = 0, the steady-state estimation errors x̃a0, ũg+,0, ϑ̃g+,0
do not depend on the observer and adaptation loop gains Ko,
ki,u, kp,ω , and ki,ω . These errors originate from: 1) parameter
errors L̃fc = Lfc − L̂fc, C̃f = Cf − Ĉf , and L̃fg = Lfg − L̂fg;
2) unmodeled series resistances Rfc, Rf , and Rfg of Lfc, Cf ,
and Lfg, respectively; and 3) other unmodeled phenomena and
parasitic components.

It is worth noticing that all model-based grid-voltage es-
timation methods result in a biased grid-voltage estimate in
steady state, if the model has inaccuracies. The estimation



TABLE II
OBSERVER TUNING PARAMETERS

Parameter Value Parameter Value
ωod 2π · 1000 rad/s ζod 0.9
ωor ωp ζor 0.7

ωu = ωω 2π · 25 rad/s ζω 1

accuracy could be increased if estimated resistive components
were included in the observer (as in [8], [13], [18], [28]).
Then, the pole placement of the observer would also be more
accurate, improving the control performance [28]. However, a
drawback of the modeled resistances is the increased number
of parameters that should be determined or estimated in the
design stage. Moreover, at high power ratings, the effects
of the parasitic resistances on the estimation errors are less
significant, since the per-unit losses of an LCL filter typically
decrease when the power rating of the system increases.
Furthermore, to increase estimation accuracy, saturation of the
inductors could be modeled [29].

Let us examine steady-state magnitude error ũg+,0 and
angle error ϑ̃g+,0, in the operating conditions where the
converter is injecting a positive-sequence current to the grid. In
the positive-sequence coordinates, the converter current is ipc0
and the grid voltage components are ug+,0, and up

g−,0. Then,
the other signals, such as up

c0, can be solved from the true
LCL circuit, cf. Fig. 1(a), or from (3). Once up

c0 and î
p

c0 = ipc0
are known, the estimated grid voltage ûp

g+,0 in the positive-
sequence coordinates can be calculated from the LCL circuit
[Fig. 1(a)] or from (8) using the estimated parameters (L̂fc, Ĉf ,
L̂fg). Furthermore, to get a rough estimate of the parameter
sensitivity, the calculation can be simplified by approximating

ûp
g+,0 ≈ ug+,0 +

[
jωg+(L̃fc + L̃fg) +Rfc +Rfg

]
ipc0 (29)

where the fundamental-frequency current of the capacitor
branch is assumed to be zero. Finally, the steady-state an-
gle error is ϑ̃g+,0 = −6 ûp

g+,0 and the magnitude error is
ũg+,0 = ug+,0 − |ûp

g+,0|.
The simplified expression (29) shows that an active-power

producing current component, e.g., ipc0 = icd + j0, produces a
steady-state angle error, if there is an error in the inductances
of the observer. Moreover, with some parasitic resistance (Rfc

or Rfg), ipc0 = icd + j0 produces a steady-state magnitude
estimation error. With a reactive-power producing current
component, e.g., ipc0 = 0 + jicq, the result is opposite.

In order to study local stability in the case of erroneous
parameters in the observer, the nonlinear estimation-error
dynamics (12) could be linearized at an equilibrium point
determined by nonzero steady-state estimation errors. Since
the steady-state estimation errors depend on the operating
point of the converter system, the nonlinear dynamics should
be linearized at various operating points. The detailed small-
signal analysis under parameter errors becomes laborious. Al-
ternatively, stability and dynamic performance of the observer
under parameter errors is examined with computer simulations
in Section V.

Fig. 6. Simulated waveforms in different grid-voltage conditions. The first
subplot shows the estimated magnitude (solid) and actual magnitude (dashed)
of the positive-sequence voltage, and actual magnitude of the grid-voltage
vector (dash-dotted). The second subplot shows the estimated angle (solid)
and actual angle (dashed) of the positive-sequence voltage, and actual angle
of the grid-voltage vector (dash-dotted). The third subplot shows the estimated
(solid) and actual (dashed) negative-sequence voltages ûg− = ûgd−+jûgq−
and ug− = ugd− + jugq−, respectively.

Fig. 7. Simulated waveforms in different grid-voltage conditions: (first)
converter current estimation error; (second) positive-sequence angle estimation
error; (third) positive-sequence magnitude estimation error; (fourth) negative-
sequence estimation error ũg− = ũgd− + jũgq−.

V. SIMULATION RESULTS

The proposed observer is first tested simulating it in parallel
with a current-controlled converter. The parallel operation
separates the dynamic behavior of the observer from the
dynamic behavior of the control system. The nominal model
parameters, given in Table I, are used in the observer. The
observer tuning parameters are given in Table II. Correspond-
ing tuning parameters were used in the stability analysis in
Section IV-A.



A. Validation

Figs. 6 and 7 show simulated waveforms under the fol-
lowing grid-voltage conditions: 1) symmetrical and nominal
grid conditions; 2) positive-sequence magnitude drops down
to 2/3 p.u. and negative-sequence magnitude steps up to
1/3 p.u.; 3) positive-sequence magnitude drops down to 1/3
p.u. and the negative sequence magnitude is not changed; 4)
symmetrical grid conditions. During the test, the converter
current is controlled to ic = 1 + j0 p.u., and the system
parameters are nominal, cf. Table I.

Fig. 6 shows the estimated and actual positive-sequence
magnitudes and angles during the test sequence. The figure
also shows the actual magnitude ug = |us

g| and angle
ϑg = 6 us

g of the grid-voltage vector. Furthermore, the real
and imaginary parts of the actual negative-sequence voltage
(ug− = ugd− + jugq−) and the estimated negative-sequence
voltage (ûg− = ûgd− + jûgq−) are shown. The estimated
values converge to the actual values approximatively in a 20-
ms grid-voltage cycle. This is more clearly visible in Fig. 7
that shows estimation-error responses of the converter current,
angle and magnitude of the positive-sequence voltage, and d
and q-components of the negative-sequence voltage. Moreover,
the steady-state estimation error of these signals is zero,
since the parameters inside the observer matrices equal true
circuit parameters (L̂fc = Lfc, Ĉf = Cf , and L̂fg = Lfg).
This result agrees with the theory and demonstrates that
the small-signal linearization around the equilibrium point
{x̃a0 = 0, ũg+,0 = 0, ω̃g+,0 = 0, ϑ̃g+,0 = 0} is valid.
The convergence rate of the voltage angle and magnitude
estimation errors corresponds the designed dynamics of the
adaptation loops (with ωu = ωω = 2π ·25 rad/s, the theoretical
5% settling times for ũg and ϑ̃g+ are 19 ms and 27 ms,
respectively [19]). Interestingly, similar settling times have
also been reported for virtual-flux based estimation methods
[30]. The faster dynamics in ĩc originate from the poles of the
state observer at ωod = 2π · 1000 rad/s and ωor = ωp.

B. Parameter Errors

The model parameters in the observer may be erroneous
(L̂fc 6= Lfc, Ĉf 6= Cf , and L̂fg 6= Lfg). The parameter
sensitivity of the proposed observer is studied simulating the
observer in various conditions and with different parameter
errors. Fig. 8 shows estimation error responses when the true
circuit parameters are Lfc = 2L̂fc, Cf = 2Ĉf , and Lfg = 2L̂fg.
Fig. 9 shows the same responses when Lfc = 0.5L̂fc, Cf =
0.5Ĉf , and Lfg = 0.5L̂fg. The operating point of the converter
current is ipc = 1 + j0 p.u. and the positive- and negative-
sequence components of the grid-voltage equal those of the
test sequence in Section V-A and Fig. 6.

As Figs. 8 and 9 show, under the parameter errors, the ob-
server remains stable and the convergence rate of the estimated
quantities is similar in comparison with the case of accurate
parameters shown in Fig. 7. However, the effective damping of
the estimation error dynamics is lower with erroneous param-
eters, which can be seen as a high-frequency oscillation in the
transient responses. Moreover, when the observer parameters
differ from the true circuit parameters, the steady-state errors

Fig. 8. Simulated waveforms when Lfc = 2L̂fc, Cf = 2Ĉf , and Lfg =

2L̂fg: (first) converter current estimation error; (second) positive-sequence
angle estimation error; (third) positive-sequence magnitude estimation error;
(fourth) negative-sequence estimation error ũg− = ũgd− + jũgq−.

Fig. 9. Simulated waveforms when Lfc = 0.5L̂fc, Cf = 0.5Ĉf , and Lfg =

0.5L̂fg: (first) converter current estimation error; (second) positive-sequence
angle estimation error; (third) positive-sequence magnitude estimation error;
(fourth) negative-sequence estimation error ũg− = ũgd− + jũgq−.

of the estimated positive-sequence angle and magnitude are
nonzero. The simulated steady-state errors are given in Table
III in two different operating points. The cases 2LCL and
0.5LCL in the table refer to the simulations where Lfc = 2L̂fc,
Cf = 2Ĉf , and Lfg = 2L̂fg and Lfc = 0.5L̂fc, Cf = 0.5Ĉf , and
Lfg = 0.5L̂fg, respectively. The table also shows theoretical
errors calculated using (29). The simulated steady-state errors
match well with the calculated errors even though (29) is
approximative and neglects the capacitor branch of the LCL



Fig. 10. Simulated waveforms when Rfc = Rfg = 0.05 p.u. and Rf =
1 p.u.: (first) converter current estimation error; (second) positive-sequence
angle estimation error; (third) positive-sequence magnitude estimation error;
(fourth) negative-sequence estimation error ũg− = ũgd− + jũgq−.

TABLE III
STEADY-STATE ESTIMATION ERRORS

Operating point: ipc0 = 1 + j0 p.u. and ug+,0 = 1 p.u.
Simulation Calculation (29)

Case ũg+,0 (p.u.) ϑ̃g+,0 (deg) ũg+,0 (p.u.) ϑ̃g+,0 (deg)
2LCL −0.019 −8.76 −0.012 −8.77

0.5LCL −0.001 4.42 −0.003 4.41
R −0.10 0.093 −0.10 0.00

Operating point: ipc0 = 1 + j0 p.u. and ug+,0 = 1/3 p.u.
Simulation Calculation (29)

Case ũg+,0 (p.u.) ϑ̃g+,0 (deg) ũg+,0 (p.u.) ϑ̃g+,0 (deg)
2LCL −0.037 −24.8 −0.034 −24.8

0.5LCL −0.008 13.1 −0.009 13.0
R −0.10 0.086 −0.10 0.00

filter.

Fig. 10 shows simulated estimation error responses when the
LCL filter inductances and capacitance are nominal both in the
real circuit and the observer, but the real LCL filter has series
resistances Rfc = Rfg = 0.05 p.u. in the inductors and Rf = 1
p.u. in the capacitor branch. Again the observer remains stable
and the convergence of the estimated quantities is almost
identical in comparison with the case without resistances
shown in Fig. 7. However, the steady-state estimation error
of the positive-sequence magnitude is −0.1 p.u. when there
are the resistances in the circuit. This steady-state error can
be predicted theoretically using (29) as Table III shows (case
R). Moreover, the steady-state angle estimation error is minor
in this case as shown in the table. Nevertheless, the steady-
state estimation errors could be reduced with a more accurate
system model as explained in Section IV-B.

Fig. 11. Simulated waveforms of the observer proposed in [19] in different
grid-voltage conditions. The first subplot shows the estimated magnitude
(solid) and actual magnitude (dashed) of the positive-sequence voltage, and
actual magnitude of the grid-voltage vector (dash-dotted). The second subplot
shows the estimated angle (solid) and actual angle (dashed) of the positive-
sequence voltage, and actual angle of the grid-voltage vector (dash-dotted).
The third subplot shows the estimated (solid) and actual (dashed) negative-
sequence voltage components.

Fig. 12. Simulated waveforms of the observer proposed in [19] in different
grid-voltage conditions: (first) converter current estimation error; (second)
positive-sequence angle estimation error; (third) positive-sequence magnitude
estimation error; (fourth) negative-sequence estimation error ũg− = ũgd−+
jũgq−.

C. Comparison

The dynamic performance of the proposed observer is
compared with the observer proposed in [19]. The reference
observer [19] was simulated in the same grid conditions
and operating points described in Section V-A. The tuning
parameters of the reference observer were set according to
Table II in order to ensure fair comparison. A notch filter for
the negative sequence was used with the reference observer as
described in [19].
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Fig. 13. Measured waveforms in different grid-voltage conditions: (first) grid
voltages; (second) grid currents; (third) estimated positive-sequence magnitude
(solid) and actual magnitude of the grid-voltage vector (dashed); (fourth)
estimated positive-sequence angle (solid) and actual angle of the grid-voltage
vector (dashed); and (fifth) estimated negative-sequence components.
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Fig. 14. Measured locus of the grid-voltage space vector us
g = ugα+jugβ :

(a) symmetrical conditions; (b) the measured vector rotates an elliptic orbit
when the single-phase dip is applied; and (c) the rotation stops (the vector
is pulsating) when the two-phase dip is applied. The non-circular rotation of
the vector is clearly visible in the measured magnitude ug = |us

g| and angle
ϑg = 6 us

g in Fig. 13.

Figs. 11 and 12 show the simulated waveforms of the refer-
ence observer. The corresponding waveforms of the proposed
observer are shown in Figs. 6 and 7. The both observers under
comparison can track the angle and magnitude of the positive-
sequence voltage without steady-state errors. However, the
reference observer cannot estimate the negative-sequence volt-
age components as the estimation error response of ũg− in
Fig. 12 shows. Furthermore, with the reference observer, the
estimation error of the positive-sequence angle ϑ̃g+ oscillates
after transients but has lower peak values. In general, the
reference observer has a simpler structure and is recommended
if only the positive-sequence quantities are of interest. The
proposed observer is a bit more complex but it enables the
estimation of the negative-sequence voltage (in addition to the
features of the reference observer).
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Fig. 15. Measured waveforms during the phase-angle jump of −60◦ and
frequency changes: (first) space-vector components of the grid-voltage; (sec-
ond) space-vector components of the grid current; (third) estimated positive-
sequence angle (solid) and actual angle of the grid-voltage vector (dashed);
(fourth) estimated angular frequencies ω̂g+ and ω̂gf , and the actual angular
frequency of the grid-voltage vector; and (fifth) estimated positive-sequence
magnitude (dashed) and negative-sequence components (solid).
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Fig. 16. Measured waveforms: (first) grid voltages; (second) grid currents;
(third) active power (solid) and reactive power (dashed); (fourth) DC-link
voltage; and (fifth) estimated positive-sequence magnitude (dashed) and
negative-sequence components (solid). After t = 0.04 s, the power-ripple
eliminating negative-sequence component is added into the converter-current
reference.



VI. EXPERIMENTAL RESULTS

The proposed adaptive observer was experimentally tested
as a part of the grid-voltage sensorless control scheme shown
in Fig. 1(b). The switching frequency of the 12.5-kVA, 400-V
converter under test is 4 kHz. The current controller is a state-
space controller [25], which is tuned to give an approximate
closed-loop bandwidth of 500 Hz. The controller is augmented
with a reduced-order generalized integrator at −2ωg+ for
regulating the negative-sequence current component. The esti-
mated and filtered positive and negative-sequence grid-voltage
components are used in the current reference calculation. A
band-stop filter at 2ωg+ removes the second-harmonic ripple
from the measured DC-link voltage in the voltage control. The
system parameters are given in Table I. The pole placement
of the observer follows the example analyzed in Section IV-A
and simulated in Section V. The tuning parameters are given
in Table II.

A. Unbalanced Grid-Voltage Dips

Figs. 13 and 14 show the measured waveforms when the
following grid-voltage sequence was generated using a 50-kVA
four-quadrant power supply (Regatron TopCon TC.ACS): 1)
symmetrical grid conditions; 2) single-phase voltage dip down
to zero; 3) two-phase voltage dip down to zero; 4) symmetrical
grid conditions. During the test sequence, the converter was
loaded by another back-to-back connected converter such that
the converter under test was supplying the power of 0.3 p.u.
Fig. 13 shows the measured magnitude ug = |us

g| and angle
ϑg = 6 us

g (blue dashed lines) of the grid-voltage vector (1).
The locus of the measured voltage vector is plotted in Fig. 14.
Theoretically, the positive-sequence magnitude in the voltage
vector is 2/3 p.u. and 1/3 p.u. during the single-phase and
two-phase dips, respectively. The negative-sequence magni-
tudes are 1/3 p.u. during the both dips. As Fig. 13 shows, the
positive-sequence magnitude estimate converges quickly and
the steady-state estimate agrees with the theoretical values.
The positive-sequence angle is correctly detected as well,
and it is only slightly perturbed in transients. The negative-
sequence estimate also converges quickly and agrees with the
theory. Moreover, the experimentally measured results match
well with the corresponding simulated results, cf. Fig. 6.

As Fig. 13 shows, the grid currents are balanced even
under highly unbalanced grid voltages. In the beginning, the
magnitudes of the grid currents are 0.3 p.u. because the power
of 0.3 p.u. is transferred. During the grid-voltage dips, the
magnitudes of the currents increase first to 0.5 p.u. and then
to 1 p.u. in order to transfer the same power and to maintain
the power balance in steady state. The voltage transients shown
in the figure are challenging but the sensorless control system
is operating very well and it is able to achieve steady state
approximately within a grid-voltage cycle.

B. Phase-Angle Jump and Frequency Steps

Fig. 15 shows the measured and estimated waveforms when
the phase-angle jump of −60◦ was applied at t = 0.02 s
and the grid-voltage frequency was stepwise changed from 50

Hz to 40 Hz at t = 0.06 s, 40 Hz to 60 Hz at t = 0.11
s, and then back to 50 Hz. The converter was rectifying
the power of −0.5 p.u. (drawn by the another back-to-back
connected converter) during the test sequence. As the figure
shows, the estimated positive-sequence angle ϑ̂g+ converges
quickly after the phase-angle jump. During the angle jump, the
change (dϑg/dt) causes an impulse in the estimated frequency
ω̂g+. Then, ω̂g+ drives the estimate ϑ̂g+ to the correct value.
However, the naturally filtered frequency estimate ω̂gf (green
dashed line) given by (20) is free of impulses. During the
frequency steps, the estimate ω̂g+ converges rapidly whereas
the estimate ω̂gf converges slower but it is noise-free. Some
cross-coupling is present between the estimated quantities, but
the steady state is achieved approximately in 30 ms. In any
case, the proposed observer and control system adapt to the
frequency, which is shown by the grid-current components igα
and igβ . The frequency of the current components follows that
of the voltage components ugα and ugβ .

C. Feeding Negative-Sequence Current

The estimated negative-sequence component ûg− can be
used in the current reference calculation, for example, in order
to eliminate 2ωg+ ripple from the active power pg or reactive
power qg. Fig. 16 shows the measured voltages, currents,
and powers when a negative-sequence current component is
added in the reference current at t = 0.04 s. The converter
was supplying the power of 0.4 p.u., when the grid voltages
were unbalanced (ug+ = 0.7 p.u. and ug− = 0.3 p.u.). The
reference for the negative-sequence current component was
selected to eliminate the active-power ripple and the reference
was calculated using the estimated and filtered negative-
sequence voltage component. As the figure shows, the ripple is
reduced in the active power pg, reducing the ripple also in the
DC-link voltage udc. On the other hand, the currents become
unbalanced according to the instantaneous power theory and
their peak value increases close to 1 p.u.

VII. CONCLUSION

This paper has presented an augmented adaptive observer
for grid-voltage sensorless control of a grid-connected con-
verter equipped with an LCL filter. The proposed observer can
simultaneously estimate the positive- and negative-sequence
components of the grid voltage even in highly unbalanced
conditions. A linearized model has been derived for tuning
of the observer, and the observer has been tested with com-
puter simulations and experimentally. The results indicate fast
tracking of the estimated quantities. Grid-voltage sensorless
control provides redundancy in the case of sensor faults or
cost savings when the voltage sensors can be eliminated. The
proposed observer could be applied, e.g., in active-front-end
rectifiers of motor drives or in solar inverters. In the field of
grid-voltage sensorless control, a future research topic could
be design and analysis of an adaptive observer including series
resistances of the passive components and inductor saturation
in the system model.



APPENDIX A
DISCRETE-TIME STATE-SPACE MODEL

The detailed expressions of the system matrix Φ and input
vector Γc in (3) have been presented in [25]. When ug+,
ug−, and ωg+ are assumed to be constant during the sampling
period Ts, the input matrices Γg+ and Γg− are obtained from

Γg,m =

(∫ Ts

0

eAτej(m−1)ωg+(Ts−τ)dτ

)
Bg (30)

where m = 1 for Γg+ and m = −1 for Γg−. The matrix
A and the vector Bg are from the continuous-time model of
the system, given in [25]. The resulting elements of the input
vector Γg,m = [bg1,m, bg2,m, bg3,m]T are

bg1,m = γ[−mωg+ωp sin(ωpTs) + jm2ω2
g+ cos(ωpTs)

− jω2
p exp(jmωg+Ts)− jδm]/[mδmωg+(Lfc + Lfg)]

bg2,m = γ[ωp cos(ωpTs)− ωp exp(jmωg+Ts)

+ jmωg+ sin(ωpTs)]/[δmωpCfLfg]

bg3,m = γ[mωg+ωpLfc sin(ωpTs)− jm2ω2
g+Lfc cos(ωpTs)

+ j exp(jmωg+Ts)(δmLfg +m2ω2
g+Lfc)− jδmLfg]

/[mδmωg+Lfg(Lfc + Lfg)]

where ωp is the resonance frequency of the LCL filter, γ =
exp(−jωg+Ts), and δm = m2ω2

g+ − ω2
p.

APPENDIX B
SMALL-SIGNAL LINEARIZATION OF THE

ESTIMATION-ERROR DYNAMICS

The estimation-error dynamics (12) are described by the
nonlinear function

x̃a(k + 1) =f [x̃a(k),xa(k),uc(k), ug+(k),

ũg+(k), ϑ̃g+(k), ω̃g+(k)]
(31)

Equilibrium-point quantities of this system are marked with
the subscript 0. If the parameters inside the observer matrices
Φ̂a, Γ̂ca, and Γ̂ga are correct (L̂fc = Lfc, Ĉf = Cf ,
and L̂fg = Lfg) and the frequency estimation error is zero
(ω̃g+,0 = ωg+,0− ω̂g0 = 0), the system and observer matrices
are equal Φa0 = Φ̂a0, Γca0 = Γ̂ca0, Γga0 = Γ̂ga0. It
follows that the nonlinear system has an equilibrium point
{x̃a0 = 0, ũg+,0 = 0, ω̃g+,0 = 0, ϑ̃g+,0 = 0}. In the
vicinity of the equilibrium point, the small-signal deviation
is marked with δ, e.g., δx̃a = x̃a− x̃a0. In terms of the small-
signal deviations, the estimation-error dynamics around the
equilibrium point are

δx̃a(k + 1) =

(
∂f

∂x̃a

)
0

δx̃a(k) +

(
∂f

∂x

)
0

δxa(k)

+

(
∂f

∂uc

)
0

δuc(k) +

(
∂f

∂ug+

)
0

δug+(k)

+

(
∂f

∂ũg+

)
0

δũg+(k) +

(
∂f

∂ϑ̃g+

)
0

δϑ̃g+(k)

+

(
∂f

∂ω̃g+

)
0

δω̃g+(k)

(32)

when constant ωg+ is assumed, i.e., δωg+ = 0. The partial
derivatives are evaluated at the equilibrium point, and they are(

∂f

∂x̃a

)
0

=

[
Φ0 Γg−,0
0 e−2jωg+,0Ts

]
−KoCa(

∂f

∂xa

)
0

=

(
∂f

∂uc

)
0

=

(
∂f

∂ug+

)
0

= 0(
∂f

∂ũg

)
0

= Γ̂ga0,

(
∂f

∂ϑ̃g+

)
0

= jug+,0Γga0(
∂f

∂ω̃g+

)
0

=

[
0 jTsΓg−,0 −

(
∂Γ̂g−
∂ω̃g+

)
0

0 −jTse−2jωg+,0Ts

]
xa0

+

[
jTsΓg+,0 −

(
dΓ̂g+

∂ω̃g+

)
0

0

]
ug+,0 = Γω

(33)

It is to be noted that the elements of the linearized input
vector Γω are generally time-variant. The time dependence
originates from the rotating negative-sequence component
(ug−,0 = [0, 0, 0, 1]xa0) in xa0. In order to shorten notation,
the symbol δ denoting the small-signal deviations is dropped
out in the linearized dynamics in Section III.
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[5] R. Pöllänen, A. Tarkiainen, M. Niemelä, and J. Pyrhönen, “Supply
voltage sensorless reactive power control of DTC modulation based line
converter with L- and LCL-filters,” in Proc. EPE 2003, Toulouse, France,
Sep. 2003, pp. 1–10.

[6] M. Malinowski, G. Marques, M. Cichowlas, and M. P. Kazmierkowski,
“New direct power control of three-phase PWM boost rectifiers under
distorted and imbalanced line voltage conditions,” in Proc. IEEE ISIE
2003, vol. 1, Rio de Janeiro, Brazil, Jun. 2003, pp. 438–443.

[7] I. Agirman and V. Blasko, “A novel control method of a VSC without
AC line voltage sensors,” IEEE Trans. Ind. Appl., vol. 39, no. 2, pp.
519–524, Mar./Apr. 2003.

[8] K. H. Ahmed, A. M. Massoud, S. J. Finney, and B. W. Williams,
“Sensorless current control of three-phase inverter-based distributed
generation,” IEEE Trans. Power Del., vol. 24, no. 2, pp. 919–929, Apr.
2009.

[9] Y. A.-R. I. Mohamed and E. F. El-Saadany, “A robust natural-frame-
based interfacing scheme for grid-connected distributed generation in-
verters,” IEEE Trans. Energy Convers., vol. 26, no. 3, pp. 728–736, Sep.
2011.

[10] M. Malinowski and S. Bernet, “A simple voltage sensorless active
damping scheme for three-phase PWM converters with an LCL filter,”
IEEE Trans. Ind. Electron., vol. 55, no. 4, pp. 1876–1880, Apr. 2008.

[11] M. Liserre, A. Pigazo, A. Dell’Aquila, and V. M. Moreno, “An anti-
islanding method for single-phase inverters based on a grid voltage
sensorless control,” IEEE Trans. Ind. Appl., vol. 53, no. 5, pp. 1418–
1426, Oct. 2006.

[12] J. A. Suul, A. Luna, P. Rodrı́guez, and T. Undeland, “Virtual-flux-based
voltage-sensor-less power control for unbalanced grid conditions,” IEEE
Trans. Power Electron., vol. 27, no. 9, pp. 4071–4087, Sep. 2012.

[13] K. H. Ahmed, A. M. Massoud, S. J. Finney, and B. W. Williams, “A
synchronous DQ frame controller via an LCL coupled filter under un-
balanced three-phase voltage supply conditions,” in Proc. POWERENG
2011, Málaga, Spain, May 2011, pp. 1–6.



[14] L. A. Serpa, S. Ponnaluri, P. M. Barbosa, and J. W. Kolar, “A modified
direct power control strategy allowing the connection of three-phase
inverters to the grid through LCL filters,” IEEE Trans. Ind. Appl., vol. 43,
no. 5, pp. 1388–1400, Sep./Oct. 2007.

[15] G. Wrona and K. Malon, “Sensorless operation of an active front end
converter with LCL filter,” in Proc. ISIE 2014, Istanbul, Turkey, Jun.
2014, pp. 2697–2702.

[16] W. Gullvik, L. Norum, and R. Nilsen, “Active damping of resonance
oscillations in LCL-filters based on virtual flux and virtual resistor,” in
Proc. EPE 2007, Aalborg, Denmark, Sep. 2007, pp. 1–10.
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