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A R T I C L E I N F O A B S T R A C T

Editor: Hubert Saleur We continue our work on lattice models of webs, which generalise the well-known loop models 
to allow for various kinds of bifurcations [1,2]. Here we define new web models corresponding to 
each of the rank-two spiders considered by Kuperberg [3]. These models are based on the 𝐴2, 𝐺2
and 𝐵2 Lie algebras, and their local vertex configurations are intertwiners of the corresponding 𝑞-

deformed quantum algebras. In all three cases we define a corresponding model on the hexagonal 
lattice, and in the case of 𝐵2 also on the square lattice. For specific root-of-unity choices of 𝑞, we 
show the equivalence to a number of three- and four-state spin models on the dual lattice.

The main result of this paper is to exhibit integrable manifolds in the parameter spaces of 
each web model. For 𝑞 on the unit circle, these models are critical and we characterise the 
corresponding conformal field theories via numerical diagonalisation of the transfer matrix.

In the 𝐴2 case we find two integrable regimes. The first one contains a dense and a dilute phase, 
for which we have analytic control via a Coulomb gas construction, while the second one is more 
elusive and likely conceals non-compact physics. Three particular points correspond to a three-

state spin model with plaquette interactions, of which the one in the second regime appears to 
present a new universality class. In the 𝐺2 case we identify four regimes numerically. The 𝐵2 case 
is too unwieldy to be studied numerically in the general case, but it found analytically to contain 
a simpler sub-model based on generators of the dilute Birman-Murakami-Wenzl algebra.
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1. Introduction

One of the most striking applications of conformal invariance in two dimension is the study of random geometrical objects. The 
specific case of random curves has been the object of much interest in the theoretical physics literature since the 1980s, where the so-

called loop models have been investigated both in their lattice discretisation, notably using quantum integrability and lattice algebras 
of the Temperley-Lieb type, and in the continuum limit, via Conformal Field Theories (CFT); see [4–6] for reviews. Interestingly, 
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these CFT are in general not only non-unitary, but also logarithmic [7], and in certain cases of physical interest they may even possess 
a non-compact target space [8,9]. In parallel with these developments, random curves have been extensively studied in probability 
theory since the 2000s, where they have spearheaded the development of frameworks such as Schramm-Loewner Evolution (SLE) 
[10,11] and the Conformal Loop Ensemble (CLE) [12]. More recent work on loop models aims at the rigorous construction of the 
field theory [13–15] and the computation of correlation functions [16–20].

Notwithstanding all these interesting developments, it is known that many applications of random geometry need to go beyond 
the concept of curves, and focus instead on more general random graphs that allow for branchings and bifurcations. In two recent 
papers [1,2] we have initiated a study of so-called web models, which are generalisations of lattice models of loops, in which 
algebraic spiders play a prominent role. These spiders have their root in the study of invariants for quantum deformations of the 
classical Lie algebras, and our first objective has been to show that they lead naturally to lattice models for random geometries 
with the required properties. The spiders provide a convenient geometrical or graph-like description of quantum group invariants in 
tensor product representations, and they are known for a number of root systems, following the seminal work by Kuperberg [3] on 
the rank-two cases 𝐴2, 𝐺2 and 𝐵2.

Our first paper introduced the 𝐴𝑛 web models which gives rise to a lattice model on the hexagonal lattice much like the well-

known Nienhuis loop model [21], but now allowing for bifurcations at nodes that are incident on three links. The web configurations 
are identical to domain walls in an 𝑛-state spin model, but they carry a non-local weight parameterised by 𝑞. At a specific parameter 
value, 𝑞 = 𝑒𝑖𝜋∕(𝑛+2), the non-local weights become trivial so that the partition functions of the web and spin models agree. In general 
the web model provides a continuous, non-local deformation of the spin model, just like the well-known 𝑂(𝑁) loop model is a 
non-local deformation of the Ising model (the case 𝑛 = 1).

Our second paper focused on the physics of the simplest member of this family, the 𝐴2 model. In particular, we reformulated 
the geometrical model as a local vertex model with complex weights. This was used to interpret geometrically some of its critical 
exponents, as well as numerically determining its phase diagram. In this case, the resulting geometrical structures take the form 
of a collection of mutually avoiding bipartite cubic graphs embedded in the lattice. Each graph has a statistical weight that is a 
product of local Boltzmann weights for links and nodes, and a non-local weight for each graph component that generalises the usual 
Boltzmann weight of a loop. The non-local weight depends on the deformation parameter 𝑞 in the quantum algebra 𝑈𝑞(𝐴2), and it 
can be unambiguously evaluated by the “reduction” relations that define the 𝐴2 spider.

Meanwhile, the Nienhuis loop model [21] is recovered in the rank-one 𝐴1 case. The most striking feature of this simple and 
elegant model is without doubt that it is quantum integrable [22,23]. This is the reason why this model has been at the centre of an 
immense activity for more than forty years, leading to important methodological developments and practical applications spanning 
several fields of research in mathematics and physics. Sadly the web models studied in our previous papers [1,2] lack this very 
desirable feature.

The purpose of the present paper is to make up for this deficiency. We here define new web models for all rank-two spiders (with 
symmetries 𝐴2, 𝐺2 and 𝐵2) and show that these are quantum integrable. All of these models contain a special point where they 
describe interfaces in spin models with plaquette interactions. These spin models were not studied before, and by construction they 
are also integrable.

Our starting point is to propose a slight modification of the 𝐴2 web model from [2]. The modification may look innocuous from a 
physics point of view, because it does not change the universality class, but it is crucial from a mathematical point of view, because 
it makes the model quantum integrable. The modification consists in assigning an extra weight conjugate to the angle by which a 
piece of web bends in-between two successive bifurcations. Moreover we define, for the first time, statistical models for the other 
rank-two spiders, 𝐺2 and 𝐵2, and show their integrability. As a result we have ensured, as announced, the quantum integrability of 
web models based on all rank-two spiders.

The resulting models are defined on the hexagonal lattice for all three spiders, while for the 𝐵2 case we also define a variant 
model on the square lattice.

Regarding the link to spin interfaces, recall that in our first paper [1] we showed how the 𝐴2 web model possesses a special 
point, when 𝑞 = 𝑒𝑖𝜋∕4, for which the partition function becomes proportional to that of a three-state chiral spin model on the dual 
(triangular) lattice. With the bending parameter included, this construction carries through, but the spin model now has an extra 
three-spin plaquette interaction. We show here that the two other web models also have special points, with 𝑞 a root of unity, for 
which they are dual to three- or four-state spin models with various symmetries.

To study the continuum limit of web models, either analytically or via numerical diagonalisation of the transfer matrix, it turns 
out that we need an equivalent formulation as a vertex model with purely local weights. In our second paper [2] we provided this 
construction for the (unmodified) 𝐴2 model, based on a representation-theoretical analysis of its underlying quantum group 𝑈𝑞 𝔰𝔩(3). 
We extend here this local reformulation to the modified-by-bending-weight 𝐴2 model, as well as to the 𝐺2 and 𝐵2 models. In all 
cases the local Hilbert space of the vertex models consists of trivial and fundamental representations.

The main result of this piece of work is then that the corresponding vertex models are quantum integrable, for any value of 
𝑞, provided that the various local weights are carefully adjusted. A general idea behind this discovery was to find a ‘big’ affine 
quantum group that contains the quantum symmetry of our models: it corresponds in each case to a certain (possibly twisted) affine 
Dynkin diagram that reduces, after erasing one of its nodes, to the (finite) Dynkin diagram of the web model. This affine quantum 
group—which is the analogue of 𝐴(2)

2 for the 𝐴1 loop model [23,24]—then generates solutions of the spectral-parameter dependent 
Yang-Baxter equation through analysis of intertwining conditions on the tensor product of its evaluation representations. We found 
these solutions in all three cases explicitly and decomposed them in terms of spider diagrams. After a fine tuning, we found a 
complete agreement with the local transfer matrices from the vertex-model formulation (see Section 7 for more details). Achieving 
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this connection with integrable models was in fact the principal motivation for the proposed modification of the 𝐴2 model by the 
bending weight.

In the 𝐴2 and 𝐺2 cases, the solutions to Yang-Baxter equations already appeared in another context [25,26], but the solution in 
the 𝐵2 case is new to the best of our knowledge. However, in all three cases, the geometrical interpretation was not discussed before. 
As usual we expect the continuum limit of these integrable models to be critical, and in fact conformally invariant, when 𝑞 belongs 
to the unit circle. The question thus arises, what are the characteristics of the corresponding CFT?

In [2] we already provided some first numerical results on the central charge of the 𝐴2 model, based on the scan of a two-

dimensional parameter space of local weights for each choice of 𝑞. It was found that the model possesses both a dilute and a dense 
critical phase, just like the Nienhuis loop model (the 𝐴1 model). Based on experience with the loop model [27], we can hope that 
each of these universality classes can be retrieved within the integrable sub-manifold of the (modified) model, hence making the 
numerical work much easier. This turns out to be the case indeed. Varying 𝑞 along the unit circle for the integrable model, the 
diagonalisation of the transfer matrices for cylinders of circumference up to size 𝐿 = 9 leads, in fact, to the identification of two 
distinct critical regimes (see Fig. 6), with distinct analytical behaviour of the central charge.

The first of these regimes encompasses the dilute and dense critical points, confirming our expectations that the 𝐴2 models with 
and without modification belong to the same universality class. The numerically determined central charge in this regime is in 
excellent agreement with [2] and with an analytical Coulomb gas computation, that will be exposed in a separate publication [28]. 
The ground state of the second regime exists only when 𝐿 is a multiple of 3, and its central charge takes larger values (𝑐 ⪆ 3) than 
expected for a rank-two model, with a conspicuously slow convergence. All of these observations hint at a larger symmetry, and 
possibly a non-compact continuum limit, like the one found for the Nienhuis loop model in regime III [8,9]. We did not find this 
regime in [2], presumably because we only focused on real, positive fugacities there.

Along the integrable line, three particular points correspond to a three-state spin model. Within the first regime, one finds two 
such points, with 𝑐 = 4

5 and 𝑐 = 0, which are the expected results for a three-state Potts model in the dilute (critical for the spin 
model) and dense (infinite-temperature) phases, respectively. The third point is in the second regime, and has a value 𝑐 ≈ 1.5 that 
has not previously been reported for a three-state Potts model, to our best knowledge.

We present a similar numerical investigation of the 𝐺2 model along its integrable sub-manifold (see Fig. 7), this time up to 
size 𝐿 = 8. We identify here four different regimes for which the numerical results are well-behaved, leaving one or two further 
regimes for subsequent analytical investigations. In addition we find two handfuls of special points for which mappings to other 
well-understood models can be made. These include dense and dilute 𝑂(𝑁 = −1) loop models, three-state spin models, spanning 
trees and loop-erased random walks.

Finally, for the 𝐵2 model, the dimension of the transfer matrix is too large in order for us to obtain exploitable results. However, 
by adjusting certain local Boltzmann weights, we obtain a reduction of the size of the Hilbert space, leading to a more amenable 
model. In fact, we demonstrate that in this case the local transfer matrices can be written in terms of the dilute Birman-Murakami-

Wenzl (BMW) algebra. Mathematically, the appearance of this algebra is not surprising because the BMW algebra is known to be 
Schur-Weyl dual to 𝑈𝑞(𝐵2) in the tensor product of its natural representations, and here we have the diluted version of this well-

known 𝐵2 type Schur-Weyl duality. The corresponding integrable solution is in agreement with the baxterisation of the dilute BMW 
algebra [29].

The paper is structured as follows. In section 2 we specify the lattices and boundary conditions needed to define the models of 
this paper. The next three sections (3, 4 and 5) deal with respectively the 𝐴2, 𝐺2 and 𝐵2 models. In each of them we first discuss 
the corresponding spider, define the lattice model, and establish the equivalence with spin models on the dual lattice. Section 6

provides the analysis of the quantum groups necessary to define the local vertex models and the corresponding transfer matrices. The 
integrable models are then constructed in section 7, as sketched above. Finally we gather some discussion and concluding remarks 
in section 8. A few technical ingredients are dispatched in four appendices.

2. Lattices

We will consider lattice models defined on the hexagonal lattice ℍ, the square lattice 𝕊 and their duals, ℍ∗ = 𝕋 and 𝕊∗ respec-

tively. To fix notations, we will say that these lattices are comprised of nodes and links connecting them. To be more precise, the 
primal lattices ℍ and 𝕊 will be finite subgraphs of the infinite hexagonal and square lattices respectively, embedded either in the 
plane or the infinite cylinder as defined in the following way.

In the plane, consider a self avoiding closed path 𝐶 on the dual infinite lattice, either the triangular lattice, or a shifted square 
lattice. The path 𝐶 separates the plane in two open sets, one of which is bounded and denoted by 𝐶̊. The primal lattice is then 
comprised of all nodes and links that are inside 𝐶̊ , in particular its intersection with 𝑏—the set of links crossed by 𝐶—is empty. 
By dual lattices ℍ∗ and 𝕊∗, we mean the subgraphs of the dual infinite lattices that are inside 𝐶̊ ∪ 𝐶 . The nodes of the dual lattices 
that are inside 𝐶 are called boundary nodes. Informally, the dual lattices contain an external layer comprised of boundary nodes, 
surrounding the primal lattices. An example for the plane case is given in Fig. 1.

On the cylinder, we pick two self avoiding and mutually avoiding non contractible paths 𝐶 and 𝐶 ′ on the dual infinite lattices, 
𝐶 ′ being on top of 𝐶 when we orient the cylinder vertically. There is a bounded open set ̊𝐶𝐶 ′ between 𝐶 and 𝐶 ′. The primal lattices 
are defined to be the subgraphs contained in ̊𝐶𝐶 ′. Denote by 𝑏 the set of links crossed by 𝐶 or 𝐶 ′. The dual lattices are defined 
to be the subgraphs contained in ̊𝐶𝐶 ′ ∪ 𝐶 ∪ 𝐶 ′. We will call boundary nodes, the nodes inside 𝐶 ∪ 𝐶 ′. Note that, in this case, the 
boundary nodes split in two connected components, 𝐶 and 𝐶 ′.
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Fig. 1. The primal square lattice (undashed) and its dual (dashed). The path 𝐶 is drawn in blue and the set 𝑏 of edges crossed by 𝐶 is drawn in red.

We will consider two types of lattice models. The first of them is the well-known setting of spin models where we assign on 
each node of the dual lattices a variable, the “spin”, which takes a finite number of values, identified with elements of ℤ𝑛 for some 
integer 𝑛. We will always consider monochromatic boundary conditions, i.e. the spins at the boundary nodes of a given connected 
component of the boundary are forced to take the same value. One may equivalently imagine the boundary nodes to be contracted 
into a single node, one for each connected component of the boundary.

The second type of lattice model is the web model outlined in the Introduction, for which we now recall a few definitions (see also 
[1]). Its configurations are called webs. A configuration can be represented abstractly as a graph with vertices and edges, or—for the 
purpose of defining the lattice model—as embedded in a lattice of nodes and links, in which case we shall call a link covered by the 
web a bond, while a link not covered is said to be empty. Given an embedded web, its abstract representation is obtained by deleting 
all the empty links, and contracting any path of consecutive bonds in between two vertices into a single edge. Obviously there will 
in general be many embedded webs that correspond to a given abstract one. The properties of the abstract web are described by the 
corresponding spider, an algebraic object which will be defined precisely in the next section. The first step in the definition of a web 
model is therefore to “lift” the spider to the lattice embedding. This must be done in a suitable way, so that the algebraic properties 
are preserved, while keeping the lattice model as simple and elegant as possible.

We here embed the webs in the primal lattice. The Boltzmann weights of a configuration 𝐺 in the web models will be expressed as 
the product of two factors. The first of these is the product of local weights, such as the fugacity of a bond or of a specific arrangement 
around a given vertex. The other factor, called the Kuperberg weight 𝑤K(𝐺), is a priori non-local and depends only on 𝐺 seen as an 
abstract web, regardless of its embedding.

3. The 𝑨𝟐 web models

We previously defined and studied the 𝐴2 web models on the hexagonal lattice in [1]. Here, we give a more general definition 
that will prove exhibiting integrable points. We begin by recalling the definition of the 𝐴2 spider as well as the mapping of webs to 
spin interfaces of the 3 states Potts models.

3.1. The 𝐴2 spider

𝐴2 webs are planar oriented graphs embedded in a simply connected domain whose connected components are either closed 
loops or graphs with trivalent vertices inside the domain or univalent vertices connected to the boundary of the domain. Webs that 
do not have univalent vertices connected to the boundary of the domain will be called closed webs, otherwise, we will call them 
open webs. There are two types of trivalent vertices, called sinks and sources:
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A number can be assigned unambiguously to any closed 𝐴2 web from the following relations [3]:

= [3]𝑞 (1a)

= [2]𝑞 (1b)

= + (1c)

Indeed, it is a result of [3] that any closed web is proportional to the empty one. For an 𝐴2 web 𝐺, we call the proportionality factor 
the Kuperberg weight of 𝐺 and denote it by 𝑤K(𝐺).

The 𝑞-numbers [𝑘]𝑞 appearing in (1) and passim are defined in Appendix C. They depend on a deformation parameter 𝑞 ∈ ℂ. We 
can consider 𝑞 as parameterising a family of web models having the symmetry of a given spider.

3.2. Definition of the models

Similarly as in [1], we define the 𝐴2 web models on the hexagonal lattice ℍ. Configurations are given by closed 𝐴2 webs 
embedded in ℍ. We will denote the configuration space by . Let 𝐺 be one such configuration. We assign fugacities 𝑥 to bonds and 
fugacities 𝑦 and 𝑧 to vertices that are sinks and sources respectively. In addition to the previous local fugacities that were present 
in the original definition of [1], we give a fugacity to each node of ℍ that is adjacent to precisely two bonds. The two bonds inherit 
orientations from the web 𝐺, so that one of them is directed into the common node and the other goes out of the node. An observer 
that follows the bonds along that orientation, turns through an angle 𝜋∕3 (anticlockwise) or −𝜋∕3 (clockwise) at the node: we call 
this the bending at the node. To this we assign a fugacity 𝑒𝑖𝜙 for an anticlockwise bending, or 𝑒−𝑖𝜙 for a clockwise bending. Here, 𝜙
is a new parameter at our disposal: the work [1] corresponds to 𝜙 = 0.

The product of the local fugacities and the non local weight given by the Kuperberg weight defines the Boltzmann weight of a 
configuration. The partition function then reads:

𝑍𝐴2
=
∑
𝑐∈𝐾

𝑥𝑁 (𝑦𝑧)𝑁𝑉 𝑒𝑖𝜃𝑤K(𝑐) , (2)

where 𝑁 is the number of bonds, and 𝑁𝑉 is the number of sink/source pairs of vertices. We have defined 𝜃 =
∑

𝑖 𝜙𝑖, where the sum 
is over all nodes and 𝜙𝑖 = ±𝜙 is the bending at node 𝑖, so that 𝑒𝑖𝜃 is the total weight given by the bending of edges. An example of a 
configuration with its Boltzmann weight is given in Fig. 2.

Remark that the Boltzmann weights are invariant under discrete rotations of the lattice but not reflections when 𝑒𝑖𝜙 ∉ ℝ. It is 
also clear that 𝑍𝐴2

is invariant under the transformation 𝜙 → −𝜙. Assuming, 𝑥, 𝑦, 𝑧 and 𝜙 to be real, the Boltzmann weight of a 
configuration is sent to its complex conjugate under a spatial reflection, or the reversal of all orientations within a given web. Since 
the partition function 𝑍𝐴2

comprises a sum over orientations, it follows that it is real. It is also clear that 𝑍𝐴2
is invariant under

𝑞 → 𝑞−1 , (3)

since this transformation keeps the 𝑞-numbers unchanged. Furthermore, we show in Appendix A that the Boltzmann weights are of 
the form 𝑥𝑁 (𝑦𝑧)𝑁𝑉 𝑒𝑖𝑀𝜙𝑤K(𝑐) with

𝑁 +𝑁𝑉 +𝑀 = 0 mod 2

𝑀 = 0 mod 3.

This implies the invariance of 𝑍𝐴2
under the following transformations

𝑒𝑖𝜙 → 𝜏𝑒𝑖𝜙 (4)

where 𝜏 is a third root of unity, or

𝑥→ −𝑥 (5a)

𝑦→ 𝑖𝑦 (5b)
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Fig. 2. Left panel: A configuration on ℍ of weight 𝑥35𝑦𝑧𝑒6𝑖𝜙[2]𝑞 [3]2𝑞 . The arrow is parallel to the axis of the cylinder. The left and right sides of the drawing are 
identified by periodic boundary conditions. Right panel: The same configuration drawn as a web.

𝑧→ 𝑖𝑧 (5c)

𝑒𝑖𝜙 → −𝑒−𝑖𝜙 (5d)

We finally note that the partition function is invariant under the following transformation

𝑞 → −𝑞 (6a)

𝑦→ 𝑖𝑦 (6b)

𝑧→ 𝑖𝑧 (6c)

because the factors of 𝑖 can be absorbed in the Kuperberg rules (1). This will be explained in more detail in the next section. See also 
Fig. 2.

3.3. Relation with ℤ3 spin interfaces

In [1], we defined a mapping from the 𝐴2 web model to the 3 states Potts model on the triangular lattice dual to ℍ with nearest 
neighbour interactions. Here, we slightly generalise this mapping to account for three site plaquette interactions. Given two spins 𝜎𝑖

and 𝜎𝑗 in ℤ3 ≡ {0, 1, 2} at sites 𝑖 and 𝑗 respectively, the nearest neighbour interaction is given by a local Boltzmann weight 𝑥|𝜎𝑖−𝜎𝑗 |. 
It follows that 𝑥1 = 𝑥2 =∶ 𝑥, and we set 𝑥0 = 1. Given three sites 𝑖, 𝑗, 𝑘 situated in a clockwise manner around a plaquette, the three 
site plaquette interaction is given by

𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘 =𝛿𝜎𝑖,𝜎𝑗 𝛿𝜎𝑗 ,𝜎𝑘 + 2
1
4 𝑦𝛿𝜎𝑖,𝜎𝑗+1𝛿𝜎𝑗 ,𝜎𝑘+1 + 2

1
4 𝑧𝛿𝜎𝑖,𝜎𝑗−1𝛿𝜎𝑗 ,𝜎𝑘−1

+ 𝑒−𝑖𝜙
(
𝛿𝜎𝑖,𝜎𝑗+1𝛿𝜎𝑗 ,𝜎𝑘 + 𝛿𝜎𝑗 ,𝜎𝑘+1𝛿𝜎𝑘,𝜎𝑖 + 𝛿𝜎𝑘,𝜎𝑖+1𝛿𝜎𝑖,𝜎𝑗

)
(7)

+ 𝑒𝑖𝜙
(
𝛿𝜎𝑖,𝜎𝑗−1𝛿𝜎𝑗 ,𝜎𝑘 + 𝛿𝜎𝑗 ,𝜎𝑘−1𝛿𝜎𝑘,𝜎𝑖 + 𝛿𝜎𝑘,𝜎𝑖−1𝛿𝜎𝑖,𝜎𝑗

)
.

Notice that the plaquette interactions reduce the 𝑆3 symmetry to ℤ3; in our previous work [1,2] we did not include plaquette 
interactions, so in that case the symmetry was actually 𝑆3. In the present model, 𝜙, 𝑦 and 𝑧 are adjustable parameters. Setting 𝜙 = 0
and 𝑦 = 𝑧 = 2−1∕4 the plaquette interaction becomes the identity operator and we recover the previous model [1,2].

The partition function then reads

𝑍ℤ3
=
∑
𝜎

(∏
⟨𝑖𝑗⟩ 𝑥|𝜎𝑖−𝜎𝑗 |

)(∏
⟨𝑖𝑗𝑘⟩𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘

)
(8)

where ⟨𝑖𝑗⟩ denotes nearest neighbours pairs of sites and ⟨𝑖𝑗𝑘⟩ denotes plaquettes of three sites. We have used the subscript ℤ3 to 
emphasise that the interaction (7) is invariant under cyclic permutations of the colours. The integrable solutions for the 𝐴2 web 
models that will be described in Section 7.2 contain points that can be mapped to ℤ3 spin models only for a non-trivial plaquette 
interaction.

We now reformulate the partition function in terms of its domain walls. For two neighbouring spins 𝜎𝑖 and 𝜎𝑗 , if |𝜎𝑖 − 𝜎𝑗 | = 1, 
we draw a bond on the link of ℍ separating the two spins and we orient the bond such that the when going from the node 𝑖 to the 
node 𝑗, the spin value increases (respectively decreases by) 1 when traversing a right-pointing (respectively left-pointing) bond. If |𝜎𝑖 − 𝜎𝑗 | = 0 we let the link empty. We obtain this way a closed simple 𝐴2 web 𝐺 embedded in ℍ. The mapping is many to one and 
onto. The number of spin configurations having 𝐺 as their domain wall is exactly 3 corresponding to the choice for the spin of an 
arbitrary face. We thus have that

𝑍ℤ3
= 3
∑
𝐺∈

𝑥𝑁 (
√
2𝑦𝑧)𝑁𝑉 𝑒𝑖𝜃 (9)
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Set 𝑞 = 𝑒𝑖
𝜋
4 . In order to relate 𝑍ℤ3

to 𝑍𝐴2
, we follow the idea of [1]. Remark that the product of the vertex fugacities and the 

Kuperberg weight do not depend on the embedding of the web into ℍ. Given a closed simple web 𝐺, rewriting the product of vertex 
fugacities as

(𝑦𝑧)𝑁𝑉 = (
√
2𝑦𝑧)𝑁𝑉

(
1√
2

)𝑁𝑉

we call the product 
(

1√
2

)𝑁𝑉

𝑤K(𝐺), the topological weight of the web, 𝑤top(𝐺). Similarly as in [1] for the 𝐴2 case, it can be 

computed thanks to modifications of the relations (1) in order to incorporate the vertex fugacity in the reduction process. This can 
be seen as a rescaling of the vertices of webs:

↦ 2−
1
4 ↦ 2−

1
4 (10)

The rules computing the topological weight are then

= 1 (11a)

= (11b)

= 1
2

+ 1
2

(11c)

The stochastic nature of these rules, i.e., the fact that the sum of prefactors appearing on each side of any of a given rule is the same 
implies that [1]

𝑤top(𝐺) = 1

We conclude that

𝑍ℤ3
= 3𝑍𝐴2

(12)

where the spin interfaces are mapped to 𝐴2 webs.

4. The 𝑮𝟐 web models

We now turn to web models based on the 𝐺2 spider. In contrast to the 𝐴2 case there are no orientations involved, and hence no 
bending. This will also lead to some other physical consequences, as we shall soon see.

4.1. The 𝐺2 spider

𝐺2 webs are planar graphs embedded in a simply connected domain whose connected components are either closed loops or 
graphs with trivalent vertices inside the domain or univalent vertices connected to the boundary of the domain. Webs that do not 
have univalent vertices connected to the boundary of the domain will be called closed webs, otherwise, we will call them open webs. 
Edges come in two types and are called simple and double edges, depicted respectively as

There are two types of trivalent vertices:
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We will call the first vertex, vertex of type 1 and the second, vertex of type 2.

The free vector space spanned by closed 𝐺2 webs will be denoted by 𝑝(𝐺2). We then denote by 𝑝(𝐺2), the quotient of 
𝑝(𝐺2) by the following local relations1 [3]:

= 𝑞10 + 𝑞8 + 𝑞2 + 1 + 𝑞−2 + 𝑞−8 + 𝑞−10 (13a)

= 0 (13b)

= − (𝑞6 + 𝑞4 + 𝑞2 + 𝑞−2 + 𝑞−4 + 𝑞−6) (13c)

= (𝑞4 + 1 + 𝑞−4) (13d)

= − (𝑞2 + 𝑞−2)

(
+

)
+ (𝑞2 + 1 + 𝑞−2)

(
+

)
(13e)

= +
⎛⎜⎜⎜⎝ + + + +

⎞⎟⎟⎟⎠
−
⎛⎜⎜⎜⎝ + + + +

⎞⎟⎟⎟⎠ (13f)

= 𝑞18 + 𝑞12 + 𝑞10 + 𝑞8 + 𝑞6 + 𝑞2 + 2 + 𝑞−2 + 𝑞−6 + 𝑞−8 + 𝑞−10 + 𝑞−12 + 𝑞−18 (13g)

= − − 1
𝑞4 − 1 + 𝑞−4

+ 1
𝑞2 + 1 + 𝑞−2

(13h)

A number can be assigned unambiguously to any closed 𝐺2 web thanks to these relations. Indeed, it is a result of [3] that any closed 
web is proportional to the empty one. For a 𝐺2 web 𝐺, we call the proportionality factor the Kuperberg weight of 𝐺 and denote it 
by 𝑤K(𝐺). Moreover, it is a result of [30] that relations (13a)-(13f) are sufficient to reduce unambiguously a closed 𝐺2 web made 
of simple edges only to the empty one. We call such a web a simple 𝐺2 web. An easy argument to see why any simple web can be 
reduced is the following. If a web contains a loop or a face surrounded by 𝑛 ≤ 5 edges, then it can be reduced in terms of smaller webs. 
If this always happens, the result follows by induction. Suppose it is not the case for a given web. Denote by 𝐹 , 𝐸 and 𝑉 the number 
of faces, edges and vertices of this web. By the hand-shake lemma and Euler relation, we have that 2𝐸 = 3𝑉 and 𝐹 − 𝐸 + 𝑉 = 2. 
Thus 𝐹 − 1

2𝑉 = 2. The assumption that all faces are of degree at least six means that 6𝐹 ≤ 2𝐸, using the hand-shake lemma on the 
dual graph, so inserting we get 12 + 3𝑉 ≤ 2𝐸 = 3𝑉 , a contradiction.

We denote by 𝑝′(𝐺2), the free vector space generated by closed simple webs. The quotient of this space by relations (13a)-(13f)

will be called 𝑝′(𝐺2).

4.2. Definition of the models

We now define the 𝐺2 web models on the hexagonal lattice ℍ. Configurations are given by closed simple 𝐺2 webs embedded in 
ℍ. We will denote the configuration space by . We assign fugacities 𝑥 to bonds and fugacities 𝑦 to vertices. The product of the local 
fugacities and the non local weight given by the Kuperberg weight defines the Boltzmann weight of a configuration. The partition 
function then reads:

𝑍𝐺2
=
∑
𝐺∈

𝑥𝑁𝑦𝑀𝑤K(𝐺) (14)

where 𝑁 is the number of bonds and 𝑀 is the number of vertices appearing in a given configuration. Remark that a trivalent graph 
has an even number of vertices, thus the partition function is independent of the sign of 𝑦.

One could also define a 𝐺2 web model using both simple and double edge webs and two types of vertices. In this paper, we chose 
to focus on the simple case only.

1 Note that our conventions differ from [3] by 𝑞 ↔ 𝑞
1
2 .
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Fig. 3. Left panel: A configuration on ℍ of weight −𝑥35𝑦2(𝑞6 + 𝑞4 + 𝑞2 + 𝑞−2 + 𝑞−4 + 𝑞−6)(𝑞10 + 𝑞8 + 𝑞2 + 1 + 𝑞−2 + 𝑞−8 + 𝑞−10)2 . Right panel: The same configuration 
drawn as a web.

4.3. Relation with an 𝑆3 spin model

We can formulate an 𝑆3 spin model defined on 𝕋 in terms of its domain walls.2 Consider spins {𝜎𝑖, 𝑖 ∈ 𝕋} taking values in 
ℤ3 = {0, 1, 2}. We define nearest neighbours interactions 𝑥|𝜎𝑖−𝜎𝑗 | for a pair ⟨𝑖𝑗⟩ of neighbourings nodes. Here |𝜎𝑖 − 𝜎𝑗 | is to be 
understood modulo 3 and we normalise interactions such that 𝑥0 = 1. Hence, this interaction depends only on one parameter 𝑥1 that 
we rename 𝑥 in the following. We also define a 3-site interaction for each plaquette ⟨𝑖𝑗𝑘⟩ as

𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘 =𝛿𝜎𝑖=𝜎𝑗=𝜎𝑘
+
√
2𝑦𝛿𝜎𝑖≠𝜎𝑗≠𝜎𝑘≠𝜎𝑖

+ 𝛿𝜎𝑖≠𝜎𝑗=𝜎𝑘
+ 𝛿𝜎𝑗≠𝜎𝑘=𝜎𝑖

+ 𝛿𝜎𝑘≠𝜎𝑖=𝜎𝑗
. (15)

Notice that this interaction is now invariant under any permutation of the three colours, so the corresponding model has an 𝑆3 colour 
symmetry. The partition function of the model reads

𝑍𝑆3
=
∑
𝜎

(∏
⟨𝑖𝑗⟩ 𝑥|𝜎𝑖−𝜎𝑗 |

)(∏
⟨𝑖𝑗𝑘⟩𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘

)
. (16)

We now reformulate the partition functions in terms of its domain walls. For two neighbouring spins 𝜎𝑖 and 𝜎𝑗 , if |𝜎𝑖 − 𝜎𝑗 | = 1, 
we draw a simple bond on the link of ℍ separating the two spins whereas if |𝜎𝑖 − 𝜎𝑗 | = 0 we let the link empty. We obtain in this 
way a closed simple 𝐺2 web 𝐺 embedded in ℍ. The mapping is many to one and onto. The number of spin configurations having 𝐺
as their domain wall is given by the number of proper 3-colourings of the dual graph 𝐺̂. Denoting the chromatic polynomial with 𝑄
colours of 𝐺̂ by 𝜒𝐺̂(𝑄), we have that

𝑍𝑆3
=
∑
𝐺∈

𝑥𝑁 (
√
2𝑦)𝑀𝜒𝐺̂(3) , (17)

where 𝑁 denotes the number of bonds, while 𝑀 is the number of vertices of 𝐺. As an example, Fig. 3 corresponds to 𝜒𝐺̂(𝑄) =
𝑄(𝑄 − 1)2(𝑄 − 2).

We will now show that 𝑍𝑆3
is equal to the partition function of the 𝐺2 web model, up to an overall multiplicative constant, when

𝑞 =𝑒𝑖
𝜋
6 or 𝑞 = 𝑒𝑖

5𝜋
6 . (18)

Remark that the product of the vertex fugacities and the Kuperberg weight do not depend on the embedding of the web into ℍ. Given 
a closed simple web 𝐺, rewriting the product of vertex fugacities as

𝑦𝑀 = (
√
2𝑦)𝑀

(
1√
2

)𝑀

,

we call the product 
(

1√
2

)𝑀

𝑤K(𝐺), the topological weight of the web, 𝑤top(𝐺). Similarly as in the 𝐴2 case, it can be computed 

thanks to modifications of the relations (13) in order to incorporate the vertex fugacity in the reduction process. This can be seen as 
a rescaling of the vertices of webs:

↦
1√
2

(19)

The relations to compute the topological weight of a simple web at either of the points (18) are thus

2 Remark that this model is in general different than the one defined in Section 3.3.
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Fig. 4. A spin configuration, with the colours {red,blue,green} representing the spin values ℤ3 ∶= {0,1,2}.

= 2 (20a)

= 0 (20b)

= (20c)

= 0 (20d)

2 = −

(
+

)
+

(
+

)
(20e)

4 = + 2
⎛⎜⎜⎜⎝ + + + +

⎞⎟⎟⎟⎠
−
⎛⎜⎜⎜⎝ + + + +

⎞⎟⎟⎟⎠ (20f)

We will now show that, for any closed simple web 𝐺, 𝜒𝐺̂(3) = 3𝑤top(𝐺). We begin by sketching a simple intuitive argument and 
below present a more formal variant using the chromatic algebra. See also Fig. 4.

We want to show that relations (20) hold true for domain walls in a 3-colouring problem. To this end we assign colours to the 
external faces of each relation and check the agreement between weights on the left- and right-hand sides of each relation. Consider, 
as an example, relation (20e). Encircling the whole diagram we encounter four domain walls, so the colours on one or both pairs 
of opposite external faces have to coincide. In the first case, there is no available colour for the central face on the left-hand side, 
so this side vanishes. On the right-hand side, one of the diagrams in the first parenthesis equals 1 and is compensated by one of the 
diagrams in the second parenthesis, while the other two diagrams vanish. In the second case, the left-hand side equals 2, while on 
the right-hand side both diagrams in the first parenthesis vanish, while each of the diagrams in the second parenthesis equals 1. The 
other relations are derived similarly.

Now, we move to the more formal argument using the chromatic algebra [31]. It will be sufficient to consider the chromatic 
algebra of degree 0, denoted 0, which is defined as follows. Consider the free vector space 0, spanned by planar graphs possibly 
containing closed loops, embedded in some simply connected domain. No edges are adjacent to the boundary of the domain, which 
is the meaning of “degree 0”. 0 is defined to be the quotient of 0 by the following local relations:

(1) If 𝑒 is an edge of a graph 𝐺 which is not a loop, then 𝐺 = 𝐺∕𝑒 −𝐺 ⧵ 𝑒, where 𝐺∕𝑒 denotes the graph obtained from 𝐺 by the 
contraction of 𝑒.

(2) If 𝐺 contains a loop-edge 𝑒 (i.e., an edge that connects a vertex to itself3), then 𝐺 = (𝑄 − 1)𝐺 ⧵ 𝑒.

(3) If 𝐺 contains a 1-valent vertex then 𝐺 = 0.

3 The standard name for “loop-edge” in graph theory is simply loop, but we already use “loop” for what graph theorists would call a cycle.
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Contrarily to webs, we do not consider graphs containing loops without vertices in 0. The chromatic algebra 0 depends on a 
parameter 𝑄 which has to be thought as a number of colours. Indeed, it was shown in [31] (Proposition 3.4) that a graph 𝐺 in 0 is 
proportional to the empty graph:

𝐺 =𝑄−1𝜒𝐺̂(𝑄)∅ (21)

For completeness, we recall here the elements of the proof of Proposition 3.4 of [31]. Let 𝑒 be an edge of 𝐺. Consider 𝑒, the edge 
crossing 𝑒 in the dual graph 𝐺̂. Then, one has 𝐺∕𝑒= 𝐺̂ ⧵ 𝑒 and 𝐺 ⧵ 𝑒 = 𝐺̂∕𝑒. Relation (1) is then translated to 𝐺̂ = 𝐺̂ ⧵ 𝑒− 𝐺̂∕𝑒 for the 
dual graph. This the deletion-contraction relation for the chromatic polynomial—a special case of a similar relation for the 𝑄-state 
Potts model. Relation (3) follows as a 1-valent vertex in 𝐺 corresponds to a loop in 𝐺̂ and there are no proper 𝑄-colourings of a 
graph containing loops. Finally, relation (2) follows because a loop whose interior trivially intersects 𝐺 corresponds to a 1-valent 
vertex 𝑣 in 𝐺̂ and the number of 𝑄-colourings of 𝐺̂ is 𝑄 − 1 times the number of 𝑄-colourings of 𝐺̂ ⧵ {𝑣}. For a loop whose interior 
does not intersect 𝐺 trivially, one can use relation (1) and (3) to reduce the interior of the loop to obtain a collection of nested loops. 
The interior of innermost of these loops then intersects 𝐺 trivially. The overall factor of 𝑄−1 in (21) corresponds to the fact that the 
dual graph of a mere vertex, which has 𝑄 ways to be coloured, is the empty graph.

Let us define a map 𝑔 that sends a web in 𝑝′(𝐺2) to the chromatic algebra of degree 0, 0. This map simply identifies any web 
with its graph in 0, possibly adding a vertex to a loop if it is one of the components of a web. It is then extended by linearity. We 
will now show that this map factors through the quotient defined by relations (20a)-(20f), i.e. all these relations are satisfied in 0. 
The first 3 relations follow straightforwardly from the relations of 0 . The fourth one is satisfied as there is clearly no 3 colouring 
of the dual graph of a graph containing the subgraph of the left hand side. The fifth one follows from repeated application of the 
relations of 0. To show that the last one is satisfied, we first remark that the left hand side is zero in 0 as there is no 3 colouring of 
the dual graph of a graph containing the left hand side as a subgraph. On the other hand, by repeated application of the relations of 
0, one has that

= − 2 +

⎛⎜⎜⎜⎜⎝
+ cycl. perm.

⎞⎟⎟⎟⎟⎠
(22)

where by cycl(ic) perm(utations) we mean the 4 graphs obtained by discrete rotations, as in (20f). This linear combination is thus 
zero in 0. Applying the relations to the right hand side of (20f), we obtain

10 − 5

⎛⎜⎜⎜⎜⎝
+ cycl. perm.

⎞⎟⎟⎟⎟⎠
(23)

which is then vanishing as well in 0. Hence (20f) holds in 0.

We have thus shown that 𝑔 defines a well defined linear map 𝑔̃ from 𝑝′(𝐺2) to 0. We have then

𝑔̃(𝐺) =𝑤top(𝐺) ∅ (24)

= 3−1𝜒𝐺̂(3) ∅ (25)

leading to 𝜒𝐺̂(3) = 3𝑤top(𝐺) as claimed.

We thus conclude that:

𝑍𝑆3
= 3𝑍𝐺2

(26)

where domain walls of spin configurations are mapped to webs.

4.4. Relation with spanning trees

In the previous subsection, we define a 𝑆3 symmetric spin model on the triangular lattice with nearest-neighbour and plaquette 
interactions. Let us focus for a moment on the 𝑆𝑄 symmetric spin model, or 𝑄-state Potts models, with nearest-neighbour interactions 
only. The partition function reads

𝑍Potts =
∑
𝜎

∏
⟨𝑖𝑗⟩(𝑥+ (1 − 𝑥)𝛿𝜎𝑖𝜎𝑗 ) (27)

where 𝜎 ∶ 𝕋 → {1, … , 𝑄}. This model is known to be critical when [32]

𝑄 = 𝑣3 + 3𝑣2 (28)

𝑣 = 𝑥−1 − 1
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We can again express the partition function in terms of the domain walls between spin clusters. These subgraphs of ℍ are again 
understood as simple 𝐺2 webs. We thus obtain

𝑍Potts =
∑
𝐺∈

𝑥𝑁𝜒𝐺̂(𝑄)

where 𝑁 denotes the number of bonds. The naive limit 𝑄 = 0 is not interesting, as 𝜒𝐺̂(0) = 0 for any non-empty graph. Instead, we 
can focus on the polynomial

𝜅𝐺̂(𝑄) =𝑄−1𝜒𝐺̂(𝑄) (29)

Then the limit

𝑍tree = lim
𝑄→0

𝑄−1𝑍Potts =
∑
𝐺∈

𝑥𝑁𝜅𝐺̂(0) (30)

defines a model of spanning trees on 𝕋 [33]. The uniform probability measure on the set of spanning trees is obtained at 𝑥 = 1 and 
is critical by (28). We will now show that 𝑍tree is a special case of the 𝐺2 web models for

𝑞 = 𝑖 , 𝑦 = 𝑖 .

The proof is entirely analogous to the one for the 𝑆3 spin model. First, we incorporate the vertex fugacity 𝑦 into the Kuperberg 
relations to obtain a topological weight given by the modified relations

= − 1 (31a)

= 0 (31b)

= − 2 (31c)

= − 3 (31d)

= − 2

(
+

)
−

(
+

)
(31e)

= −
⎛⎜⎜⎜⎝ + + + +

⎞⎟⎟⎟⎠
−
⎛⎜⎜⎜⎝ + + + +

⎞⎟⎟⎟⎠ (31f)

Straightforward computations show that all the above relations hold in 0 for 𝑄 = 0. Hence the topological weight of 𝐺 is nothing 
but 𝜅𝐺̂(0) and we obtain

𝑍tree =𝑍𝐺2
(32)

5. The 𝑩𝟐 web models

For the last spider, the 𝐵2 one, we can define two kinds of web models and establish relations with two kinds of spin models.

5.1. The 𝐵2 spider relations

𝐵2 webs are planar graphs embedded in a simply connected domain whose connected components are either closed loops or 
graphs with trivalent vertices inside the domain or univalent vertices connected to the boundary of the domain. We again denote 
by open webs, the ones that possess univalent vertices connected to the boundary of the domain and closed webs, otherwise. Edges 
come again in two types and are called simple and double edges, depicted respectively as
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Any trivalent vertex is required to be of the form

(33)

The free vector space spanned by closed 𝐵2 webs will be called 𝑝(𝐵2). Then, 𝑝(𝐵2) is the quotient of 𝑝(𝐵2) by the 
following local relations4 [3]:

= −(𝑞4 + 𝑞2 + 𝑞−2 + 𝑞−4) (34a)

= 𝑞6 + 𝑞2 + 1 + 𝑞−2 + 𝑞−6 (34b)

= 0 (34c)

= (𝑞2 + 2 + 𝑞−2) (34d)

= 0 (34e)

− = − (34f)

A number can be assigned unambiguously to any closed 𝐵2 web thanks to these relations. Indeed, it is a result of [3] that any closed 
web is proportional to the empty one. For a 𝐵2 web 𝐺, we call the proportionality factor, the Kuperberg weight of 𝐺 and denote it 
by 𝑤K(𝐺).

5.2. Definition of the models on the hexagonal lattice ℍ

The configuration space  is given by 𝐵2 webs embedded in ℍ. We say a bond is simple (respectively double) when it is covered 
by a simple edge (respectively double). To a configuration 𝐺, we give a weight (or fugacity) 𝑥𝑡;1 (respectively 𝑥𝑣;1) to any tilted 
(respectively vertical) simple bond and a weight 𝑥𝑡;2 (respectively 𝑥𝑣;2) to any tilted (respectively vertical) double bond. We also give 
a fugacity 𝑦 to any vertex. This determines the local part of the weight of 𝐺. The non local part is given by the Kuperberg weight 
𝑤K(𝐺).

The partition function then reads:

𝑍𝐵2
=
∑
𝐺∈

𝑥
𝑁𝑡;1
𝑡;1 𝑥

𝑁𝑣;1
𝑣;1 𝑥

𝑁𝑡;2
𝑡;2 𝑥

𝑁𝑣;2
𝑣;2 𝑦𝑁𝑉 𝑤K(𝐺) (35)

where 𝑁𝑡;1 (resp. 𝑁𝑣;1) is the number of tilted (resp. vertical) simple bonds, 𝑁𝑡;2 (resp. 𝑁𝑣;2) is the number of tilted (resp. vertical) 
double bonds and 𝑁𝑉 is the number of vertices.

5.3. Definition of the models on the square lattice 𝕊

Here we define 𝐵2 web models on the square lattice. Their definition is motivated by connections with spin models that will be 
exposed in section 5.4.2.

First, let us augment 𝑝(𝐵2) by allowing 4-valent vertices whose adjacent edges are all simple. Let us denote the vector space 
spanned by such graphs by 𝑝′(𝐵2). We then quotient this space by the original 𝐵2 relations (34) as well as:

4 Note that our conventions differ from [3] by 𝑞 ↔ 𝑞
1
2 and a rescaling of vertices by 𝑖.
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= + = + (36)

where the second equality is just a repetition of the defining relation (34f). This four-valent vertex was originally defined by Kuper-

berg [3]; notice that (34f) guarantees that it is indeed invariant under rotations through ± 𝜋

2 . The quotient space will be denoted by 
𝑝′(𝐵2).

First define a configuration on 𝕊 ∪ 𝑏 to be the replacement of each of its nodes by any of the following local states with the 
corresponding Boltzmann weights 𝑏1, … , 𝑏14

𝑏1 𝑏2 𝑏3 𝑏4

𝑏5 𝑏6 𝑏7 𝑏8

𝑏9 𝑏10 𝑏11 𝑏12

𝑏13 𝑏14

where we show only states up to rotations and reflections (the Boltzmann weights are taken to be invariant under these transfor-

mations). Moreover, each configuration is subject to the constraints that any link in 𝑏 is empty and that any link has the same 
occupancy (empty, simple or double) with respect to each of the two nodes of 𝕊 on which it is incident. Then delete from a given 
configuration the set of empty links. The result is a graph having only trivalent vertices of the type (33) and four-valent vertices 
surrounded by simple edges. In other words, it is a graph in 𝑝′(𝐵2).

The weight of a configuration 𝐺 is again the product of a local and a non-local part. The local part is a product of the local 
Boltzmann weights 𝑏𝑖. The non-local part is again 𝑤K(𝐺). It is computed by using the relations (34) once all 4-valent vertices, i.e. 
the ones with local weight 𝑏1, have been resolved thanks to (36).

The partition function then reads:

𝑍𝐵2
=
∑
𝐺∈

( 14∏
𝑖=1

𝑏
𝑁𝑖
𝑖

)
𝑤K(𝐺) (37)

where 𝑁𝑖 is the number of local patterns of weight 𝑏𝑖.
Remark that we could have introduced models on the square lattice for the 𝐴2 and 𝐺2 cases as well. Here we consider only 

the hexagonal lattice for the latter as the integrable solutions described below contain the hexagonal lattice models with isotropic
local weights. In contrast, this is not the case in the 𝐵2 case which is why we defined the model on the hexagonal lattice with bond 
fugacities depending on the bond orientation. We can however define the above square lattice model with isotropic local weights 
for which there are integrable points. Finally, note that the local weights in the square lattice model are less constrained than in 
the hexagonal lattice case where they factorise in terms of bond and vertex fugacities. We could have defined the 𝑏𝑖s as products of 
bond and vertex fugacities but, again, the more general non-factorised local weights 𝑏𝑖 are needed in order for the model to contain 
integrable points.
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5.4. Relation with 𝑆3 and 𝐷4 spin models

In this section, we show how the 𝐵2 web models for some specific values of 𝑞 are equivalent, at the level of partition functions, 
to three- and four-state spin models with global symmetries 𝑆3 and 𝐷4, respectively. In both cases the webs are identified with the 
corresponding spin clusters.

5.4.1. 𝐵2 webs in ℍ and the 𝐷4 spin model
Consider the lattice dual to ℍ embedded in the strip (respectively the cylinder), that is, a triangular lattice 𝕋 with one (respectively 

two) point at infinity.

We begin by formulating the 𝐷4 spin model in terms of its domain walls. Consider spins {𝜎𝑖, 𝑖 ∈ 𝕋} taking values in ℤ4 ≅
{0, 1, 2, 3}. We define nearest neighbours interactions 𝑥𝑣,|𝜎𝑖−𝜎𝑗 | (respectively 𝑥𝑡,|𝜎𝑖−𝜎𝑗 |) for two neighbouring sites 𝑖 and 𝑗 horizontally 
separated (respectively diagonally separated). Here |𝜎𝑖 − 𝜎𝑗 | is to be understood modulo 4 and we normalise interactions such that 
𝑥0 = 1. Hence, the nearest neighbour interaction term contains four parameters 𝑥𝑡;1, 𝑥𝑣;1, 𝑥𝑡;2 and 𝑥𝑣;2. We also add a plaquette 
interaction term

𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘 =1 + 𝑦
(
𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑖±2 + 𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑖±1 + 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑖±1 − 1

)
which preserves 𝐷4 symmetry. The partition function of the model reads

𝑍𝐷4
=
∑
𝜎

⎛⎜⎜⎝
∏
⟨𝑖𝑗⟩𝑡 𝑥𝑡,|𝜎𝑖−𝜎𝑗 |

⎞⎟⎟⎠
(∏
⟨𝑖𝑗⟩𝑣 𝑥𝑣,|𝜎𝑖−𝜎𝑗 |

)(∏
⟨𝑖𝑗𝑘⟩𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘

)
(38)

where ⟨𝑖𝑗⟩𝑡 (respectively ⟨𝑖𝑗⟩𝑣) denotes nearest neighbour pairs of sites diagonally separated (respectively horizontally separated).

Now we will rewrite the partition function in terms of its domain walls. Consider a spin configuration {𝜎𝑖, 𝑖 ∈ 𝕋}. For two 
neighbouring spins 𝜎𝑖 and 𝜎𝑗 , if |𝜎𝑖 − 𝜎𝑗 | = 1, we draw a simple bond on the link of ℍ separating the two spins. If |𝜎𝑖 − 𝜎𝑗 | = 2, we 
draw a double bond, whereas if |𝜎𝑖 − 𝜎𝑗 | = 0 we let the link empty. We obtain this way a Kuperberg 𝐵2 web 𝐺 embedded in ℍ, i.e. 
𝐺 ∈. Clearly, the mapping is onto and many to one. That is, any 𝐺 ∈ is reached as a domain wall but different spin configurations 
may have the same set of domain walls 𝐺. Note that 𝐺 contains, not only the information about domain walls between different 
spins but also what type of difference there is between spins, i.e. a difference of ±1 or ±2.

All configuration having the same domain wall 𝐺 has the same weight. Hence, in order to write the partition function, it suffices 
to count how many spin configurations have the same domain walls. For later convenience we define this number in the following 
way. For a graph 𝐺 whose connected components can be closed loops, such that all of its edges (or loops) are simple or double edges, 
consider the graph dual to 𝐺 having its edges labelled by 1 (respectively 2) if they cross simple edges (respectively double edges). 
We say that its edges are of type 1 or type 2. We call such graphs decorated. Remark that 𝐺 could be a 𝐵2 web here, but it can be 
a more general graph with 4-valent vertices for instance. We will denote the dual graph of 𝐺 by 𝐺̂ and we stress that we consider 
𝐺̂ as a decorated graph. We call a proper colouring of a decorated graph 𝐻 , a colouring of its vertices with colours in ℤ4 such that 
two colours connected by an edge of type 1 (respectively type 2) differ by ±1 modulo 4 (respectively ±2 modulo 4). We denote the 
number of proper colourings of 𝐻 by 𝜓𝐻 .

It is clear that, given a domain wall configuration 𝐺 ∈ , the number of spin configurations that have 𝐺 as its domain wall 
configuration is equal to 𝜓𝐺̂ . Hence the partition function of the spin model can be written as:

𝑍𝐷4
=
∑
𝐺∈

𝑥
𝑁𝑡;1
𝑡;1 𝑥

𝑁𝑣;1
𝑣;1 𝑥

𝑁𝑡;2
𝑡;2 𝑥

𝑁𝑣;2
𝑣;2 𝑦𝑁𝑉 𝜓𝐺̂ (39)

We will now show that 𝜓𝐺̂ = 4𝑤K(𝐺) when 𝑞 = 𝑒𝑖
𝜋
4 , establishing the claimed equivalence. First, observe that we can extend by 

linearity the map 𝜓 to 𝑝(𝐵2) obtaining a linear form. We now claim that this map factors through the relations (34) to a well 
defined map on 𝑝(𝐵2). For 𝑞 = 𝑒𝑖

𝜋
4 , the 𝐵2 relations read:

− 2 = 0 (40a)

− 1 = 0 (40b)

= 0 (40c)

− 2 = 0 (40d)
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= 0 (40e)

− − + = 0 (40f)

We must verify that, for all relations, the left hand side is in the kernel of 𝜓 . It is clear that this holds for the first 5 relations. To 
show that it holds for the last one, we can extend the definition of 𝜓 to 𝑝′(𝐵2) and show that it factors to a well defined map on 
𝑝′(𝐵2). We thus have to show that the linear combinations

− − (41a)

− − (41b)

are in the kernel of 𝜓 . The proof being similar for the two expressions, let us detail it for the first one. Consider three webs 𝐺1 , 𝐺2, 
𝐺3 that are the same except inside a disk where they look like:

𝐺1 = (42a)

𝐺2 = (42b)

𝐺3 = (42c)

where we have drawn in blue the parts of the dual graphs 𝐺̂1, 𝐺̂2 and 𝐺̂3 that are totally contained inside the disk. It is understood 
that there could be blue edges connecting vertices inside the disk to vertices outside the disk. It is clear that the number of proper 
colourings of 𝐺̂3 is the sum of the number of proper colourings where the top and bottom vertices are the same and the number 
of proper colourings where the vertices are different. Here, different implies differing by ±2, hence we have 𝜓𝐺̂3

= 𝜓𝐺̂1
+ 𝜓𝐺̂2

. This 
shows that (41) is inside the kernel of 𝜓 .
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Since 𝜓 is a well defined linear form on 𝑝′(𝐵2) and every web 𝐺 is proportional to the empty web by a factor 𝑤K(𝐺), we have 
that

𝜓𝐺̂ =𝑤K(𝐺)𝜓∅̂ = 4𝑤K(𝐺) (43)

We thus have that

𝑍𝐷4
= 4𝑍𝐵2

(44)

where domain walls and webs are identified in the mapping.

5.4.2. 𝐵2 webs in 𝕊, a 𝐷3 and a 𝐷4 spin model
Let us define a 𝐷𝑛 spin model, with 𝑛 = 3 or 4, on the lattice 𝕊∗ dual to the square lattice 𝕊. The local Boltzmann weights 

𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘,𝜎𝑙 of the model depend of the values of the spins 𝜎𝑖, 𝜎𝑗 , 𝜎𝑘, 𝜎𝑙 ∈ℤ𝑛 (clockwise) cyclically ordered around a plaquette ⟨𝑖𝑗𝑘𝑙⟩, 
in the following way

𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘,𝜎𝑙 =𝑏1𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±1

+ 𝑏2𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±1(𝛿𝜎𝑖,𝜎𝑘 + 𝛿𝜎𝑗 ,𝜎𝑙 )

+ 𝑏3(𝛿𝜎𝑖,𝜎𝑗 𝛿𝜎𝑗 ,𝜎𝑘𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±1 + 𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘𝛿𝜎𝑘,𝜎𝑙 𝛿𝜎𝑙,𝜎𝑖±1

+ 𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙 𝛿𝜎𝑙,𝜎𝑖 + 𝛿𝜎𝑖,𝜎𝑗 𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖 )

+ 𝑏4(𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖 + 𝛿𝜎𝑖,𝜎𝑗 𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙 𝛿𝜎𝑙,𝜎𝑖±1)

+ 2𝑏5𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖±2

+ 𝑏6𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖±2(𝛿𝜎𝑖,𝜎𝑘 + 𝛿𝜎𝑗 ,𝜎𝑙 )

+ 𝑏7(𝛿𝜎𝑖,𝜎𝑗 𝛿𝜎𝑗 ,𝜎𝑘𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖±2 + 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘𝛿𝜎𝑘,𝜎𝑙 𝛿𝜎𝑙,𝜎𝑖±2

+ 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙 𝛿𝜎𝑙,𝜎𝑖 + 𝛿𝜎𝑖,𝜎𝑗 𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖 )

+ 𝑏8(𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖 + 𝛿𝜎𝑖,𝜎𝑗 𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙 𝛿𝜎𝑙,𝜎𝑖±2)

+ 𝑏9(𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖±2𝛿𝜎𝑖,𝜎𝑘 + 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±2𝛿𝜎𝑗 ,𝜎𝑙

+ 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±1𝛿𝜎𝑖,𝜎𝑘 + 𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖±1𝛿𝜎𝑗 ,𝜎𝑙 )

+ 𝑏10(𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±2𝛿𝜎𝑖,𝜎𝑘±1 + 𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±2𝛿𝜎𝑗 ,𝜎𝑙±1

+ 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖±1𝛿𝜎𝑖,𝜎𝑘±1 + 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖±1𝛿𝜎𝑗 ,𝜎𝑙±1)

+ 𝑏11(𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖±2𝛿𝜎𝑗 ,𝜎𝑙±1 + 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±2𝛿𝜎𝑖,𝜎𝑘±1

+ 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±1𝛿𝜎𝑗 ,𝜎𝑙±1 + 𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖±1𝛿𝜎𝑖,𝜎𝑘±1)

+ 𝑏12(𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±2 + 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙 𝛿𝜎𝑙,𝜎𝑖±1

+ 𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖 + 𝛿𝜎𝑖,𝜎𝑗 𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖±1)

+ 𝑏13(𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙 𝛿𝜎𝑙,𝜎𝑖±2 + 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖

+ 𝛿𝜎𝑖,𝜎𝑗 𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±1 + 𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖±1

+ 𝛿𝜎𝑖,𝜎𝑗 𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±2 + 𝛿𝜎𝑖,𝜎𝑗±2𝛿𝜎𝑗 ,𝜎𝑘𝛿𝜎𝑘,𝜎𝑙±1𝛿𝜎𝑙,𝜎𝑖±1

+ 𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±2𝛿𝜎𝑘,𝜎𝑙 𝛿𝜎𝑙,𝜎𝑖±1 + 𝛿𝜎𝑖,𝜎𝑗±1𝛿𝜎𝑗 ,𝜎𝑘±1𝛿𝜎𝑘,𝜎𝑙±2𝛿𝜎𝑙,𝜎𝑖

+ 𝑏14𝛿𝜎𝑖,𝜎𝑗 𝛿𝜎𝑗 ,𝜎𝑘𝛿𝜎𝑘,𝜎𝑙 𝛿𝜎𝑙,𝜎𝑖

One may check that 𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘,𝜎𝑙 respects 𝐷4 symmetry. Note that the factor 2 in front of 𝑏5 is due to the two ways of colouring the 
inside of the square in the corresponding plaquette.

The partition function then reads

𝑍𝐷4
=
∑
{𝜎}

∏
<𝑖𝑗𝑘𝑙>

𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘,𝜎𝑙 (45)

where the usual nearest-neighbour interactions have now been absorbed into the 𝑏𝑖. When 𝑛 = 4, each summand in 𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘,𝜎𝑙 can 
be graphically expressed thanks to the corresponding web in Section 5.3 where simple (respectively double) bonds separate spins 
differing by ±1 (respectively ±2). Thus, the only non vanishing summands in the product over all plaquettes 

∏
<𝑖𝑗𝑘𝑙> 𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘,𝜎𝑙 are 
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given by webs embedded in 𝕊 as in Section 5.3. Given such a web 𝐺, the corresponding summand will be equal to, after summing 
over spin configurations,( 14∏

𝑖=1
𝑏
𝑁𝑖
𝑖

)
𝜓𝐺̂

When 𝑞 = 𝑒𝑖
𝜋
4 , we have seen in (43) that 𝜓𝐺̂ = 4𝑤K(𝐺), hence

𝑍𝐷4
= 4𝑍𝐵2

(46)

When 𝑛 = 3, summands in 𝑝𝜎𝑖,𝜎𝑗 ,𝜎𝑘,𝜎𝑙 do not determine uniquely a web as 𝜎±1 = 𝜎±2. Yet, if we forbid double-edge configurations 
by setting

𝑏𝑖 = 0 , for 𝑖 ∈ �5,13� , (47)

there is again a one-to-one correspondence. The corresponding webs involve only simple edges. Denote by ′ the corresponding set 
of webs embedded in  . We have that

𝑍𝐷3
=
∑

𝐺∈′

(
𝑏
𝑁14
14

4∏
𝑖=1

𝑏
𝑁𝑖
𝑖

)
𝜒𝐺̂(3) (48)

We will now show that 𝜒𝐺̂(3) = 3𝑤K(𝐺) when 𝑞 = 𝑒𝑖
𝜋
3 .

We define a morphism from 𝑝′(𝐵2) at 𝑞 = 𝑒𝑖
𝜋
3 to the chromatic algebra 0 whose definition was given in Section 4.3. Consider 

first the map 𝑓 that sends a web 𝐺 in 𝑝′(𝐵2) to the graph in 0 obtained by forgetting the information of edges being simple or 
double, possibly adding a vertex to a loop if present. Extend 𝑓 by linearity to 𝑝′(𝐵2). We want to show that 𝑓 factors through the 
quotient of 𝐵2 relations (34) and (36) to a map 𝑓 from 𝑝′(𝐵2) to 0. We then need to show that the following linear combinations 
are in the kernel of 𝑓 :

− 2 (49a)

− 2 (49b)

(49c)

− (49d)

(49e)

− − + (49f)

− − (49g)

− − (49h)

This follows from a straightforward application of the relations of 0 . Hence, for a given web 𝐺 we have that
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Fig. 5. The row to row transfer matrix in the case of periodic boundary conditions with 2𝐿 = 10.

𝑓 (𝐺) =𝑤K(𝐺) ∅ = 3−1𝜒𝐺̂(3) ∅ (50)

leading to 𝜒𝐺̂(3) = 3𝑤K(𝐺).
Thus, we have

𝑍𝐷3
= 3𝑍𝐵2

(51)

6. Transfer matrices

From now on, we add to the discussion the 𝐴1 case, as it will serve as a simpler and well-known example, the dilute loop model, 
which will guide the discussion of the rank 2 web models. Let 𝑋 denote one of our algebras of interest, 𝐴1, 𝐴2, 𝐺2 or 𝐵2. As in [2], 
we define local transfer matrices thanks to the identification given by the spiders between diagrams and intertwiners of quantum 
group representations [3]. To each link of the lattice is associated a local space of state 𝑋 that carries a particular representation 
of the quantum group, a direct sum of trivial and fundamental representations. The trivial representation ℂ corresponds to the link 
not being covered by a web. We denote the vacuum vector 1 ∈ℂ by | ⟩. Let us build the row to row transfer matrices by composing 
smaller, local transfer matrices.

In the hexagonal lattice ℍ case, we shall call node of type 1 (respectively type 2) a node situated at the bottom (respectively top) 
of a vertical link. Denote by 𝑡𝑋(𝑘) the local transfer matrices propagating through a node of type 𝑘 ∈ {1, 2}. They are linear maps:

𝑡𝑋(1) ∶𝑋 ⊗𝑋 →𝑋 , (52a)

𝑡𝑋(2) ∶𝑋 →𝑋 ⊗𝑋 , (52b)

and we use their pictorial notation and , respectively, in Fig. 5. We will show how to obtain these linear maps in the next 
sections. Their composition 𝑡𝑋 = 𝑡𝑋(2)𝑡

𝑋
(1) is a linear map from 𝑋 ⊗𝑋 to itself (i.e., an endomorphism of 𝑋 ⊗𝑋 ).5 We index the 

copies 𝑡𝑋𝑖 of these operators by their position 𝑖 in a row as in Fig. 5. The square lattice case is analogous but local transfer matrices 
are now defined as operators from 𝑋 ⊗𝑋 to itself from the beginning.

In case of open boundary conditions the row-to-row6 transfer matrix then reads

𝑇𝑋 =

(
𝐿−1∏
𝑘=0

𝑡𝑋2𝑘+1

)(
𝐿−1∏
𝑘=1

𝑡𝑋2𝑘

)
. (53)

It is an endomorphism of ⊗2𝐿
𝑋

. On appropriate lattices, the partition functions are then recovered as the vacuum expectation values 
of powers of the transfer matrix:

𝑍𝑋 =
⟨
𝑇𝑀
𝑋

⟩
. (54)

By the vacuum expectation value, we mean the matrix element from | ⟩⊗2𝐿 to itself. To be precise, the right-hand-side of (54)

expresses the partition function 𝑍𝑋 on a hexagonal lattice with 2𝑀 − 2 rows, because while 𝑇𝑀
𝑋

builds configurations on a lattice 
with 2𝑀 rows, the vertices in the first and last row and their adjacent edges are all constrained to be empty due to our choice of 
vacuum state.

However, when the web model is embedded in the cylinder we need twisted periodic boundary conditions to give the correct 
weights to webs that wrap the periodic direction [2]. In the 𝐴1 and 𝐴2 cases this is obtained by the action of a twist operator

𝑆𝑋 = 𝑞2𝐻𝝆 (55)

leading to the following modified transfer matrix [2]

5 Remark that 𝑡𝑋 corresponds to summing over the state of a vertical link, so that a pair of vertices on ℍ is effectively transformed into a single vertex on a (tilted) 
square lattice.

6 Note that with our definition, the row-to-row transfer matrix propagates states through two rows of the lattice.
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𝑇𝑋 =

(
𝐿−1∏
𝑘=0

𝑡𝑋2𝑘+1

)(
𝐿−1∏
𝑘=1

𝑡𝑋2𝑘

)
𝑆𝑋𝑡𝑋2𝐿𝑆

−1
𝑋 , (56)

where 𝑆𝑋 acts non-trivially on site 1 only.

In the 𝐺2 and 𝐵2 cases, the transfer matrix is still given by (56), but the twist operator is now

𝑆𝑋 = (−1)2𝐻𝝆∨ 𝑞2𝐻𝝆 (57)

where 𝝆 and 𝝆∨ denote the Weyl vector and the dual Weyl vector respectively (see Appendix B).

Remark that the twist operator could also be chosen differently from (55) and (57); see [1]. This is useful in order to define 
modified partition functions that are lattice analogs of two-point functions of electric operators in Coulomb Gas conformal field 
theories.

6.1. A reminder on the dilute loop model

Before going on the discussion of web models, let us remind the well known and similar case of the dilute loop model on the 
hexagonal lattice. The local transfer matrices of the model can be written graphically as

𝑡loop =𝑥2 + 𝑥2 + 𝑥2 + 𝑥2

+ 𝑥2 + 𝑥 + 𝑥 + (58)

where the dashed line represents an empty link and 𝑥 is the bond fugacity, i.e., the local weight assigned to a link covered by a loop.

Each diagram can be understood as an intertwiner of 𝑈−𝑞(𝐴1) representations if we set the loop weight to [2]𝑞 . These diagrams 
are called (dilute) Temperley-Lieb (TL) diagrams. The local space of states of the loop model is given by 𝐴1

= ℂ ⊕ 𝑉1 where 𝑉1
denotes the fundamental representation. Any diagram can be expressed by concatenating vertically and horizontally juxtaposing the 
following elementary diagrams (and possibly identity strands joining the top and bottom boundaries)

cup = cap =

where cup and cap are embedded in the lattice as, respectively, the second- and third-last diagram of (58).

We use a general convention that these ‘string’ diagrams are read from bottom to top, the strings are labelled by the fundamental 
representation 𝑉1 and the empty source/target of a diagram corresponds to the trivial representation ℂ. For example, the above cap

diagram is an intertwiner 𝑉1 ⊗ 𝑉1 → ℂ that can be the best described in a basis. Let {𝑒1, 𝑒2} denote the standard basis of 𝑉1, and 
{𝑓1, 𝑓2} be its dual. Then, the corresponding intertwiners are

cup ∶ ℂ→ 𝑉1 ⊗𝑉1

1↦ 𝑒1 ⊗ 𝑒2 + 𝑞−1𝑒2 ⊗ 𝑒1

cap = 𝑞𝑓1 ⊗𝑓2 + 𝑓2 ⊗𝑓1

where in the last equality we used the obvious identification of 𝑉 ∗
1 ⊗ 𝑉 ∗

1 with the space of linear maps 𝑉1 ⊗ 𝑉1 → ℂ. The maps 
cup and cap were obtained by calculation of 𝑈−𝑞(𝐴1) invariant vectors in 𝑉1 ⊗ 𝑉1 and in its dual space. That is, we find a vector 
annihilated by the action of 𝐸 and 𝐹 given by the coproduct (118).

We furthermore remark that the invariant vectors, and thus the corresponding maps, are defined up to a multiplicative constant 
that can be fixed in the following way. The maps cup and cap are assumed to satisfy the zigzag rules

= = (59)

which reflect the fact that our diagrams are considered up to an isotopy, or equivalently, this is an implication of the Temperley-Lieb 
relations. These rules reduce the choices of constants to one “gauge” degree of freedom: one may multiply the cup intertwiner by 
some factor 𝜂 and the cap intertwiner by 𝜂−1. In the expressions above we have chosen a definite value of the gauge factor 𝜂.
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6.2. The 𝐴2 case

Let 𝑉1 be the fundamental representation of 𝑈−𝑞(𝐴2) of highest weight 𝒘𝟏. In 𝑉1, pick a highest weight vector, 𝑢1. Then we 
obtain a basis {𝑢𝑖, 𝑖 ∈ �1, 3�} by applying lowering operators:

𝑢2 =𝐹1𝑢1 (60a)

𝑢3 =𝐹2𝐹1𝑢1 (60b)

The action of the quantum group generators in our bases is given in appendix D.

Let 𝑉2 be the fundamental representation of 𝑈−𝑞(𝐴2) of highest weight 𝒘𝟐. In 𝑉2, pick a highest weight vector, 𝑣1. Then we 
obtain a basis {𝑣𝑖, 𝑖 ∈ �1, 3�} by applying lowering operators:

𝑣2 =𝐹2𝑣1 (61a)

𝑣3 =𝐹1𝐹2𝑣1 (61b)

Let {𝑒𝑖, 𝑖 ∈ �1, 7�} = {𝑢1, 𝑢2, 𝑢3, 𝑣1, 𝑣2, 𝑣3, 1} be a basis of 𝐴2
= 𝑉1 ⊕𝑉2 ⊕ℂ.

Any 𝐴2 web can be expressed as the vertical concatenation and horizontal juxtaposition of the following elementary webs (and 
possibly identity strands connecting the bottom and top boundaries)

coev = c̃oev =

ev = ẽv = (62)

Y1 = Y2 =

Here is an illustration on how one can obtain any open web from the above set

= (63)

In the left hand side, the top diagram is a juxtaposition of ev and an identity strand whereas the bottom one is a juxtaposition of an 
identity strand and Y1. By concatenating them vertically, we get the web on the right hand side.

These webs represent the following intertwiners:

coev ∶ ℂ→ 𝑉1 ⊗𝑉2

𝑒7 ↦ 𝑞𝑒1 ⊗ 𝑒6 + 𝑒2 ⊗ 𝑒5 + 𝑞−1𝑒3 ⊗ 𝑒4

c̃oev ∶ ℂ→ 𝑉2 ⊗𝑉1

𝑒7 ↦ 𝑞−1𝑒6 ⊗ 𝑒1 + 𝑒5 ⊗ 𝑒2 + 𝑞𝑒4 ⊗ 𝑒3

ev = 𝑞−1𝑒∗6 ⊗ 𝑒∗1 + 𝑒∗5 ⊗ 𝑒∗2 + 𝑞𝑒∗4 ⊗ 𝑒∗3

ẽv = 𝑞𝑒∗1 ⊗ 𝑒∗6 + 𝑒∗2 ⊗ 𝑒∗5 + 𝑞−1𝑒∗3 ⊗ 𝑒∗4

Y1 ∶ 𝑉2 → 𝑉1 ⊗𝑉1

𝑒4 ↦ 𝑒1 ⊗ 𝑒2 + 𝑞−1𝑒2 ⊗ 𝑒1
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𝑒5 ↦ 𝑒1 ⊗ 𝑒3 + 𝑞−1𝑒3 ⊗ 𝑒1

𝑒6 ↦ 𝑒2 ⊗ 𝑒3 + 𝑞−1𝑒3 ⊗ 𝑒2

Y2 ∶ 𝑉1 → 𝑉2 ⊗𝑉2

𝑒1 ↦ 𝑞𝑒4 ⊗ 𝑒5 + 𝑒5 ⊗ 𝑒4

𝑒2 ↦ 𝑞𝑒4 ⊗ 𝑒6 + 𝑒6 ⊗ 𝑒4

𝑒3 ↦ 𝑞𝑒5 ⊗ 𝑒6 + 𝑒6 ⊗ 𝑒5

Horizontal juxtaposition of webs corresponds to taking the tensor product of intertwiners and vertical concatenation corresponds to 
composition. For instance the web in (63) represents the following intertwiner:(

ev ⊗ Id𝑉1

)
◦
(

Id𝑉2
⊗ Y1

)
Similarly to the 𝑈−𝑞(𝐴1) case, the maps ev and coev are defined up to multiplicative scalars from an invariant vector in 𝑉1 ⊗𝑉2, 

i.e. a vector in 𝑉1 ⊗𝑉2 that is annihilated by the action of 𝐸1, 𝐸2, 𝐹1 and 𝐹2 using the coproduct defined in (118) from Appendix C. 
Similarly, ẽv and c̃oev are defined up to multiplicative scalars from an invariant vector in 𝑉2 ⊗ 𝑉1. The freedom on multiplicative 
scalars is reduced to one degree of freedom once we impose that the maps satisfy the loop rule as well as the zigzag rules

= = (64)

To construct Y1, one looks for a highest weight vector 𝑣 of weight 𝒘2 inside 𝑉1 ⊗ 𝑉1 using the actions of 𝐸1, 𝐸2 determined by 
the coproduct (118). Note that this specifies 𝑣 only up to a multiplicative scalar. The map Y1 is then defined as mapping 𝑒4 to 𝑣, 
𝑒5 to 𝐹2𝑣 and 𝑒6 to 𝐹1𝐹2𝑣 where the actions of 𝐹1, 𝐹2 on 𝑉1 ⊗ 𝑉1 are again determined by the coproduct. This defines Y1 up to a 
multiplicative scalar. Similarly, one defines Y2 up to a multiplicative scalar. Asking that the maps satisfy the digon and square rules 
reduce the freedom to one degree of freedom. So, in total we have two free parameters that we have chosen to fix to some values.

The local transfer matrices of the 𝐴2 web model are then given by

𝑡
𝐴2
(1) =𝑧𝑥

3
2 + 𝑦𝑥

3
2 + 𝑥𝑒−𝑖𝜙 + 𝑥𝑒𝑖𝜙 + 𝑥𝑒𝑖𝜙

+ 𝑥𝑒−𝑖𝜙 + 𝑥𝑒𝑖𝜙 + 𝑥𝑒−𝑖𝜙 + (65a)

𝑡
𝐴2
(2) =𝑧𝑥

3
2 + 𝑦𝑥

3
2 + 𝑥𝑒−𝑖𝜙 + 𝑥𝑒𝑖𝜙 + 𝑥𝑒𝑖𝜙

+ 𝑥𝑒−𝑖𝜙 + 𝑥𝑒𝑖𝜙 + 𝑥𝑒−𝑖𝜙 + (65b)

Above, diagrams must be understood as webs when dashed lines are forgotten. For instance in the expression of 𝑡𝐴2
(1) , the first term is 

defined by (63), while the third to the sixth therms are given by identity lines. The seventh and eighth terms are given by ev and ẽv

respectively, and the ninth one is the empty web, i.e., the identity on the trivial representation ℂ.

6.3. The 𝐺2 case

Let 𝑉 be the fundamental representation of 𝑈𝑞(𝐺2) of highest weight 𝒘𝟏. In 𝑉 , pick a highest weight vector, 𝑒1. Then we obtain 
a basis {𝑒𝑖, 𝑖 ∈ �1, 7�} by applying lowering operators:
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𝑒2 =𝐹1𝑒1 𝑒3 = 𝐹2𝐹1𝑒1

𝑒4 =𝐹1𝐹2𝐹1𝑒1 𝑒5 = 𝐹 2
1 𝐹2𝐹1𝑒1

𝑒6 =𝐹2𝐹
2
1 𝐹2𝐹1𝑒1 𝑒7 = 𝐹1𝐹2𝐹

2
1 𝐹2𝐹1𝑒1

Denote by {𝑓𝑖, 𝑖 ∈ �1, 7�}, the dual basis in 𝑉 ∗. Any 𝐺2 web can be expressed as the vertical concatenation and horizontal juxtaposi-

tion of the following elementary webs (and possibly identity strands)

cup = cap = Y = (66)

These webs represent the following intertwiners:

cup ∶ ℂ→ 𝑉 ⊗ 𝑉

1↦ 𝑒7 ⊗ 𝑒1 + 𝑞10𝑒1 ⊗ 𝑒7 − 𝑞𝑒6 ⊗ 𝑒2 − 𝑞9𝑒2 ⊗ 𝑒6 + 𝑞4𝑒5 ⊗ 𝑒3 + 𝑞6𝑒3 ⊗ 𝑒5 − 𝑞6𝑒4 ⊗ 𝑒4

cap = 𝑞−10𝑓7 ⊗𝑓1 + 𝑓1 ⊗𝑓7 − 𝑞−9𝑓6 ⊗𝑓2 − 𝑞−1𝑓2 ⊗𝑓6 + 𝑞−6𝑓5 ⊗𝑓3 + 𝑞−4𝑓3 ⊗𝑓5 − 𝑞−6𝑓4 ⊗𝑓4

Y ∶ 𝑉 → 𝑉 ⊗ 𝑉

𝑒1 ↦ 𝑞6𝑒1 ⊗ 𝑒4 − 𝑒4 ⊗ 𝑒1 − [2]𝑞𝑞4𝑒2 ⊗ 𝑒3 + [2]𝑞𝑞𝑒3 ⊗ 𝑒2

𝑒2 ↦ −𝑞4𝑒2 ⊗ 𝑒4 + 𝑞2𝑒4 ⊗ 𝑒2 + 𝑞5𝑒1 ⊗ 𝑒5 − 𝑒5 ⊗ 𝑒1

𝑒3 ↦ −𝑞4𝑒3 ⊗ 𝑒4 + 𝑞2𝑒4 ⊗ 𝑒3 + 𝑞5𝑒1 ⊗ 𝑒6 − 𝑒6 ⊗ 𝑒1

𝑒4 ↦ (𝑞2 − 𝑞4)𝑒4 ⊗ 𝑒4 − 𝑞2𝑒3 ⊗ 𝑒5 + 𝑞2𝑒5 ⊗ 𝑒3

+ 𝑞5𝑒2 ⊗ 𝑒6 − 𝑞−1𝑒6 ⊗ 𝑒2 + 𝑞4𝑒1 ⊗ 𝑒7 − 𝑒7 ⊗ 𝑒1

𝑒5 ↦ 𝑞2𝑒5 ⊗ 𝑒4 − 𝑞4𝑒4 ⊗ 𝑒5 + [2]𝑞𝑞5𝑒2 ⊗ 𝑒7 − [2]𝑞𝑒7 ⊗ 𝑒2

𝑒6 ↦ 𝑞2𝑒6 ⊗ 𝑒4 − 𝑞4𝑒4 ⊗ 𝑒6 + [2]𝑞𝑞5𝑒3 ⊗ 𝑒7 − [2]𝑞𝑒7 ⊗ 𝑒3

𝑒7 ↦ −𝑒7 ⊗ 𝑒4 + 𝑞6𝑒4 ⊗ 𝑒7 + 𝑞𝑒6 ⊗ 𝑒5 − 𝑞4𝑒5 ⊗ 𝑒6

Horizontal juxtaposition of webs corresponds to taking the tensor product of intertwiners and vertical concatenation corresponds to 
composition. The above maps were obtained similarly as in the 𝐴2 case.

The local transfer matrices of the 𝐺2 web model are then given by

𝑡
𝐺2
(1) = 𝑥3∕2𝑦 + 𝑥 + 𝑥 + 𝑥 + (67a)

𝑡
𝐺2
(2) = 𝑥3∕2𝑦 + 𝑥 + 𝑥 + 𝑥 + (67b)

6.4. The 𝐵2 case

Let 𝑉1 and 𝑉2 be the fundamental representations of 𝑈𝑞(𝐵2) of highest weights 𝒘𝟏 and 𝒘2 respectively. In 𝑉1, pick a highest 
weight vector, 𝑒1. Then we obtain a basis {𝑒𝑖, 𝑖 ∈ �1, 4�} by applying lowering operators:

𝑒2 =𝐹1𝑒1 (68a)

𝑒3 =𝐹2𝐹1𝑒1 (68b)

𝑒4 =𝐹1𝐹2𝐹1𝑒1 (68c)

Denote by {𝑓𝑖, 𝑖 ∈ �1, 4�}, the dual basis in 𝑉 ∗
1 .

In 𝑉2, pick a highest weight vector, 𝑣1. Then we obtain a basis {𝑣𝑖, 𝑖 ∈ �1, 5�} by applying lowering operators:

𝑣2 =𝐹2𝑣1 (69a)

𝑣3 =𝐹1𝐹2𝑣1 (69b)
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𝑣4 =𝐹 2
1 𝐹2𝑣1 (69c)

𝑣5 =𝐹2𝐹
2
1 𝐹2𝑣1 (69d)

Denote by {𝑔𝑖, 𝑖 ∈ �1, 5�}, the dual basis in 𝑉 ∗
2 .

Any 𝐵2 web can be expressed as the vertical concatenation and horizontal juxtaposition of the following elementary webs (and 
possibly identity strands)

cup1 = cap1 =

cup2 = cap2 = (70)

Y =

These webs represent the following intertwiners:

cup1 ∶ℂ→ 𝑉 ⊗ 𝑉

1↦ 𝑒4 ⊗ 𝑒1 − 𝑞4𝑒1 ⊗ 𝑒4 − 𝑞𝑒3 ⊗ 𝑒2 + 𝑞3𝑒2 ⊗ 𝑒3

cap1 =𝑓1 ⊗𝑓4 − 𝑞−4𝑓4 ⊗𝑓1 − 𝑞−1𝑓2 ⊗𝑓3 + 𝑞−3𝑓3 ⊗𝑓2

cup2 ∶ℂ→ 𝑉 ⊗ 𝑉

1↦ 𝑣5 ⊗𝑣1 + 𝑞6𝑣1 ⊗𝑣5 − 𝑞2𝑣4 ⊗𝑣2 − 𝑞4𝑣2 ⊗𝑣4 + 𝑞4𝑣3 ⊗𝑣3

cap2 =𝑔1 ⊗𝑔5 + 𝑞−6𝑔5 ⊗𝑔1 − 𝑞−2𝑔2 ⊗𝑔4 − 𝑞−4𝑔4 ⊗𝑔2 + 𝑞−4𝑔3 ⊗𝑔3

Y ∶𝑉2 → 𝑉1 ⊗𝑉1

𝑣1 ↦ 𝑖𝑞𝑒1 ⊗ 𝑒2 − 𝑖𝑒2 ⊗ 𝑒1

𝑣2 ↦ 𝑖𝑞𝑒1 ⊗ 𝑒3 − 𝑖𝑒3 ⊗ 𝑒1

𝑣3 ↦ 𝑖𝑞𝑒2 ⊗ 𝑒3 − 𝑖𝑞−1𝑒3 ⊗ 𝑒2 + 𝑖𝑒1 ⊗ 𝑒4 − 𝑖𝑒4 ⊗ 𝑒1

𝑣4 ↦ 𝑖[2]𝑞𝑞𝑒2 ⊗ 𝑒4 − 𝑖[2]𝑞𝑒4 ⊗ 𝑒2

𝑣5 ↦ 𝑖[2]𝑞𝑞𝑒3 ⊗ 𝑒4 − 𝑖[2]𝑞𝑒4 ⊗ 𝑒3

Horizontal juxtaposition of webs corresponds to taking the tensor product of intertwiners and vertical concatenation corresponds to 
composition. The above maps were obtained similarly as in the 𝐴2 case.

The local transfer matrices of the 𝐵2 web model are then given by

𝑡
𝐵2
(1) =𝑥𝑡;1𝑥

1∕2
𝑣;2 𝑦 + 𝑥

1∕2
𝑡;1 𝑥

1∕2
𝑣;1 𝑥

1∕2
𝑡;2 𝑦 + 𝑥

1∕2
𝑡;1 𝑥

1∕2
𝑣;1 𝑥

1∕2
𝑡;2 𝑦

++𝑥
1∕2
𝑡;2 𝑥

1∕2
𝑣;2 + 𝑥

1∕2
𝑡;2 𝑥

1∕2
𝑣;2 + 𝑥𝑡;2 (71a)

+ 𝑥
1∕2
𝑡;1 𝑥

1∕2
𝑣;1 + 𝑥

1∕2
𝑡;1 𝑥

1∕2
𝑣;1 + 𝑥𝑡;1 +
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Table 1

Big and small quantum groups.

Case 𝑈𝑡(𝑋̃) 𝑈𝑞 (𝑋) 𝑋̃, 𝑋

1 𝑈𝑡(𝐴
(2)
2 ) 𝑈𝑡4 (𝐴1)

2 𝑈𝑡(𝐺
(1)
2 ) 𝑈𝑡3 (𝐴2)

3 𝑈𝑡(𝐷
(3)
4 ) 𝑈𝑡(𝐺2)

4 𝑈𝑡(𝐴
(2)
4 ) 𝑈𝑡2 (𝐵2)

𝑡
𝐵2
(2) =𝑥𝑡;1𝑥

1∕2
𝑣;2 𝑦 + 𝑥

1∕2
𝑡;1 𝑥

1∕2
𝑣;1 𝑥

1∕2
𝑡;2 𝑦 + 𝑥

1∕2
𝑡;1 𝑥

1∕2
𝑣;1 𝑥

1∕2
𝑡;2 𝑦

+ 𝑥
1∕2
𝑡;2 𝑥

1∕2
𝑣;2 + 𝑥

1∕2
𝑡;2 𝑥

1∕2
𝑣;2 + 𝑥𝑡;2 (71b)

+ 𝑥
1∕2
𝑡;1 𝑥

1∕2
𝑣;1 + 𝑥

1∕2
𝑡;1 𝑥

1∕2
𝑣;1 + 𝑥𝑡;1 +

The local transfer matrices for the square lattice case can be defined analogously. That is, they are linear operators in End(𝑋 ⊗
𝑋 ) given by the linear combination of diagrams (and their reflections and rotations) from below (36) weighted by the corresponding 
factors 𝑏𝑖 ’s. Each diagram is again understood as a linear operator.

7. Integrability

In this section, we exhibit integrable manifolds in the parameter spaces of web models. Let us first give the steps of the general 
strategy we follow.

• First, we look for an affine Dynkin diagram 𝑋̃ that reduces to the finite type Dynkin diagram 𝑋 when we erase one of its nodes 
𝑛0. This implies that the Hopf subalgebra 𝑈𝑡(𝑋̃) generated by the Chevalley generators 𝐸𝑖, 𝐹𝑖, 𝐻𝑖, 𝑖 ≠ 𝑛0 is isomorphic to 𝑈𝑞(𝑋)
for some 𝑞(𝑡). We will call 𝑈𝑡(𝑋̃) and 𝑈𝑞(𝑋) the “big” and “small” quantum groups respectively.7

Here we list the big and small quantum groups we will consider8:

The definitions of these quantum groups are recalled in Appendix C, with the corresponding Cartan matrices given in Appendix B.

• We then look for an irreducible “evaluation”9 representation 𝑉𝑢, 𝑢 ∈ ℂ∗ of 𝑈𝑡(𝑋̃) that decomposes under the subalgebra 𝑈𝑞(𝑋)
as the local space of states 𝑋 , independently of the evaluation, or spectral, parameter 𝑢. We will denote the representation 
map 𝜌𝑢 ∶𝑈𝑡(𝑋̃) → End(𝑉𝑢).

• We then follow Jimbo’s strategy [34] to find a solution of the spectral parameter dependant Yang Baxter equation. Let us recall 
it. Suppose that the tensor product 𝜌𝑢 ⊗ 𝜌𝑣, 𝑢, 𝑣 ∈ ℂ∗ is irreducible. We are looking for an operator 𝑅̌(𝑢, 𝑣) intertwining 𝜌𝑢 ⊗ 𝜌𝑣
and 𝜌𝑣 ⊗ 𝜌𝑢, i.e.

𝑅̌(𝑢, 𝑣)(𝜌𝑢 ⊗ 𝜌𝑣)(𝑎) = (𝜌𝑣 ⊗ 𝜌𝑢)(𝑎)𝑅̌(𝑢, 𝑣), 𝑎 ∈𝑈𝑡(𝑋̃) (72)

Because 𝜌𝑢 ⊗ 𝜌𝑣 is irreducible, if (72) admits a non-zero solution, it is unique up to a multiplicative constant. Moreover, since 
𝑈𝑡(𝑋̃) has a universal R matrix [35,36], it follows that 𝑅̌(𝑢, 𝑣) is non-zero and satisfies the spectral parameter dependent Yang-

Baxter equation:

𝑅̌23(𝑢, 𝑣)𝑅̌12(𝑢,𝑤)𝑅̌23(𝑣,𝑤) = 𝑅̌12(𝑣,𝑤)𝑅̌23(𝑢,𝑤)𝑅̌12(𝑢, 𝑣) on 𝑉𝑢 ⊗ 𝑉𝑣 ⊗ 𝑉𝑤 (73)

where the subscript in 𝑅̌𝑖𝑗 indicates that it acts as 𝑅̌ on the 𝑖th and 𝑗th tensor factors and as identity elsewhere.

7 It should not be confused with Lusztig’s small quantum group, defined at roots of unity.
8 Given 𝑋, there might be several choices for 𝑋̃ and 𝑛0 . For instance, if 𝑋 = 𝐵2 , 𝑋̃ = 𝐴(2)

4 , then 𝑛0 = 0 and 𝑛0 = 2 are both valid. The second step actually fixes 
such choices.

9 Strictly speaking, evaluation representations might not exist because the evaluation morphism on the quantum group level exists for 𝐴𝑛 types only.
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In order to find 𝑅̌(𝑢, 𝑣), we first notice that, under the small quantum group

𝑉𝑢 ⊗ 𝑉𝑣 ≅ 𝑉𝑣 ⊗ 𝑉𝑢 ≅𝑋 ⊗𝑋

Thus, we can expand 𝑅̌(𝑢, 𝑣) as a sum of intertwiners of 𝑈𝑞(𝑋) from 𝑋 ⊗𝑋 to itself

𝑅̌(𝑢, 𝑣) =
∑
𝑖

𝑎𝑖(𝑢, 𝑣)𝑊𝑖 (74)

where the sum is taken over an index set of the web basis {𝑊𝑖} of End𝑈𝑞 (𝑋)(𝑋 ⊗𝑋 ) and 𝑎𝑖(𝑢, 𝑣) are unknown functions. The 
system (72) is then reduced to a system of linear equations on the unknowns 𝑎𝑖(𝑢, 𝑣)

𝑅̌(𝑢, 𝑣)(𝜌𝑢 ⊗ 𝜌𝑣)(𝑎) = (𝜌𝑣 ⊗ 𝜌𝑢)(𝑎)𝑅̌(𝑢, 𝑣), 𝑎 =𝐸𝑛0
, 𝐹𝑛0

(75)

which is much simpler to solve than the cubic Yang-Baxter equations (73).

In the case the representation 𝑋 of the small quantum group 𝑈𝑞(𝑋) is irreducible and 𝑋 ⊗𝑋 is a direct sum of irreducible 
representations of multiplicity 1, techniques have been developed to solve (72) [37–39]. However, this is not our case because 
𝑋 is reducible and multiplicities are sometimes higher than 1. Instead, we solve the linear system (75) directly by using 
software.

• Finally, we identify values (𝑢0, 𝑣0) of the spectral parameters (𝑢, 𝑣) such that

𝑎𝑖(𝑢0, 𝑣0) = 0

for all 𝑖 corresponding to webs 𝑊𝑖 that do not appear in the local transfer matrix of the given web model. We then reach the 
local transfer matrix by making a gauge transformation

𝑡𝑋(2)𝑡
𝑋
(1) =
(
𝐷−1

2 ⊗𝐷−1
1
)
𝑅̌(𝑢0, 𝑣0)

(
𝐷1 ⊗𝐷2

)
for some diagonal matrices 𝐷1 and 𝐷2 commuting with 𝑈𝑞(𝑋) on 𝑋 .

In the case of 𝐴2 and 𝐺2, the evaluation representations we consider were previously studied in a different context [25,26]. They 
are given respectively in appendices D.1.2 and D.2.2. However, in the case of 𝐵2, the two evaluation representations of 𝑈𝑡(𝐴

(2)
4 )

defined in D.3.2 and D.3.3 are new to the best of our knowledge.

7.1. A reminder on the dilute loop model

Consider the quantum affine algebra 𝑈𝑡(𝐴
(2)
2 ) (see Appendix C for definitions) with Cartan matrix(

2 −4
−1 2

)
There is a 3-dimensional evaluation representation 𝑉𝑢 given by the following matrices in the basis {1, 𝑒1, 𝑒2}, where {1} (respectively 
{𝑒1, 𝑒2}) denotes the basis of the trivial (respectively fundamental) representation of 𝑈−𝑞(𝐴1)

𝐸0 = 𝑢
⎡⎢⎢⎣

0
√
[2]𝑡 0

0 0 0√
[2]𝑡 0 0

⎤⎥⎥⎦ 𝐸1 =
⎡⎢⎢⎣
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎦
𝐹0 =

1
𝑢

⎡⎢⎢⎣
0 0

√
[2]𝑡√

[2]𝑡 0 0
0 0 0

⎤⎥⎥⎦ 𝐹1 =
⎡⎢⎢⎣
0 0 0
0 0 0
0 1 0

⎤⎥⎥⎦
𝐻0 =

⎡⎢⎢⎣
0 0 0
0 −2 0
0 0 2

⎤⎥⎥⎦ 𝐻1 =
⎡⎢⎢⎣
0 0 0
0 1 0
0 0 −1

⎤⎥⎥⎦
𝑈𝑡(𝐴

(2)
2 ) contains a 𝑈𝑡4 (𝐴1) Hopf subalgebra generated by 𝐸1, 𝐹1 and 𝐻1. Setting 𝑞 = −𝑡4, we have that 𝑉𝑢 = ℂ ⊕ 𝑉1 as repre-

sentations of this 𝑈𝑡4 (𝐴1) subalgebra. We can write a basis of End𝑈
𝑡4 (𝐴1)

(
(ℂ⊕𝑉1)2

)
in terms of the TL diagrams defined above. The 

𝑅-matrix can then be decomposed as

𝑅̌(𝑢, 𝑣) = 𝑎1(𝑢, 𝑣) + 𝑎2(𝑢, 𝑣) + 𝑎3(𝑢, 𝑣)
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+𝑎4(𝑢, 𝑣) + 𝑎5(𝑢, 𝑣) + 𝑎6(𝑢, 𝑣) (76)

+𝑎7(𝑢, 𝑣) + 𝑎8(𝑢, 𝑣) + 𝑎9(𝑢, 𝑣)

Asking that the 𝑅-matrix commute with the 0th labelled generators gives a system of linear equations for the coefficients 𝑎𝑖(𝑢, 𝑣). 
From the spectral parameter dependence of the representatives of the 0th labelled generators, we see that the coefficients depend 
only on the ratio 𝑠 = 𝑢

𝑣
and we write 𝑎𝑖(𝑢, 𝑣) = 𝑎𝑖(𝑠). The unique solution, up to a multiplicative constant, is given by

𝑎1(𝑠) =𝑡8 − 𝑡2𝑠4 + (𝑡− 1)(𝑡+ 1)
(
𝑡8 − 𝑡4 + 1

)
𝑠2 (77a)

𝑎2(𝑠) =
(
𝑡4 − 1

)
𝑠
(
𝑡6 + 𝑠2

)
(77b)

𝑎3(𝑠) =
(
𝑡4 − 1

)
𝑠
(
𝑡6 + 𝑠2

)
(77c)

𝑎4(𝑠) =𝑡2
(
𝑡4 − 1

)
𝑠
(
𝑠2 − 1

)
(77d)

𝑎5(𝑠) = − 𝑡4
(
𝑡4 − 1

)
𝑠
(
𝑠2 − 1

)
(77e)

𝑎6(𝑠) = − 𝑡2
(
𝑠2 − 1

)(
𝑡6 + 𝑠2

)
(77f)

𝑎7(𝑠) = − 𝑡2
(
𝑠2 − 1

)(
𝑡6 + 𝑠2

)
(77g)

𝑎8(𝑠) =
(
𝑡4 − 𝑠2

)(
𝑡6 + 𝑠2

)
(77h)

𝑎9(𝑠) = − 𝑡4
(
𝑠2 − 1

)(
𝑡2 + 𝑠2

)
(77i)

It was originally found in [23].

We see that, if we want to recover (58), we need to tune the spectral parameter such that 𝑎8(𝑠) = 0 and 𝑎𝑖(𝑠) ≠ 0 for 𝑖 ≠ 8. This 
happens for 𝑠 = −𝑡2. Then, by renormalising the R matrix and taking the following gauge transformation

𝐷 = Diag(1, 𝛼, 𝛼)

𝑅̌(𝑠)↦
(
𝐷−1 ⊗𝐷−1) 𝑅̌(𝑠) (𝐷⊗𝐷) (78)

for well chosen 𝛼, we recover (58) with

𝑞 =− 𝑒4𝑖𝜓 (79a)

𝑥 = 1
2sin(𝜓)

(79b)

Remark that, after a gauge transformation, the 𝑅-matrix still satisfies the Yang-Baxter equation. The gauge transformation is equiv-

alent to the choice of multiplicative constant in defining the cup and cap maps.

In the next sections, we will employ the same strategy for the rank 2 web models.

7.2. The 𝐴2 web model

We now consider the second line of the Table 1. Let 𝑉𝑢, 𝑢 ∈ℂ∗, be the representation of 𝑈𝑡(𝐺
(1)
2 ) given in Appendix D.1.2 which is 

actually isomorphic to the one considered in [25]. We are looking for an operator 𝑅̌(𝑢, 𝑣) intertwining 𝑉𝑢 ⊗ 𝑉𝑣 and 𝑉𝑣 ⊗𝑉𝑢. Remark 
that, in 𝑈𝑡(𝐺

(1)
2 ), 𝐸𝑖, 𝐹𝑖 and 𝐻𝑖 for 𝑖 = 0, 1 generate a Hopf subalgebra isomorphic to 𝑈𝑡3 (𝐴2). Under the action of this subalgebra, 

𝑉𝑢 decomposes as:

𝑉𝑢 = 𝑉1 ⊕𝑉2 ⊕ℂ (80)

which can be seen from the explicit matrix expressions given in section D.1.1 after some relabelling of the nodes in the Dynkin 
diagram.

Hence 𝑅̌(𝑢, 𝑣) will decompose as a sum of 𝑈𝑡3 (𝐴2) intertwiners:

𝑅̌(𝑢, 𝑣) = 𝑎1(𝑢, 𝑣) + 𝑎2(𝑢, 𝑣) + 𝑎3(𝑢, 𝑣) + 𝑎4(𝑢, 𝑣)
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+ 𝑎5(𝑢, 𝑣) + 𝑎6(𝑢, 𝑣) + 𝑎7(𝑢, 𝑣) + 𝑎8(𝑢, 𝑣)

+ 𝑎9(𝑢, 𝑣) + 𝑎10(𝑢, 𝑣) + 𝑎11(𝑢, 𝑣) + 𝑎12(𝑢, 𝑣)

+ 𝑎13(𝑢, 𝑣) + 𝑎14(𝑢, 𝑣) + 𝑎15(𝑢, 𝑣) + 𝑎16(𝑢, 𝑣)

+ 𝑎17(𝑢, 𝑣) + 𝑎18(𝑢, 𝑣) + 𝑎19(𝑢, 𝑣) + 𝑎20(𝑢, 𝑣)

+ 𝑎21(𝑢, 𝑣) + 𝑎22(𝑢, 𝑣) + 𝑎23(𝑢, 𝑣) + 𝑎24(𝑢, 𝑣)

+ 𝑎25(𝑢, 𝑣) + 𝑎26(𝑢, 𝑣) + 𝑎27(𝑢, 𝑣) + 𝑎28(𝑢, 𝑣)

+ 𝑎29(𝑢, 𝑣) + 𝑎30(𝑢, 𝑣) + 𝑎31(𝑢, 𝑣) + 𝑎32(𝑢, 𝑣)

+ 𝑎33(𝑢, 𝑣) (81)

where 𝑎𝑖(𝑢, 𝑣) are some coefficients and the corresponding webs span the space of intertwiners End𝑈
𝑡3 (𝐴2)

(
(𝑉1 ⊕𝑉2 ⊕ℂ)2

)
. Indeed, 

elements of the latter are in bijection with invariants of (𝑉1 ⊕𝑉2 ⊕ℂ)4, so upon expanding we get products of 𝑉1 and 𝑉2 of length 0
up to 4. Invariants on these spaces were classified by Kuperbergs [3], our webs are basis elements of them.

Asking for 𝑅̌(𝑢, 𝑣) to commute with the remaining generators of 𝑈𝑡(𝐺
(1)
2 ), we see that it may depend only on the ratio 𝑠 = 𝑢

𝑣
. We 

find

𝑎1(𝑠) = −
(
𝑡2 − 𝑠3

)(
𝑡8 − 𝑠3

)
𝑡2
√

1
𝑡
+ 𝑡
(
−1 + 𝑡2

)
𝑠2
(
−1 + 𝑠3

) 𝑎2(𝑠) = −
(
𝑡2 − 𝑠3

)(
𝑡8 − 𝑠3

)
𝑡2
√

1
𝑡
+ 𝑡
(
−1 + 𝑡2

)
𝑠2
(
−1 + 𝑠3

)
𝑎3(𝑠) =

−𝑡8 + 𝑠3

𝑡2
√

1
𝑡
+ 𝑡
(
−1 + 𝑠3

) 𝑎4(𝑠) =
−𝑡8 + 𝑠3

𝑡2
√

1
𝑡
+ 𝑡
(
−1 + 𝑠3

)
𝑎5(𝑠) =

√
1
𝑡
+ 𝑡
(
𝑡6 − 𝑡2𝑠3

)(
−1 + 𝑡4

)
𝑠2

𝑎6(𝑠) =

√
1
𝑡
+ 𝑡
(
𝑡6 − 𝑡2𝑠3

)(
−1 + 𝑡4

)
𝑠2

𝑎7(𝑠) =

√
1
𝑡
+ 𝑡
(
𝑡8 − 𝑠3

)(
−1 + 𝑡4

)
𝑠2

𝑎8(𝑠) =

√
1
𝑡
+ 𝑡
(
𝑡8 − 𝑠3

)(
−1 + 𝑡4

)
𝑠2

𝑎9(𝑠) =
𝑡2
(
𝑡4 − 𝑠3

)(
𝑡10 − 𝑠3

)√
1
𝑡
+ 𝑡
(
−1 + 𝑡2

)
𝑠2
(
𝑡12 − 𝑠3

) 𝑎10(𝑠) =
𝑡2
(
𝑡4 − 𝑠3

)(
𝑡10 − 𝑠3

)√
1
𝑡
+ 𝑡
(
−1 + 𝑡2

)
𝑠2
(
𝑡12 − 𝑠3

)
𝑎11(𝑠) =

𝑡8
(
−𝑡4 + 𝑠3

)√
1
𝑡
+ 𝑡
(
𝑡12 − 𝑠3

) 𝑎12(𝑠) =
𝑡4
(
−𝑡4 + 𝑠3

)√
1
𝑡
+ 𝑡
(
𝑡12 − 𝑠3

)
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𝑎13(𝑠) =1 𝑎14(𝑠) =
−𝑡2

𝑠

𝑎15(𝑠) =
−𝑡

𝑠
𝑎16(𝑠) =

1
𝑡

𝑎17(𝑠) =
𝑡5

𝑠
𝑎18(𝑠) = −𝑡3

𝑎19(𝑠) = − 𝑡2 𝑎20(𝑠) =
𝑡4

𝑠

𝑎21(𝑠) =

√
1
𝑡
+ 𝑡
(
−𝑡2 + 𝑡4 − 𝑡6 + 𝑠3

)
𝑡
(
−1 + 𝑠3

) 𝑎22(𝑠) =
−𝑡8 + 𝑠3 + 𝑡6

(
−1 + 𝑠3

)
𝑡2
√

1
𝑡
+ 𝑡𝑠
(
−1 + 𝑠3

)
𝑎23(𝑠) =

−𝑡8 + 𝑠3 + 𝑡6
(
−1 + 𝑠3

)
𝑡2
√

1
𝑡
+ 𝑡𝑠
(
−1 + 𝑠3

) 𝑎24(𝑠) =

√
1
𝑡
+ 𝑡
(
−𝑡2 + 𝑡4 − 𝑡6 + 𝑠3

)
𝑡
(
−1 + 𝑠3

)
𝑎25(𝑠) =

−𝑡11(1 + 𝑡2) + 𝑡(1 + 𝑡6)𝑠3√
1
𝑡
+ 𝑡𝑠(𝑡12 − 𝑠3)

𝑎26(𝑠) =
𝑡2
√

1
𝑡
+ 𝑡(−𝑡6 + 𝑡8 − 𝑡10 + 𝑠3)

𝑡12 − 𝑠3

𝑎27(𝑠) =
𝑡4
√

1
𝑡
+ 𝑡(−𝑡6 + 𝑡8 − 𝑡10 + 𝑠3)

𝑡12 − 𝑠3
𝑎28(𝑠) =

−𝑡13(1 + 𝑡2) + 𝑡3(1 + 𝑡6)𝑠3√
1
𝑡
+ 𝑡𝑠(𝑡12 − 𝑠3)

𝑎29(𝑠) =
𝑡6 − 𝑠3√

1
𝑡
+ 𝑡(−1 + 𝑡2)𝑠2

𝑎30(𝑠) =
𝑡6 − 𝑠3√

1
𝑡
+ 𝑡(−1 + 𝑡2)𝑠2

𝑎31(𝑠) =
𝑡6 − 𝑠3√

1
𝑡
+ 𝑡(−1 + 𝑡2)𝑠2

𝑎32(𝑠) =
𝑡6 − 𝑠3√

1
𝑡
+ 𝑡(−1 + 𝑡2)𝑠2

𝑎33(𝑠) = −
(
𝑡2 − 𝑠

)(
𝑡4 + 𝑡2𝑠+ 𝑠2

)(
𝑡2
(
𝑡12 +

(
𝑡14 − 2𝑡12 + 𝑡8 − 2𝑡6 + 𝑡4 − 2

)
𝑠3 + 𝑠6

)
+ 𝑠3
)

𝑡2
√

𝑡+ 1
𝑡

(
𝑡2 − 1

)
𝑠2
(
𝑠3 − 1

)(
𝑡12 − 𝑠3

)
by plugging the linear system for the functions 𝑎𝑖(𝑠) into MATHEMATICA (or some other formal calculus software). One can then 
show, again using MATHEMATICA, that the corresponding operator 𝑅̌(𝑠) satisfies the multiplicative spectral-parameter dependant 
Yang-Baxter equation.

We can obtain a manifestly PT-invariant 𝑅-matrix10 by using the following gauge transformation

𝐷 = Diag(𝛼, 𝛼, 𝛼, 𝛽, 𝛽, 𝛽,1)

𝑅̌(𝑠)→
(
𝐷−1 ⊗𝐷−1) 𝑅̌(𝑠) (𝐷⊗𝐷) (82)

The form of 𝐷 corresponds to rescaling subrepresentations of 𝑉 in (80) independently. Renormalising the 𝑅-matrix, we obtain

𝑎1(𝑠) = 𝑎2(𝑠) = −
(
𝑡2 − 𝑠3

)(
𝑡8 − 𝑠3

)
𝑡
(
𝑡2 − 1

)
𝑠2
(
𝑠3 − 1

)
𝑎3(𝑠) =

𝑡8 − 𝑠3

𝑡𝑠− 𝑡𝑠4

𝑎4(𝑠) = 𝑠
𝑡8 − 𝑠3

𝑡𝑠− 𝑡𝑠4

𝑎5(𝑠) = 𝑎6(𝑠) =
𝑡6 − 𝑡2𝑠3(
𝑡2 − 1

)
𝑠2

𝑎7(𝑠) = 𝑎8(𝑠) =
𝑡8 − 𝑠3(
𝑡2 − 1

)
𝑠2

𝑎9(𝑠) = 𝑎10(𝑠) =
𝑡3
(
𝑡4 − 𝑠3

)(
𝑡10 − 𝑠3

)(
𝑡2 − 1

)
𝑠2
(
𝑡12 − 𝑠3

)
10 We here understand PT-symmetry as the invariance under the rotation of the diagrams through an angle 𝜋.
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𝑎11(𝑠) = 𝑡9
𝑡4 − 𝑠3

𝑠4 − 𝑡12𝑠

𝑎12(𝑠) = 𝑡5𝑠
𝑡4 − 𝑠3

𝑠4 − 𝑡12𝑠

𝑎13(𝑠) = 𝑎16(𝑠) = 𝑎18(𝑠) = 𝑎19(𝑠) = −𝑖𝑡2
√

𝑡+ 1
𝑡

𝑎14(𝑠) = 𝑎15(𝑠) = 𝑎17(𝑠) = 𝑎20(𝑠) =
𝑖𝑡4
√

𝑡+ 1
𝑡

𝑠

𝑎21(𝑠) = 𝑎24(𝑠) =
−𝑡8 + 𝑡2

(
𝑠3 − 1

)
+ 𝑠3

𝑡
(
𝑠3 − 1

)
𝑎22(𝑠) = 𝑎23(𝑠) =

𝑡8 −
(
𝑡6 + 1

)
𝑠3 + 𝑡6

𝑡
(
𝑠− 𝑠4

)
𝑎25(𝑠) = 𝑎28(𝑠) =

𝑡3
(
𝑡12 + 𝑡10 −

(
𝑡6 + 1

)
𝑠3
)

𝑠4 − 𝑡12𝑠

𝑎26(𝑠) = 𝑎27(𝑠) =
𝑡3
((

𝑡2 + 1
)
𝑠3 − 𝑡6

(
𝑡6 + 1

))
𝑡12 − 𝑠3

𝑎29(𝑠) = 𝑎30(𝑠) = 𝑎31(𝑠) = 𝑎32(𝑠) =
𝑡
(
𝑡6 − 𝑠3

)(
𝑡2 − 1

)
𝑠2

𝑎33(𝑠) = −
(
𝑡2 − 𝑠

)(
𝑡4 + 𝑡2𝑠+ 𝑠2

)(
𝑡2
(
𝑡12 +

(
𝑡14 − 2𝑡12 + 𝑡8 − 2𝑡6 + 𝑡4 − 2

)
𝑠3 + 𝑠6

)
+ 𝑠3
)

𝑡
(
𝑡2 − 1

)
𝑠2
(
𝑠3 − 1

)(
𝑡12 − 𝑠3

)
It is apparent that by setting the spectral parameter 𝑠 = 𝑡

8
3 , 𝑅̌(𝑠) will be decomposed only in terms of webs appearing in the local 

transfer matrix of the 𝐴2 web model. In order to put it in the form of (65), we renormalise the PT-invariant 𝑅-matrix so as to recover 
the local transfer matrix (65) with the following parametrisation, setting 𝑡 = 𝑒𝑖𝜓 :

𝑞 =− 𝑒3𝑖𝜓 (83a)

𝑥 = 1
2sin(𝜓)

(83b)

𝑦 =𝑧 =
√
2 sin(2𝜓) (83c)

𝑒𝑖𝜙 =𝑖𝑒𝑖
𝜓
3 (83d)

Remark that points related by 𝜓 → 𝜋 −𝜓 satisfy

𝑞 → −𝑞−1 (84a)

𝑥→ 𝑥 (84b)

𝑦→ 𝑖𝑦 (84c)

𝑧→ 𝑖𝑧 (84d)

𝑒𝑖𝜙 → 𝑒−𝑖𝜙𝜏 (84e)

with 𝜏3 = 1. Moreover the points related by 𝜓 → −𝜓 satisfy

𝑞 → 𝑞−1 (85a)

𝑥→ −𝑥 (85b)

𝑦→ 𝑖𝑦 (85c)

𝑧→ 𝑖𝑧 (85d)

𝑒𝑖𝜙 → −𝑒−𝑖𝜙𝜏 (85e)

These transformations are combinations of the symmetries mentioned in section 3.2. They imply that it suffices to focus on the 
interval 𝜓 ∈ [0, 𝜋2 ].
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Fig. 6. Two-point fits 𝑐𝐿(𝜓) for the central charge in the 𝐴2 web model, plotted against 𝜓
𝜋

. Regime 2 (left panel) is for 𝜓 ∈ [0, 𝜋
6
[, using sizes {𝐿, 𝐿 − 3} with 𝐿 = 6

(dark blue) and 𝐿 = 9 (orange). Regime 1 (right panel) is for 𝜓 ∈] 𝜋
6
, 𝜋
2
], using sizes {𝐿, 𝐿 − 1} with 𝐿 = 4, 5, … , 9. The smallest size corresponds to the lowest curve 

(dark blue). The topmost curve (light blue) is the exact analytical result.

7.2.1. Central charge and phase diagram
We have numerically diagonalised the transfer matrix for cylinders of circumference of sizes 𝐿 = 3, 4, … , 9. Estimates 𝑐𝐿 for the 

central charge can then be extracted from the finite-size scaling of the largest eigenvalue for two different sizes. The computations 
were made for 100 equally-spaced values of 𝜓 ∈ [0, 𝜋2 ], and we show here the curves 𝑐𝐿(𝜓) obtained by applying MATHEMATICA’s 
interpolation function to these values.

As shown in Fig. 6 we find two different regimes, defined as follows:

Regime 1: 𝜓 ∈] 𝜋6 ,
𝜋

2 ] ,

Regime 2: 𝜓 ∈ [0, 𝜋

6 ] . (86)

The central charge throughout Regime 1 is shown in the right panel of the figure. A Coulomb gas computation, which will be 
published elsewhere [28], gives the exact result

𝑐(𝜓) = 2 − 24 (1 − 𝑔)2

𝑔
, 𝑔 = 3𝜓

𝜋
, (87)

where 𝑔 is the Coulomb gas coupling constant. The agreement between the numerical values 𝑐𝐿(𝜓) and the analytical result 𝑐(𝜓) is 
seen to be excellent.

We define two distinct phases inside Regime 1:

Dense phase: 𝜓 ∈] 𝜋6 ,
𝜋

3 ] ,
1
2 < 𝑔 ≤ 1 ,

Dilute phase: 𝜓 ∈ [ 𝜋3 ,
𝜋

2 ] , 1 ≤ 𝑔 ≤
3
2 . (88)

The physical motivation for the names dense and dilute comes from properties of the full phase diagram in the two-dimensional space 
of bond and vertex fugacities (𝑥 and 𝑦 = 𝑧 respectively), for a fixed value of 𝜓 (or 𝑞). This is discussed in more detail in [2], but we 
recall here the salient features. Starting from the trivial empty phase, upon increasing the density of bonds and vertices one first hits a 
critical line—a one-dimensional critical sub-manifold of the parameter space—on which the model is in the dilute universality class. 
The fraction of links which are covered by a bond is zero. The whole dilute critical line is governed by an attractive renormalisation-

group fixed point. We believe that the integrable point in the dilute phase—which, we recall, is for the 𝐴2 model modified by the 
inclusion of bending weights, but we think that bending is unlikely to change the critical behaviour—is in the same universality class 
as this dilute fixed point. Increasing further the density of bonds and vertices one enters a critical region—a two-dimensional critical 
sub-manifold of the parameter space—throughout which the model is in the dense universality class. The fraction of links which are 
covered by a bond is now finite, and the whole critical region is governed by a certain fixed point. We believe that the integrable 
point in the dense phase is in the same universality class as this dense fixed point.

The central charge is given by the same analytic function of 𝑔 throughout Regime 1, and the same holds true for each critical 
exponent [28]. This is why the two phases are grouped within the same regime. The dense and dilute phases intersect in the point 
𝜓 = 𝜋

3 , for which the central charge is 𝑐 = 2, the rank of the 𝐴2 algebra. At this point the field theory is a CFT of two free bosons.

We do not yet have an analytic understanding of Regime 2. Our numerical results for 𝑐𝐿(𝜓) are shown in the left panel of Fig. 6. 
It is clear that 𝑐(𝜓) cannot be given by the same analytic expression as (87), so we are indeed in a different regime. The numerical 
results clearly show that the ground state sector—then one determining 𝑐—is only present for 𝐿 a multiple of 3. This is a hint of a 
higher symmetry, as is the fact, that 𝑐 takes larger values than in Regime 1. We have indeed 𝑐 ⪆ 3 for small 𝜓 , and possibly even 
𝑐(𝜓) → 4 for 𝜓 → 0. It seems possible that the limit 𝑐(𝜓 → 𝜋

6
−) is equal to 𝑐(𝜓 → 𝜋

6
+) = −10, obtained from (87). In any case, it is 

obvious that the finite-size effects are much larger in Regime 2 than in Regime 1. Such slow convergence is usually the hallmark of 
a non-compact continuum limit. Notice that in the 𝐴1 loop model there is indeed a regime III for which the continuum limit has one 
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compact and on non-compact boson. This leads us to conjecture that Regime 2 of the 𝐴2 web model has one or two non-compact 
bosons.

Further investigations of Regime 2 would require the access to larger sizes. This could be achieved, e.g., by setting up the Bethe 
Ansatz equations and studying them numerically or even analytically. We leave such developments for future work.

7.2.2. Special points
We now discuss a number of points of particular interest.

Case of 𝑞 = 𝑒±𝑖 𝜋4 These are the values of 𝑞 for which one has a mapping to a 3-state Potts models (see Section 3.3). The corresponding 
integrable points are given by

𝜓 𝜋

4
5𝜋
12

11𝜋
12

𝑥 1√
2

√
2 −
√
3
√√

3 + 2

𝑦 = 𝑧
√
2 1 𝑖

𝑒𝑖𝜙 𝑒𝑖
7𝜋
12 𝑒𝑖

23𝜋
36 𝑒𝑖

29𝜋
36

𝑐 0 4
5 ≈ 1.5

The point 𝜓 = 5𝜋
12 in the dilute phase of Regime 1 is likely to be in the same universality class as the analogous point in the dilute 

phase of the 𝐴2 web models considered in [2]. It was argued there that this point is in the ferromagnetic 3-state Potts model class. 
Recall that the work in [2] did not include the bending weight 𝜙, but we do not think this changes the universality class. Indeed 
𝑐(𝜓 = 5𝜋

12 ) =
4
5 from (87) as expected.

It seems worth pointing out that the integrable 3-state Potts model described in this paper is not the same as the one considered 
in [40], although both include plaquette interactions.

Similarly, we believe that the point 𝜓 = 𝜋

4 in the dense phase of Regime 1 is in the universality class of the analogous point of 
[2], which can in turn be identified with the infinite-temperature 3-state Potts model. The latter has obviously 𝑐eff = 0, in agreement 
with 𝑐(𝜓 = 𝜋

4 ) = 0 from (87).

Finally we identify the point 𝜓 = 11𝜋
12 of the above table with the point 𝜓 = 𝜋

12 , due to the symmetry (84). For the latter, our 
numerical results are 𝑐6 ≃ 1.367 from sizes 𝐿 = 3, 6, and 𝑐9 ≃ 1.516 from sizes 𝐿 = 6, 9. To our best knowledge, no previous study has 
found such a high value of 𝑐 for a 3-state spin model.

For completeness we mention that yet other universality classes of a 3-state Potts model on the triangular lattice have been 
reported in [41].

Case of 𝑞 = ±𝑖 When 𝑞 = ±𝑖, [2]𝑞 = 0, so that any web containing a digon has weight 0. Actually any web that is not a collection 
of loops has vanishing weight. This can be shown by induction on the number of vertices. It is clearly true for webs with 2 vertices. 
Without loss of generality, consider a web that does not contain loops with 𝑉 vertices, 𝐸 edges and 𝐹 faces. Suppose the statement 
is true for webs with strictly less than 𝑉 vertices. By the Euler relation and the hand shake lemma we have

𝐹 −𝐸 + 𝑉 = 2

2𝐸 = 3𝑉

If the web contains a digon, its weight is 0. If not, any face is surrounded by at least 4 edges and

2𝐸 ≥ 4𝐹

This implies a lower bound on the number of vertices

𝑉 ≥ 8

If we now reduce the web by the square rule, i.e. the only rule applicable, we get a linear combination of webs with a number of 
vertices 𝑉 ′ = 𝑉 − 4 > 0. By the induction hypothesis their weights are 0 hence also is the weight of the original web.

We thus obtained a model of oriented loops of topological weight [3]𝑞 = −1. If we sum over orientation taking into account the 
fugacities corresponding to the bendings of web edges we obtain the familiar 𝑂(𝑁) model of unoriented loops with contractible loop 
weight

𝑁 = −𝑒6𝑖𝜙 − 𝑒−6𝑖𝜙 = 𝑒2𝑖𝜓 + 𝑒−2𝑖𝜓 ,

non contractible loop weight −2 and bond fugacity

𝑥 = 1
2sin(𝜓)

.
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𝑞 = ±𝑖 is attained for the following values of 𝜓

𝜓 = 𝜋

6
,
𝜋

2
The first point gives 𝑁 = 1 and 𝑥 = 1. These values correspond to site percolation on the triangular lattice, a point in the dense 
phase of the loop model. Since the non contractible loop weight is equal to −2, the effective central charge is given by −∞, which is 
certainly different from the analytical result 𝑐(𝜓 → 𝜋

6
+) = −10, and possibly also incompatible with the numerical result 𝑐(𝜓 → 𝜋

6
−)

for Regime 2. In any case, there is a discontinuity at the junction between Regimes 1 and 2.

The second point, 𝜓 = 𝜋

2 , gives 𝑁 = −2 and 𝑥 = 1
2 . This value corresponds to the loop-erased random walk, in agreement with 

the value 𝑐 = −2 from (87).

Case of 𝜓 = 0 From Fig. 6 this is the most remarkable point in Regime 2, so we investigate here its lattice realisation in some more 
detail. For 𝜓 = 0, one obtains 𝑦 = 𝑧 = 0 and 𝑥 →∞. To make sense of the model, one needs to first renormalise the local transfer 
matrices (65) by 1

𝑥
and then send 𝜓 to zero. One then obtains

𝑡
𝐴2
(1) =
√
2 +

√
2 + 𝑒𝑖𝜙 + 𝑒−𝑖𝜙

+ 𝑒−𝑖𝜙 + 𝑒𝑖𝜙 + 𝑒−𝑖𝜙 + 𝑒𝑖𝜙 (89a)

𝑡
𝐴2
(2) =
√
2 +

√
2 + 𝑒𝑖𝜙 + 𝑒−𝑖𝜙

+ 𝑒−𝑖𝜙 + 𝑒𝑖𝜙 + 𝑒−𝑖𝜙 + 𝑒𝑖𝜙 (89b)

with 𝑞 = −1 and 𝑒𝑖𝜙 = 𝑖. It is not clear to us at present why this lattice model has the special properties (slow convergence and the 
largest central charge) that we observe numerically.

7.3. The 𝐺2 web model

We now consider the third line of Table 1. Let 𝑉𝑢, 𝑢 ∈ℂ∗, be the representation of 𝑈𝑞(𝐷
(3)
4 ) given in Appendix D which is actually 

isomorphic to the one considered in [26].11 We are looking for an operator 𝑅̌(𝑢, 𝑣) intertwining 𝑉𝑢 ⊗ 𝑉𝑣 and 𝑉𝑣 ⊗ 𝑉𝑢. Remark that, 
in 𝑈𝑞(𝐷

(3)
4 ), 𝐸𝑖, 𝐹𝑖 and 𝐻𝑖 for 𝑖 = 0, 1 generate a Hopf subalgebra isomorphic to 𝑈𝑞(𝐺2). Under the action of this subalgebra, 𝑉𝑢

decomposes as:

𝑉𝑢 =ℂ⊕𝑉 (90)

Hence 𝑅̌(𝑢, 𝑣) will decompose as a sum of 𝑈𝑞(𝐺2) intertwiners:

𝑅̌(𝑢, 𝑣) = 𝑎1(𝑢, 𝑣) + 𝑎2(𝑢, 𝑣) + 𝑎3(𝑢, 𝑣) + 𝑎4(𝑢, 𝑣)

11 Beware of a typo in the representation matrices of [26].
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+ 𝑎5(𝑢, 𝑣) + 𝑎6(𝑢, 𝑣) + 𝑎7(𝑢, 𝑣) + 𝑎8(𝑢, 𝑣)

+ 𝑎9(𝑢, 𝑣) + 𝑎10(𝑢, 𝑣) + 𝑎11(𝑢, 𝑣) + 𝑎12(𝑢, 𝑣)

+ 𝑎13(𝑢, 𝑣) + 𝑎14(𝑢, 𝑣) + 𝑎15(𝑢, 𝑣) (91)

where 𝑎𝑖(𝑢, 𝑣) are some coefficients and the webs span the space of intertwiners End𝑈𝑞 (𝐺2)
(
(ℂ⊕𝑉 )2

)
.

Asking for 𝑅̌(𝑢, 𝑣) to commute with the remaining generators, we see that it depends only on the ratio 𝑠 = 𝑢

𝑣
. Plugging this linear 

system for the functions 𝑎𝑖(𝑠) into Mathematica, we find

𝑎1(𝑠) =
𝑠3 − 𝑞12

𝑞4(𝑠− 1)

𝑎2(𝑠) =
𝑞8 − 𝑞2𝑠3

𝑞6 − 𝑠

𝑎3(𝑠) =𝑞4 + 𝑞2𝑠+ 𝑠2

𝑎4(𝑠) =
𝑞8 + 𝑞4𝑠+ 𝑠2

𝑞2

𝑎5(𝑠) =𝑞4
√

[3]𝑞
(
𝑞2 − 1

)
𝑠

𝑎6(𝑠) =𝑞4
√

[3]𝑞
(
𝑞2 − 1

)
𝑠

𝑎7(𝑠) = −
√
[3]𝑞
(
𝑞2 − 1

)
𝑠

𝑞2

𝑎8(𝑠) = −
√
[3]𝑞
(
𝑞2 − 1

)
𝑠

𝑞2

𝑎9(𝑠) =
𝑞8
(
𝑞6 − 1

)
𝑠(𝑠+ 1)

𝑞6 − 𝑠

𝑎10(𝑠) =
(
𝑞6 − 1

)
𝑠(𝑠+ 1)

𝑞4
(
𝑞6 − 𝑠

)
𝑎11(𝑠) = −

(
𝑞6 − 1

)
𝑠
(
𝑞6 + 𝑠

)
𝑞4(𝑠− 1)

𝑎12(𝑠) = −
(
𝑞6 − 1

)
𝑠
(
𝑞6 + 𝑠

)
𝑞4(𝑠− 1)

𝑎13(𝑠) =𝑞6 + 𝑞4(𝑠+ 1) + 𝑠2

𝑞2
+ 𝑠2 + 𝑠

𝑎14(𝑠) =𝑞6 + 𝑞4(𝑠+ 1) + 𝑠2

𝑞2
+ 𝑠2 + 𝑠

𝑎15(𝑠) =𝑞14 − 𝑞8 + 𝑞6 + 𝑞4𝑠+ 𝑞4 + 1
𝑞4

+
(

1
𝑞2

+ 1
)

𝑠2 − 𝑞2 + 1 − 𝑞12

𝑞4(𝑠− 1)
+ 𝑞8 − 𝑞20

𝑞6 − 𝑠
+ 𝑠

One can then show, using for instance Mathematica, that the corresponding operator 𝑅̌(𝑠) satisfies the multiplicative spectral 
parameter dependant Yang-Baxter equation. Using the following gauge transformation (which is just an elementary rescaling of the 
irreducible components in the decomposition (90))

𝐷 = Diag(1, 𝛼, 𝛼, 𝛼, 𝛼, 𝛼, 𝛼, 𝛼)

𝑅̌(𝑠)→
(
𝐷−1 ⊗𝐷−1) 𝑅̌(𝑠) (𝐷⊗𝐷) (92)
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for well chosen 𝛼, we obtain

𝑎1(𝑠) =
𝑠3 − 𝑞12

𝑞4(𝑠− 1)

𝑎2(𝑠) =
𝑞8 − 𝑞2𝑠3

𝑞6 − 𝑠

𝑎3(𝑠) =𝑞4 + 𝑞2𝑠+ 𝑠2

𝑎4(𝑠) =
𝑞8 + 𝑞4𝑠+ 𝑠2

𝑞2

𝑎5(𝑠) =𝑎6(𝑠) = 𝑎7(𝑠) = 𝑎8(𝑠) = −𝑖𝑞
√

[3]𝑞
(
𝑞2 − 1

)
𝑠

𝑎9(𝑠) =𝑎10(𝑠) = −
𝑞2
(
𝑞6 − 1

)
𝑠(𝑠+ 1)

𝑞6 − 𝑠

𝑎11(𝑠) =𝑎12(𝑠) = −
(
𝑞6 − 1

)
𝑠
(
𝑞6 + 𝑠

)
𝑞4(𝑠− 1)

𝑎13(𝑠) =𝑎14(𝑠) = 𝑞6 + 𝑞4(𝑠+ 1) + 𝑠2

𝑞2
+ 𝑠2 + 𝑠

𝑎15(𝑠) =𝑞14 − 𝑞8 + 𝑞6 + 𝑞4𝑠+ 𝑞4 + 1
𝑞4

+
(

1
𝑞2

+ 1
)

𝑠2 − 𝑞2 + 1 − 𝑞12

𝑞4(𝑠− 1)
+ 𝑞8 − 𝑞20

𝑞6 − 𝑠
+ 𝑠

It is apparent that by setting the spectral parameter 𝑠 = 𝑒−
2𝑖𝜋
3 𝑞4, 𝑅̌(𝑠) will be decomposed only in terms of webs appearing in 

the local transfer matrix of the 𝐺2 web model. By renormalising the 𝑅-matrix, we recover the local transfer matrix (67) with the 
following parametrisation, setting 𝑞 = 𝑒𝑖𝛾 :

𝑥 = 1

2cos
(
2𝛾 + 2𝜋

3

) (93a)

𝑦 =2cos
(
𝛾 − 𝜋

6

)√√√√√2cos
(
2𝛾 + 2𝜋

3

)
[3]𝑞

(93b)

Note that points related by 𝛾 → 𝛾 +𝜋 have the same bond fugacity but a vertex fugacity related by 𝑦 →−𝑦. They are equivalent as 
the partition function only depends on 𝑦2 and 𝑞2. We could focus for instance on the interval 𝛾 ∈ [0, 𝜋]. The Kuperberg weight only 
depends on ±2𝛾 and for each value of the former, there are exactly two integrable points. Hence, the model describes two phases.

7.3.1. Central charge and phase diagram
Also for the 𝐺2 web model have we numerically diagonalised the transfer matrix on cylinders of circumference 𝐿. Recall that for 

the 𝐴2 case we found 𝐿 mod 3 parity effects in one of the regimes. For the 𝐺2 model such effects are found to depend on 𝐿 mod 2, 
so in this case we perform the diagonalisation for sizes 𝐿 = 2, 4, 6, 8, from which estimates for the central charge 𝑐𝐿 can be extracted. 
The computations were made for 50 equally-spaced values of 𝛾 ∈ [0, 𝜋] and we show again curves 𝑐𝐿(𝛾) obtained from extrapolation 
of these values.

The number of regimes is now larger. The numerical results, shown in Fig. 7, combined with analytical considerations on the 
weights (see below) lead us to define four regimes:

Regime 1: 𝛾 ∈ [ 𝜋6 ,
𝜋

3 ] ,

Regime 2: 𝛾 ∈ [ 𝜋3 ,
𝜋

2 ] ,

Regime 3: 𝛾 ∈ [ 𝜋2 ,
2𝜋
3 ] ,

Regime 4: 𝛾 ∈ [ 2𝜋3 , 7𝜋8 ] . (94)

The numerical results alone suggest that Regime 1 might have a larger extent, 𝛾 =] 𝜋8 , 
𝜋

3 ], but in any case the point 𝛾 = 𝜋

8 is special 
(see below) and should be excluded. The remaining two pieces of the interval [0, 𝜋] do not allow for convincing numerical results 
for 𝑐𝐿(𝛾), and since 𝛾 is defined modulo 𝜋 it is not clear whether these pieces should be considered one or two extra regimes. In the 
following we shall focus only on Regimes 1–4.

7.3.2. Special points
We discuss again a number of points of special interest.



Nuclear Physics, Section B 1002 (2024) 116530

37

A. Lafay, A.M. Gainutdinov and J.L. Jacobsen

Fig. 7. Fits 𝑐𝐿(𝛾) for the central charge in the 𝐺2 web model, plotted against 𝛾

𝜋
. We show two-point fits using sizes {𝐿, 𝐿 − 2} with 𝐿 = 4 (blue), 𝐿 = 6 (orange) and 

𝐿 = 8 (green), as well as a three-point fit using sizes {𝐿, 𝐿 − 2, 𝐿 − 4} with 𝐿 = 8 (red). Regime 1 (upper left panel) is for 𝛾 ∈ [ 𝜋
6
, 𝜋
3
], Regime 2 (upper right panel) is 

for 𝛾 ∈ [ 𝜋
3
, 𝜋
2
], Regime 3 (lower left panel) is for 𝛾 ∈ [ 𝜋

2
, 2𝜋

3
], and finally Regime 4 (lower right panel) is for 𝛾 ∈ [ 2𝜋

3
, 7𝜋

8
].

Case of 𝛾 = 𝜋

6 , 
5𝜋
6 For these values of 𝛾 , we have described in Section 4.3 a mapping to the 3-state Potts model on the dual triangular 

lattice. We obtain the following integrable points:

𝛾 𝜋

6
5𝜋
6

𝑥 −1
2 1

𝑦 2𝑖 − 1√
2

The point 𝛾 = 5𝜋
6 corresponds to the infinite-temperature limit of the 3-state Potts model, with bond fugacity 𝑥 = 1. This identifi-

cation is consistent with the observed value 𝑐( 5𝜋6 ) = 0 in Regime 4. On the other hand, the numerical results for 𝛾 = 𝜋

6 in Regime 1 
lead us to conjecture that 𝑐( 𝜋6 ) = −2, which is an unusual and presently unexplained result for a 3-state model. Notice that the weight 
of each web configuration depends on 𝑦 via the combination 𝑦2. The fact that both 𝑥 and 𝑦2 are negative in this case is presumably 
at the root of the observed unusual behaviour.

Case of 𝛾 = 𝜋

2 For this value of 𝛾 , one has 𝑥 = 1 and 𝑦 = 𝑖. As shown in Section 4.4, this web model describes the uniform probability 
measure on spanning trees of the dual lattice. This is known to have 𝑐 = −2, in perfect agreement with the numerical results at the 
boundary between Regimes 2 and 3.

Case of 𝛾 = 2𝜋
3 For these values of 𝛾 , we have 𝑦 = 0 and the model becomes simply the 𝑂(𝑁) loop model. For this value, we have 

𝑁 = −2 and 𝑥 = 1
2 , which corresponds to the dilute phase of the loop model, hence to loop-erased random walks. Also this point is 

known to have 𝑐 = −2, a value that agrees perfectly with the numerical results at the boundary between Regimes 3 and 4.

Case of 𝛾 = 5𝜋
12 , 

11𝜋
12 For these values of 𝛾 , the bond fugacity is infinite. By renormalising the weights, we obtain the following local 

transfer matrices

𝑡
𝐺2
(1) = (−1 ±

√
3) + + +
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and similarly for 𝑡𝐺2
(2) . The + sign in (−1 ±

√
3) corresponds to 𝛾 = 5𝜋

12 , and the − sign to 𝛾 = 11𝜋
12 . For the first case, 𝛾 = 5𝜋

12 , the 
numerical results in Regime 2 lend strong credence to the conjecture 𝑐( 5𝜋12 ) = −4

5 , but we have no theoretical understanding of this 
value. The second case, 𝛾 = 11𝜋

12 , is outside the four regimes defined above, and we refrain from giving any numerical estimate for 𝑐.

Case of vanishing digon weight We now look at values of 𝛾 such that the digon factor −(𝑞6 + 𝑞4 + 𝑞2 + 𝑞−2 + 𝑞−4 + 𝑞−6) vanishes. This 
happens for 𝛾 = 𝜋

3 , 
2𝜋
3 , 𝜋8 , 

3𝜋
8 , 5𝜋8 , 7𝜋8 .

For 𝛾 = 𝜋

3 , the vertex fugacity is infinite, whereas the bond fugacity stays finite—and is in fact trivial up to a sign (𝑥 =−1). Hence 
the model contains only one configuration, the hexagonal lattice being completely covered by the web. The numerical results in 
Regime 2 give strong support for the conjecture 𝑐( 𝜋3 ) = −6. This is again an unusual value for which we have presently no analytical 
explanation.

The case 𝛾 = 2𝜋
3 was treated above.

For the other four values of 𝛾 , we have a loop weight of 𝑁 = −1 and a bond fugacity

𝑥 =
(
𝜖1

√
2 + 𝜖2

√
3
)−1

for some signs 𝜖1, 𝜖2. Moreover, when the digon factor is 0, all webs that are not a collection of loops have vanishing Kuperberg 
weight. This can be shown along the lines of the analogous situation for 𝐴2 webs, by induction on the number of vertices. It is clearly 
true for a web having 2 vertices. Let 𝑉 be the number of vertices of a given web 𝐺 and suppose that the statement is true for webs 
having less than 𝑉 vertices. Without loss of generality, we may assume that 𝐺 does not contain any loop. Suppose that 𝐺 does not 
contain digons either. We then have, thanks to the Euler relation and the hand-shake lemma,

𝑉 ≥ 4 .

Suppose there is a trigon, then 𝐺 is proportional to a web with 𝑉 − 2 vertices. If there is no trigon, we have the better bound

𝑉 ≥ 8 .

Then we can use the square or pentagon rule and obtain a linear combination of webs. In all cases, we have that 𝐺 can be written as 
a linear combination of webs with a strictly smaller, yet non-vanishing number of vertices and the induction hypothesis applies.

The resulting models are in fact 𝑂(−1) loops in their dense (𝜖2 = −1) or dilute (𝜖2 = 1) phase. The case 𝛾 = 𝜋

8 is outside of the 
four regimes for which we have good numerical results. In fact, the numerical evidence alone is in favour of Regime 1 having extent 
] 𝜋8 , 

𝜋

3 ], but assuming this, the numerical results indicate that 𝑐(𝛾) →−∞ as 𝛾 → 𝜋

8
+

. This is not compatible with the analytical result 
𝑐 = −3

5 for the dilute 𝑂(−1) model, so at least the point 𝜋8 cannot be contained in the definition of Regime 1. For the case 𝛾 = 5𝜋
8 , on 

the other hand, the numerical results in Regime 3 are in perfect agreement with 𝑐 = −3
5 .

It remains to discuss the two cases 𝛾 = 3𝜋
8 and 7𝜋8 for which we should find a dense 𝑂(−1) model with 𝑐 = −7 by the above 

analytical reasoning. The first of these points, 𝛾 = 3𝜋
8 , is inside Regime 2, while the other, 𝛾 = 7𝜋

8 is at the boundary of Regime 4. The 
numerical results are well-behaved in both cases, finding 𝑐 ≃ −2.33 for the former and 𝑐 ≃ −2.50 for the latter. We do not presently 
know how to reconcile this diagreement with the analytical result and suspect that some non-commutativity of limits might be at 
play. In any case, we stress that because of the very high dimension of the transfer matrix, the numerical results are obtained by 
interpolation from a set of 50 values of 𝛾 , and we did not examine the diagonalisation problem directly at the points 𝛾 = 3𝜋

8 and 7𝜋8 .

Case of 𝛾 = 𝜋

4 This point is situated inside Regime 1, and based on the numerical results we conjecture that 𝑐( 𝜋4 ) = 0. We have, 
however, no analytical argument in support of this value.

7.4. The 𝐵2 web model

We now consider the fourth line of Table 1. Let 𝑉𝑢, 𝑢 ∈ℂ∗, be the first representation of 𝑈𝑡(𝐴
(2)
4 ) given in Appendix D.3.2. We are 

looking for an operator 𝑅̌(𝑢, 𝑣) intertwining 𝑉𝑢 ⊗ 𝑉𝑣 and 𝑉𝑣 ⊗ 𝑉𝑢. Remark that 𝐸𝑖, 𝐹𝑖 and 𝐻𝑖 for 𝑖 = 1, 2 generate a Hopf subalgebra 
isomorphic to 𝑈𝑡2 (𝐵2). Under the action of this subalgebra, 𝑉𝑢 decomposes as:

𝑉𝑢 =ℂ⊕𝑉1 ⊕𝑉2 (95)

Hence 𝑅̌(𝑢, 𝑣) will decompose as a sum of 𝑈𝑡2 (𝐵2) intertwiners:

𝑅̌(𝑢, 𝑣) = 𝑎1(𝑢, 𝑣) + 𝑎2(𝑢, 𝑣) + 𝑎3(𝑢, 𝑣) + 𝑎4(𝑢, 𝑣)
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+ 𝑎5(𝑢, 𝑣) + 𝑎6(𝑢, 𝑣) + 𝑎7(𝑢, 𝑣) + 𝑎8(𝑢, 𝑣)

+ 𝑎9(𝑢, 𝑣) + 𝑎10(𝑢, 𝑣) + 𝑎11(𝑢, 𝑣) + 𝑎12(𝑢, 𝑣)

+ 𝑎13(𝑢, 𝑣) + 𝑎14(𝑢, 𝑣) + 𝑎15(𝑢, 𝑣) + 𝑎16(𝑢, 𝑣)

+ 𝑎17(𝑢, 𝑣) + 𝑎18(𝑢, 𝑣) + 𝑎19(𝑢, 𝑣) + 𝑎20(𝑢, 𝑣)

+ 𝑎21(𝑢, 𝑣) + 𝑎22(𝑢, 𝑣) + 𝑎23(𝑢, 𝑣) + 𝑎24(𝑢, 𝑣)

+ 𝑎25(𝑢, 𝑣) + 𝑎26(𝑢, 𝑣) + 𝑎27(𝑢, 𝑣) + 𝑎28(𝑢, 𝑣)

+ 𝑎29(𝑢, 𝑣) + 𝑎30(𝑢, 𝑣) + 𝑎31(𝑢, 𝑣) + 𝑎32(𝑢, 𝑣)

+ 𝑎33(𝑢, 𝑣) + 𝑎34(𝑢, 𝑣) + 𝑎35(𝑢, 𝑣) + 𝑎36(𝑢, 𝑣)

+ 𝑎37(𝑢, 𝑣) + 𝑎38(𝑢, 𝑣) + 𝑎39(𝑢, 𝑣) + 𝑎40(𝑢, 𝑣)

+ 𝑎41(𝑢, 𝑣) + 𝑎42(𝑢, 𝑣) + 𝑎43(𝑢, 𝑣)

where 𝑎𝑖(𝑢, 𝑣) are some coefficients and the webs span the space of intertwiners End𝑈
𝑡2 (𝐵2)

(
(ℂ⊕𝑉1 ⊕𝑉2)2

)
.

Asking for 𝑅̌(𝑢, 𝑣) to commute with the remaining generators, we see that it depends only on the ratio 𝑠 = 𝑢

𝑣
. Plugging this linear 

system for the functions 𝑎𝑖(𝑠) into Mathematica, we find

𝑎1(𝑠) =
(
𝑡4 + 1

)2 (
𝑡8 − 𝑠2

)(
𝑡10 + 𝑠2

)(
−𝑡8 + 𝑡2𝑠4 − (𝑡− 1)(𝑡+ 1)

(
𝑡8 − 𝑡4 + 1

)
𝑠2
)

𝑎2(𝑠) = −
(
𝑡4 + 1

)2 (
𝑡2 − 𝑠

)(
𝑡2 + 𝑠

)(
𝑡8 − 𝑠2

)(
𝑡6 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎3(𝑠) =𝑡8

(
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎4(𝑠) =

(
𝑡4 + 1

)2 [−𝑡24 − 𝑡4𝑠8 −
(
𝑡4 − 𝑡2 + 1

)((
𝑡16 − 4𝑡8 − 𝑡6 + 6𝑡4 − 𝑡2 − 4

)
𝑡8 + 1

)
𝑠4

+
(
𝑡14 − 3𝑡12 + 𝑡10 + 3𝑡8 − 3𝑡6 − 𝑡4 + 3𝑡2 − 1

)
𝑡2𝑠6

−
(
𝑡14 − 3𝑡12 + 𝑡10 + 3𝑡8 − 3𝑡6 − 𝑡4 + 3𝑡2 − 1

)
𝑡12𝑠2]

𝑎5(𝑠) = −
((

𝑡12 − 𝑡10 + 𝑡8 − 𝑡4 + 𝑡2 − 1
)
𝑠
(
𝑡10 + 𝑠2

)(
𝑡12 − 𝑡2𝑠4 +

(
𝑡14 + 𝑡10 + 𝑡8 − 𝑡6 − 𝑡4 − 1

)
𝑠2
))
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𝑎6(𝑠) = −
((

𝑡12 − 𝑡10 + 𝑡8 − 𝑡4 + 𝑡2 − 1
)
𝑠
(
𝑡10 + 𝑠2

)(
𝑡12 − 𝑡2𝑠4 +

(
𝑡14 + 𝑡10 + 𝑡8 − 𝑡6 − 𝑡4 − 1

)
𝑠2
))

𝑎7(𝑠) = −
((

𝑡6 − 2𝑡4 + 2𝑡2 − 1
)(

𝑡6 + 𝑡4 + 𝑡2 + 1
)2

𝑠2
(
𝑡8 − 𝑠2

)(
𝑡10 + 𝑠2

))
𝑎8(𝑠) = −

((
𝑡6 − 2𝑡4 + 2𝑡2 − 1

)(
𝑡6 + 𝑡4 + 𝑡2 + 1

)2
𝑠2
(
𝑡8 − 𝑠2

)(
𝑡10 + 𝑠2

))
𝑎9(𝑠) = −

((
𝑡4 − 1

)(
𝑡4 + 1

)2
𝑠
(
𝑡8 − 𝑠2

)(
𝑡6 + 𝑠2

)(
𝑡10 + 𝑠2

))
𝑎10(𝑠) = −

((
𝑡4 − 1

)(
𝑡4 + 1

)2
𝑠
(
𝑡8 − 𝑠2

)(
𝑡6 + 𝑠2

)(
𝑡10 + 𝑠2

))
𝑎11(𝑠) = − 𝑡4

(
𝑡4 + 1

)(
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡6 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎12(𝑠) = − 𝑡4

(
𝑡4 + 1

)(
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡6 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎13(𝑠) =𝑡8

(
𝑡4 + 1

)(
𝑠2 − 1

)(
𝑡2 + 𝑠2

)(
𝑡12 − 𝑡2𝑠4 +

(
𝑡14 − 𝑡12 + 𝑡8 − 𝑡6 + 𝑡2 − 1

)
𝑠2
)

𝑎14(𝑠) =𝑡8
(
𝑡4 + 1

)2 (
𝑠2 − 1

)(
𝑡2 − 𝑠

)(
𝑡2 + 𝑠

)(
𝑡2 + 𝑠2

)(
𝑡6 + 𝑠2

)
𝑎15(𝑠) =𝑡8

(
𝑡4 − 1

)(
𝑡5 − 𝑡3 + 𝑡

)2
𝑠
(
𝑠2 − 1

)(
𝑡12 − 𝑡2𝑠4 +

(
𝑡14 + 𝑡10 + 𝑡8 − 𝑡6 − 𝑡4 − 1

)
𝑠2
)

𝑎16(𝑠) = −
((

𝑡4 − 1
)(

𝑡4 + 1
)2

𝑠
(
𝑠2 − 1

)(
𝑡12 − 𝑡2𝑠4 +

(
𝑡14 + 𝑡10 + 𝑡8 − 𝑡6 − 𝑡4 − 1

)
𝑠2
))

𝑎17(𝑠) =𝑡14
(
𝑡2 − 1

)(
𝑡10 + 𝑡6 + 𝑡4 + 1

)2
𝑠2
(
𝑠2 − 1

)(
𝑡2 + 𝑠2

)
𝑎18(𝑠) =𝑡2

(
𝑡2 − 1

)(
𝑡6 + 𝑡4 + 𝑡2 + 1

)2
𝑠2
(
𝑠2 − 1

)(
𝑡2 + 𝑠2

)
𝑎19(𝑠) = − 𝑡6

(
𝑡4 − 1

)(
𝑡4 + 1

)2
𝑠
(
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎20(𝑠) =𝑡4

(
𝑡4 − 1

)
𝑠
(
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎21(𝑠) =𝑡8

(
𝑡8 − 1

)
𝑠
(
𝑠2 − 1

)(
𝑡4 − 𝑠2

)(
𝑡2 + 𝑠2

)
𝑎22(𝑠) = − 𝑡10

(
𝑡4 − 1

)(
𝑡4 + 1

)3
𝑠
(
𝑠2 − 1

)(
𝑡4 − 𝑠2

)(
𝑡2 + 𝑠2

)
𝑎23(𝑠) = − 𝑡6

(
𝑡4 + 1

)(
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎24(𝑠) = − 𝑖𝑡6

(
𝑡8 − 𝑡6 + 𝑡2 − 1

)
𝑠
(
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎25(𝑠) = − 𝑖𝑡6

(
𝑡8 − 𝑡6 + 𝑡2 − 1

)
𝑠
(
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎26(𝑠) =𝑖

(
𝑡4 − 1

)(
𝑡5 + 𝑡

)2
𝑠
(
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎27(𝑠) =𝑖

(
𝑡4 − 1

)(
𝑡5 + 𝑡

)2
𝑠
(
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎28(𝑠) =𝑡4

(
𝑡4 + 1

)2 (
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎29(𝑠) =𝑡4

(
𝑡4 + 1

)2 (
𝑠2 − 1

)(
𝑡8 − 𝑠2

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎30(𝑠) =𝑡8

(
𝑡8 − 1

)
𝑠
(
𝑠2 − 1

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎31(𝑠) = − 𝑡8

(
𝑡4 + 1

)(
𝑠2 − 1

)(
𝑡4 − 𝑠2

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎32(𝑠) =𝑡8

(
𝑡8 − 1

)
𝑠
(
𝑠2 − 1

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎33(𝑠) = − 𝑡8

(
𝑡4 + 1

)(
𝑠2 − 1

)(
𝑡4 − 𝑠2

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎34(𝑠) = − 𝑖𝑡10

(
𝑡12 − 𝑡10 + 𝑡8 − 𝑡4 + 𝑡2 − 1

)
𝑠
(
𝑠2 − 1

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎35(𝑠) = − 𝑖𝑡8

(
𝑡2 − 1

)(
𝑡4 + 1

)(
𝑡6 + 1

)2
𝑠2
(
𝑠2 − 1

)(
𝑡10 + 𝑠2

)
𝑎36(𝑠) = − 𝑖𝑡8

(
𝑡2 − 1

)(
𝑡4 + 1

)(
𝑡6 + 1

)2
𝑠2
(
𝑠2 − 1

)(
𝑡10 + 𝑠2

)
𝑎37(𝑠) = − 𝑖𝑡10

(
𝑡12 − 𝑡10 + 𝑡8 − 𝑡4 + 𝑡2 − 1

)
𝑠
(
𝑠2 − 1

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎38(𝑠) = − 𝑖𝑡4

(
𝑡8 − 1

)
𝑠
(
𝑠2 − 1

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎39(𝑠) = − 𝑖𝑡2

(
𝑡14 + 𝑡8 − 𝑡6 − 1

)
𝑠2
(
𝑠2 − 1

)(
𝑡10 + 𝑠2

)
𝑎40(𝑠) = − 𝑖𝑡2

(
𝑡14 + 𝑡8 − 𝑡6 − 1

)
𝑠2
(
𝑠2 − 1

)(
𝑡10 + 𝑠2

)
𝑎41(𝑠) = − 𝑖𝑡4

(
𝑡8 − 1

)
𝑠
(
𝑠2 − 1

)(
𝑡2 + 𝑠2

)(
𝑡10 + 𝑠2

)
𝑎42(𝑠) = − 𝑡4

(
𝑡4 + 1

)(
𝑠2 − 1

)(
𝑡10 + 𝑠2

)((
𝑡4 + 1

)
𝑠4 − 𝑡10

(
𝑡4 + 1

)
+
(
𝑡14 − 2𝑡12 + 𝑡8 − 𝑡6 + 2𝑡2 − 1

)
𝑠2
)

𝑎43(𝑠) = − 𝑡4
(
𝑡4 + 1

)(
𝑠2 − 1

)(
𝑡10 + 𝑠2

)((
𝑡4 + 1

)
𝑠4 − 𝑡10

(
𝑡4 + 1

)
+
(
𝑡14 − 2𝑡12 + 𝑡8 − 𝑡6 + 2𝑡2 − 1

)
𝑠2
)
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One can then show, using for instance Mathematica, that the corresponding operator 𝑅̌(𝑠) satisfies the multiplicative spectral param-

eter dependant Yang-Baxter equation.

7.4.1. Integrable 𝐵2 web model on the hexagonal lattice
It is apparent that by setting the spectral parameter 𝑠 = 𝑡4, 𝑅̌(𝑠) will be decomposed only in terms of webs appearing in the local 

transfer matrix of the 𝐵2 web model on the hexagonal lattice. In order to put it in the form of (71), we renormalise the R matrix and 
take the following transformation

𝐷 = Diag(1, 𝛼, 𝛼, 𝛼, 𝛼, 𝛽, 𝛽, 𝛽, 𝛽, 𝛽)

𝑅̌(𝑠)→
(
𝐷−1 ⊗𝐷−1) 𝑅̌(𝑠) (𝐷⊗𝐷) (96)

which is just an elementary rescaling of the irreducible components in the decomposition (95). For a well-chosen normalisation 
constant and parameters 𝛼, 𝛽, we recover the local transfer matrix (71) with the following parametrisation, setting 𝑡 = 𝑒𝑖𝜓 :

𝑞 =𝑒2𝑖𝜓 (97a)

𝑥𝑡;1 =
2 sin(𝜓)

4 sin2(𝜓) − 1
(97b)

𝑥𝑡;2 =
1

4 sin2(𝜓) − 1
(97c)

𝑥𝑣;1 = − 1
4 sin(𝜓) cos(2𝜓)

(97d)

𝑥𝑣;2 =0 (97e)

𝑦 =1 (97f)

7.4.2. Integrable 𝐵2 web model on the square lattice

Let us now turn to the model on the square lattice. When one tunes the spectral parameter as 𝑠 = 𝑒𝑖
𝜋
4 𝑡

5
2 and uses the gauge 

freedom (96), one obtains the 𝐵2 web model on the square lattice defined in Section 5.3 with the following Boltzmann weights:

𝑏1 = − 𝑖(−1 + 𝑡(𝑡− 𝑖))(1 + (𝑡− 1)𝑡(𝑡+ 1)(𝑡− 𝑖))
𝑡5 + 𝑡

𝑏2 = −
1 + 𝑡(𝑡− 𝑖)

(
−2 + 𝑡

(
𝑡3 − 𝑡+ 𝑖

)
(−2 + 𝑡(𝑡− 𝑖))

)
𝑡4

𝑏3 =
𝑒𝑖

3𝜋
4 (−1 + 𝑡(𝑡− 𝑖))

(
1 + 𝑖
(
𝑡3 − 𝑡+ 𝑖

)
𝑡2
)(

−1 + 𝑡(𝑡− 𝑖)
(
1 + (𝑡− 1)(𝑡+ 1)

(
𝑡4 + 𝑖𝑡+ 2

)
𝑡2
))

𝑡13∕2
(
𝑡4 + 1

)
𝑏4 = −

𝑖(−1 + 𝑡(𝑡− 𝑖))(1 + (𝑡− 1)𝑡(𝑡+ 1)(𝑡− 𝑖))
(
1 +
(
𝑡6 − 2𝑡4 + 2𝑖𝑡3 − 2𝑖𝑡− 2

)
𝑡2
)

𝑡9 + 𝑡5

𝑏5 =
𝑡
(
𝑖𝑡2 + 𝑡− 𝑖

)
(1 + (𝑡− 1)𝑡(𝑡+ 1)(𝑡− 𝑖))(

𝑡4 + 1
)2

𝑏6 =1

𝑏7 = −
(𝑡− 𝑖)2

(
𝑡6 − 2𝑡4 + 2𝑡2 − 1

)
𝑡4

𝑏8 =
(
𝑖𝑡2 + 𝑡− 𝑖

)
(1 + (𝑡− 1)𝑡(𝑡+ 1)(𝑡− 𝑖))

𝑡3

𝑏9 =
𝑒𝑖

3𝜋
4 (𝑡− 1)(𝑡− 𝑖)(𝑡+ 1)

𝑡3∕2

𝑏10 = − 1 + (𝑡− 1)𝑡(𝑡+ 1)(𝑡− 𝑖)
𝑡4 + 1

𝑏11 =
𝑒𝑖

𝜋
4 (1 + 𝑖𝑡)(𝑡− 1)(𝑡+ 1)(1 + (𝑡− 1)𝑡(𝑡+ 1)(𝑡− 𝑖))

𝑡3∕2
(
𝑡4 + 1

)
𝑏12 =

(
𝑡2 − 1

)(
𝑡3 + 𝑖

)2 (−1 + 𝑡(𝑡− 𝑖))(1 + (𝑡− 1)𝑡(𝑡+ 1)(𝑡− 𝑖))(
𝑡5 + 𝑡

)√
𝑡10 − 𝑡8 + 𝑡6

𝑏13 =
𝑒𝑖

𝜋
4 (𝑡− 1)(𝑡− 𝑖)(𝑡+ 1)

√
𝑡10 − 𝑡8 + 𝑡6(1 + (𝑡− 1)𝑡(𝑡+ 1)(𝑡− 𝑖))
𝑡11∕2
(
𝑡4 + 1

)
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𝑏14 = − 𝑖𝑡−9(−1 + 𝑡(𝑡− 𝑖))[1

+ 𝑡(𝑡− 𝑖)(−1 + 𝑡((𝑡− 1)𝑡(𝑡+ 1)(−3 + 𝑡(𝑡(3 + 𝑡(𝑡− 𝑖)(−3 + 𝑡((−2 + 𝑡(𝑡+ 𝑖))𝑡3 + 2𝑡− 𝑖))) − 2𝑖)) − 𝑖))]

7.4.3. An integrable dilute BMW model
Another integrable solution for the 𝐵2 web model on the square lattice can be obtained. This model is much simpler than the 

preceding one, since it uses only single lines. Let 𝑉 ′
𝑢 , 𝑢 ∈ℂ∗, be the second representation of 𝑈𝑡(𝐴

(2)
4 ) given in Appendix D.3.3. We are 

looking for an operator 𝑅̌(𝑢, 𝑣) intertwining 𝑉 ′
𝑢 ⊗𝑉 ′

𝑣 and 𝑉 ′
𝑣 ⊗𝑉 ′

𝑢 . Remark that 𝐸𝑖, 𝐹𝑖 and 𝐻𝑖 for 𝑖 = 1, 2 generate a Hopf subalgebra 
isomorphic to 𝑈𝑡2 (𝐵2). Under the action of this subalgebra, 𝑉 ′

𝑢 decomposes as:

𝑉 ′
𝑢 =ℂ⊕𝑉1 (98)

Hence 𝑅̌(𝑢, 𝑣) will decompose as a sum of 𝑈𝑡2 (𝐵2) intertwiners:

𝑅̌(𝑢, 𝑣) = 𝑎1(𝑢, 𝑣) + 𝑎2(𝑢, 𝑣) + 𝑎3(𝑢, 𝑣) + 𝑎4(𝑢, 𝑣)

+ 𝑎5(𝑢, 𝑣) + 𝑎6(𝑢, 𝑣) + 𝑎7(𝑢, 𝑣) + 𝑎8(𝑢, 𝑣)

+ 𝑎9(𝑢, 𝑣) + 𝑎10(𝑢, 𝑣) (99)

where 𝑎𝑖(𝑢, 𝑣) are some coefficients and the webs span the space of intertwiners End𝑈
𝑡2 (𝐵2)

(
(ℂ⊕𝑉1)2

)
, with the first web defined in 

(36).12

Asking for 𝑅̌(𝑢, 𝑣) to commute with the remaining generators, we see that it depends only on the ratio 𝑠 = 𝑢

𝑣
. Plugging this linear 

system for the functions 𝑎𝑖(𝑠) into Mathematica, we find

𝑎1(𝑠) =
(𝑡5𝑠−1 + 𝑡−5𝑠)(𝑠− 𝑠−1)

𝑡2 + 𝑡−2

𝑎2(𝑠) =(𝑡2𝑠−1 − 𝑡−2𝑠)(𝑡5𝑠−1 + 𝑡−5𝑠)

𝑎3(𝑠) = − (𝑡3𝑠−1 + 𝑡−3𝑠)(𝑠− 𝑠−1)

𝑎4(𝑠) =(𝑡2 − 𝑡−2)(𝑡5𝑠−1 + 𝑡−5𝑠)

𝑎5(𝑠) =(𝑡2 − 𝑡−2)(𝑡5𝑠−1 + 𝑡−5𝑠)

𝑎6(𝑠) =𝑡5(𝑡2 − 𝑡−2)(𝑠− 𝑠−1)

𝑎7(𝑠) = − 1
𝑡5
(𝑡2 − 𝑡−2)(𝑠− 𝑠−1)

𝑎8(𝑠) = − (𝑡5𝑠−1 + 𝑡−5𝑠)(𝑠− 𝑠−1)

𝑎9(𝑠) = − (𝑡5𝑠−1 + 𝑡−5𝑠)(𝑠− 𝑠−1)

𝑎10(𝑠) =(𝑡5 + 𝑡−5)(𝑡2 − 𝑡−2) − (𝑡5𝑠−1 + 𝑡−5𝑠)(𝑠− 𝑠−1)

One can then show, using for instance Mathematica, that the corresponding operator 𝑅̌(𝑠) satisfies the multiplicative spectral param-

eter dependant Yang-Baxter equation.

Remark that the diagrams appearing in the decomposition of 𝑅̌(𝑢, 𝑣) are generators of the dilute BMW algebra once one considers 
the braiding operator [3]:

= −𝑡2 − 𝑡−2 + 1
[2]𝑡2

12 Remark that this map is not the flip map.
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The dilute BMW algebra has been baxterised [29] and the above integrable 𝑅̌-matrix (99) can then be recovered from [29, eq. (3.9)]

(with the sign 𝜎 = −1 in the notations of that reference).

We now tune the spectral parameter as 𝑠 = −𝑒𝑖
𝜋
4 𝑡

5
2 and use the gauge freedom

𝐷 = Diag(1, 𝛼, 𝛼, 𝛼, 𝛼)

𝑅̌(𝑠)→
(
𝐷−1 ⊗𝐷−1) 𝑅̌(𝑠) (𝐷⊗𝐷)

which is just an elementary rescaling, thanks to the decomposition (98). One then obtains the 𝐵2 web model on the square lattice 
defined in Section 5.3 with the following Boltzmann weights:

𝑏1 =
cos2( 52𝜓 − 𝜋

4 )
2 cos(2𝜓)

𝑏2 =sin
(1
2
𝜓 + 𝜋

4

)
cos
(5
2
𝜓 − 𝜋

4

)
𝑏3 = − sin(2𝜓) cos

(5
2
𝜓 − 𝜋

4

)
𝑏4 = − cos2( 5

2
𝜓 − 𝜋

4
)

𝑏14 =cos(5𝜓) sin(2𝜓) − cos2( 5
2
𝜓 − 𝜋

4
)

𝑏𝑖 =0 for 𝑖 ∈ �5,13�

where we have parametrised as 𝑡 = 𝑒𝑖𝜓 . Notice that the last condition on vanishing weights is the same as (47) that forbids double 
edges in the corresponding spin model.

8. Discussion

In this paper, we have defined web models as lattice models based on all the rank-two spiders introduced by Kuperberg in [3,30]. 
We have exhibited specific root-of-unity values of the deformation parameter 𝑞 for which the weight of closed webs can be used to 
count the number of colourings of their dual graphs, possibly with some constraints. These combinatorial properties allowed us to 
relate the web models at these special values of 𝑞 to three- and four-state spins model with certain plaquette interactions and specific 
global symmetries.

We have then used the central results of [3] which connect open webs with invariants of quantum group representations in order 
to write explicit local transfer matrices of the web models. Finally, we derived integrable 𝑅-matrices, which for a well-chosen value 
of their spectral parameter reproduce these transfer matrices. In particular, we have exhibited new integrable points for the spin 
models.

Although this paper begins with the definition of certain web models and then demonstrates how they are obtained from affine 
𝑅-matrices of well-chosen integrable models, another point of view would be that the definitions of those particular models are 
motivated by their integrability. Once the integrable 𝑅-matrix has been expressed in terms of webs, we may then define a related 
web model on the lattice.

As in the well known case of loop models, the most convenient models are obtained on the square lattice or the hexagonal 
lattice. We have chosen to prioritise the simplest choice, which is the hexagonal lattice ℍ. The configurations are easily described as 
embeddings of webs in ℍ. Moreover, the local patterns around a vertex of ℍ are so few that it is always possible to write rotationally 
invariant local Boltzmann weights in terms of local fugacities. The fugacities account for links or nodes to be covered by specific 
types of edges of a given web.

By contrast, the models on the square lattice 𝕊 are a bit more involved, and the local patterns at each vertex are more complicated, 
decorated graph embeddings. In particular, we have chosen to define the 𝐵2 web models on 𝕊, because the integrable solutions on 
ℍ are not rotational invariant. We might of course also have defined integrable 𝐴2 and 𝐺2 web models on 𝕊. In the 𝐴2 case, for 
instance, this would have led to interactions of the form

It is worth mentioning that the web models on 𝕊 could potentially have a richer phase diagram than their counterparts on ℍ. For 
instance, the loop model on 𝕊 presents three different integrable regimes [23], one of which has a non-compact continuum limit [9], 
but only one of those regimes survives the restriction of the model to the simpler lattice ℍ. Remarkably, our numerical work shows 
that the 𝐴2 and 𝐺2 web models defined on ℍ have two and (at least) four regimes, respectively. The corresponding models defined 
on 𝕊 might conceivably possess an even greater number of regimes.
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We now discuss some possible directions for future work. First and foremost, one might solve the integrable web models by the 
Bethe ansatz. The fact that 𝑅-matrices are obtained from quantum group symmetries suggests the use of the algebraic Bethe ansatz. 
But even the more modest goal of setting up the Bethe ansatz equations might be worthwhile, since this would give access to larger 
system sizes than can be attained by exact diagonalisation of the transfer matrix.

Another direction is to study the geometrical nature of the excitations present in the spectra of the transfer matrices. This has 
been discussed in [2] for the 𝐴2 case, where it was suggested that such excitations correspond to lattice precursors of electromagnetic 
operators in a Coulomb Gas description of the continuum limit. This 𝐴2 Coulomb Gas will be defined in a future paper [28]. One 
might also hope to find analogous Coulomb Gas descriptions for the other 𝐺2 and 𝐵2 web models, although it seems more challenging 
when the relevant Dynkin diagram is not simply laced (see the discussion in [42]).

Some of the special points that we have identified in the phase diagrams of the web models are of particular interest. For instance, 
the dense 𝐺2 web model at 𝑞 = 𝑒𝑖

5𝜋
6 describes a three-colour analogue of percolation which has not been studied before, to our best 

knowledge (see Section 7.3.2). It is also interesting that some instances of the loop models, such as percolation or LERW, appear at 
specific points of the rank-2 web models (see Sections 7.2.2 and 7.3.2). These give access to operators which are not present in the 
rank-1 realisations of these models, and may hence provide new details about their critical behaviour. The challenge would then be 
to describe the geometrical interpretation of such operators.

Other special points indicate that the three-state Potts model with plaquette interactions can give rise to universality classes which 
are unusual for this model. For instance we have found cases of central charge 𝑐 = −2 and 𝑐 ≈ 1.5. It would be interesting to study 
further the possible RG flows between these models, and in particular whether some of the flows are integrable.

We did not present here the numerical analysis of the 𝐵2 models, due to the large dimension of its transfer matrix. We also did 
not study the special points of this model. However, by the structure of its symmetries at 𝑞 = 𝑖, the 𝐵2 web model is a good candidate 
for realising symplectic fermions at 𝑐 = −4.

Finally, one can define discrete holomorphic observables from the intertwining relations (75) and give them a combinatorial 
formulation thanks to webs, as was already done in the loop model case [43–46]. One might hope that some of these observables 
would enable us to rigorously derive conformal invariance of the corresponding lattice models, analogously to what was already 
done for the Ising model in its dilute loop representation [47], or for percolation [48,49].
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Appendix A. Some symmetries of the 𝑨𝟐 web models

The Boltzmann weight of the 𝐴2 web models is of the form 𝑥𝑁 (𝑦𝑧)𝑁𝑉 𝑒𝑖𝑀𝜙𝑤K(𝐺) for a given configuration 𝐺. Denote by 𝑤loc(𝐺) =
𝑥𝑁 (𝑦𝑧)𝑁𝑉 𝑒𝑖𝑀𝜙 the product of its local fugacities. We will show by induction on the number of edges that 𝑁 +𝑁𝑉 +𝑀 ≡ 0 mod 2, 
𝑀 ≡ 0 mod 3.

Consider a web 𝐺 embedded in the hexagonal lattice ℍ. If 𝐺 is a collection of loops, the result is clear. Supose it is not the case. 
Let 𝐹 be a face of 𝐺 other than the exterior one that is not surrounded by a loop. Remove the edges surrounding 𝐹 going clockwise 
around it and reverse the orientation of the others. It is clear that the resulting graph 𝐺′ embedded in ℍ is again a web. Moreover 
𝐺′ has strictly less edges and the induction hypothesis applies.

Around each node of ℍ surrounding 𝐹 , there are, up to rotations, 6 possibilities. We draw them below as well as their transformed 
counterparts, dotted lines meaning empty links.
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→ ∶ 𝑥3∕2𝑦→ 𝑥𝑒𝑖𝜙 (100a)

→ ∶ 𝑥3∕2𝑧→ 𝑥𝑒𝑖𝜙 (100b)

→ ∶ 𝑥𝑒−𝑖𝜙 → 𝑥𝑒𝑖𝜙 (100c)

→ ∶ 𝑥𝑒𝑖𝜙 → 𝑥𝑒−𝑖𝜙 (100d)

→ ∶ 𝑥𝑒−𝑖𝜙 → 1 (100e)

→ ∶ 𝑥𝑒𝑖𝜙 → 1 (100f)

We also wrote the corresponding change in the contribution to the Boltzmann weight from local fugacities, understanding that the 
fugacity of a half bond is 𝑥1∕2. Denote by 𝑙 the number of source/sink pairs surrounding 𝐹 , by 𝑚1 the number of nodes as in (100c), 
by 𝑚2 the number of nodes as in (100d), by 𝑛1 the number of nodes as in (100e) and by 𝑛2 the number of nodes as in (100f).

We have that

𝑤loc(𝐺) =(𝑥𝑦𝑧𝑒𝑖2𝜙)𝑙(𝑒𝑖𝜙)𝑚1 (𝑒−𝑖𝜙)𝑚2 (𝑥𝑒𝑖𝜙)𝑛1 (𝑥𝑒−𝑖𝜙)𝑛2𝑤loc(𝐺′)

= 𝑥𝑙+𝑛1+𝑛2 (𝑦𝑧)𝑙(𝑒𝑖𝜙)2𝑙+2𝑚1−2𝑚2+𝑛1−𝑛2𝑤loc(𝐺′)

As 𝐹 is surrounded by an even number of edges,

2𝑙 +𝑚1 +𝑚2 + 𝑛1 + 𝑛2 ≡ 0 mod 2

from which it follows, using the induction hypothesis, that

𝑁 +𝑁𝑉 +𝑀 ≡ 0 mod 2

Moreover, one has that the number of nodes where 𝐹 is locally convex minus the number of nodes where 𝐹 is not is equal to 6. 
Thus

2𝑙 +𝑚2 + 𝑛1 −𝑚1 − 𝑛2 = 6 ≡ 0 mod 3

which implies that

2𝑙 + 2𝑚1 − 2𝑚2 + 𝑛1 − 𝑛2 ≡ 0 mod 3

and then, using the induction hypothesis, that

𝑀 ≡ 0 mod 3

Appendix B. Data and conventions for root systems

Here, we give Cartan matrix conventions for the quantum groups used in the main text, in the order that the big quantum group 
follows the small one, for instance, 𝐺(1)

2 follows 𝐴2. We describe also the symmetrisation of the Cartan matrix 𝐴𝑖𝑗 in terms of the 
relatively prime positive integers 𝑑𝑖 such that 𝑑𝑖𝐴𝑖𝑗 is symmetric. We also give the fundamental weights in the non-affine cases.

B.1. 𝐴2 web models

B.1.1. 𝐴2
Let 𝜶1 and 𝜶2 be the two simple roots of 𝐴2. We normalise them such that (𝜶1𝜶1) = 2. The Cartan matrix is given by:

𝐴𝑖𝑗 = 2
(𝜶𝑖,𝜶𝑗 )
(𝜶𝑖,𝜶𝑖)

=
(

2 −1
−1 2

)
(101)
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The simple coroots are given by

𝜶∨
1 = 𝜶1 (102a)

𝜶∨
2 = 𝜶2 (102b)

The fundamental weights are given by

𝒘1 =
2
3
𝜶1 +

1
3
𝜶2 (103a)

𝒘2 =
1
3
𝜶1 +

2
3
𝜶2 (103b)

The Weyl vector and dual Weyl vector are

𝝆 = 𝒘1 +𝒘2 = 𝜶1 + 𝜶2 (104a)

𝝆∨ = 𝝆 (104b)

B.1.2. 𝐺(1)
2

The Cartan matrix is given by:

𝐴𝑖𝑗 =
⎛⎜⎜⎝
2 −1 0
−1 2 −1
0 −3 2

⎞⎟⎟⎠ (105)

𝑑1 = 3, 𝑑2 = 3, 𝑑3 = 1

B.2. 𝐺2 web models

B.2.1. 𝐺2
Let 𝜶1 and 𝜶2 be the two simple roots of 𝐺2 with 𝜶1 the smallest one. We normalise them such that (𝜶1𝜶1) = 2. The Cartan 

matrix is given by:

𝐴𝑖𝑗 = 2
(𝜶𝑖,𝜶𝑗 )
(𝜶𝑖,𝜶𝑖)

=
(

2 −3
−1 2

)
(106)

𝑑1 = 1, 𝑑2 = 3

The simple coroots are given by

𝜶∨
1 = 𝜶1 (107a)

𝜶∨
2 = 1

3
𝜶2 (107b)

The fundamental weights are given by

𝒘1 = 2𝜶1 + 𝜶2 (108a)

𝒘2 = 3𝜶1 + 2𝜶2 (108b)

The Weyl vector and dual Weyl vector are

𝝆 = 𝒘1 +𝒘2 = 5𝜶1 + 3𝜶2 (109a)

𝝆∨ = 3𝜶1 +
5
3
𝜶2 (109b)

B.2.2. 𝐷(3)
4

The Cartan matrix is given by:

𝐴𝑖𝑗 =
⎛⎜⎜⎝
2 −1 0
−3 2 −1
0 −1 2

⎞⎟⎟⎠ (110)

𝑑1 = 3, 𝑑2 = 1, 𝑑3 = 1
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B.3. 𝐵2 web models

B.3.1. 𝐵2
Let 𝜶1 and 𝜶2 be the two simple roots of 𝐵2 with 𝜶1 the smallest one. We normalise them such that (𝜶1𝜶1) = 2. The Cartan 

matrix is given by:

𝐴𝑖𝑗 = 2
(𝜶𝑖,𝜶𝑗 )
(𝜶𝑖,𝜶𝑖)

=
(

2 −2
−1 2

)
(111)

𝑑1 = 1, 𝑑2 = 2

The simple coroots are given by

𝜶∨
1 = 𝜶1 (112a)

𝜶∨
2 = 1

2
𝜶2 (112b)

The fundamental weights are given by

𝒘1 = 𝜶1 +
1
2
𝜶2 (113a)

𝒘2 = 𝜶1 + 𝜶2 (113b)

The Weyl vector and dual Weyl vector are

𝝆 = 𝒘1 +𝒘2 = 2𝜶1 +
3
2
𝜶2 (114a)

𝝆∨ = 3
2
𝜶1 + 𝜶2 (114b)

B.3.2. 𝐴(2)
4

The Cartan matrix is given by:

𝐴𝑖𝑗 =
⎛⎜⎜⎝
2 −2 0
−1 2 −2
0 −1 2

⎞⎟⎟⎠ (115)

𝑑1 = 1, 𝑑2 = 2, 𝑑3 = 4

Appendix C. Conventions for quantum groups

Let 𝑞 ∈ ℂ be an arbitrary non-zero complex number (but 𝑞 ≠ ±1). The statistical weights of the web models will be defined in 
terms of so-called 𝑞-numbers [𝑘]𝑞 , with 𝑘 ∈ℕ, defined by

[𝑘]𝑞 =
𝑞𝑘 − 𝑞−𝑘

𝑞 − 𝑞−1
. (116)

Note that the 𝑞-numbers reduce to the ordinary integers, [𝑘]𝑞 → 𝑘, in the limit 𝑞 → 1. We shall also need the corresponding 𝑞-factorial 
and 𝑞-binomial coefficients:

[𝑘]𝑞! =
∏
1≤𝑖≤𝑘

[𝑖]𝑞 ,

[
𝑛
𝑘

]
𝑞

=
[𝑛]𝑞!

[𝑘]𝑞![𝑛− 𝑘]𝑞!
,

with the convention [0]𝑞! = 1 and 
[
𝑛
0

]
𝑞

= 1.

We recall here a definition of the Hopf algebra 𝑈𝑞(𝑋) and its pivotal structure. Let 𝑑𝑖 be the relatively prime positive integers 
such that 𝑑𝑖𝐴𝑖𝑗 is symmetric. Then, the ℂ(𝑞)-algebra 𝑈𝑞(𝑋) is generated by 𝐸𝑖, 𝐹𝑖, 𝑞𝐻𝑖 for 𝑖 ∈ �1, 2� satisfying the following relations:

𝑞𝐻𝑖𝑞𝐻𝑗 = 𝑞𝐻𝑗 𝑞𝐻𝑖 , (117a)

𝑞𝐻𝑖𝐸𝑗𝑞
−𝐻𝑖 = 𝑞𝐴𝑖𝑗 𝐸𝑗 , 𝑞𝐻𝑖𝐹𝑗𝑞

−𝐻𝑖 = 𝑞−𝐴𝑖𝑗 𝐹𝑗 , (117b)

[𝐸𝑖,𝐹𝑗 ] = 𝛿𝑖𝑗
𝑞𝑑𝑖𝐻𝑖 − 𝑞−𝑑𝑖𝐻𝑖

𝑞𝑑𝑖 − 𝑞−𝑑𝑖
, (117c)

1−𝐴𝑖𝑗∑
𝑚=0

(−1)𝑚
[
1 −𝐴𝑖𝑗

𝑚

]
𝑞𝑑𝑖

𝐸
1−𝐴𝑖𝑗−𝑚

𝑖 𝐸𝑗𝐸
𝑚
𝑖 = 0 , if 𝑖 ≠ 𝑗 , (117d)
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1−𝐴𝑖𝑗∑
𝑚=0

(−1)𝑚
[
1 −𝐴𝑖𝑗

𝑚

]
𝑞𝑑𝑖

𝐹
1−𝐴𝑖𝑗−𝑚

𝑖 𝐹𝑗𝐹
𝑚
𝑖 = 0 , if 𝑖 ≠ 𝑗 . (117e)

It is a Hopf algebra with the coproduct

Δ(𝐸𝑖) =𝐸𝑖 ⊗ 𝑞𝑑𝑖𝐻𝑖 + 1⊗𝐸𝑖 , Δ(𝐹𝑖) = 𝐹𝑖 ⊗ 1 + 𝑞−𝑑𝑖𝐻𝑖 ⊗ 𝐹𝑖 , Δ(𝑞𝐻𝑖 ) = 𝑞𝐻𝑖 ⊗ 𝑞𝐻𝑖 , (118)

the antipode

𝑆(𝐸𝑖) = −𝐸𝑖𝑞
−𝑑𝑖𝐻𝑖 , 𝑆(𝐹𝑖) = −𝑞𝑑𝑖𝐻𝑖𝐹𝑖 , 𝑆(𝑞𝐻𝑖 ) = 𝑞−𝐻𝑖 , (119)

and the counit

𝜖(𝐸𝑖) = 0 , 𝜖(𝐹𝑖) = 0 , 𝜖(𝑞𝐻𝑖 ) = 1 . (120)

We use the notation 𝐻∑
𝑖 𝑐𝑖𝜶𝑖

∶=
∑

𝑖 𝑐𝑖𝑑𝑖𝐻𝑖.

Appendix D. Explicit matrix elements of representations

We give in this section the matrices of our representations of interest of the generators of quantum groups in our chosen bases.

D.1. The 𝐴2 web models

D.1.1. 𝑈−𝑞(𝐴2) representations
In the basis {𝑢𝑖, 𝑖 ∈ �1, 3�} of 𝑉1 introduced in Section 6.2, we have the following representation of generators of 𝑈−𝑞(𝐴2):

𝐸1 =
⎡⎢⎢⎣
0 1 0
0 0 0
0 0 0

⎤⎥⎥⎦ 𝐸2 =
⎡⎢⎢⎣
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎦
𝐹1 =

⎡⎢⎢⎣
0 0 0
1 0 0
0 0 0

⎤⎥⎥⎦ 𝐹2 =
⎡⎢⎢⎣
0 0 0
0 0 0
0 1 0

⎤⎥⎥⎦
𝐻1 =

⎡⎢⎢⎣
1 0 0
0 −1 0
0 0 0

⎤⎥⎥⎦ 𝐻2 =
⎡⎢⎢⎣
0 0 0
0 1 0
0 0 −1

⎤⎥⎥⎦
In the basis {𝑣𝑖, 𝑖 ∈ �1, 3�} of 𝑉2 introduced in Section 6.2, we have the following representation of generators of 𝑈−𝑞(𝐴2):

𝐸1 =
⎡⎢⎢⎣
0 0 0
0 0 1
0 0 0

⎤⎥⎥⎦ 𝐸2 =
⎡⎢⎢⎣
0 1 0
0 0 0
0 0 0

⎤⎥⎥⎦
𝐹1 =

⎡⎢⎢⎣
0 0 0
0 0 0
0 1 0

⎤⎥⎥⎦ 𝐹2 =
⎡⎢⎢⎣
0 0 0
1 0 0
0 0 0

⎤⎥⎥⎦
𝐻1 =

⎡⎢⎢⎣
0 0 0
0 1 0
0 0 −1

⎤⎥⎥⎦ 𝐻2 =
⎡⎢⎢⎣
1 0 0
0 −1 0
0 0 0

⎤⎥⎥⎦
D.1.2. 𝑈𝑡(𝐺

(1)
2 ) evaluation representation

Let 𝑢 ∈ ℂ∗. Consider the following representation 𝑉𝑢 of 𝑈𝑡(𝐺
(1)
2 ) given in the basis {𝑢1, 𝑢2, 𝑢3, 𝑣1, 𝑣2, 𝑣3, 1} where 1 denotes the 

basis vector of the trivial representation of 𝑈−𝑞(𝐴2),

𝐸0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝐹0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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𝐸1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝐹1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

𝐸2 = 𝑢

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0

√
[2]𝑡

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0

√
[2]𝑡 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐹2 =

1
𝑢

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0

√
[2]𝑡

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0

√
[2]𝑡 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐻0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝐻1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 −1 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

𝐻2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 −2 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
D.2. The 𝐺2 web models

D.2.1. 𝑈𝑞(𝐺2) representations
In the basis {𝑒𝑖, 𝑖 ∈ �1, 7�} of 𝑉 introduced in Section 6.3, we have the following representation of generators of 𝑈𝑞(𝐺2):

𝐸1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 [2]𝑞 0 0 0
0 0 0 0 [2]𝑞 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝐸2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

𝐹1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝐹2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

𝐻1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 2 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 −2 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
𝐻2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 −1 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 −1 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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D.2.2. 𝑈𝑞(𝐷
(3)
4 ) evaluation representation

Let 𝑢 ∈ℂ∗. Consider the following representation 𝑉𝑢 of 𝑈𝑞(𝐷
(3)
4 ) given in the basis {1, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6, 𝑒7} where 1 denotes the 

basis vector of the trivial representation of 𝑈𝑞(𝐺2),

𝐸0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐹0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐸1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 [2]𝑞 0 0 0
0 0 0 0 0 [2]𝑞 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐹1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐸2 = 𝑢

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −

√
[3]𝑞

[2]𝑞
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1

[2]𝑞
0 0 0 0 0 0

0 0 1
[2]𝑞

0 0 0 0 0

0 0 0 1
[2]𝑞

0 0 0 0

−

√
[3]𝑞

[2]𝑞
0 0 0 1

[2]𝑞
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐹2 =
1
𝑢

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 −
√
[3]𝑞

−
√
[3]𝑞 0 0 0 1 0 0 0
0 0 0 0 0 [2]𝑞 0 0
0 0 0 0 0 0 [2]𝑞 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐻0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
𝐻1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 −2 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐻2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D.3. The 𝐵2 web models

D.3.1. 𝑈𝑞(𝐵2) representations
In the basis {𝑒𝑖, 𝑖 ∈ �1, 4�} of 𝑉1 introduced in Section 6.4, we have the following representation of generators of 𝑈𝑞(𝐵2):

𝐸1 =
⎡⎢⎢⎢⎣
0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎥⎦ 𝐸2 =
⎡⎢⎢⎢⎣
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎦
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𝐹1 =
⎡⎢⎢⎢⎣
0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎤⎥⎥⎥⎦ 𝐹2 =
⎡⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

⎤⎥⎥⎥⎦
𝐻1 =

⎡⎢⎢⎢⎣
1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎤⎥⎥⎥⎦ 𝐻2 =
⎡⎢⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

⎤⎥⎥⎥⎦
In the basis {𝑣𝑖, 𝑖 ∈ �1, 5�} of 𝑉2 introduced in Section 6.4, we have the following representation of generators of 𝑈𝑞(𝐵2):

𝐸1 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 [2]𝑞 0 0
0 0 0 [2]𝑞 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
𝐸2 =

⎡⎢⎢⎢⎢⎢⎣

0 1 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦

𝐹1 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
𝐹2 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎦

𝐻1 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 2 0 0 0
0 0 0 0 0
0 0 0 −2 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
𝐻2 =

⎡⎢⎢⎢⎢⎢⎣

1 0 0 0 0
0 −1 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎦
D.3.2. First 𝑈𝑡(𝐴

(2)
4 ) evaluation representation

Let 𝑢 ∈ℂ∗. Consider the following representation 𝑉𝑢 of 𝑈𝑡(𝐴
(2)
4 ) given in the basis {1, 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5} where 1 denotes 

the basis vector of the trivial representation of 𝑈𝑞(𝐵2),

𝐸0 = 𝑢

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
√
[2]𝑡(−𝑡2+1−𝑡−2)

𝑡2+𝑡−2
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0

√
[2]𝑡 0 0 0 0

0 0 0 0 0 0
√
[2]𝑡 0 0 0

−
√
[2]𝑡 0 0 0 0 0 0

√
[2]𝑡 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

0
√
[2]𝑡

𝑡2+𝑡−2
0 0 0 0 0 0 0 0

0 0
√
[2]𝑡

𝑡2+𝑡−2
0 0 0 0 0 0 0

0 0 0
√
[2]𝑡

𝑡2+𝑡−2
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐹0 =
1
𝑢

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
√
[2]𝑡(−𝑡2+1−𝑡−2)

𝑡2+𝑡−2
0 0 0 0 0

−
√
[2]𝑡 0 0 0 0 0 0

√
[2]𝑡 0 0

0 0 0 0 0 0 0 0
√
[2]𝑡(𝑡2 + 𝑡−2) 0

0 0 0 0 0 0 0 0 0
√
[2]𝑡(𝑡2 + 𝑡−2)

0 0 0 0 0 0 0 0 0 0
0 0

√
[2]𝑡 0 0 0 0 0 0 0

0 0 0
√
[2]𝑡 0 0 0 0 0 0

0 0 0 0
√
[2]𝑡

𝑡2+𝑡−2
0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦



Nuclear Physics, Section B 1002 (2024) 116530

52

A. Lafay, A.M. Gainutdinov and J.L. Jacobsen

𝐻0 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 −2 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 0 0 0 0
0 0 0 0 0 −2 0 0 0 0
0 0 0 0 0 0 −2 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐸1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 𝑡2 + 𝑡−2 0 0
0 0 0 0 0 0 0 0 𝑡2 + 𝑡−2 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐹1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐻1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −2 0
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐸2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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𝐹2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

𝐻2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D.3.3. Second 𝑈𝑡(𝐴

(2)
4 ) evaluation representation

Let 𝑢 ∈ ℂ∗. Consider the following representation 𝑉 ′
𝑢 of 𝑈𝑡(𝐴

(2)
4 ) given in the basis {1, 𝑒1, 𝑒2, 𝑒3, 𝑒4} where 1 denotes the basis 

vector of the trivial representation of 𝑈𝑞(𝐵2),

𝐸0 = 𝑢

⎡⎢⎢⎢⎢⎢⎣

0 −
√
[2]𝑡 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0√
[2]𝑡 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
𝐹0 =

1
𝑢

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0
√
[2]𝑡

−
√
[2]𝑡 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
𝐻0 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 −2 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 2

⎤⎥⎥⎥⎥⎥⎦
𝐸1 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
𝐹1 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0

⎤⎥⎥⎥⎥⎥⎦
𝐻1 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
0 0 0 0 −1

⎤⎥⎥⎥⎥⎥⎦
𝐸2 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
𝐹2 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
𝐻2 =

⎡⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 −1 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎦
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