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Abstract We present open-source tools for three-dimensional (3D) analysis of photographs of 
dissected slices of human brains, which are routinely acquired in brain banks but seldom used 
for quantitative analysis. Our tools can: (1) 3D reconstruct a volume from the photographs and, 
optionally, a surface scan; and (2) produce a high-resolution 3D segmentation into 11 brain 
regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used 
as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI 
scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on 
synthetic and real data from two NIH Alzheimer’s Disease Research Centers. The results show that 
our methodology yields accurate 3D reconstructions, segmentations, and volumetric measure-
ments that are highly correlated to those from MRI. Our method also detects expected differences 
between post mortem confirmed Alzheimer’s disease cases and controls. The tools are available 
in our widespread neuroimaging suite ‘FreeSurfer’ (https://surfer.nmr.mgh.harvard.edu/fswiki/​
PhotoTools).

eLife assessment
The authors of this study implemented an important toolset for 3D reconstruction and segmenta-
tion of dissection photographs, which could serve as an alternative for cadaveric and ex vivo MRIs. 
The tools were tested on synthetic and real data with compelling performance. This toolset could 
further contribute to the study of neuroimaging-neuropathological correlations.
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Introduction
Morphometric measurements such as cortical thickness and subcortical volumetry can be used as 
surrogate biomarkers of aging (Salat et al., 2004; Walhovd et al., 2005; Coupé et al., 2017) and 
disease (Lerch et al., 2005; Desikan et al., 2009; Dickerson et al., 2009; Blanken et al., 2017) 
via confirmed histopathological changes. Integrating neuroimaging tools with neuropathological 
assessments can enable neuropathological–neuroimaging correlations for studying neurodegener-
ative diseases, that is, connecting macroscopic imaging with histological ground truth derived from 
microscopic imaging (Webster et al., 2021). While ante mortem magnetic resonance imaging (MRI) 
studies provide accurate and reliable morphometric data, they are often unavailable or occur too long 
before death, impeding reliable histopathological correlation. Cadaveric MRI can circumvent these 
challenges, but logistic and legal issues often complicate this procedure.

An alternative to cadaveric imaging is ex vivo MRI, which enables high-resolution image acquisition 
free of subject motion and other physiological noise (Edlow et al., 2019). However, ex vivo MRI also 
has disadvantages, including: tissue degradation due to bacteria and autolysis from death to initiation 
of tissue fixation; cross-linking of proteins due to fixation that dramatically changes MRI properties of 
the tissue; and image artifacts caused by magnetic susceptibility interfaces that do not occur in vivo 
(Shatil et al., 2016).

While ex vivo MRI is relatively uncommon in brain banks that seek to establish neuropathological–
neuroimaging correlations (Ravid, 2009; Love, 2005), dissection photography is routine in nearly 
every brain bank. Collected specimens are typically dissected into coronal slices and photographed 
before further blocking and histological analysis. These photographs, often underutilized, are an 
invaluable information resource that, if leveraged appropriately, can play a vital role in advancing our 
understanding of various brain functions and disorders — mainly when ex vivo MRI is unavailable. To 
this end, we propose a novel software suite that, for the first time, enables three-dimensional (3D) 

eLife digest Every year, thousands of human brains are donated to science. These brains are used 
to study normal aging, as well as neurological diseases like Alzheimer’s or Parkinson’s. Donated brains 
usually go to ‘brain banks’, institutions where the brains are dissected to extract tissues relevant to 
different diseases. During this process, it is routine to take photographs of brain slices for archiving 
purposes.

Often, studies of dead brains rely on qualitative observations, such as ‘the hippocampus displays 
some atrophy’, rather than concrete ‘numerical’ measurements. This is because the gold standard to 
take three-dimensional measurements of the brain is magnetic resonance imaging (MRI), which is an 
expensive technique that requires high expertise – especially with dead brains. The lack of quantita-
tive data means it is not always straightforward to study certain conditions.

To bridge this gap, Gazula et al. have developed an openly available software that can build three-
dimensional reconstructions of dead brains based on photographs of brain slices. The software can 
also use machine learning methods to automatically extract different brain regions from the three-
dimensional reconstructions and measure their size. These data can be used to take precise quanti-
tative measurements that can be used to better describe how different conditions lead to changes in 
the brain, such as atrophy (reduced volume of one or more brain regions).

The researchers assessed the accuracy of the method in two ways. First, they digitally sliced MRI-
scanned brains and used the software to compute the sizes of different structures based on these 
synthetic data, comparing the results to the known sizes. Second, they used brains for which both 
MRI data and dissection photographs existed and compared the measurements taken by the software 
to the measurements obtained with MRI images. Gazula et al. show that, as long as the photographs 
satisfy some basic conditions, they can provide good estimates of the sizes of many brain structures.

The tools developed by Gazula et al. are publicly available as part of FreeSurfer, a widespread 
neuroimaging software that can be used by any researcher working at a brain bank. This will allow 
brain banks to obtain accurate measurements of dead brains, allowing them to cheaply perform quan-
titative studies of brain structures, which could lead to new findings relating to neurodegenerative 
diseases.

https://doi.org/10.7554/eLife.91398
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reconstruction and quantitative 3D morphometry of dissection photographs, powered by modern 
machine learning techniques (Goodfellow et al., 2016) and 3D surface scanning (Salvi et al., 2004). 
Provided that the photographs satisfy some basic requirements (presence of a ruler or fiducial markers 
to estimate pixel sizes), our tools enable volumetric analysis of brain structures from the photographs, 
computationally guided dissection via automated segmentation, and accurate spatial mapping for 
neuropathological–neuroimaging correlation.

Our suite is freely available and includes three modules. The first module is a set of preprocessing 
routines for the photographs that enables the correction of perspective and calibration of pixel sizes. 
The second module is a joint image registration algorithm that allows 3D reconstruction of the photo-
graphs using a 3D surface scan of the brain as a reference. This module can also use a probabilistic 
atlas as a reference for the reconstruction, thus circumventing the need for a surface scanner. This 
scan-free mode enables retrospective analysis of photographs without corresponding 3D scans, albeit 
with lower accuracy than if surface scanning was available. The third and final modules use machine 
learning to provide a high-resolution 3D image segmentation of the reconstructed stack. This module 
combines a state-of-the-art deep segmentation neural network (a U-Net, Ronneberger et al., 2015) 
with a domain randomization approach (Billot et al., 2023a), thus enabling analysis of photographs 
with different intensity profiles, for example, acquired under various illumination conditions, with 
different cameras or camera settings, or from fixed or fresh tissue. Moreover, the machine learning 
method enables the estimation of ‘smooth’, isotropic segmentations that accurately interpolate across 
the gaps between the coronal planes captured in the photographs.

We note that this article extends our previous conference paper (Tregidgo et al., 2020) by (1) 
improving upon the 3D reconstruction methods; (2) using machine learning (rather than Bayesian 
methods) to produce segmentations that are more accurate and also isotropic (i.e., provide labels in 
between slices); and (3) providing extensive experiments on different synthetic and real datasets. The 
rest of this article is organized as follows. First, we present results on three different datasets, both 

Figure 1. Examples of inputs and outputs from the MADRC dataset. (a) Three-dimensional (3D) surface scan of left human hemisphere, acquired 
prior to dissection. (b) Routine dissection photography of coronal slabs, after pixel calibration, with digital rulers overlaid. (c) 3D reconstruction of the 
photographs into an imaging volume. (d) Sagittal cross-section of the volume in (c) with the machine learning segmentation overlaid. The color code 
follows the FreeSurfer convention. Also, note that the input has low, anisotropic resolution due to the large thickness of the slices (i.e., rectangular pixels 
in sagittal view), whereas the 3D segmentation has high, isotropic resolution (squared pixels in any view). (e) 3D rendering of the 3D segmentation 
into the different brain regions, including hippocampus (yellow), amygdala (light blue), thalamus (green), putamen (pink), caudate (darker blue), lateral 
ventricle (purple), white matter (white, transparent), and cortex (red, transparent). (f) Distribution of hippocampal volumes in post mortem confirmed 
Alzheimer’s disease vs controls in the MADRC dataset, corrected for age and gender.

https://doi.org/10.7554/eLife.91398
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synthetic (which enable fine-grained analysis with known ground truth) and real (which enables eval-
uation in real-world scenarios). Next, we discuss these results and their impact on quantitative post 
mortem neuroimaging without MRI. Finally, the Methods section elaborates on the technicalities of 
the preprocessing steps, the reconstruction algorithm, and the deep learning segmentation method.

Results
Volumetric group study of post mortem confirmed Alzheimer’s disease
One of the main use cases of our tools is the volumetric analysis of different cerebral regions of 
interest (ROIs) from dissection photographs, without requiring cadaveric or ex vivo MRI. We used our 
tools to analyze 21 post mortem confirmed Alzheimer’s disease (AD) cases from the Massachusetts 
Alzheimer’s Disease Research Center (MADRC), as well as 12 age-matched controls (N = 33 in total). 
We note that these cases comprise thick (∼10 mm) slabs, sliced by hand, without cutting guides – as 
cutting on anatomic landmarks was prioritized over consistent slice thickness. Therefore, this dataset 
is representative of a challenging, real-world scenario.

Examples of the inputs and outputs of the pipeline can be found in Figure  1 and Video  1 in 
the supplementary material (also available at https://youtu.be/wo5meYRaGUY). The 3D surface scan 
(Figure 1a) reveals the coarse shape of the specimen, in this case a left hemisphere. Our prepro-
cessing tools correct for the perspective and pixel size of routine dissection photographs (b). Then, 
the 3D reconstruction tool uses information from the surface scan to produce a 3D reconstruction of 
the photographs into an imaging volume (c). This volume consists of highly anisotropic voxels, since 
the slice thickness is much larger than the pixel size of the photograph. The 3D reconstruction is fed 
to our machine learning segmentation method (Photo-SynthSeg), which produces a high-resolution, 
isotropic segmentation (d, e), independently of the slice thickness. The segmentations are then used to 
compare the volumes of brain ROIs between the two groups (e.g., the hippocampus, as in Figure 1f).

Table 1 shows the area under the receiver operating characteristic curve (AUROC) and the p-value 
for non-parametric Wilcoxon rank sum tests (Mann and Whitney, 1947) comparing the ROI volumes 
of AD vs controls; we leave the accumbens area and ventral diencephalon out of the analysis as their 
segmentations are not reliable due to poor contrast (Fischl et al., 2002). We note that the AUROC is 
the non-parametric equivalent of the effect size; a value of 0.5 represents chance, while 1.0 represents 
perfect separation. Age and gender were corrected with a general linear model, whereas volumes of 

contralateral ROIs were averaged when full brains 
(rather than hemispheres) were available. Our 
method successfully captures well-known atrophy 
patterns of AD, such as hippocampal atrophy and 
ventricle enlargement.

Quantitative evaluation of 
segmentation with Photo-
SynthSeg
While the AD experiment illustrates the ability 
of our method to detect differences in real-
world data, it is crucial to specifically assess the 

Video 1. Overview of the proposed method.

https://elifesciences.org/articles/91398/figures#video1

Table 1. Area under the receiver operating characteristic curve (AUROC) and p-value of a non-
parametric Wilcoxon rank sum test comparing the volumes of brain regions for Alzheimer’s cases vs 
controls.
The volumes were corrected by age and sex using a general linear model. We note that the AUROC 
is bounded between 0 and 1 (0.5 is chance) and is the non-parametric equivalent of the effect size 
(higher AUROC corresponds to larger differences). The sample size is ‍N = 33‍.

Region Wh matter Cortex Vent Thal Caud Putamen Pallidum Hippoc Amyg

AUROC 0.45 0.52 0.73 0.48 0.65 0.64 0.77 0.75 0.77

p-value 0.666 0.418 0.016 0.596 0.086 0.092 0.005 0.009 0.007

https://doi.org/10.7554/eLife.91398
https://youtu.be/wo5meYRaGUY
https://elifesciences.org/articles/91398/figures#video1
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accuracy of our segmentation and 3D reconstruction methods. To evaluate Photo-SynthSeg, we 3D 
reconstructed the brain volumes from the photographs of 24 cases from the AD Research Center at 
the University of Washington (UW-ADRC), which were cut into uniform 4 mm thick slices. Crucially, 
isotropic FLAIR MRI scans were acquired for these specimens ex vivo prior to dissection, which enables 
the use of MRI as gold standard.

We compare Photo-SynthSeg against ‘SAMSEG’, which is (to the best of our knowledge) the only 
available competing method. SAMSEG is a segmentation algorithm which we originally conceived for 
brain MRI (Puonti et al., 2016), and which employs Bayesian techniques to segment MRI scans irre-
spective of their contrast and pulse sequence. As we showed in Tregidgo et al., 2020, this technique 
can be adapted to 3D reconstructed photographs. Figure 2 shows the segmentation of an UW-ADRC 
case using both methods. As opposed to SAMSEG, Photo-SynthSeg effectively ‘interpolates’ the 
segmentation in between slices, independently of their thickness, and is more robust against uneven 
intensities than the Bayesian method. Photo-SynthSeg also includes a volumetric parcellation of the 
cortex based on the original SynthSeg pipeline (Billot et al., 2023a), which relies on the Desikan–
Killiany atlas (Desikan et al., 2006).

To evaluate Photo-SynthSeg and SAMSEG quantitatively, we computed Dice scores against manual 
segmentations made on a single selected slice per subject. This slice is visually chosen to be close to 
the mid-coronal plane, while maximizing visibility of subcortical structures; an example of such slice, 
along with the manual and automated segmentations, is shown in Appendix 1—figure 3. The Dice 
scores are displayed in Figure 3; as in the previous analysis, the accumbens area and ventral dienceph-
alon are left out of the analysis. The figure also shows two ablations: using a probabilistic atlas instead 
of the case-specific reference; and using a version of Photo-SynthSeg dedicated to 4 mm slice thick-
ness (i.e., the thickness of the UW-ADRC dataset, rather than using the general, thickness-agnostic 
model). The former assesses the impact of having to rely on a generic atlas when surface scans are not 
available, whereas the latter evaluates the ability of our neural network to adapt to thicknesses that 
are not known a priori (thanks to our domain randomization approach). The results show that Photo-
SynthSeg generally outperforms SAMSEG, producing Dice scores over 0.8 for all structures except 
the amygdala – even though SAMSEG is better at segmenting the ventricles, thanks to their large size 
and strong contrast. The plots also show that using the probabilistic atlas produces realistic enough 

Figure 2. Qualitative comparison of SAMSEG vs Photo-SynthSeg: coronal (top) and sagittal (bottom) views of the reconstruction and automated 
segmentation of a sample whole brain from the UW-ADRC dataset. Note that Photo-SynthSeg supports subdivision of the cortex with tools of the 
SynthSeg pipeline.

https://doi.org/10.7554/eLife.91398
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reconstructions, such that the two-dimensional (2D) Dice scores remain high. Finally, the results also 
show the superiority of the thickness randomization strategy over the fixed spacing strategy, even if 
the latter had access to the ground truth spacing of the photographs. Even though the reader may 
initially find this result counterintuitive, it is consistent with our previous findings in MRI segmentation, 
where domain randomization strategies also outperformed targeted simulations (Billot et al., 2020).

This evaluation with Dice scores above is direct, but: (1) is based on a relatively small number of 
slices, and (2) disregards the ultimate purpose of segmentation, which is downstream analysis in 3D 
(e.g., volumetry). For this purpose, we also indirectly evaluated the methods by analyzing the volumes 
of brain ROIs derived from the segmentations of the whole stack. Specifically, we correlated these 
volumes with silver standard values derived from the isotropic FLAIR MRI scans using our ‘standard’ 
SynthSeg for MRI (Billot et al., 2023a). Table 2 shows the correlations and p-values for Steiger tests 
comparing the correlation coefficients achieved by SAMSEG and Photo-SynthSeg – while considering 
their dependency due to the common ground truth sample. The results show once more that Photo-
SynthSeg outperforms SAMSEG for nearly every structure – and in the few cases in which it does not, 
the Steiger test does not yield statistically significant differences. We note that the correlations are 
above 0.8 for most brain structures, indicating that the 3D reconstructed photographs yield usable 
volumes in volumetric analysis. We also note that the correlations are slightly but consistently lower 
for the reconstructions with the probabilistic atlas, yielding correlations close to 0.8 for most brain 
regions.

Quantitative evaluation of reconstruction with digitally sliced MRI data
In addition to the segmentation, it is also desirable to evaluate the 3D reconstruction algorithm with 
the registration error (in mm). Measuring such error with real data would require manual annotation of 
pairs of matching landmarks, which is labor-intensive, error-prone, and not reproducible. Instead, we 
use simulated (digitally sliced) data created from MRI scans. While errors estimated this way may be 

Figure 3. Dice scores of automated vs manual segmentations on select slices. Box plots are shown for SAMSEG, Photo-SynthSeg, and two ablations: 
use of probabilistic atlas and targeted simulation with 4 mm slice spacing. Dice is computed in two-dimensional (2D), using manual segmentations on 
select slices. We also note that the absence of extracerebral tissue in the images contributes to high Dice for the cortex.

https://doi.org/10.7554/eLife.91398
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optimistic compared with real sliced tissue, this approach enables us to analyze the error as a contin-
uous function of slice thickness without manual annotation effort.

For this purpose, we used 500 subjects from the Human Connectome Project (HCP) dataset, which 
includes T1- and T2-weighted MRI scans acquired at 0.7 mm isotropic resolution. After skull stripping 
with FreeSurfer (Fischl, 2012), we simulated dissection photographs and matching surface scans by: 
(1) digitally slicing the T2 scans and (2) using the surface of the T1 as a 3D reference to reconstruct the 
T2 slices. Specifically, we simulated slices with ‍S × 0.7‍ mm thickness (‍S = 2, 4, 8, 16‍), including random 
affine transforms and illumination fields for every simulated slice (see example in Appendix 1—figure 
1). While we could use a nonlinear model, the results would depend heavily on the strength of the 
simulated deformation. Instead, we keep the warps linear as we believe that the value of this experi-
ment lies in the trends that the errors reflect, that is, their relative rather than absolute value.

After digitally distorting the images, we used our method to 3D reconstruct the slices into their 
original shape. The registration error was calculated as the mean voxel displacement in mm between 
the reconstructed and ground truth T2 slices. Additionally, to test the robustness of the reconstruction 
algorithm to uneven slice spacing during dissection, we also analyze the error when a random varia-
tion of the nominal thickness (thickness jitter) is introduced for every slice.

Figure 4 shows the box plot for the mean reconstruction error as a function of the slice spacing and 
thickness jitter. The results show that the reconstruction error is reasonably robust to increased slice 
spacing. On the other hand, thickness jitter yields greater increases in reconstruction error, particularly 
at larger slice spacings. This result highlights the importance of keeping the slice thickness as constant 
as possible during acquisition.

Discussion
Neuroimaging to neuropathology correlation studies explore the relationship between gold-standard 
pathological diagnoses and imaging phenotypes by transferring the microscopic signatures of 
pathology to in vivo MRI. A significant impediment to this effort is the lack of quantitative tools 
for post mortem tissue analysis. For example, quantitative measurements such as cortical thickness 
and specific regional atrophy are often estimated qualitatively from 2D coronal slices during gross 
examination. A solution to this problem is leveraging dissection photography of these coronal slices 
routinely acquired before histology. By designing algorithms to reconstruct 3D volumes from 2D 
photographs and subsequently segment them, we have enabled a cost-effective and time-saving link 
between morphometric phenotypes and neuropathological diagnosis.

Table 2. Correlations of volumes of brains regions estimated by SAMSEG and Photo-SynthSeg from 
the photographs against the ground truth values derived from the magnetic resonance imaging 
(MRI).
The p-values are for Steiger tests comparing the correlations achieved by the two methods 
(accounting for the common sample).

Mask from MRI as reference Probabilistic atlas as reference

SAMSEG Photo-SynthSeg p-value SAMSEG Photo-SynthSeg p-value

White matter 0.935 0.981 0.0011 0.886 0.935 0.0117

Cortex 0.930 0.979 0.0001 0.889 0.920 0.0366

Ventricle 0.968 0.988 0.0004 0.980 0.993 0.0006

Thalamus 0.812 0.824 0.4350 0.812 0.824 0.4252

Caudate 0.719 0.779 0.2525 0.733 0.792 0.2062

Putamen 0.904 0.779 0.9923 0.872 0.792 0.9598

Pallidum 0.727 0.694 0.6171 0.676 0.658 0.5698

Hippocampus 0.830 0.757 0.8873 0.764 0.776 0.4293

Amygdala 0.598 0.703 0.1663 0.576 0.763 0.0221

https://doi.org/10.7554/eLife.91398
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Our new tools are publicly available and utilize modern deep learning techniques and surface 
scanning. Being available as part of FreeSurfer makes the tools easy to use by anyone with little or 
no training. Furthermore, the absence of tunable parameters in Photo-SynthSeg makes the results 
produced by our methods highly reproducible, and the robustness of the tools enables widespread 
application to heterogeneous datasets. This robustness has been demonstrated by applying the tools 
to images from two different biobanks, with different slice thickness, tissue processing, and photo-
graphic setup. On the UW-ADRC dataset, for which MRI scans were available, we achieved correla-
tions above 0.8 between the volumes derived from the photographs and the ground truth obtained 
from the MRI.

Retrospective reconstruction of datasets with no accompanying surface scan available can be 
achieved with a probabilistic atlas. However, such a reconstruction is laden with ambiguities because 
the probabilistic atlas does not have access to the true shape of the tissue – which the surface scan 
directly measures. Whether the increased reconstruction error is tolerable depends on the down-
stream task, for example, shape analysis vs volumetry.

While deep learning segmentation tools are increasingly common in medical imaging research, 
their practical applicability in modalities with highly varying appearance (like dissection photography) 
has been hindered by their limited generalization ability. Photo-SynthSeg circumvents this problem 
by building on our recent work on domain randomization (Billot et al., 2023a), and can segment 3D 
reconstructed stacks of photographs irrespective of the thickness of the slices and of the contrast 
properties of the tissue. Compared with SAMSEG, Photo-Synthseg also has the advantage of esti-
mating the segmentation in between slices (Figure 2). Moreover, Photo-Synthseg inherits the compu-
tational efficiency of neural networks, and can segment a whole case in a few seconds (or tens of 
seconds if no graphics processing unit [GPU] is available) without any special requirements on machine 
learning expertise – thus enabling broad applicability.

Figure 4. Reconstruction error (in mm) in synthetically sliced HCP data. The figure shows box plots for the mean 
reconstruction error as a function of spacing and thickness jitter. A jitter of ‍j‍ means that the nth slice is randomly 
extracted from the interval ‍

[
n − j, n + j

]
‍ (rather than exactly ‍n‍). The center of each box represents the median; the 

edges of the box represent the first and third quartiles; and the whiskers extend to the most extreme data points 
not considered outliers (not shown, in order not to clutter the plot).

https://doi.org/10.7554/eLife.91398
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While registration and volumetric segmentation enable morphometry and neuropathology–neuro-
imaging correlation, precise white matter and pial surface placement on 3D reconstructed photographs 
are crucial for accurate cortical analyses – for example, producing topologically correct segmentations, 
as opposed to volumetric segmentations that can, for example, leak across gyri. In the future, we will 
extend Photo-SynthSeg to enable surface analysis for cortical placement and parcellation. While the 
convoluted nature of cortical surfaces makes this task difficult for photographic volumes, integrating 
the triangular mesh provided by the surface scanner could enable accurate surface placement.

Another direction of future work will be extending the tools to axial and sagittal slices of the 
cerebellum and brainstem. While adapting the 3D reconstruction (Equation 1) is straightforward, the 
U-Net will need additional image synthesis and manual labeling efforts – particularly if one wishes 
to include new regions, such as brainstem nuclei. Additional future analyses will include: correlating 
the segmentation-derived volumes with clinical scores, disease subtypes, and disease duration; using 
techniques like SynthSR (Iglesias et al., 2023) to improve the resolution of the reconstructed volumes; 
exploring nonlinear deformation models for the 3D reconstruction; fully automatizing tissue segmen-
tation from the background using neural networks; and extending the tools to 3D analysis of histo-
logical sections.

Leveraging the vast amounts of dissection photographs available at brain banks worldwide to 
perform morphometry is a promising avenue for enhancing our understanding of various neurode-
generative diseases. Our new tools will allow extraction of quantitative phenotypical information from 
these photographs – and thus augmentation of histopathological analysis. We expect this new meth-
odology to play a crucial role in the discovery of new imaging markers to study neurodegenerative 
diseases.

Materials and methods
Datasets
MADRC
Dissection photography of fixed tissue and companion surface scans for 76 cases from the Massachu-
setts Alzheimer’s Research Center (18 whole cerebrums and 58 hemispheres). Ruling out cases with 
frontotemporal dementia and other comorbidities, as well as subjects that did not pass manual quality 
control (by JWR, RH, and LJD), led to a final sample size of ‍N = 33‍ (21 post mortem confirmed Alzhei-
mer’s and 12 controls). The surface scans were acquired using a turntable with an Einscan Pro HD 
scanner (Shining 3D, Hangzhou, China, 0.05 mm point accuracy). Slices with variable thickness were 
cut with a dissecting knife on a predefined set of landmarks and photographed with a 15.1 MP Canon 
EOS 50D Digital SLR camera. Further details on the dissection and processing of the specimens can 
be found in Appendix 1.

UW-ADRC
Dissection photography of fixed tissue and companion ex vivo MRI scans for 24 cases (all of them with 
both hemispheres) from the Alzheimer’s Disease Research Center at the University of Washington. 
The MRI scans were acquired at 0.8 mm isotropic resolution using a FLAIR sequence. Coronal slices 
were cut with 4 mm thickness using a modified deli slicer and photographed with a 35 Megapixel 
(MP) camera. While no 3D surface scanning was available for this dataset, we obtained surfaces by 
skull stripping the MRI scans and meshing the brain surface. This dataset enables us to compute 
volumetric measurements from the 3D reconstructed photographs and compare them with reference 
values obtained from the corresponding MRI scans. Furthermore, two experienced labelers manually 
traced the contour of nine brain regions (white matter, cortex, lateral ventricle, thalamus, caudate, 
putamen, pallidum, hippocampus, and amygdala) in one slice per case, which enables computation 
of 2D Dice scores. Further details on the dissection and processing of the specimens can be found in 
Appendix 1 and Latimer et al., 2023.

HCP
T1- and T2-weighted MRI scans of 500 subjects from the Human Connectome Project, acquired at 
0.7 mm isotropic resolution. The scans were skull stripped using FreeSurfer (Fischl, 2012). We use 
these scans to simulate dissection photographs and matching surface scans by digitally slicing the 

https://doi.org/10.7554/eLife.91398
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T2 scans and using the T1 as a 3D reference to reconstruct the T2 slices. Further details on the MRI 
acquisition can be found in Van Essen et al., 2012.

T1-39
39 T1-weighted MRI scans at 1 mm isotropic resolution, with manual volumetric segmentations for 36 
brain structures, which we used to train Photo-SynthSeg. We note that this is the labeled dataset that 
was used to build the probabilistic atlas in FreeSurfer (Fischl et al., 2002). The 36 structures include 
22 that are segmented by Photo-Synthseg: left and right white matter, cortex, ventricle, thalamus, 
caudate, putamen, pallidum, hippocampus, amygdala, accumbens area, and ventral diencephalon. 
The remaining 14 labels include: four labels for the cerebellum (left and right cortex and white matter); 
the brainstem; five labels for cerebrospinal fluid regions that we do not consider; the left and right 
choroid plexus; and two labels for white matter hypointensities in the left and right hemispheres.

Surface scanning
Surface scanning (also known as ‘profilometry’) is a technology that is becoming increasingly inexpen-
sive (a few thousand dollars), mainly via structured light technology (Salvi et al., 2004). The preferred 
version of our proposed pipeline relies on a surface scan of the specimen (Figure 1a) acquired before 
slicing. This surface scan, represented by a triangular mesh, is used as an external reference to guide 
the 3D reconstruction of the photographs (details below). While there are no specific technical require-
ments for the surface scan (e.g., minimum resolution), minimizing geometric distortion (i.e., deforma-
tion) between scanning and subsequent slicing is crucial. The surface scan may be acquired with a 

Figure 5. Steps of proposed processing pipeline. (a) Dissection photograph with brain slices on black board with fiducials. (b) Scale-invariant 
feature transform (SIFT) features for fiducial detection. (c) Photograph from (a) corrected for pixel size and perspective, with digital ruler overlaid. (d) 
Segmentation against the background, grouping pieces of tissue from the same slice. (e) Sagittal slice of the initialization of a three-dimensional (3D) 
reconstruction. (f) Corresponding slice of the final 3D reconstruction, obtained with a surface as reference (overlaid in yellow). (g) Corresponding slice of 
the 3D reconstruction provided by a probabilistic atlas (overlaid as a heat map); the real surface is overlaid in light blue for comparison.

https://doi.org/10.7554/eLife.91398
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handheld scanner with the specimen placed on a table, or with the scanner on a tripod and the sample 
on a turntable. As mentioned earlier, our pipeline does not strictly require the surface scan, as it can 
be replaced with a probabilistic atlas with a slight loss of accuracy (as shown in the Results section).

Tissue slicing and photography
In preparation for the downstream 3D reconstruction, some requirements exist for the dissection and 
photography of the brain slabs. Specifically, our pipeline assumes that approximately parallel slices are 
cut in coronal direction – which is the standard practice in most brain banks. We further assume that 
the thickness of these slices is approximately constant, as ‘thickness jitter’ has a detrimental effect on 
the results (Figure 4).

Moreover, we require the presence of fiducials to enable pixel size calibration and perspective 
correction. Ideally, four fiducials are placed on the corners of a rectangle of known dimensions 
(Figure 5a). In the absence of such fiducials, we require the presence of at least a ruler or two orthog-
onal rulers; the former enables pixel size calibration via image scaling, whereas the latter enables 
approximate perspective correction by fitting an affine transform.

Our pipeline allows for multiple slices to be present in one photograph but requires that all photo-
graphs are of the same side of the slices (either anterior or posterior) and that the inferior–superior 
direction of the anatomy is approximately aligned with the vertical axis of the image (as in Figure 5a). 
Ideally, the slices should be photographed on a flat board with a solid background color that stands 
out from the brain tissue, as stronger contrast between tissue and background greatly facilitates 
image segmentation when preprocessing the photographs (further details below).

Preprocessing of photographs
Image preprocessing starts with geometric correction, that is, pixel size calibration and perspective 
correction. In the ideal scenario with four fiducials, the widespread widespread scale-invariant feature 
transform (SIFT, Lowe, 1999) is used to detect such fiducials (Figure 5b) and compute a spatial trans-
form that corrects for perspective distortion and calibrates the pixel size – see Figure 5c, where the 
pixel size calibration enables superimposition of a digital ruler.

Our software also supports a manual mode where the user clicks on two, three, or four landmarks: 
two points with a known distance in between (enables approximate pixel size calibration); three points 
at the ends of two rulers plus their intersection (enables approximate perspective correction with 
an affine transform); or four points on the corners of a rectangle of known dimensions (enables full 
perspective correction). This manual mode is useful when no fiducials are present, but the user can 
still identify features with known dimensions in the photograph, for example, on an imprinted grid 
pattern, or along rulers.

After geometric correction, our methods require a binary segmentation of the brain tissue, sepa-
rating it from the background. While our tools do not have any specific requisites in terms of back-
ground, using a solid background with a distinct color (e.g., a ‘green screen’) can greatly facilitate 
segmentation; otherwise, more extensive manual intervention may be needed. In our experiments, 
using a flat black background enabled us to automatically segment the tissue with a combination of 
thresholding and morphological operations, keeping manual edits to a minimum (a couple of minutes 
per photograph, mostly to erase bits of cortical surface that are sometimes visible around the edge 
of the face of the slice).

Given this binary mask, the final preprocessing step requires the user to specify the order of the 
slices within the photograph – which may be anterior to posterior or vice versa, but must be consistent 
within and across photographs of the same case. Moreover, the user also needs to specify whether 
two connected components belong to the same slice, which often happens around the temporal pole. 
This can be quickly accomplished with a dedicated graphical user interface that we distribute with our 
tools (Figure 5d).

3D volumetric reconstruction from photographs
Recovering a 3D volume from a stack of 2D images entails a consistent 3D reconstruction of the 
stack via joint image alignment – known as ‘registration’ (Maintz and Viergever, 1998; Pluim et al., 
2003; Zitová and Flusser, 2003; Sotiras et al., 2013). We pose 3D reconstruction as a joint opti-
mization problem (Pichat et al., 2018; Mancini et al., 2019) and use a 3D reference volume for the 

https://doi.org/10.7554/eLife.91398
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registration. This volume is ideally a binary 3D mask obtained by rasterizing (filling) the triangular mesh 
from the surface scan. If a surface scan is not available, one can instead use a probabilistic atlas (Shat-
tuck et al., 2008) of brain shape, which provides a rough reference for the reconstruction. However, 
this reference cannot drive the reconstruction toward the actual shape of the specimen nor correct 
deviations from the user-provided slice thickness.

Given ‍N ‍ photographed slices and their corresponding masks, the goal of this optimization frame-
work is to simultaneously identify: (1) a set of ‍N ‍ 2D affine geometric transforms ‍

{
ϕn

}
n=1,...,N ‍ (rotation, 

translation, shear, and scaling for each slice); (2) a scaling factor ‍s‍ in the anterior–posterior direction 
shared by all slices; and (3) a rigid 3D transform ‍Ψ‍ for the reference (rotation and translation). These 
transforms seek to align the slices with each other and with the reference volume.

We note that affine transforms (rather than rigid) are required for the photographs due to imper-
fections in the image preprocessing of the previous section; nevertheless, we expect the shear and 
scaling of these transforms to be small. Furthermore, we use affine rather than nonlinear transforms 
because the latter compromise the robustness of the registration, as they introduce huge ambiguity 
in the space of solutions (e.g., one could add an identical small nonlinear deformation to every slice 
almost without changing the feature of the 3D reconstruction). This affine model makes it particularly 
important to place connected components of the same slice in a correct relative position when there 
is more than one, for example, in the temporal pole. We further note that the scaling ‍s‍ in the ante-
rior–posterior direction is required to correct deviations from the slice thickness specified by the user, 
which in practice is never completely exact.

The optimal set of transforms is obtained by maximizing the objective function ‍F‍ in Equation 1. 
This objective encodes four desired attributes of the reconstructed data, with relative weights α, β, 
γ, and υ:

1.	 The α term encourages a high overlap between the stack of ‍N ‍ 3D reconstructed slice masks 

‍M
[
x;
{
Φn

}
, s
]
‍ and the aligned reference volume ‍R

[
x;Ψ

]
‍; we note that images are a function of 

spatial location ‍x‍.
2.	 The β term promotes a high similarity between the image intensities of successive (recon-

structed) slices ‍Sn
[
x;Φn, s

]
‍ and ‍Sn+1

[
x;Φn+1, s

]
‍, for ‍n = 1, . . . , N − 1‍.

3.	 The γ term encourages a high overlap between successive (reconstructed) slice masks ‍Mn
[
x;Φn, s

]
‍ 

and ‍Mn+1
[
x;Φn+1, s

]
‍, for ‍n = 1, . . . , N − 1‍.

4.	 The υ term promotes minimal scaling and shear in the 2D affine transforms; the function ‍f ‍ is a 
regularizer that prevents excessive deformation of the slices – particularly those showing little 
tissue, for example, the first and last slices of the stack.

	﻿‍
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]
, Mn+1

[
x;Φn+1, s

])
− ν

1
N

N∑
n=1

f
(
Φn

)
‍�

(1)

Mathematically, overlap in Equation 1 is measured with the soft Dice coefficient ‍D‍ (Dice, 1945; 
Sorensen, 1948; Milletari et  al., 2016); image similarity is measured with the normalized cross-
correlation ‍C‍; and the scaling and shearing are measured with the absolute value of the logarithm 
of the determinant of the affine matrices, that is, ‍f

(
Φn

)
‍ is the absolute log-determinant of the 3 × 3 

matrix encoding ‍Φn‍. The relative weights ‍α,β, γ, ν‍ are set via visual inspection of the output on a small 
pilot dataset. For the surface reference, we used: ‍α = .95,β = γ = .025, ν = γ/100‍. For the probabilistic 
atlas, we trust the reference less and also use more regularization to prevent excessive deformation 
of slices: ‍α = .8,β = γ = ν = .1‍. Either way, the 3D reconstruction is in practice not very sensitive to 
the exact value of these parameters. We also note that, as opposed to the preprocessing described 
in the previous section, SIFT is not a good candidate for matching consecutive slices: while it is resil-
ient against changes in pose (e.g., object rotation), perspective, and lightning, it is not robust against 
changes in the object itself – such as changes between one slice to the next.

The objective function ‍F‍ is minimized with standard numerical methods – specifically the limited-
memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS) algorithm (Fletcher, 1987). The LBFGS opti-
mizer is initialized by stacking the photographs with their centers of gravity on coordinate (0,0), and 
then matching the center of gravity of the whole stack with the center of gravity of the 3D reference 
(as illustrated in Video 1 in the supplement, see also https://youtu.be/wo5meYRaGUY).

https://doi.org/10.7554/eLife.91398
https://youtu.be/wo5meYRaGUY


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Gazula et al. eLife 2023;12:RP91398. DOI: https://doi.org/10.7554/eLife.91398 � 13 of 23

If a probabilistic atlas is used instead of the surface scan, the same objective function is used but 
with a slightly different search space. Since we can no longer trust the external reference to correct for 
fine shape correction: (1) we keep the scaling factor of the anterior–posterior direction fixed to ‍s = 1‍ 
(i.e., we trust the slice thickness specified by the user); (2) we use rigid rather than affine transforms 

‍
{
ϕn

}
‍ for the slices (which also has the effect of making the regularizer equal to zero); and (3) we use a 

full 3D affine transform ‍Ψ‍ for the reference. Sample reconstructions of a case with a 3D surface and a 
probabilistic atlas are shown in Figure 5e–g. The probabilistic atlas produces a plausible reconstruc-
tion, which is however far from the real shape of the specimen given by the surface (Figure 5g). An 
additional example from the MADRC dataset is shown in Appendix 1—figure 2. We note that 3D 
reconstruction is implemented in PyTorch, and runs efficiently on a GPU – less than 5 min on a Nvidia 
Quadro RTX 6000.

Segmentation
The 3D reconstructed photographs have various applications (e.g., volumetry, computationally guided 
dissection) that require image segmentation, that is, assigning neuroanatomical labels to every spatial 
location (Pham et al., 2000; Despotović et al., 2015; Akkus et al., 2017). There are two main chal-
lenges when segmenting the 3D reconstructed photographs. First, the appearance of the images 
varies widely across cases due to differences in camera hardware (sensor, lens), camera settings, illu-
mination conditions, and tissue preparation (e.g., fixed vs fresh). And second, accurate volumetry 
requires estimating the segmentation not only on the planes of the photographs but also in between 
slices.

In our previous work (Tregidgo et al., 2020), we adopted a Bayesian segmentation strategy that 
handled the first issue but not the second. Here, we extend a machine learning approach based 
on domain randomization (Tobin et al., 2017) that we have successfully applied to segment clinical 
brain MRI scans with large slice spacing (Billot et al., 2020; Billot et al., 2023a; Billot et al., 2023b). 
Specifically, our newly proposed approach ‘Photo-SynthSeg’ trains a convolutional neural network for 
image segmentation (a 3D U-Net, Ronneberger et al., 2015; Çiçek et al., 2019) with synthetic data 
as follows.

‘Photo-SynthSeg’ starts from a training dataset (the T1-39 dataset) that comprises a pool of 
3D segmentations of brain images at isotropic 3D resolution (Figure 6a). At every iteration during 
training, one of these 3D segmentations is randomly selected and geometrically deformed with a 
random nonlinear transform, which simulates imperfect 3D reconstruction by including a ‘deformation 
jitter’ in the coronal direction, that is, small but abrupt deformations from one coronal slice to the next 
(Figure 6b). This deformed isotropic segmentation is used to generate a synthetic 3D image (also at 
isotropic resolution) using a Gaussian mixture model conditioned on the segmentation (Figure 6c). 
Crucially, we randomize the Gaussian parameters (means and variances) to make the neural network 

Figure 6. Intermediate steps in the generative process. (a) Randomly sampled input label map from the training set. (b) Spatially augmented input 
label map; imperfect 3D reconstruction is simulated with a deformation jitter across the coronal plane. (c) Synthetic image obtained by sampling from 
a Gaussian mixture model conditioned on the segmentation, with randomized means and variances. (d) Slice spacing is simulated by downsampling to 
low resolution. This imaging volume is further augmented with a bias field and intensity transforms (brightness, contrast, gamma). (e) The final training 
image is obtained by resampling (d) to high resolution. The neural network is trained with pairs of images like (e) (input) and (b) (target).

https://doi.org/10.7554/eLife.91398
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robust against variations in image appearance. This synthetic isotropic image is then ‘digitally sliced’ 
into a 3D stack of synthetic coronal photographs, each of which is independently corrupted by a 
random 2D smooth illumination field that simulates inhomogeneities in the illumination of the photo-
graphs (Figure  6d). Importantly, we also randomize the thickness of the simulated slices in every 
iteration and introduce small stochastic variations in thickness around the central value within each 
simulation. This strategy makes the network agnostic to the slice thickness of the reconstructed 3D 
stack at test time. Finally, the simulated stack, which has anisotropic resolution (e.g., 1 mm in-plane 
and several mm in slice thickness), is resampled to the original isotropic resolution of the (deformed) 
3D segmentation (Figure 6e) – typically 1 mm isotropic.

This generative process mimics the image formation process in the real world and has two crucial 
aspects. First, the super-resolution component: Photo-SynthSeg is a U-Net that will produce a high-
resolution (1 mm) isotropic 3D segmentation for every input at test time, independently of the slice 
spacing of the 3D reconstructed stack of photographs (Figure 2). And second, domain randomization: 
sampling different Gaussian parameters, illumination fields, and slice thicknesses at every iteration 
beyond realistic limits (as in Figure 6, where even contralateral regions have different appearance) 
forces the U-Net to learn features that are independent of the intensity profiles of the photographs, 
as well as of the spacing between slices. This process makes the U-Net robust against changes in the 
acquisition. We note that the Gaussian distributions are univariate rather than trivariate, that is, they 
model grayscale rather than red–green–blue triplets; we tried training a U-Net with the latter, but the 
performance on color images was worse than when converting them to grayscale and using the U-Net 
trained with univariate Gaussians.

During training, resampled stacks and corresponding segmentations (Figure 6b–e) are fed to a 
U-Net. The U-Net architecture is the same as in our previous works with synthetic scans (Billot et al., 
2020; Billot et al., 2023a): it consists of five levels, each separated by a batch normalization layer 
(Ioffe and Szegedy, 2015) along with a max-pooling (contracting path) or an upsampling operation 
(expanding path). All levels comprise two convolution layers with 3 × 3 × 3 kernels. Every convolu-
tional layer is associated with an Exponential Linear Unit activation (Clevert et al., 2016), except for 
the last one, which uses a softmax. While the first layer comprises 24 feature maps, this number is 
doubled after each max-pooling, and halved after each upsampling. Following the original U-Net 
architecture, skip connections are used across the contracting and expanding paths. The network is 
trained with a soft Dice loss (Milletari et al., 2016) and the Adam optimizer (Kingma and Ba, 2014). 
The deep learning model is implemented in Keras (Chollet, 2015) with a Tensorflow backend (Abadi 
et al., 2016) and runs on a few seconds on a Nvidia Quadro RTX 6000 GPU. Training takes around 7 
days on the same GPU.

Finally, we note that there are two different versions of Photo-SynthSeg: one for full cerebra and 
one for single hemispheres. The later is trained with left hemispheres and flipped right hemispheres, 
and can thus be used as is for left hemispheres. To process a right hemisphere, we simply left–right 
flip it, segment it, and flip the results back. While the default Photo-SynthSeg pipeline segments the 
cerebral cortex as a whole (i.e., as in Figure 6a), our tool also offers the option of subdividing it into 
parcels as defined by the Desikan–Killiany atlas (Desikan et al., 2009), like in Figure 2. This is achieved 
with the cortical parcellation module (Segmenter S3) of our tool ‘SynthSeg’ (Billot et  al., 2023a), 
which is also distributed with FreeSurfer.
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Appendix 1
Data acquisition at the Massachusetts Alzheimer’s Disease Research 
Center (MADRC)
The whole brain is removed using standard autopsy procedures. After removal of the dura matter, the 
brain is weighed, photo-documented, and then fixed in 10% neutral-buffered formalin (NBF). Some 
specimens are cut along the midline sagittal plane with one hemibrain frozen for future biochemical 
studies. After at least 1 week of fixation, the specimens are photo-documented again. The posterior 
fossa is then dissected off the fixed full or hemibrain through the midbrain at the level of cranial 
nerve III, and the supratentorial portion of the brain is 3D surface scanned.

After scanning, the brain or hemibrain is sectioned at defined anatomical landmarks (anterior 
temporal tips, optic chiasm, infundibulum, mamillary bodies, cerebral peduncles, red nuclei, and 
colliculi) with the frontal and occipital lobes additionally sectioned at approximately 10 mm intervals. 
The front and back of all sections are then photographed with a metric ruler included for size 
reference. The photographs are then deidentified for further analysis.

Data acquisition at the Alzheimer’s Disease Research Center of the 
University of Washington (UW-ADRC)
The whole brain is removed using standard autopsy procedures. The brain is weighed and photo-
documented, and then the meninges are removed. For donors with a post mortem interval (PMI: the 
time interval between death and procurement) longer than 12 hr, the whole brain is fixed in 10% NBF 
with no tissue frozen. A rapid slicing protocol is performed for donors with a post mortem interval 
of fewer than 12 hr. For a rapid protocol, the brain is bisected along the midline, and one hemibrain 
is placed in a bucket with 10% NBF for 2 weeks. The other hemibrain is 3D surface scanned, then 
placed in a scaffolding box with the vermis of the cerebellum flush against the posterior wall. The 
hemibrain is embedded in freshly mixed dental alginate (540 g powder blended in 4 l of water) and 
submerged until the alginate is set. The alginate block containing the hemibrain is placed in a slicing 
sled with the frontal pole toward the front. The hemibrain is sliced anterior to posterior in 4 mm 
slices. All slices are set on Teflon-coated aluminum plates and photographed. Alternating slices are 
set to be flash-frozen, with the remaining slices fixed in 10% NBF. The hemibrain (rapid) or whole 
(non-rapid) brain is fixed in 10% NBF for 2 weeks, embedded in agarose, and scanned in a 3T MRI 
scanner.

Following the MRI, the agarose-embedded brain is sliced on a modified deli slicer for precise 4 
mm tissue slabs aligned with the ex vivo MRI images for image-guided tissue sampling to standard 
tissue sampling following the current National Institute of Aging-Alzheimer’s Association (NIA-AA) 
consensus guidelines. After sampling, all blocks are processed and embedded in paraffin according 
to standard techniques. Following current NIA-AA guidelines, the resulting Fast-Frozen Paraffin-
Embedded blocks are cut and stained for diagnostic analysis. Histologically stained slides are 
scanned into the HALO (https://indicalab.com/halo/) imaging workstation using an Aperio AT2 slide 
scanner and are analyzed by a trained neuropathologist.

https://doi.org/10.7554/eLife.91398
https://indicalab.com/halo/


 Tools and resources﻿﻿﻿﻿﻿﻿ Neuroscience

Gazula et al. eLife 2023;12:RP91398. DOI: https://doi.org/10.7554/eLife.91398 � 22 of 23

Appendix 1—figure 1. Simulation and reconstruction of synthetic data. Top row: skull stripped T1 scan and 
(randomly translated and rotated) binary mask of the cerebrum, in yellow. Second row: original T2 scan. Third row: 
randomly sliced and linearly deformed T2 images. Bottom row: output of the 3D reconstruction algorithm, that is, 
reconstructed T2 slices and registered reference mask overlaid in yellow.

https://doi.org/10.7554/eLife.91398
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Appendix 1—figure 2. Reconstruction with surface scan vs probabilistic atlas. (a) Initialization, with contour of 
3D surface scan superimposed. (b) Reconstruction with 3D surface scan. (c) Reconstruction with probabilistic atlas 
(overlaid as heat map with transparency); the contour of the surface scan is overlaid in light blue, for comparison. 
Even though the shape of the reconstruction in (c) is plausible, it is clearly inaccurate in light of the surface scan.

Appendix 1—figure 3. Example of mid-coronal slice selected for manual segmentation and computation of Dice 
scores. Compared with the FreeSurFer protocol, we merge the ventral diencephalon (which has almost no visible 
contrast in the photographs) with the cerebral white matter in our manual delineations. We also merged this 
structures in the automated segmentations from SAMSEG and Photo-SynthSeg in this figure, for a more consistent 
comparison.

https://doi.org/10.7554/eLife.91398

