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In the context of electromagnetic absorption, it is obvious that for an infinite planar periodic structure
illuminated by a plane wave the maximum attainable absorptance, i.e., perfect absorption, is theoretically
limited to 100% of the incident power. Here we show that an intriguing possibility of overcoming this
limit arises in finite-sized resonant absorbing arrays. We present a comprehensive analysis of a simple
two-dimensional strip array over an infinite perfectly conducting plane, where the strips are loaded with
bulk-impedance loads. The absorptance is defined as the ratio of the dissipated power per unit length of
the strips to the incident power on a unit length of the array width. The results show that even regular
subwavelength arrays of impedance strips can slightly overcome the limit of 100% absorptance, while
with use of aperiodic arrays with optimized loads, absorptance can be significantly increased as compared
with the scenario where the strips are identical. In principle, by tuning of the bulk loads, high superunity
absorptance can be realized for all angles of illumination.

DOI: 10.1103/PhysRevApplied.21.054060

I. INTRODUCTION

Absorbers for electromagnetic waves have a pivotal role
in various applications, such as energy harvesting [1],
stealth technology [2,3], and sensors [4,5]. In the litera-
ture, absorbers are called “perfect” if they absorb all the
power incident on their surface, at least at a specific fre-
quency and angle of incidence. Motivated by the variety of
applications, many studies have been conducted on perfect
absorbers, in particular, exploiting metagratings, metasur-
faces, or metamaterials [6–11]. Reference [10] provides a
tutorial overview on the phenomenon of perfect absorp-
tion in infinite optically thin planar layers and classifies
perfect absorbers according to their operational principles.
For an infinite periodic structure illuminated by a propa-
gating plane wave, the maximum absorptance is obviously
100%. However, the absorptance of finite-sized bodies can
sometimes exceed 100%. This typically occurs when these
absorbers work at the conjugate-impedance-matching con-
dition to maximize the received power [12,13]. Higher
than 100% absorptance means that the absorber can cap-
ture and absorb more power than is incident on its geo-
metric cross section. This means that the ideal black body
that was introduced in 1860 by Kirchhoff [14] is not the
ultimate absorber, although it absorbs all the incident rays
falling on its surface. In particular, small resonant particles,
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for example, subwavelength-sized metallic particles, are
able to absorb significantly more than a black body of the
same size (see, e.g., Refs. [12,15–18]). Essentially, these
resonant particles have the capability to gather the power
of the incident wave from an area significantly exceeding
the physical cross section of the particles. Similarly, in the
antenna theory, the upper limit of the effective area of a
resonant dipole is (3/8π)λ2, where λ is the correspond-
ing working wavelength [16]. This value is independent
of the dipole size, which means that no upper limit of
the absorption cross section exists if multipolar resonant
modes of the object are permitted (see, e.g., Refs. [18–21]).
Most superabsorption research focuses on small particles
rather than on electrically large bodies. While theoretically
there is no limit on how large the absorption cross section
can be, and some approaches to physical realizations of
large superabsorbing bodies have been proposed (see, e.g.,
Refs. [13,18]), these approaches would require the filling
of bulk bodies by complex media with highly resonant and
extremely-low-loss microstructures.

Conventional realizations of thin resonant absorbers are
based on metasurfaces, most commonly in the form of
multielement resonant arrays [10]. It is believed that such
electrically large but finite-sized absorbing metasurfaces
and multielement resonant arrays perform similarly to cor-
responding infinite-sized structures in terms of absorption
efficiency, absorbing a maximum of 100% of the power
incident on their surfaces. Truncated (finite-sized) periodic
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structures, as a specific type of multielement resonant
array, are often regarded as practically the simplest and
most-effective realizations of thin resonant absorbers.
Researchers have rarely explored the difference between
infinite-sized periodic absorbers and finite-sized, truncated
ones. Moreover, to the best of our knowledge, it is not
known if it is possible to increase the effective area above
100% of the geometric size and what is required for
the realization of such extreme properties of absorbing
metasurfaces.

In the work reported in Ref. [22], we realized superdi-
rective reflectors by locally optimizing the current distri-
bution, as the densely arranged strip array supports surface
modes. Consequently, this arrangement gives rise to an
increased effective cross section relative to the physical
size. Motivated by that work, here we examine a simple,
analytically solvable example of a two-dimensional array
of impedance strips and present two distinctive absorbers
based on finite-length arrays. One scenario concerns the
truncated periodic array where all the strips are loaded
with identical impedance loads, while the other focuses
on arrays with globally optimized load impedances. Both
these absorbers exhibit absorptance that exceeds 100%
for a certain angle of plane-wave incidence. Our results
show that optimization of load impedances globally can
enable absorption of more incident power as compared
with the case for conventional finite-width regular arrays.
This research reveals that it is possible for absorber designs
to go beyond “perfect absorption” in electrically thin
metasurfaces.

II. PRINCIPLE AND METHOD

We consider geometrically periodic strip arrays placed
over a perfectly electrically conducting (PEC) ground
plane at distance h. The strips are periodically loaded with
impedance loads with the impedances per unit length equal
to ZL (�/m). The distance between the insertions l is elec-
trically small, so the loaded strips can be considered as
effectively uniform-impedance strips.

As the reference case and the initial design step, we
first consider an infinite periodic array, where all the load
impedances ZL are identical. The array is illuminated by
a TE-polarized plane wave Einc = E0e−jk0 sin θiy−jk0 cos θizx̂,
where k0 = ω0

√
ε0μ0 is the wave number in free

space; see the illustrations in Figs. 1(a) and 1(b). The
reflected wave from the ground plane is given by Eref =
−E0e−jk0 sin θiy+jk0 cos θizx̂. This is one of the simplest exam-
ples of thin metasurface absorbers (see Ref. [10]). For
such an infinite-sized periodic structure, transmission-line
theory can be conveniently used [23], and the equivalent
circuit is depicted in Fig. 1(c).

For simplicity of analysis, we assume that the array
is in free space. According to Ref. [24], the input
impedance of the grounded substrate is given by
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FIG. 1. (a) Front view of an infinite periodic strip array placed
over an infinite ground plane and illuminated by a plane wave
traveling in the direction of θi. The distance between the two
adjacent strips is d. (b) Top view of the array. The strips are
loaded with bulk impedances inserted periodically with period l.
The width of the strips is w. Both l and w are much smaller than
the wavelength in free space. The periodically loaded strips can
be modeled as homogeneous-impedance strips with impedances
per unit length ZL. (c) Equivalent circuit of the system.

ZGS = j Z̃0 tan (k0h cos θi), where Z̃0 = η0/cos θi repre-
sents the characteristic impedance for TE-polarized plane
waves for incident angle θi, where η0 is the free-space
impedance. The input impedance of the whole structure
is the parallel connection of ZGS and the grid impedance
Zg of the strip array; that is, Zin = ZGS ‖ Zg. The equiva-
lent grid impedance of a densely periodic strip array reads
[23, Eq. 4.38]

Zg = ZLd + j
η0

2
αABC, (1)

where the grid parameter αABC = k0d/π log (d/(2πreff))

(see Ref. [23, Eq. 4.32]), and the effective radius reff =
w/4. To realize perfect absorption, the input impedance of
the infinite structure should match the impedance of free
space for the incident wave. The required load impedance
for the designed incident angle θi is determined by

ZL = 1
d

(
ZGSZ̃0

ZGS − Z̃0
− j

η0

2
αABC

)
. (2)

For an infinite strip array, the induced currents flowing on
the strips are calculated by

Iinf = 2 (Eref − REinc)

Z̃0
(
1 − e−jk02h cos θi

)d, (3)

where the reflection coefficient R for a TE-polarized plane
wave reads R = (

Zin − Z̃0
) (

Zin + Z̃0
)−1

. The induced cur-
rents at infinite-strip-array absorbers, given by Eq. (3),
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FIG. 2. (a) Finite-width strip array above an infinite PEC
ground plane under illumination by a TE-polarized plane wave at
θi. (b) Top view of the structure. The first strip is at the position
y = 0, z = −h.

are used later for comparison with those of finite-sized
absorbers.

In practice, designed periodic arrays need to be trun-
cated to finite-sized structures. The corresponding finite-
sized strip array is shown in Figs. 2(a) and 2(b). In finite
arrays, it makes sense to use different load impedances for
different strips as a means to optimize absorption. The trun-
cated periodic array is a special case when all the loads are
still the same, ZL,n = ZL with n = 0, 1, . . . , N − 1. When
such a finite-sized structure is excited by a plane wave, the
induced current Im that flows on the surface of the m th
strip dissipates Joule heat in lossy loads. We define the
absorptance A of the finite-sized structure as

A = Pdis

Pinc
, (4)

where the dissipated power is given by

Pdis = 1
2

N−1∑
m=0

|Im|2Re{ZL,m} (5)

and the incident power on the array’s geometric area
(per unit length along the x axis) is given by Pinc =
E2

0Nd/(2Z̃0). This definition is used to evaluate whether
the designed absorber has a superdirective property. If
the absorptance is greater than 100%, this means that
the designed absorber is a superdirective absorber, as it
absorbs more power than is falling on its surface.

For finite-sized absorbing arrays, the total external elec-
tric field Eext

x (y, z) = −j 2E0 sin(k0 cos θiz)e−jk0 sin θiy at the
coordinate (y, z) is the superposition of the incident wave
and its reflection from the ground plane. For a given
set of load impedances �ZL = (ZL,0, ZL,1, . . . , ZL,N−1)

T, the
induced current can be easily obtained by a simple matrix

operation according to [22, Eq. (5)]

�I = Z
−1 · �U, (6)

where the column vector of the induced currents is repre-
sented by �I = [I0, I1, . . . , IN−1]T, while the total-external-
voltage vector is represented by �U = [

Eext
x (y0, −h), Eext

x

(y1, −h), . . . , Eext
x (yN−1, −h)

]T. Z = Zs + Zm + ZL is the
impedance matrix, which is composed of the self-imped-
ance matrix (a diagonal matrix) Zs = diag (Z0, Z1, . . . ,
Zn, . . . , ZN−1), the load-impedance matrix ZL = diag(�ZL),
and the mutual-impedance matrix Zm. In the self-
impedance matrix, Zn = k0η/4

[
H (2)

0 (k0reff) − H (2)

0 (2k0h)
]

is the self-impedance of strip n, and for the mutual-
impedance matrix, Znm = k0η/4

[
H (2)

0 (k0 |ym − yn|) −
H (2)

0

(
k0

√
(ym − yn)2 + 4h2

)]
is the mutual impedance

between strips m and n. With knowledge of the induced
currents, the absorptance and dissipated power can be
found from Eqs. (4) and (5), respectively. In this work, the
example operation frequency is chosen as f0 = 10 GHz.
The distance between the adjacent strips satisfies d =
λ0/8, where λ0 is the wavelength in free space, and the
distance h from the ground plane is set as λ0/6. The effec-
tive radius reff is equal to λ0/100. The time dependence is
assumed to follow ej ωt. For the main example of finite-
sized absorbers, the array size is set to 13.5λ0, which
corresponds to N = 108.

III. NUMERICAL RESULTS

For an infinite array, the required load impedance
for perfect absorption, corresponding to various designed
incident angles, is calculated by Eq. (2). For two spe-
cific examples, one for normal incidence and the other
for oblique incidence with θi = 80◦, the required load
impedances ZL for perfect absorption in the designed
direction are (7.5347 × 104 − j 5.2139 × 104) �/m and
(1.8921 × 104 − j 1.1154 × 105) �/m, respectively.

The absorptance for such an infinite-sized strip array
can be calculated analytically as 1 − |R|2, since there is
no transmission. Here, results are obtained with COMSOL
MULTIPHYSICS. The absorptance as a function of the inci-
dent angle is depicted as a dashed black curve in Figs. 3(a)
and 3(b) for the designed two specific examples. It can be
observed that the maximum absorptance is 100%, which
occurs in the designed directions of 0◦ and 80◦, respec-
tively. Obviously, the unity absorptance is the maximum
attainable value for any infinite passive periodic structure
illuminated by a plane wave.

The induced current flowing on the surface of the
infinite-sized strip array is calculated by Eq. (3). For
normal incidence, Iinf = j 1.1494 × 10−5 A, both the
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FIG. 3. Absorptance as a function of the incident angle θi for
a designed incident angle of (a) 0◦ and (b) 80◦. For finite-sized
absorbers, the solid red curve indicates the reference case (Ref.;
all the load impedances are the same as for the designed periodic
infinite array), while the dashed blue curve shows the optimized
case (Opt.; the optimized loads). The dotted black curve shows
the absorptance of the designed infinite absorber (Inf.).

amplitude and the phase of the induced current are con-
stant numbers. For oblique incidence at θi = 80◦, Iinf =
j 9.5579 × 10−6 A, the amplitude is a constant number,
while the phase varies linearly, as e−jk0 sin θiy . The induced-
current distribution is depicted in Figs. 4(a) and 4(b)
for θi = 0◦ and θi = 80◦, respectively. In the perfect-
absorption regime, the specularly reflected wave from the
PEC ground plane is eliminated by the field generated
by the infinite array of induced currents [10], while the
power carried by the incident wave is fully dissipated by
the lossy-load impedances.

In practical designs, the infinite periodic array is trun-
cated into a finite-sized strip array where all elements
are loaded with identical impedance loads, calculated
from the theory of infinite arrays. The corresponding load
impedance is obtained from Eq. (2). For such a truncated
finite-sized strip array, the absorptance defined in Eq. (4) as
a function of the incident angle θi is depicted in Figs. 3(a)
and 3(b) for the arrays designed to function as perfect
absorbers for incident angles θi = 0◦ and θi = 80◦, respec-
tively. We observe that for the designed incident angle, the
absorptance does not have the value of unity. When the
incident angle equals 0◦ and 80◦, the absorptance calcu-
lated by Eq. (4) for the reference arrays is 101.4% and
113.6%, respectively. With the increase of the incident
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FIG. 4. Induced-current distribution for two designed incident
angles θi of (a) 0◦ and (b) 80◦. The dotted black curve cor-
responds to infinite absorbers (Inf.). For finite-sized absorbers,
the solid red curve and the solid blue curve represent the refer-
ence case (Inf.; connected with identical loads) and the optimized
case (Opt.; connected with optimized loads), respectively. The
dot-dashed purple curve in (b) represents the induced-current
distribution when the incident plane wave is traveling from 77◦.

angle, the absorptance at the designed incident angle shows
an increasing trend.

For a better understanding of the superabsorption mech-
anism, the induced-current distributions are depicted in
Figs. 4(a) and 4(b) for θi = 0◦ and θi = 80◦, respectively.
Compared with the infinite array, in the finite-sized array
the induced currents are different, especially at the edges
of the strip array. We first compare the performance of
infinite and truncated periodic arrays. For the normal-
incidence case, the results in Fig. 3 show that even the
reference finite-sized absorber exhibits a slightly superdi-
rective (above-100%) absorptance. This is a counterintu-
itive result because in this case all the array elements are
the same as in the corresponding infinite array. This result
can be explained by the particularities of the current dis-
tribution over the absorber area. Over the central area of
the array, the amplitude and phase vary slowly and have
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nearly the same values as in the case of the corresponding
infinite periodic array. However, close to the array edges,
the induced-current amplitude is higher; see the insets in
Fig. 4(a). Higher current amplitude corresponds to higher
absorption in the elements that are close to the edges,
resulting in a slight increase of the total absorbed power.
Distribution of induced currents in dense wire arrays was
studied earlier for semi-infinite arrays of ideally conduct-
ing wires in free space [25], where a similar increase of the
current amplitude at the edge was also noticed. However,
for normal incidence, this effect of increased absorption in
regular arrays is rather small and in practice can possibly
be ignored.

As is seen from Fig. 4(b), absorbing arrays designed for
oblique angles show much-more-pronounced superdirec-
tive absorption. For nearly grazing incidence at θi = 80◦,
the amplitude of the induced currents at a finite-sized
array shows an increasing trend along the +y direction.
The induced currents on most of the strips are greater
than induced currents observed for the infinite array, par-
ticularly toward the ends of the array. The maximum
absorptance is 121.6%, which occurs in the direction cor-
responding to θi = 77◦. Note that the load impedance at
the corresponding infinite array was found for θi = 80◦.
The induced currents in this case, shown by the dot-dashed
purple curve in Fig. 4(b), are larger than the currents
induced by the wave incident at θi = 80◦, which means
more dissipated power. The maximum-absorptance direc-
tion deviation from the designed direction is caused by the
influence of the element pattern. Although the array factor
always aligns accurately with the desired direction, there
is a slight shift in the product of the array factor and the
element pattern. This shift is toward smaller angles, due
to the increased effective cross section (cos θ is larger). As
the size of the array increases, the array factor becomes
more directive [22]. This can also be observed and vali-
dated in Fig. 5, which shows the absorptance as a function
of incident angle for absorbers of different sizes. With the
increasing length of the strip array, the absorptance of reg-
ular arrays decreases. The absorptance will ultimately tend
to unity, which is the case of conventional perfect absorp-
tion for the infinite structures. This result confirms that the
main mechanism of superabsorption in finite-sized regular
arrays is due to edge effects.

Motivated by the results in Ref. [22] that showed a pos-
sibility to realize superdirective anomalous reflectors with
use of subwavelength arrays with optimized loads, we next
use optimization techniques to design absorbing arrays. As
a reference for comparison, we use the results discussed
above for finite-sized absorbers formed by truncation of
conventional uniform perfect absorbers.

Here, a genetic algorithm, a global optimization method,
is used to find the optimal load impedances. The objec-
tive function is defined as O = min{−Pdis}; that is, the
goal is to dissipate as much incident power as possible.
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FIG. 5. Absorptance as a function of incident angle θi for
different-sized strip arrays, where the designed angle of incidence
is 80◦.

The absorptance of the optimized arrays as a function
of the incident angle is shown by dashed blue curves
in Figs. 3(a) and 3(b) for θi = 0◦ and θi = 80◦, respec-
tively. The absorptance for normal incidence is 104.2%,
while it reaches a value as high as 146.6% for the large-
incident-angle example. Comparison with the reference
case of truncated regular arrays and the optimized array
shows that after optimization the absorptance can be sig-
nificantly increased, especially when the incident wave
has an extreme incident angle. The current distribution
in the optimized case becomes highly irregular (see the
solid blue curves and dotted black curves in Fig. 4), cor-
responding to a high level of excited evanescent fields in
the array vicinity. Also in this case we observe a tendency
of higher induced currents close to the array edges. How-
ever, increased absorption at normal incidence leads to
weaker absorption at other angles. The load impedances
required to realize the required induced currents of the
reference case and the optimized case are presented in
Figs. 6(a) and 6(b) for incident angles of 0◦ and 80◦,
respectively.

COMSOL MULTIPHYSICS is used to calculate the scattered
electric field and illustrate the superabsorption effect when
the incident angle is 80◦. The configuration for COMSOL
MULTIPHYSICS is depicted in Fig. 7(a). The real part of
the scattered electric field is depicted in Figs. 7(b) and
7(c). Figure 7(b) corresponds to the reference case of a
truncated uniform strip array [see the blue lines in Fig.
6(b)]. Compared with Fig. 7(b), a wider shadow region
can be observed in Fig. 7(c), where the strips are loaded
with the optimized loads [see the red curves in Fig. 6(b)].
A wider shadow means that more power has been dis-
sipated in the lossy loads; that is, the absorptance and
the effective absorption width are greater. On the surface
of the optimized superdirective absorber we see strong
surface-wave fields, which confirms that the main mech-
anism of such superabsorption is the optimized excitation
of evanescent waves in the vicinity of the array. Although
the geometric-cross-section area is small at oblique angles,
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green line shows the symmetry axis of the strip array.

the excited surface waves carry power over the whole area
of the array, where it is dissipated in the optimized resistive
loads of the array elements.

Superdirective arrays usually have a narrow frequency
bandwidth due to fast variations of the currents and asso-
ciated high-amplitude reactive fields. Because also in the
optimized absorbers we observe fast variations of the
induced currents, we next investigate the frequency band-
width of absorption, comparing the frequency response of
the optimized and reference absorbers of different sizes.
To find the frequency response of the designed structures,
one needs to define the frequency dependence of the load
impedances as passive bulk loads. We assume that the
load resistances do not depend on the operation frequency,
Re{ZL,n} = Rn, while the reactive (capacitive) parts of the
load impedances Im{ZL,n} depend on the operation fre-
quency as that of capacitors: Im{ZL,n} = (−2π fCn)

−1. The
load capacitances Cn are found by our setting them to the
values that correspond to the required reactances Im{ZL,n}
at the design frequency f0. Then we model the loads in
COMSOL MULTIPHYSICS as capacitors and resistors, so that
the frequency response of the structure can be calculated.
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FIG. 7. (a) Schematic diagram for the COMSOL MULTIPHYSICS
simulation. The simulation domain is surrounded by a perfectly
matched layer (PML). The array is positioned in the center of the
simulation domain. The incident angle of the plane wave is 80◦.
(b) Real part of the scattered electric field (with the unit of volt
per meter) distribution for the reference uniform array. Numeri-
cal results (upper panel) and analytical results (lower panel). (c)
Same as (b) for an array with the optimized loads. Numerical
results (upper panel) and analytical results (lower panel).

The calculated absorptance as a function of the normal-
ized frequency for different-sized absorbers is depicted in
Fig. 8. As expected, we see that the optimized superdi-
rective absorbers have a smaller frequency band, but the
difference with the reference uniform absorbers is not very
large. It is interesting to observe that the frequency of the
maximum absorptance of the reference structures is shifted
from the design frequency. This is because the effective
capacitance of the whole structure decreases when the size
of the top reactive layer is reduced. The decrease of effec-
tive capacitance results in an increase of the resonant fre-
quency ωres = 1/

√
LC. As the absorber size increases, this

frequency shift becomes smaller, as does the maximum
attainable value of absorptance. Ultimately, the response
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FIG. 8. Absorptance as a function of the normalized frequency
for arrays of different sizes (indicated in the legend), when the
incident angle is 80◦. The results for the reference uniform
absorbers (Ref.) are represented in red, while the curves for the
optimized absorbers (Opt.) are shown in blue.

of the reference absorbers tends to the theoretical results
for infinite absorbers illuminated by plane waves, with
the maximum of absorptance equal to unity occurring at
the design frequency f0, which is defined by the effective
capacitance and inductance per unit length [10] instead of
the parameters of whole finite-size arrays, L and C.

As stressed above, the superabsorption phenomenon is
possible only in arrays with a subwavelength period. For
completeness, we discuss the performance of arrays with
larger periods. We consider the case when the distance
between the strips and the ground plane is smaller than
half the wavelength, i.e., h < λ0/2. The overall array size
is kept as 13.5λ0, and in the examples considered the dis-
tance h from the ground plane is λ0/6. We change the
geometric period d by changing the total number of strips
N . Three geometric periods, i.e., d = 0.5λ0, d = 0.643λ0,
and d = 1.039λ0, are taken as examples, which correspond
to N = 27, N = 21, and N = 13, respectively. The absorp-
tance after optimization as a function of the incident angle
is displayed in Fig. 9. For geometric period equal to 0.5λ0,
in the corresponding infinite array only a specularly prop-
agating mode exists for arbitrary incident angles. Perfect
absorption can always be achieved, as can be seen in Fig. 9
with the solid blue and red curves, which correspond to the
expected angles 0◦ and 75◦, respectively. However, higher-
order propagating modes may occur when the period is
larger than λ0/2, especially for extreme incident angles.
If other propagating modes exist apart from the mode cor-
respond to specular reflection, perfect absorption cannot be
realized by the strip array, let alone superdirective absorp-
tion. For geometric period equal 0.643λ0, higher-order
propagating modes occur once the incident angle is larger
than 33.7◦. We consider expected incident angles equal to
0◦ and 40◦. For normal incidence, perfect absorption can
be seen in Fig. 9 with the dotted blue curve. However,
when the expected incident angle equals 40◦, a significant
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FIG. 9. Optimized results for absorptance as a function of
incident angle for different periods and expected incident angles.

decrease in absorptance occurs due to the existence of
higher-order propagating modes, as is seen in Fig. 9 with
the dotted red curve. On further increase of the geometric
period to 1.039λ0, higher-order propagating modes always
exist for any incident angle, even for normal incidence, and
we can never reach perfect absorption, as is seen in Fig. 9
with the dashed blue curve.

When the thickness is greater than half the wavelength,
special cases may exist. The scattered propagating modes
may be eliminated by the structure due to the destruc-
tive interference for some special incident angles. If the
diffraction angle is θ , h should satisfy

2k0h cos θ = 2πq, (7)

where q is an integer. Hence, h = qπ/(k0 cos θ) =
qλ0/(2 cos θ). This phenomenon happens only when the
thickness is no less than half a wavelength. In practice,
absorbers usually have subwavelength thickness. How-
ever, to illustrate this special case, we consider a simple
example. The geometric period d of the strip array is
approximately 1.342λ, and h = 3λ0/4. For normal inci-
dence, the higher-order propagating modes occur at θ ≈
±48.2◦, and the corresponding q = 1. The absorptance as
a function of incident angle is depicted in Fig. 10, where
high absorption at 0◦ can be observed. When the total num-
ber of strips N is ten, the array size is about 13.42λ0, which
is close to the array size considered above, i.e., 13.5λ0.
The absorptance at normal incidence is 87.1%, as is seen
in Fig. 10 with the dashed green curve. By our increasing
the number of strips, i.e., the array size, the absorptance is
further increased to 93.6% and 97.6%, which correspond
to N = 20 and N = 50, respectively (see the solid red
curve and the dashed blue curve in Fig. 10). Ultimately,
it tends to 100%, which corresponds to an infinite periodic
structure. It is interesting to note there is a dip at about
±48.2◦, where the absorptance is zero. The external field
is the superposition of the incident wave and the specular
reflection from the ground plane, which gives a null at the
surface of the strip array when the incident wave comes
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FIG. 10. Absorptance as a function of incident angle for dif-
ferent array sizes.

from ±48.2◦. Hence, the strip array cannot be excited, and
it is not “visible” to the incident wave. The incident wave
passes through the strip array without any reflection and
then is fully specularly reflected by the ground plane.

As expected, we see that although perfect absorption
(100% efficiency) can be achieved for a specific incident
angle when the period is equal to λ0/2, superabsorption is
not possible in this case.

IV. CONCLUSION

We have shown that simple finite-sized geometrically
periodic arrays can absorb more power than is incident
on their surfaces and discussed the physical mechanism of
this effect. Superabsorption is achieved by optimization of
the induced surface waves, whose strong currents increase
absorption in the array elements. The fields of these waves
have fast variations over the array plane. Thus, the key
requirement for achieving superdirective absorption is the
use of arrays with a subwavelength period, to allow proper
control of surface modes. Comparing the performance
of conventional uniform arrays with the performance of
the optimized arrays, we have found that especially for
arrays designed to absorb waves at near-grazing angles, the
absorptance can be significantly increased over the con-
ventional limit of 100%. For the case of optimized arrays,
both the induced currents and the load impedances change
rapidly over the surface, leading to higher dissipated
power. Numerical simulations of scattered fields show a
shadow that is wider than the array cross section, as well as
the fields of the excited surface waves which increase the
dissipation process over the whole array surface. Investi-
gation of the effects of the geometric period on absorption
has revealed that the presence of higher-order propagat-
ing modes deteriorates the absorber performance. Once
higher-order propagating modes occur, perfect absorption
cannot be achieved with arrays of weakly directive ele-
ments (like the thin strips considered ) if there is only
one strip per period, except by precise tuning of the geo-
metric period and the thickness of the substrate of the air

layer for specific incident angles. Although here we con-
sidered a simple, analytically solvable example of thin
impedance-loaded strips, similar effects can be possibly
achieved in arrays of arbitrary type of electrically small
antennas loaded with bulk-impedance loads. Importantly,
the structure can, in principle, be reconfigured for superab-
sorption at any angle by one changing the impedances of
the loads. We hope that this study not only sheds light on
the intriguing phenomenon of superunity absorptance but
also presents a simple possibility for dynamically tuning
absorption and enhancing the performance of absorbers in
real-world applications.
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