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Abstract
Wepresent a new technique for visualizing high-dimensional data called clusterMDS (cl-MDS),
which addresses a common difficulty of dimensionality reductionmethods: preserving both local and
global structures of the original sample in a single 2-dimensional visualization. Its algorithm combines
thewell-knownmultidimensional scaling (MDS) tool with the k-medoids data clustering technique,
and enables hierarchical embedding, sparsification and estimation of 2-dimensional coordinates for
additional points.While cl-MDS is a generally applicable tool, we also include specific recipes for
atomic structure applications.We apply thismethod to non-linear data of increasing complexity
where different layers of locality are relevant, showing a clear improvement in their retrieval and
visualization quality.

1. Introduction

Data complexity is a reflection of theworld’s complexity. Thismanifests itself in the presence of high-
dimensional datasets in allfields of science and the humanities. Even though there are several types of data
complexity, dimensionality alone can per se drastically reduce the insight (even the scientific knowledge) that we
can extract from a given sample. In this context, data visualization can be very valuable, albeit extremely difficult
to achievewith a high number of dimensions n (where highmeans n> 3). An obvious approach to tackle this
problem is reducing the number of dimensions involved, so as to unravel the original informationwithin our
limited ‘visual/dimensional grasp’. In practice, this is essentially equivalent tofinding a (satisfactory)map
between a low-dimensional representation of the data (preferably within a 2–3 dimensional Euclidean space)
and the original high-dimensional representation.

The so-called dimensionality reduction techniques are an example of how to achieve one suchmap,
increasingly used thanks to the popularization ofmachine learning (ML) and datamining inmost fields of
science. Thesemethods generate an (either linear or non-linear) embedding that leads to an optimized candidate
low-dimensional representation of the original sample.Note that we refer to candidate representations; despite
its existence, themap is not necessarily unique nor exact [1]. There is an unavoidable tradeoff between the
amount of information preserved and the dimensionality reduction required, leading to a plethora of possible
approaches and an extensive literature on thematter. Some of the best established among these techniques are
principal component analysis (PCA) [2], t-distributed stochastic neighbor embedding (t-SNE) [3, 4], Isomap [5]
andmultidimensional scaling (MDS) [6–8]. Such variety ofmethods is, however, a symptomof a deeper
problem: while they aim for the samemathematical object, their outputs differ widely.More importantly, the
differing representations/visualizations can lead to disagreement in the interpretation and retained knowledge
that can be obtained from a dataset.

Ideally, a suitable goodness-of-fit test would allow the user to choose the best algorithm for a given sample.
Unfortunately, there is no universalmetric thatmeasures the accuracy of the resulting embedding nor its quality
as a visualization of the original sample [1, 9, 10], not tomention both simultaneously. Having no absolute
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measure of the quality of amethod, a sensible approach is to reexamine the aforementioned techniques in order
to overcome some of their particular shortcomings, usually with the objective to either obtain an overall
mathematical improvement or a concrete domain-specific one. Examples of the former, such as the uniform
manifold approximation and projection (UMAP)method [11], focus on increasing the robustness of previous
theoretical foundations, with special emphasis on theirmathematically based algorithmic decisions. On the
other hand, improvements for domain-specific applications aremotivated by the poor performance and
visualizations obtained for high-dimensional non-linear data, e.g., biological data in the case of the potential of
heat diffusion for affinity-based transition embedding (PHATE) tool [12].

This paper introduces a newmember of the last category that we call clusterMDS (cl-MDS) [13], motivated
by previous workwith atomic structures. Thismethod arises from the need for an embedding tool which
hierarchically preserves global and local features in the same visualization, given their significancewhen
analyzing atomic databases. Due to the inherent local or global nature of the algorithms, just retaining local
structures without detriment to global ones poses a serious challenge to themajority of dimensionality reduction
techniques, especially to those favoring local distances over other scales (e.g., t-SNE andUMAP). In this context,
methods that focus on preserving the global distance structure (e.g.,MDS and Isomap) tend to performbetter,
but are heavily reliant on the distribution of local features of the dataset. cl-MDS is our attempt at combining the
strengths of (metric)MDSwith a data clustering technique.While similar ideas have already been explored in
different localMDSmethods [14–16], we use a carefully devised algorithm that always includes at least one
globalMDS embedding. This is a crucial difference, that allows us to retrieve and to embed several layers of
locality consistently.

Despite our background andmotivation, we have developed this algorithmbearing a general approach in
mind; while the nuances of each samplemay differ across domains, some of them are likely to possess global and
local structures that could benefit from this new tool. As a result, this paper is organized as follows. Section 2
presents a detailed description of the cl-MDS algorithm and its general features. Section 3 includes a diverse
selection of examples aswell as some comparisonswith othermethods. The advantages and disadvantages of cl-
MDS are discussed there too.We expand on ourmotivation in section 3.2, wherewe highlight the value of cl-
MDS for visualizing kernel similarities of atomic environments.We summarize and conclude in section 4.
Domain-specific recipes for atomic structure visualization are given in appendix.

2. ClusterMDS algorithm

Themain purpose of cl-MDS is to obtain a low-dimensional representation of some high-dimensional data,
where the distances between data points resemble the original ones asmuch as possible, similarly tometric
MDS [8]. However, the key additional constraint relates to preserving themaximumamount of local
informationwhile improving the visualization of global structures with a sole embedding. As discussed earlier,
most of the current dimensionality reductionmethods typically fail to capture that interplay between the local
and global details, since they usually focus on either the former or the latter.

With this inmind, let us consider a sample ofN data pointsX= {x1,K,xN} contained in a high-dimensional
metric space n, where n> 2 and { }= ¼ N1, , denotes its set of indices. Given an associated distancematrixD
with elementsDij for each Î i j, , the intended output of the algorithm is a low-dimensional representation
Y= {y1,K,yN} ofXwithin 2. Unlike othermethods, the target number of dimensionsm isfixed (m= 2)
because cl-MDShas been developed as a visualization tool, rather than a general dimensionality reduction
technique. Also, note that the notion of distance refers here to anymetric function defined onX, whichwill be
used as a dissimilaritymeasure.

The algorithm consists of three parts. The first and second are responsible for identifying the local and global
structure ofX, respectively, and computing their corresponding (independent) 2-dimensional embeddings.
Since thosemappings give rise to different representations in 2, the third part of the algorithm seeks to
reconcile the information (local and global) into a single representation, leading to ÌY 2 .More specifically,
the following steps are performed (see figure 1):

A. Identify local structures

1. Clustering using k-medoids, with k=Ncl, separates the dataset intoNcl data clusters.

2. MDS embedding of each cluster, separately (Ncl independent localmaps).

B. Identify the global structure

1. Selection of reference (anchor) points in each cluster.
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2. JointMDS embedding of reference points only (globalmap).

C. From local to global embedding

1. Checking for pathological configurations.

2. Carry local representation over to the globalmap, preserving the local structure of the data.

These steps constitute the core of the cl-MDS algorithm and are further explained in the following
subsections.

Since the division between local and global data structure is necessarily dataset-specific, we have extended
the base cl-MDS algorithmoutlined above to accommodate an arbitrarily complex nested hierarchy of the data
structure. That is, the cl-MDS algorithm can perform an arbitrary number of levels of embedding, in practice
usually limited to a few, by hierarchically grouping small clusters together into bigger ones. This feature can be
useful for particularly complex datasets and is introduced in section 2.4. Additional features of the algorithm are
presented in appendix, focused on a case application to representing atomic structures.

2.1. Local structures
Thefirst part of cl-MDS seeks to identify all the local information present in the sampleX.While there are global
dimensionality reduction techniques, such asMDS, that in principle preservemost local structures, their
performance significantly deteriorates as the size and complexity ofX increases (see section 3 for examples).We

Figure 1. Steps of the cl-MDS algorithm: (1) k-medoids clustering of the data; (2)MDS-based local embedding of the individual
clusters; (3) anchor-point selectionwithin the individual clusters; (4)MDS-based global embedding of the anchor points only; (5, 6)
global embedding of all data points based on transformations derived from (2, 4).

3
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can ameliorate this problemby providing a sensible division of the sample into subsets of related data points and
then computing a 2-dimensional embedding individually for each subset. Though itmight seem thatwe are
replacing one problemwith another, this solution is quite convenient for our purposes aswill become clear in
the next subsections. Additionally, since the algorithm and its output are based on dissimilarity data, we have a
natural criterion for a classification into subsets. Using that information, we can divideX inNcl subsets known as
clusters. Theirmain characteristic is the low dissimilarity values betweenmembers of a same cluster compared
with those for points in different ones. As a result, each subset has a smaller distribution of dissimilarities than
the complete sample, whichwill also help in our search for a finer embedding.

Therefore, the cl-MDS algorithm starts with the computation and optimization of a clustering ofX (step 1),
with the distancematrixD and the total number of clustersNcl as input parameters. A suitable clustering
technique is the k-medoidsmethod [17, 18], with k=Ncl in our case. Unlike similar (and arguablymore
popular) barycenter-based algorithms such as k-means [19, 20] or spectral clustering [21], k-medoids builds
each cluster considering amedoid. This is the element in a cluster withminimal average dissimilarity to the
remaining points in that same cluster. Thus, the k-medoids clustering process relies on selecting actual points
from the sample as centroids, rather than these centroids being calculated as the coordinates in nwith,
respectively, the smallest average intracluster distances. The distinction is important because, even though all
points inX belong to n, not all points in n can necessarily bemapped back to ameaningful or interpretable
data point.We provide a concrete example of this lack of bijection in appendix for the smooth overlap of atomic
positions (SOAP) high-dimensional representation of atomic structures [22], whichmotivates our choice of
clustering technique.

For computational efficiency, we have reimplemented Baukhage’s k-medoids Python recipe [18] in Fortran.
Our implementation, that we callfast-kmedoids [23], can be easily built into a Python packagewith
F2PY [24].fast-kmedoids incorporates several other new features beyond increased speed, including
optimization of initialmedoid selection. The latter constitutes one of themain problemswith centroid-based
techniques, whose result heavily relies on the initialization. Since random selection is too volatile on its own, we
combine it with farthest point sampling to select then_isomost isolated points from the sample. By default, we
setn_iso= 1. The complete clustering process in cl-MDS is performed as follows:

1.1 Use the k-medoids algorithm to obtain a set of clusters { }= ¼  , , N1 cl
and their corresponding medoids

{ }= ¼ m m, , N1 cl
, where Î mk k, Ì k and Îx Xmk

for any k= 1,K,Ncl.

1.2 Compute the relative intra-cluster incoherence [25],

⎛

⎝
⎜

⎞

⎠
⎟ ( )å å=

= Î N
DI

1
, 1

k

N

i
i mrel

1
,

k k

k

cl

where N k
denotes the cardinality of k .

1.3 Repeat until a fixedmaximum number of tries is reached, for a different medoid initialization. Keep the set
withminimal Irel, ensuring the lowest internal incoherence of the clusters among all candidate k-medoids
solutions.

In our cl-MDSPython implementation [13], the number of repetitions is set by the parameteriter_med,
while the initialization of k-medoids is controlled byinit_medoids="random" |"isolated"
(default). The default option forces the inclusion of (at least) themost isolated point in the initialization.We
recommend to test different proportions of isolated initialmedoids (n_iso_med), especially for highly uneven
data distributionswhere certain data types are infrequent but very relevant (e.g., when interesting areas of the
configuration space are poorly sampled). Also, note that extensive iteration is needed for a robust initialization,
and it is not guaranteed tofind the globalminimumconfiguration ofmedoids. The user can provide their
custom initialmedoids, e.g., when opting for amore thorough search using alternative optimization
approaches.

Next, we proceedwith the embedding, step 2. A low-dimensional representation ( )
Y
l
k
for each cluster k is

computed applying the standardMDSmethod, with k= 1,K,Ncl. In particular, we use aweighted variation [13]
of themetricMDS implementation included in the Pythonmodulescikit-learn [26]. In this version of the
method, the coordinates in the low-dimensional space are optimized such that the pairwise distances between
the embedded data points reproduce the input dissimilarity data as closely as possible. This is achieved by
minimizing the stress, an objective function defined as
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( ) ( )åås = -
>

w D d , 2
i i j

ij ij ij
2

where dij andwij correspond to the computed distances in the low-dimensional space and their weights
respectively, with Î i j, . Therefore, each data point gets an optimized representation using a non-linearmap.
Note thatweneed to partitionD considering the previous set of clusters before computing theMDS embeddings;
that is, each representation ( )

Y
l
k
is obtained from a stressσk restricted to Î i j, k. An additional remark: the

current cl-MDS implementation does not addressmissing values in the distancematrix, since it only accepts
weights per cluster (wk for all Î i j, k). That said, the code could be carefully adapted in the future to
accommodatemissing dissimilarities [27]; meanwhile, a data-specific pre-processing step is needed in such case.
Similarly, we couldweight the importance of each data point in the stress inversely to some expected noise,
handling noisy data.

Once step 2 concludes, a set of embeddings { }( ) ( ) ( )= ¼ Y Y Y, ,l llocal
N1 cl

is obtained.Hence, the output is a

collection ofNcl 2-dimensional representations containing distinct ‘slices’ of local information, despite reaching
the same target space. Aswewill shownext, they do not correspond to thefinal representationY of our algorithm
either.

2.2. Global structures
The second part of the cl-MDS algorithm gathers the global information andmaps it to a 2-dimensional
Euclidean space 2 . As for the local embeddings, we utilize the same dimensionality reduction technique,MDS.
Aswe discussed in section 2.1,MDSmapping of thewhole samplemay lead to unsatisfactory results for large
datasets, whereas applying it to a small subsetmade of selected points could give us enough insight into its global
features. That subsetmust also contain several reference points from each cluster, enclosing asmuch local
information as possible. Since the distribution of those points also determines the globalmap, theywill act as
anchor points between local and global representations. Therefore, this part of cl-MDS is divided in two steps:
finding a suitable collection of reference points that ‘frames’ all clusters (step 3) and, then, proceedingwith their
embedding (step 4).

Step 3 selects as anchor points a subset ofX aiming at satisfying two conditions simultaneously: preserving a
maximal amount of local information and outlining the overall sample features. Intuitively, we need at least one
anchor point from each cluster to grasp their global distribution. However, this would disregard the local
structure within the clusters. Therefore, in practice, up to four anchor points per cluster (1� nanc� 4) are
chosen to both ensure the aforementioned preservation of local features and ease theMDSminimization
problem. The benefits of this choice are further discussed on section 2.3.Hence, this part of the algorithm
searches the high-dimensional representation of each cluster k for the vertices { }= ¼ Ì a a, ,k k kn k1 anc

which define the tetrahedron ofmaximal volume, for k= 1,K,Ncl. The detailed procedure is as follows:

3.1 Check if the cardinality N k
of cluster k satisfies > N Nmax

k k
. For the sake of computational efficiency,

large clusters benefit fromdiscriminating between points to reduce the list of candidate vertices before
considering any tetrahedra. In that case, the p-th percentile of the distance to themedoidmk is chosen as
threshold, leaving only farther points in k as vertices. The percentile rank p is customized for different N k

with the parameterparam_anchor. Our tests indicate that =N 70max
k

is a robust choice, and this is
hardcoded in the cl-MDS program.

3.2 Compute the volume of each possible tetrahedronwhose vertices v are a subset of the (reduced) list of points
in k. Since a tetrahedron corresponds to a 3-simplex S3, its volumeV can be computed using the
CayleyMenger determinant as follows [28, 29]:

( )
( !) [ ]

( )=


V S
vD

1

2 3

0 1

1
, 33

2
3 2

4

4

where ( )=1 1, 1, 1, 14 andD[v] is the 4× 4 submatrix ofD corresponding to the vertices of the 3-simplex.
We note here that the tetrahedron’s volume is computed directly from the distances, and that these
distances are not necessarily based on an Euclideanmetric.

3.3 Keep the set of verticesk forming the tetrahedronwithmaximal volume.

Repeating those steps for each cluster, we obtain the complete set of anchor points ⋃= = k
N

k1
cl .We opted

for the volume as ameasure of the amount of preserved information, although one could argue that there exist
better criteria, such as the number of data points enclosed by the tetrahedron. Thosemeasures are nonetheless
muchmore expensive computationally given their dependence on N k

, whereas the volume criterion is
independent of it.
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Finally, step 4 is carried out. Applying the sameweightedmetric variation of theMDSmethod from step 2, a
2-dimensional representation of the anchor points { ∣ }( ) ( )= Î Y y a

a ianchor
g g

i
is computed.Notably, those new

coordinates encode the global 2-dimensional distribution of the local structures previously clustered.

2.3. From local to global embedding
Wehave so far obtained a collection of low-dimensional representations of the original datasetX, characterized
by preserving local and global structures separately. These embeddings are limited to certain subsets of points,
i.e., anchor points in the case of the global one and clusters in the case of the local ones. The last part of the
algorithm seeks to reconcile these two independent representations to achieve a complete representation Y ofX,
bymapping each cluster’s local coordinates into the globalmap. That is, given a cluster k with k= 1,K,Ncl, we
can leverage its anchor points k, whose coordinates are known in local and global representations, to obtain a
suitable transformation for all of itsmembers.

Two types of transformations are implemented: affine transformationsA, and projective transformationsH
(also known as perspectivemappings or homographies) [30]. The simpler affine transformations preserve
parallel lines, as opposed to the non-linearmaps performed by theMDS algorithm.Hence, homographies were
introduced for the sake of consistency, since they always preserve incidence (relations of containment between
points, lines and planes) but not parallelism. There are other properties that are not preserved by theMDS
algorithm, suggesting that there is room for future improvement in this direction. For instance, the relative
ordering of distances between points is not always preserved, despite theMDS efforts of reproducing relative
distances [see equation (2)]. This property will influence the selection process in step 5, as we explain below.

Before computing a transformation operator (in the formof amatrix), we need to ensure the absence of
pathological configurations. Step 5 determines themost suitable transformation (affine or projective) for each
cluster, depending on the number of anchor points nanc and their relative distribution in both representations.
The importance of this last property lies in its relation to convexity, which is a necessary (and sufficient)
condition for homography. That is, the anchor pointsk (k= 1,K,Ncl) form a quadrilateral in each
representationwhose convexity is not ensured in bothmaps (as anticipated above), potentially leading to an ill-
conditioned transformation. Thus, the pathology check for a cluster k is performed as follows:

5.1 Check if nanc< 4. In that case, an affine transformation Ak is chosen trivially and no further steps are
needed.

5.2 Check if k does not coincide with its convex hull (i.e., the smallest convex subset in k containing k) in
the local representation ( )

Y
l
k
. This corresponds to one of the anchor points being enclosedwithin the triangle

defined by the other three, or to (at least) three anchor points being collinear. In that case, a homography is
ill-conditioned andwe redefinek as its convex hull, implying nanc< 4 and obtaining the result of step 5.1.
The convex hull is computed using theQhull library [31] throughscipy.spatial.
ConvexHull [32].

5.3 Repeat the previous check, now using the global representation ( )
Y
g
k
. If true, the four anchor points will be

used to compute an affine transformationAk. Otherwise, the convexity is confirmed in both representations
and a homographyHk is chosen.

Once each cluster has been checked, the algorithm can proceedwith theirmapping using themost
appropriate transformationTk for each k= 1,K,Ncl, whereTk corresponds toAk orHk. For simplicity, we use
homogeneous coordinates to express the details of step 6. In this notation, any point p= (x, y) from 2 has an
homogeneous representation ˜ ( )=p x y, , 1 . On the other hand, any homogeneous point ˜ ( )=q u v w, , is
identifiedwith ˜ ˜ ( )= = r q w u w v w, , 1 , implying the existence of a bijection betweenCartesian
coordinates in the Euclidean plane and homogeneous coordinates in the projective plane ( 2 ). Alternatively,
equivalence classes can be used to understand the concept of homogeneous coordinates within amore rigorous
theoretical framework [33]. This notation allows us to represent the transformations as simplematrix
multiplications, whose details are explained below. Then, step 6 is organized as follows:

6.1 Compute the transformationmatrixTk that solves the equation

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
( ) ( )

=y y
T

1 1
, 4a ak

g l

i i

for each Î ai k.
In particular, affine transformations (usually represented as the composition of a linear transformation

Lk and a translation bk) correspond to the followingmatrix,
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⎜ ⎟
⎛
⎝

⎞
⎠

( )= A
L b

0 1
, 5k

n

k k

where ( )=0 0, 02 for transformations in 2 , and, therefore, they are obtained as the least-squares solution
of equation (4).

On the other hand, a homographymatrix [34] has the form

( ) ( )( ) ( )=
-

H A F A , 6k
g

k k
l1

where ( )Ak
l is the affine transformation from the localk coordinates to the canonical quadrilateral {(1, 0),

(0, 0), (0, 1), (a, b)}, with ( ) ( ) ( )=a b yA,
ak

l l

3
. Likewise, ( )Ak

g is the equivalent transformation from the global

coordinates to a canonical quadrilateral whose fourth point is ( ) ( ) ( )=c d yA, k
g

a
g

3
. Both affine transformations

can be computed using the least-squaresmethod too. Finally, F is a linear fractional transformation from the
first canonical quadrilateral into the second,

⎛

⎝
⎜

⎞

⎠
⎟

( ) ( )
( )=

- -

bcs
ads

b cs at a ds bt abt
F

0 0
0 0 , 7

where s= a+ b− 1 and t= c+ d− 1 are positive for convex quadrilaterals. Since both pairs (a,b) and (c,d)
are known from the previous affine transformations, F is known too.

6.2 Compute the global representation of cluster k using the previousmapping,

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
( )¢ =y

w
yT
1

, 8i ik

l

and applying the perspective divide ( ) = ¢y y w
i
g

i
/ to each Î i k.

6.3 If Tk=Hk, an affine transformation is also computed for comparison. We retain the result with the lowest
residue,

( ) ( ( )) ( )( ) ( )å= -R y yT T , 9
i

i
l

i
g

k k
2

in order tominimize the effect of outliers.

As a result of step 6, we obtain the output of the cl-MDS algorithm, ⋃ { }( )= = ¼= Y Y y y, ,k
N

N1
g

1k

cl . These steps
constitute the core of the cl-MDS algorithm.

2.4. Cluster hierarchy and sparsification
Additional features are implemented to complement and improve the cl-MDS algorithm.Herewe introduce the
general ones, whereas appendix details those specific to visualization of databases of atomic structures.While cl-
MDS strives to preserve local and global structures, its base algorithm sometimes lacks the sufficient flexibility
formapping complex databases where different layers of locality can bemeaningful. To address this issuewe
introduce cluster hierarchy. In a hierarchical cluster setup, the number of clusters hyperparameterNcl is replaced
by a hierarchy hyperparameter,

[ ] ( )= ¼h N N N, , , ,1 , 10level 0 level 1 level 2

whereNlevel 0 refers to the finest clustering level and 1 represents thefinal globalMDS embedding (i.e.,
Nlevel 0>K>Nlevel m>K> 1). This list enables a hierarchical embedding on steps 3 to 6 thatmimics the idea
behind hierarchical clustering [35]. Each levelm corresponds to a grouping ( ) m of the dataset with a specific
embeddingY(m) in the 2-dimensional Euclidean space, such that the next level (m+ 1)merges several of those
clusters and computes a new 2-dimensional embedding Y(m+1), usingY(m) as the local representation. In this
way, hierarchical embedding improves the representation of samples with several levels of locality. The simplest
hierarchy [Ncl, 1] is equivalent toNcl, where a sole layer of local information is considered. The hierarchy
approach is schematically depicted infigure 2 for a [5,2,1] hierarchy. See section 3 for examples.

To enable processing of large databases we have added sparsification support to cl-MDS. In our Python
implementation this is selected through the keywordssparsify andn_sparse. Sparsification carries out
the cl-MDSoperations only on a subset of the data points, selected according to some predefined recipe
(sparsify="random"|"cur"|list).n_sparse determines the (maximum) size of the resulting sparse
set, denoted sp. Three sparsification options are implemented. Thefirst selectionmethod,"random", uses
numpyʼs random sampling routines [36]. The second option,"cur", is based onCURmatrix
decomposition [37, 38], a low-rank approximation procedure. This decomposition is characterized by retaining
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those rows (and columns) from the originalmatrix that allow its best low-rank fit, i.e., that capture themost
representative part of it. The ‘significance’ of a row can be expressed in terms of its statistical influence [39] or its
Frobenius norm [40], among other properties. TheCUR implementation included in cl-MDSuses the latter.
Hence, given a distancematrixD and a rankn_sparse, we choose the indices of those rowswith higher
Frobenius normwithin the dataset. As a third sparsification option, the user can provide directly a custom list or
arraywith the sparse indices tosparsify.

Bearing sparsification inmind, we developed a supplementary algorithm (step 7) that estimates the low-
dimensional representation of those data points not included in the sparse set, i.e., ≔ -  sp sp. The

embedding transformations inferred for the sparse set are reused for embedding sp, whereas theMDSmapping
per cluster is replaced by an affinemapping. This is achieved through a three-step process:

7.1 Assign each data point i in sp to the same cluster k as its nearest medoid mk, with k ä {1,K,Ncl}. This
approach extends the existing clustering to the complete databasewithout requiring computing or storing
its complete distancematrix. To avoid future confusion, we refer to the extended cluster k as *k , implying

that = Ç  *k k sp.

7.2 Compute an affine mapping from the original high-dimensional space n to 2 , for each cluster *k with

k= 1,K,Ncl. Itsmatrix representation
~
Ak is the least-squares solution to the equation

⎜ ⎟
⎛

⎝

⎞

⎠
( ) ( )

( )
= ~y x

A
1 1

, 11j k
j

l

Figure 2. Illustration of the hierarchical cluster setup, using a [5, 2, 1] hierarchy. The figure includes the set of anchor points obtained
per clustering level, following step 3. The last level does not require such set since it corresponds to thefinal embedding.
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for all sparse points Î j k. The tilde is included to emphasize that the embedding is between distinct
spaces, as opposed to the affine transformations from step 6.

7.3 Obtain the 2-dimensional representation of each cluster *k via the composition ≔ ~~
T T Akk k , with

k= 1,K,Ncl. Similarly to step 6.2, these coordinates are the result of the perspective divide ( ) = ¢y y w
i
g

i/ ,
defined by the equation

⎛
⎝

⎞
⎠ ( ) ( )¢ = ~y

w

x
T

1
, 12i k

i

where Î Ç *i k sp. Note that we exclude the data points from k from these calculations because their
2-dimensional representation is already known.

Therefore, this algorithm completes the 2-dimensional representation of the database,Y= {y1,K,yN},
previously restricted to the sparse set, ≔ { ∣ }Î Y y jsp j sp . Note that the estimationwill be as good (or as bad) as
the chosen sparse set.

3. Examples

In this section, we analyze several examples to show the potential of the cl-MDSmethod aswell as its weaknesses.
First, a variety of toy examples are introduced in section 3.1 to illustrate itsmain features and to compare its
performancewith other dimensionality reduction techniques. Instances of higher complexity are shown in
section 3.2, regarding several extensive atomic databases. Additional details of ourmotivation and these datasets
are given in their respective subsections.We decided to focus on atomic-structure samples because (i) theywere
ourmotivation to develop cl-MDS in thefirst place, and (ii)wewanted to apply all the functionalities available,
including those related to atomic structure representations. However, the cl-MDSmethod is applicable to
datasets fromother fields too.

The following algorithms are considered for qualitative comparisons with cl-MDS: locally linear embedding
(LLE) [41], modified LLE [42], Hessian eigenmaps (Hessian LLE) [43], local tangent space alignment
(LTSA) [44], Laplacian eigenmaps (LE) [45], and the alreadymentioned Isomap [5], PCA [2], kPCA [46],
MDS [6, 7], t-SNE [3, 4] andUMAP [11]. They are computed usingscikit-learn [26] implementations
except forUMAP,which has its ownPythonmodule (umap). On the other hand, detailed quantitative
comparisons (the so-called goodness-of-fit tests) are not included, since a good choice ofmetric is highly
dependent on the application domain, the user’s expectations and the sample itself [9]. Thesemetrics are
(inevitably) tailored to diverse definitions of accuracy and visual quality, further adapted to account for specific
shortcomings (e.g., theDEMaPmetric [12], the ‘local continuity’ (LC)meta-criteria [47], ormeasures of
trustworthiness and continuity [48]). Therefore, we opted for strong qualitative comparisons that provide a
broader taste of cl-MDS, butwe encourage the user to apply thesemetrics to their own samples after careful
selection.

As a consequence of its algorithm, cl-MDS inherits several characteristics ofMDSwhich are relevant for
understanding the figures in this section.While their embedding dimensions lack interpretability (i.e., absence
ofmeaningful axes), the relative Euclidean distances of the resulting 2-dimensional representation encode the
original dissimilaritymeasure. Thus, the nearer two data points are in this visualization, themore similar they
are and vice versa. In practice, this does not always hold forMDS, a problem that cl-MDS alleviates as wewill
discuss in section 3.2.1. Additionally, the embedded representation is invariant under affine transformations for
bothmethods.However, the embedding codomain of cl-MDS is usually [−1, 1]× [− 1, 1]without being
strictly restricted to it, as opposed toMDS. Since dimensionality reduction techniques differ on their codomain,
as well as on their interpretation (only PCAhas a strongmeaning associated to its axes), we omit the axis
information in all the figures to avoidmisleading comparisons.

3.1. Toy examples
Before diving into complex examples, let us discuss themain features of cl-MDS using simpler datasets.We start
following a classicscikit-learn example ofmanifold learningmethods [49], where an S-curve dataset with
1000 points and its corresponding Euclidean distances are used.We choseminimal parameters for all the
techniques to compare their fastest computational speed.However, note that cl-MDSwas not intended for
improving time performance and has not been fully optimized accordingly. Also, this is the only examplewhere
the parameters are notfine tuned. Figure 3 illustrates the effect of the cl-MDSmain hyperparameter, the number
of clustersNcl (see section 2.1). As expected, the algorithmoutput is sensitive to this choice, requiring a
minimumclustering (Ncl= 15) to preserve the distances in the embedded space consistently. Just likeMDS, cl-
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MDS focuses on revealing themetric structure, which does not guarantee uncovering the low-dimensional
manifold. This is especially truewhen using Euclidean distances, since they do not characterize the global
distribution of themanifold properly. Hence, this particular example requires feeding a larger amount of local
information to the globalMDSmapping (step 4) through the clustering, in order to counteract the ambiguity in
large distances.

In general, a good choice ofNcl depends on the database and the providedmetric, although a number
between 5 and 20 is enough in our experience to capture local and global details properly. A higher number of
clusters can be useful to retrieve finer details, especially in highly complex datasets. Nevertheless, overly
increasingNcl worsens the global embedding and dilutes the intrinsic value ofmedoids as representative data
points. Therefore, we recommend finding a compromise between afiner embedding and a smaller clustering. In
particular cases, a carefully devised cluster hierarchy can prove quite helpful; the added versatility of hierarchy
andmedoids informationwill be discussed in depth in sections 3.2.1 and 3.2.2. Althoughwe use a heuristic
approach forfine-tuningmost of the parameters in this article, there arewell-known criteria for choosing a
suitable number of clusters [50, 51].We have already explored some options, such as the elbowmethod and the
silhouette statistic [52], but further analysis is needed in this direction.

On the other hand, the performance of cl-MDS improves speedwise with the number of clusters, being even
faster thanMDS forNcl> 15 (seeMDSperformance infigure 4).While counter-intuitive atfirst, this result
illustrates the usual trade-off between performance and sample size alreadymentioned in section 2.1. Although
the cl-MDS algorithmuses several instances ofMDS, the subset of data points processed per instance ismuch
smaller than the complete sample. Asfigure 3 shows, increasingNcl decreases average cluster size and speeds up
individual cl-MDS calculations, until it reaches a threshold (Ncl> 43 in this example). This threshold is
determined by the set of anchor points, whose size grows approximately as 4Ncl, recovering the previous
tradeoff. Thus, we conclude that our initial/previous compromise for choosingNcl is also reasonable in terms of
performance. In general, we expect that the computational complexity of cl-MDS scales similarly to thoseMDS
instances, i.e., ( ) N3 withN switching between the total number of anchor points and the size of the biggest
cluster depending onNcl. However, the hierarchical embedding has a non-trivial effect in cl-MDSperformance.
On the other hand, preliminary empirical analysis for samples up toNsample= 2000 points showed an
approximate scaling of ( ) Nsample

2 . Further testing is left for futurework, sincewe can characterize the
computational complexitymore appropriately oncewe have optimized the code thoroughly.

Note that, once a suitableNcl is reached, bigger clusteringsmay better incorporate the nuanced local details
and improve its visual quality, but they do not change the overall embedding significantly. This is a fundamental
distinction between cl-MDS and thosemethodswhosemain hyperparameter fixes (or guesses) the number of
close neighbors for each point, i.e., the locality of the embedding. Figure 4 shows examples of the latter in itsfirst
two rows.Most of thesemethods aim to embed the original data uniformly, as opposed to the techniques
included in the last rowwhich seek to preserve themetric structure. That is, the former obtain an isotropic
representation of the S-manifold but themetric information is partially lost.

Additional cl-MDSparameters, such as theMDSweights and the percentile ranks for anchor points, were
minimized here for increased computational speed, reducing the accuracy too. Infigure 3, we can appreciate the
extreme linearity of certain cluster embeddings, which translates into the cl-MDSmapping being slightly less
accurate than theMDSone infigure 4. This effect is a consequence of theMDS optimization process, which does

Figure 3.Effect of the number of clustersNcl in cl-MDS embedding and performance for a simple example.

10

Phys. Scr. 99 (2024) 066004 PHernández-León andMACaro



not guarantee the preservation of relevant incidence relations (e.g., placing anchor points from the same cluster,
originally convex, on a line).Moreover, this is accentuated by a high number of clusters, poor choices of anchor
points and insufficientMDS iterations. To alleviate this issue, the cl-MDS implementation includes optimized
values of all related parameters by default, reducing the emergence of these artifacts.

The next example corresponds to a dataset of 1000 randompoints distributed over the unit square, avoiding
Nh randomly placed circular regions (holes). Rather than characterizing each point i by its 2-dimensional
coordinates, we use the vector ≔ ( )¼ Îv d d, ,i i h i h

N
Nh

h
1

 where di hj denotes its Euclidean distance to the center
of the hole hj, for j= 1,K,Nh. This is a straightforward approach for building a high-dimensional dataset with a
customdimensionNh. Figure 5 illustrates this for anNh=12 example, with the pairwise distances in 12 fed to cl-
MDS. Additionally, this figure includes an application of Voronoi diagrams as a qualitativemeasure of accuracy
for cl-MDS. TheVoronoi partition of a set of points corresponds to those regions of space,Voronoi cells,
containing the closest generator point. That is, the Voronoi partition associated to themedoids in 12 is
equivalent, by definition, to clustering thesemedoids in this Euclidean space. Hence, themetric topology on this
partition is preserved in the 2-dimensional embedding onlywhen theVoronoi cells in 2 contain the clusters
perfectly. Figure 5 shows how close cl-MDS is to achieving this objective.

Now that we have built some intuition regarding the advantages, disadvantages and hyperparameters of cl-
MDS,we can apply it tomore complex datasets. Also, advanced features such as sparsification and the
corresponding estimation of the complete 2-dimensional representation are used in the following examples.

3.2. Visualizing atomic environments
Analyzing atomic databases, which can comprise thousands (evenmillions) of structures, has become an
increasingly difficult task. During the last decade, newmathematical descriptions of atomic structures have been
developed as an alternative to simpler approaches, such as straightforward visualization of the structures, which
are prone to information overload from such databases. As a result, we can compare theirmembers (either
atoms ormolecules) using abstractmathematical representations known as atomic descriptors [22, 53, 54], where
eachmember is characterized numerically. This representation ranges from simple scalar distances and angles to
complicatedmany-body atomic descriptors which aremapped to high-dimensional vectors. These can be used
to compute a similaritymeasure between atomic configurations based on kernel functions, paving theway to
study these databases and their underlying properties. Still, the dimensionality of these descriptions can obscure
the results and their communication, as we discussed in section 1.

The high-dimensional nature ofmany-body atomic representationsmakes them a representative example of
the usefulness of dimensionality reduction techniques, in general, and cl-MDS, in particular. Thesemethods can
be very effective for visually comparing atomic structures and studying patterns within a database, fostering the

Figure 4.Comparison of several dimensionality reduction techniques applied to an S-curvemanifoldwith 1000 points. Like the
original example [49], we usedminimal parameters whenever possible. The top two rows include thosemethods that require afixed
number of neighbors, in this case limited to 15.
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development of related software [55–57] in recent years. Some of themost common techniques adopted by
materials scientists are the linear algorithmPCA, its non-linear counterpart kernel PCA (kPCA) [46], metric
MDS, sketch-map [58], and diffusionmaps [59, 60].While thesemethods are well established and extremely
powerful for visualization purposes, atomic-structure samples tend to be highly uneven (i.e., crucial data can be
both over- and underrepresented)withmultiple structural and chemical features at different scales. Even in the
absence of noise, they can be challenging to embed and to display in a clear, intuitive way.

cl-MDS is designed to address those commonpitfalls, especially for kernel similarities based on smooth
overlap of atomic positions (SOAP) descriptors [22]. cl-MDS aims to enhance the visualization quality across
several layers of information, i.e., dominant features at different atomic length scales. On the other hand, atomic
descriptors are increasingly used as input for otherMLmodels, either for analysis (e.g., classification tasks) or
prediction purposes (e.g., regressionmodels for the potential energy). Adding their results on top of these
visualizations is straightforward, with the 2-dimensional embeddingworking as a ‘white canvas’.We argue that
the parallelismbetween visual distances (i.e., Euclidean distances on a 2-dimensional plot) and kernel (dis)
similarities provides a transparent and intuitive baseline to navigate these complex samples.

All the examples in this section use the same framework. Following the specifics described in appendix, each
data point corresponds to an atom represented by a SOAPdescriptor computedwith the option
"quippy_soap_turbo". This way, the dataset has an associated kernel distance based on the similarities
between atomic environments definedwithin the chosen cutoff radii [see equation (14)]. Note the difference
between using a cutoff sphere and restricting the number of neighbors asmain criterion for defining the idea of
environment. The former establishes how far the neighborhood of an atom stretches without assuming the

Figure 5. Simple example of cl-MDS applied to a high-dimensional dataset. The sample consists of 1000 points distributed in 2 as
shown onpanel (a), whereNh = 12. Their high-dimensional representation is obtained from the pairwise distances to each hole,
illustrated on panel (b). Panels (c) and (d) show the cl-MDS embedding and the Voronoi diagramof themedoids, respectively.
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number of nearest neighbors that populate that region. A cutoff sphere-based representation allows us to
systematically compare atomswith differing numbers of neighbors,more suitable for this application.

The scripts used to generate the data in the examples are publicly available in the cl-MDSGitHub
repository [13], except for the PtAunanoclusters example. The latter is part of a longer TurboGAP tutorial [61],
wheremore visualizations are included. Other applications of cl-MDS can be already found in the
literature [62, 63].

3.2.1. CHO structural database
TheCHOdatabase is a subset of the original dataset from [64], corresponding to awide variety of CHO-
containingmaterials. It contains 675 computer-generatedmodels of CHOmaterials, for a total of 151,556
unique atomic environments.We consider two approaches to dimensionality reduction: (i) an overall
embedding of amultispecies sample and (ii) separated embeddings per chemical species (C,H,O). The former is
shownonfigure 6, with several dimensionality reduction techniques applied to a random sample of 2000 data
points.Here, the high-dimensional representationwas computed using cutoff radii rsoft= 3.75Å,
rhard= 4.25Å, with dimensionNSOAP= 2700. These radii ensured the convergence of theMLmodels trained
in [64] and, therefore, retain enough relevant structural knowledge.Only those techniques that did not fail were
included, illustrating some of the common visualizations available for an atomic sample. Themain reasons
behind the poor visualizations obtained by Isomap, LE, LTSA, LLE and its variations are: (1) their assumption of
a non-disconnected underlyingmanifold, which is very unlikely when different classes are present in a dataset
(e.g., different atomic species); and (2) their tendency to collapsemost of the data points together, due to poorly
constrained cost functions. Amore detailed analysis of the specificweaknesses of thosemethods can be
found on [65].

First, it is noteworthy that themost elementary chemical intuition is captured visually by PCA, kPCA and cl-
MDS solely. Amultispecies sample is characterized by higher dissimilarities among atoms fromdifferent

Figure 6.Embedding of 2000 randomly chosen data points performed using severalmethods, where each point corresponds to an
atom from theCHOdatabase. Twoplots are included permethod/embedding: one color-coded according to chemical species (C,H,
O) and another color-coded according to k-medoids clustering.
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chemical species, unless the central atom is explicitly neglected. That is, wewould expect that a 2-dimensional
representation of such sample reflects those dissimilarities with a proper separation of atomic species,
particularly formetric-basedmethods.However, allMDS attempts failed to encode globalH andO
dissimilarities in terms of the pairwise distances in the embedded space, despiteMDS being the quintessential
method for pairwise distance preservation. On the other hand,manifold-basedmethods such as t-SNE and
UMAP aremisleading in this regard, since neither the distances nor the size of the clusters in their embeddings
aremeaningful. Even if they retain some global structures, figure 6 shows how relative positions betweenH
clusters were lost.

Second, we incorporate cluster information from k-medoids into figure 6. Given that data clustering is
independent of the embedding, we can compare how consistently eachmethod preserves it. As expected, cl-
MDSoutperforms othermethods since its algorithm is based on clustering preservation, overcoming the
tendency of regularMDS tomix different clusters. Conversely, the usual ‘clustered-appearance’ of t-SNEmaps is
only partially consistent with k-medoids clustering.Meanwhile, PCA, kPCA andUMAP (to a lesser extent) tend
to collapse smaller clusters irrespective of their relevance, obscuring their visualization. In particular, this issue
happenedwithUMAPdespite increasing its hyperparametermin_dist, which adjusts theminimumdistance
between embedded points.Moreover, UMAP and t-SNEmapswere obtained after performing hyperparameter
estimation based on the silhouette score [66] for that very same clustering.We considered other two
classifications, but they did not balance as well the local and global characteristics of the sample. The full details
of these tests are included in the Supporting Information.

Motivated by the clear separation betweenC,H andO atoms infigure 6, we computed the cl-MDSmaps per
chemical species, as shown infigure 7. In this second approach, each embedding includes all atoms from the
same species within theCHOdatabase, i.e., 135,618C atoms, 7669H atoms and 8269O atoms. Sparsification
support proved itself very handy, especially for carbon, combinedwith the estimation of the low-dimensional

Figure 7.Visualization of the entire CHOdatabase using cl-MDS. The embeddings were computed individually per chemical species
(columns), considering high-dimensional representations with two different cutoff radii (rows). Themedoids and clusters for the
shortest radii (rsoft = 1.75Å, rhard = 2.25Å) are highlighted in all embeddings, with their atomicmotifs and their corresponding
chemical denomination included.
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representation for thewhole dataset (see section 2.4).We found that a sparse set containing as few as 2 percent of
thewhole carbon dataset was representative enoughwhen carefully selected, e.g., using a combination of
randomandCUR-based data points as well as precomputedmedoids. Oxygen and hydrogen datasets, albeit
smaller in size, also benefited from sparsification due to its improvement ofMDS performancewithin cl-MDS
computations.

Since carbon has the richest structural landscape in this database, we eased the clustering and embedding
process for carbon by applying cluster hierarchy, with h= [15, 7, 3, 1] (see section 2.4).We used a simpler
clustering for hydrogen and oxygen, withNcl= 3 andNcl= 5, respectively. Besides the usual advantages of k-
medoids versus k-means [67] (e.g., allowing for different sizes of clusters, being less sensitive to outliers), the
knowledge of themedoids is itself valuable for visualization purposes. That is, we do not only obtain a
2-dimensional plot of the dataset, but also a representative per cluster that we can track back to the sample, as
figure 7 illustrates.We have added labels that identify the clusters/medoids with classical chemical
configurations (i.e., simple hybridizations and functional groups) to simplify the visualization, associating
several clusters with the same label. However, the clusteringwas thorough enough to further distinguish
between groups in terms of other structural features, such as angles or bond distances.

Additionally, figure 7 contains two separate embeddings for each chemical species, computed fromSOAP
representations of the databasewith different cutoff radii: the radii already used infigure 6, and a shorter version
with rsoft= 1.75Å, rhard= 2.25Å. These visualizations illustrate the importance of hyperparameter selection
depending on theML application.While the SOAP representation does not change here its original
dimensionality (which depends exclusively on the number of basis functions used), the region of SOAP space
spanned by the sample increases, effectively becomingmore sparsely populatedwith increased averaged
distances between data points, hindering data clustering.Moreover, a small cutoff radius emphasizes first and
second neighbors in the representation, allowing an straightforward connection between the embeddings and
classical chemicalmotifs or functional groups in this example.

On the other hand, large radii retainmore structural information, despite increasing the complexity of the
atomic environments and their overall dissimilarities. That is, the larger cutoff radii are better suited for training
MLpotentials and evaluating their performance, as opposed to the shorter radii which ease data visualization
and classification. For instance, the gray triangles infigure 7 indicate the sparse subset of atomic environments
(for C andO atoms) used in [64] to build aMLmodel that involved expensive calculations. Their visualization in
thefirst row proves that their sampling process preserved the diversity of the database, since allmotifs are
represented. The sparse set is not homogeneously distributed in thosemaps though, suggesting that a larger
cutoff radii is needed for the selection process, i.e., intuitivemotif classification is not informative enough to
train a predictiveMLmodel. As afinal remark, note that the same radii could be too small formolecular datasets
for instance (see section 3.2.2); in practice, the choice of radii depends heavily on the dataset and the purpose of
the visualization.

3.2.2. QM9 database
TheQM9database [68] is a subset of amuch larger database (theGDB-17 database[69], with 166 billion
molecules) carefully selected for a detailed sampling of the chemical space of small organic compounds. In
particular, it contains 133,885 neutral organicmolecules composed of carbon, hydrogen, oxygen, nitrogen and
fluorine, up to nine ‘heavy’ atoms (C,O,N, F). To representQM9we use SOAP vectors of dimension
NSOAP= 7380, and cutoff radii rsoft= 3Å, rhard= 3.5Å. As discussed in section 3.2.1, the difference between
chemical species outweighs any other dissimilarity in a combined embedding; consequently, we performed a
separate cl-MDS embedding per chemical species. A sparse set of 1000-2000 atoms depending on the species was
used, carefully selected by combining k-medoids, randompicking and a consistent clustering. The visualization
of each atomic species was obtained through the estimation of the low-dimensional coordinates (see
section 2.4). Figure 8 shows the resulting cl-MDS embeddings, which help us visualize the composition of the
QM9database.Herewe can appreciate once again how cl-MDS performsworsewhen separating clusters for
chemical species with richer variety of atomic environments, e.g., carbon. As opposed to theCHOexample in
section 3.2.1 (see figure 7), C atomswere embeddedwith a simple hierarchy, h= [15, 1], reducing the capability
of cl-MDS to effectively differentiate additional nuances. Its combinationwithmedoids information
nonetheless highlights those subtleties via the correspondingmolecularmotifs, proving again the value of cluster
information.Here, all themedoids were included, revealing the existence of other relevant properties, apart
from the chemical species, such as the geometrical arrangement of themolecules. For instance, this is suggested
by the absence offluorine-related clusters inH,N andO embeddings despite its presence in several structures.
Independently of the number of clusters, fluorine is not representative enough toweigh in the dissimilarities
unless it is afirst-nearest neighbor, i.e., with carbon.

Additionally, we can easily identify those clusters whosemembers have extremely similar descriptors.While
all clusters include at least 4 atomic configurations, the visualizations infigure 8 show single-point clusters. This
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is a consequence of the high similarity between these atomic environments, which is reflected by their high-
dimensional representation. That is, the kernel distances between those environments are effectively zero,
representing themwith the same point in both high- and low-dimensional representations.

3.2.3. Database of PtAu nanoclusters
In previous examples, we used visualizations to navigate the structural and chemical complexity ofmaterial and
molecular databases. Now,wewould like to introduce the potential of cl-MDS for the analysis and
interpretation of scientific results obtained fromothermodels, such as density-functional theory (DFT) orML-
driven atomistic simulations. For instance, we could assess the performance of aML-basedGaussian
approximation potential (GAP) [70] by generating a database and checking some physical and/or chemical
properties on top of cl-MDS.We invite the reader to check the literature for further ideas about similar
applications of dimensionality reductionmethods, e.g., see [57] for other examples inmaterial science and
chemistry.

For this example, we chose a general-purposeMLpotential formodelling Pt andAu systems and computed a
database of PtAu alloy nanoparticles (NPs).Wewant to better understand the site distribution of this database,
emphasizing any differences between ‘bulk’ and surface atoms, whichmight give useful insight in applications in
catalysis. Note, however, that there is no proper bulk in theseNPs due to their reduced size. That said, the
analysis workflow should be also applicable to larger structures withoutmodification. The databasewas

Figure 8.Visualization of theQM9database through five cl-MDSmappings, one per atomic species (C,H,O,N, F).We show all the
medoids and their atomic environments to illustrate the distribution of chemical and structural properties in each embedding,
highlighting them in eachmolecularmotif with the following colors: gray (C), white (H), red (O), blue (N) and green (F).
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generated using the TurboGAP code [61], with 10NPs per size and composition. It has 660 uniqueNPs,
including pure Pt andAu ones. Each atomic site is represented by a SOAPdescriptor of sizeNSOAP= 279, using
cutoff radii rsoft= 5.2Å, rhard= 5.7Å. In this case, we computed the representation using SOAP
compression [71], which already reduces the dimension of the SOAP vector.

The resulting cl-MDS embedding is shown infigure 9, with hierarchy h= [22, 1]. The entire set of atomic
sites is 24 750, with 500 sparse data points selected usingsparsify="cur".When computing the full
distancematrix is computationally affordable (memory-wise), CURmatrix decomposition is a suitable
sparsification option for evenly distributed samples, where relevantmembers are equally represented. Those
data points outside the sparse set were assigned estimated coordinates following section 2.4 recipe. As expected,
the clustering is influenced by the chemical species (Pt/Au) and its relative position in theNP (surface/‘bulk’).
Comparing figures 9 (b) and (c), we get a precise quantitative assessment of properties that we know to be true
qualitatively, i.e., we can quantify and visualize chemical intuitive concepts. Here, the visualization illustrates
how the cohesive energy of atoms naturally increases with atomic coordination, i.e., the latter produces a
stabilizing effectmoving from the interior sites to the surface sites.

4. Conclusions and outlook

Wehave introduced a novel technique for data visualization called clusterMDS,which aims to capture high-
dimensional local and global features adequately in a single 2-dimensional representation. This issue is
inadequately addressed by oldermethods due to limitations of their dimensionality reduction algorithms.More
recent techniques still experience important limitations in this regard, such as the need for a ‘balancing’
parameter thatmay crucially impact the structures preserved (e.g., UMAP,GLSPP [72]), or the imposition of
specificmetrics that limit their application to otherfields (e.g., PHATE,DGL[73]).

The cl-MDS algorithm is based on a combination of data clustering and data embedding through k-medoids
andmetricMDS, respectively, with any distancematrix (or dissimilaritymeasure) as accepted input.We have
illustrated the effect of itsmain hyperparameter, the number of clusters, which can capture the local nuances in
the visualizationwithout affecting the overall structure preservation, once aminimumvalue is reached. This
value depends on the dataset and impacts the quality of cl-MDSmappings, rendering our heuristic selection in
this paper unsatisfactory.Wewill explore available criteria to automate this choice and increase its reliability. In
itsmore advanced form, this hyperparameter accepts a hierarchy of clusters that eases the embedding of highly
complex data and aids the visualization of big amounts of unlabelled data.

Additionally, cl-MDS can estimate the 2-dimensional coordinates of other points once afirst embedding has
been obtained. Given that ourmethod partially inherits the decreasing performance ofMDSwith dataset size,
this estimation is extremely useful when combinedwith the included sparsification support. However, its quality

Figure 9.Visualization of aGAP-generated database of PtAunanoclusters, using cl-MDS to illustrate (a) k-medoids clustering, (b)
atomic sites in terms of composition and bulk/surface character, and (c) local energy predicted by the PtAuGAP. Those sites labeled
asmedoids are shown in panel (d), highlighting the central atom.Note that whenever amedoid in (d) in in theNP interior, some of the
surface atoms aremade transparent to allow for visualization of themedoid.
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strongly depends on the chosen sparse set and needs to be carefully assessed.Wewill update the options for
automated sparse selection available in the code asmore robust alternatives arise. Other future improvements of
the code include the optimization of its computational speed andmemory requirements.

Its comparisonwithwell-knownmethods such as PCA, kPCA, t-SNE,MDS andUMAP showed that cl-
MDS improved visualization of different layers of locality,most notably compared toMDSperformance.We
applied it to datasets of sizes 103 to 106 and dimensionality up to 7380. In particular, we focused on atomic-
structure examples to showcase all the functionality and advantages of this embedding tool, which includes
specific recipes for atomic databases. Despite the value ofmanifold unfolding in other contexts,metric
preservation is arguably the best approach for atomic databases. The comparison of atomic structures, as well as
the study of their properties, usually involves some sort of similaritymeasure; therefore, its retention is
invaluable in any visualization. Beyond the application to atomic structure datasets highlighted in this paper, we
remark that cl-MDS is a general visualization tool. Any dataset with relevant local and global structures can
benefit from its use, whenever the data accepts the definition of ameaningfulmetric.
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Appendix Embedding atomic structure representations

Wehave added functionality to the cl-MDS code specifically tailored for processing atomic structure
information. First, the distancematrixD can be substituted by afile as input parameter, given in a format
compatible with the Atomic Simulation Environment (ASE)Python library [74, 75]. This filemay include a
single atomic structure, a concatenation of them, or a trajectory. Given this input, the user has three options: (1)
choosing a cutoff radius, relying on the code defaults; (2) selecting a representation for the atomic descriptors,
being automatically computed by the cl-MDS code; or (3) providing an array of precomputed descriptors, e.g.,
obtainedwith an external tool such asDScribe [76].

Option (2)has currently three supported representations (descriptor="quippy_soap"
|"quippy_soap_turbo" |"quippy_soap_turbo_compress") available viaquippy, a Python
interface to the Fortran codeQUIP [77] generated byf90wrap [78]. Thefirst option,"quippy_soap",
describes atomic environments using the smooth overlap of atomic positions (SOAP) vectors [22]. The second
option,"quippy_soap_turbo", uses an optimized version [79] of the previous SOAP atomic descriptors
through thesoap_turbo library [80]. Additionally, a string of hyperparameter definitions
(descriptor_string) can be given for both descriptor options. The third option,
"quippy_soap_turbo_compress", enables SOAP compression [71]while using the default
hyperparameters, computing similarly accurate SOAP vectors with lower dimensionality. Other implemented
arguments includeaverage_kernel, which extends the previousmathematical representations towhole
structures (only available with"quippy_soap"); anddo_species, which allows the pre-selection of
certain species within a database to speed up the calculations.

Oncewe have a representation of the atomic structures, we need to obtain its associated distancematrix. A
suitably constructed atomic descriptor provides the basis for defining ametric that can be fed into the cl-MDS
algorithm. That is, these vectors are used to build a (usually) positive-definite kernel with an inducedGram
matrixK of sizeN×N, whereN is the length of the database. For SOAP this kernel function is defined as [22]

( )· ( )=
z

K q q , 13ij i j
SOAP SOAP

where q i
SOAP denotes the SOAPdescriptor of atom i, ζ can be any positive scalar and 0� Kij� 1. The importance

of defining a kernel resides in its connectionwith a dissimilaritymeasure. As shown in [81], it is always possible
tofind a dissimilaritymeasureD associated to a positive definite kernelK, given by
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( ) ( ) ( )= + -D K K K
1

2
. 14ij ii jj ij

2

Considering polynomial kernels such as equation (13) are always positive definite, the resulting SOAP
dissimilaritymatrix is

( )= -D K1 . 15ij ij

This distancemeasure is automatically computed by the cl-MDS code from the set of atomic descriptors prior to
performing the clustering and embedding steps.

In addition to the embedding features described in section 2.4, we have also added the possibility offine-
tuning theminimization process of theMDS stress from step 4 (see section 2) bymeans of aweighted distance
matrix.While ourMDS implementation can generally accommodate weights, this is a straightforward extension
for atomic structure visualization based on the SOAP kernel, which is evaluated for the set ofmedoids. That
is, given two atoms Î i k, Î j s and a positive integer η, the distance is redefined as

· ( ) ( )( ) = - hD K K1 . 16ij
w

ij m m,k s

Thus,

[ ( ) ] ( )( )  = - h
D K K1 , 17w 1 2

wheree denotes the element-wise product (also known asHadamard or Schur product) and element-wise
exponentiation, and

( )
( )

= Î Î

= Î

 







K K i j

K i j

, if and ,

1, if and only if , .

ij m m k s

ij k

,k s

Theseweighted distances afford us greater control in decoupling the representation of individual clusters on the
globalmap, effectively allowing us to continuously increase the emphasis on the local vs global structure of
the data.
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