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Abstract

Cephalometric analysis is critically important and common procedure prior to orthodontic

treatment and orthognathic surgery. Recently, deep learning approaches have been pro-

posed for automatic 3D cephalometric analysis based on landmarking from CBCT scans.

However, these approaches have relied on uniform datasets from a single center or imaging

device but without considering patient ethnicity. In addition, previous works have considered

a limited number of clinically relevant cephalometric landmarks and the approaches were

computationally infeasible, both impairing integration into clinical workflow. Here our aim is

to analyze the clinical applicability of a light-weight deep learning neural network for fast

localization of 46 clinically significant cephalometric landmarks with multi-center, multi-eth-

nic, and multi-device data consisting of 309 CBCT scans from Finnish and Thai patients.

The localization performance of our approach resulted in the mean distance of 1.99 ± 1.55

mm for the Finnish cohort and 1.96 ± 1.25 mm for the Thai cohort. This performance turned

out to be clinically significant i.e.,� 2 mm with 61.7% and 64.3% of the landmarks with Finn-

ish and Thai cohorts, respectively. Furthermore, the estimated landmarks were used to

measure cephalometric characteristics successfully i.e., with� 2 mm or� 2˚ error, on

85.9% of the Finnish and 74.4% of the Thai cases. Between the two patient cohorts, 33 of

the landmarks and all cephalometric characteristics had no statistically significant difference

(p < 0.05) measured by the Mann-Whitney U test with Benjamini–Hochberg correction.

Moreover, our method is found to be computationally light, i.e., providing the predictions

with the mean duration of 0.77 s and 2.27 s with single machine GPU and CPU computing,

respectively. Our findings advocate for the inclusion of this method into clinical settings

based on its technical feasibility and robustness across varied clinical datasets.
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Introduction

Cephalometric analysis plays a critical role in the accurate treatment planning of malocclu-

sions [1] as well as in guiding orthodontic treatment strategies and possible followup orthog-

nathic surgeries [2, 3]. By quantifying the severity of skeletal discrepancies and identifying

specific anatomical features that contribute to malocclusions, cephalometric analysis helps

orthodontists and oral surgeons to tailor personalized treatment plans. This analysis provides

linear and angular measurements of cephalometric landmarks and their relative positions, typ-

ically obtained from standard 2D cephalometric radiographs [4]. In cases where malocclusion

or misalignment is the primary problem, orthodontic treatment alone may be sufficient with-

out the need for surgical intervention [5, 6]. In young patients, it is important to identify the

type of mandibular retrusion and to stimulate mandibular growth during puberty [7] in order

to prevent the need for surgery later in life. Early intervention with functional orthodontic

appliances has been shown to be successful in treating a cohort of patients with involvement of

temporomandibular joint (TMJ) affected by juvenile idiopathic arthritis [8]. It also suggests

that early intervention is recommended to prevent unfavorable facial development, including

severe mandibular retrognathia, micrognathia, TMJ dysfunction, and severe periodontal loss

[8]. In the case of oral and maxillofacial deformities of individuals who have reached skeletal

maturity [9] and have severe skeletal discrepancies or structural abnormalities as well as func-

tional problems with the masticatory system, orthognathic surgery is often performed to cor-

rect the function and appearance of the facial skeleton [10]. This complex surgery is always

preceded by orthognathic surgical planning and is often accompanied by pre- and post-opera-

tive orthodontic treatment, all of which require cephalometric analysis. The decision to per-

form orthognathic surgery is often driven by a variety of clinical considerations [11].

Understanding the clinical indications and rationale for orthognathic surgery is essential to

optimise patient outcomes and ensure comprehensive multidisciplinary care.

Recently, the use of 3D cephalometric analysis and 3D computer-assisted surgical (CAS)

planning in orthognathic surgery has been increased, both providing an enhanced efficacy and

accuracy in osteotomy reporting compared to the conventional 2D-based planning methods.

CAS orthognathic planning uses the fusion of 3D CT or CBCT images and dental arch images

in addition to the 2D cephalometric measurements. The dental arch images can be obtained

from plaster cast or intraoral scans for direct digital optical impressions of the dental arch.

However, such a fusion of multimodal information requires accurate and reproducible refer-

ence points to reduce surgical inaccuracies [12, 13]. In addition, the manual landmarking is

laborious, time-consuming, and affected by clinically significant interobserver variability [14].

Furthermore, 3D cephalometry has been shown to improve treatment, diagnosis, and planning

in orthognathic surgery patients with asymmetries using the extended McNamara analysis and

Steiner’s Ricketts analysis [14, 15]. In patients with asymmetry, the advantage of 3D cephalom-

etry over the traditional 2D method is that the left and right gonial angle sides of the CBCT

image can be marked separately. Moreover, the manual marking of the landmarks is laborious,

time-consuming, and affected by clinically significant interobserver variability [16].

Recently, multiple deep learning -based approaches have been introduced for automatic

localization of cephalometric landmarks with clinically significant accuracy [17]. Among the

deep learning -based cephalometric landmarking studies [18, 19], the early works focused on

localizing the landmarks from 2D cephalograms [20–24] and the more recent works have also

examined CT imaging for 3D cephalometric landmarking [16, 25–29]. The CBCT modality

has also been gaining popularity for cephalometric landmark detection with deep learning [17,

30–36]. It has become widely used in recent years due to the lower radiation dose in compari-

son to CT [37].
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The number of publications in the literature for machine learning based 3D cephalometric

analysis using CT or CBCT modality is still quite limited and they mostly utilize small, non-

clinical, or homogeneous datasets as indicated in Serafin et al. [38] and references therein. Spe-

cifically, some mainly focused on algorithmic development with homogeneous publicly avail-

able data, such as the Public Domain Database for Computational Anatomy [35, 36]. Others

have used clinical data with heterogeneities such as jaw deformities but have not provided

information of the CBCT scanners and their vendors, as well as limited to no information

about the imaging parameters used [31–34, 39–41]. There has been one study with both a het-

erogeneous dataset and information about the scanner, but the data originated from a single

device and from one institution [17]. In addition, previous works have had at most 61 CBCT

scans for testing the algorithms [17]. As these studies utilize homogeneous and small datasets

in their machine learning analysis, they may result in a biased estimation for the generalizabil-

ity performance [42]. To demonstrate the generalizability of the deep learning -based auto-

matic localization of cephalometric landmarks, it is of paramount importance to evaluate the

method with large multi-vendor and multi-center datasets including different ethnic and geo-

graphical variations [43–45]. Furthermore, from the healthcare usability point of view, the

prior work has either considered a limited number of clinically relevant landmarks [31, 35] or

the deep learning approaches require considerable computation for inference [17, 31].

The aim of our study is to evaluate the 3D cephalometric landmarking performance of a

deep learning system in a novel and clinically relevant setting. This is achieved by using so far

the largest dataset consisting of multi-center, multi-provider, and multi-ethnic heterogeneous

CBCT scans, which were annotated for numerous clinically important cephalometric land-

marks including novel landmark groups. Furthermore, the proposed deep learning system can

be integrated into clinical workflow due to low computing requirements, which further high-

lights the clinical relevance of our study.

Materials and methods

In this section we describe the CBCT dataset, deep learning model, and evaluation metrics

used in the study.

Patient data

The CBCT imaging data was retrospectively collected from the Cranio and Dentomaxillofacial

Radiological Department of the University Hospital of Tampere (TAUH), Finland and Depart-

ment of Oral Radiology, Faculty of Dentistry, Chiang Mai University (CMU), Thailand. The

datasets are not publicly available and restriction apply to their use. For the Finnish dataset the

restrictions are imposed by the Wellbeing Services County of Pirkanmaa, Tampere University

Hospital, Research services, P.O.Box 2000, 33521 Tampere, Finland (requests for the data

access can be made to clinicaltrials@pirha.fi). For the Thai data the restrictions are imposed by

the Chiang Mai University Research Ethic Committee, 239 Huay Kaew Road, Suthep Sub-dis-

trict, Mueang District, Chiang Mai Province 50200 (requests for the data access can be made

to cmurec.cmu@gmail.com). Both sets of data consisted of full facial scans from normal clini-

cal workflows of orthognathic or facial surgery patients, including patients with normal anat-

omy as well as with anatomical deformities. In total, 309 CBCT scans have been collected with

199 from TAUH from two devices and 110 from CMU from one device, respectively. The dis-

tribution of scanning devices is described in Table 1.

The set of cephalometric landmarks was selected to enable the largest number of cephalo-

metric analysis methods with a reasonable number of landmarks that cover the classic 2D

cephalometric landmarks and marking points for dental arch image fusion. In addition, we
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emphasized selecting unambiguous and stable landmarks that do not change due to operations

on the dentition, such as Foramen Infraorbitale, Palatinum Major, Incisivum, and Foramen

Mentale. The dataset was annotated for 46 cephalometric landmarks. There are 16 bilaterally

symmetric landmarks: Condylion (Co), Foramen Infraorbitale (FInf), Foramen Mandibulae

(FMan), Foramen Mentale (FMen), Foramen Palatinum major (FPal), Gonion (Go), Jugale

(J), Lower Incisor Apex (LIAL), Lower Incisor Edge (LIE), Lower Molar (LMol), Orbitale

(Or), Crestal point between molars, upper left (PcmU), Porion (Po), Upper Incisor Apex

(UIA), Upper Incisor Edge (UIE), and Upper Molar (UMol). In addition, there are 14 midline

landmarks: Subspinale (A), Anterior Nasal Spine (ANS), Supramentale (B), Basion (Ba), Cen-

ter of lower incisors (CLI), Center of upper incisors (CUI), Foramen Incisivum (FI), Gnathion

(Gn), Menton (Me), Nasion (N), Posterior Nasal Spine (PNS), Pogonion (Pog), Sella Turcica

(S), and Spina Mentalis (SM). The landmarks are visualized in Fig 1.

For the cephalometric analysis, we derived 16 cephalometric characteristic measures from

the landmarks. Of these 12 were defined in the extended McNamara analysis [14] and four

from traditional cephalometric analysis. The selected measures that can be grouped to three

types. The first group includes five 3D point-to-point distance measures i.e., the left and right

effective mandibular lengths, left and right effective midfacial length, and anterior facial height.

Table 1. Distribution of scans used to develop and evaluate the method.

Cohort Manufacturer Scanner Voxel spacing Scans

Thai NSTDA DentiScan 0.25 6 (2%)

0.4 104 (34%)

Finnish Planmeca Viso G7 0.15 2 (1%)

0.2 102 (33%)

0.3 48 (16%)

0.45 2 (1%)

Soredex Scanora 3Dx 0.2 40 (13%)

0.3 5 (2%)

https://doi.org/10.1371/journal.pone.0305947.t001

Fig 1. Visualization of the annotated landmarks overlaid on a maximum intensity projection of a CBCT. (a) Left side landmarks from the laterally symmetric pairs.

(b) Midline landmarks.

https://doi.org/10.1371/journal.pone.0305947.g001
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The second group included six components of vector measures i.e., Nasion perpendicular to

point A, Pogonion to Nasion perpendicular, right and left Upper Incisor point A verticals, as

well as left and right Lower Incisor to point A pogonion line. The third group included five

measurements of plane-to-plane angles i.e., Sella Turcica-Nasion-Subspinale (SNA) angle and

Sella Turcica-Nasion-Supramentale (SNB) angle, and the Mandibular Plane angle which is

measured between the mandibular plane (defined by Menton, and the Gonions) and Frankfort

horizontal plane which is defined by the best orthogonal least squares fit between the visible

Porions and Orbitales. In addition, the plane-to-plane angle between Frankfort horizontal and

true horizontal planes are evaluated within the third group due to its importance in the cepha-

lometric analysis.

The Finnish cohort was annotated by a specialist in dental and maxillofacial radiology, a

resident in orthodontics with several years of experience in surgical planning using cephalo-

metric landmarks and a resident in dental and maxillofacial radiology with several years of

experience in 2D and 3D cephalometry using Romexis 4.6.2 software (Planmeca Oy, Helsinki,

Finland). The Thai cohort was annotated by two specialists in dental and maxillofacial radiol-

ogy with several years of experience in 2D cephalometry using OnDemand 3D software

(Cybermed Co., Seoul, Korea).

In order to develop and evaluate the model, the dataset was split to training, validation, and

test sets with 178 (58%), 28 (9%), and 103 (33%) scans with same number of patients, respec-

tively. The training dataset included in total 8119 landmarks, validation dataset 1276 land-

marks, and test dataset 4683 landmarks. The model parameters were optimized based on the

training set, and the model hyperparameters, such as learning rate, were selected based on the

validation set performance. Finally, our main results were calculated using the test set. The test

set included 81 (79%) Finnish patient scans with 77 high resolution, one standard resolution,

and 3 ultra-low dosage scans as well as 22 (21%) Thai patient all with standard resolution dos-

age. Within the test set, the Finnish cohort scans included 72 Planmeca Viso G7 scans and 9

Soredex Scanora 3Dx scans, and all the Thai cohort scans were taken using the National Sci-

ence and Technology Development Agency (NSTDA) DentiScan.

This study is based on a retrospective and registration dataset and as such does not involve

experiments on humans and/or the use of human tissue samples and no patients were imaged

for this study. A registration and retrospective study does not need ethical permission or

informed consent from subjects according to the law of Finland (Medical Research Act (488/

1999) and Act on Secondary Use of Health and Social Data (552/2019)) and according to Euro-

pean General Data Protection Regulation (GDPR) rules 216/679. The use of the Finnish imag-

ing data was accepted by the Tampere University Hospital Research Director, Finland October

1, 2019 (vote number R20558). Certificate of Ethical Clearance for the Thai imaging data was

given by the Human Experimentation Committee, Faculty of Dentistry, Chiang Mai Univer-

sity, Thailand (vote number 33/2021) July 5, 2021. According to the Thailand legislation

informed consent was not needed. The data was accessed on July 5, 2021 and the authors did

not have access to identifying information.

Deep learning model

The deep learning model of this study is based on the stacked hourglass network [46]. Our

experiments utilize the single stacked variant with the first convolution block having 256 fea-

tures, kernel size of 7 and stride of 2, with latter residual convolution blocks having 64, 64, and

128 features with kernel size of 1, 1, and 3, respectively. All convolutions, except the last one,

are followed by a group normalization layer with 8 groups and ReLU non-linearity. The last

convolution has no normalization layer and uses sigmoid type non-linearity. Feature maps are
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downsampled with maxpooling using stride of 2 in the contracting pathway and upsampled

using trilinear sampling with stride of 2 in the expanding pathway. The model architecture is

depicted in Fig 2 uses a single input channel and produces 46 output segmentation maps, one

for each landmark. The model is trained using full sized CBCT images that are resampled into

1.6 mm isotropic voxel spacing with the target of Gaussian sphere heatpoint segmentation

map being centered on the landmark coordinates with σ = 1.5. Final coordinates are calculated

using the center-of-mass operation of SciPy (1.7.3) library [47]. The model was trained using

binary cross-entropy loss until convergence with model selection using the checkpoint of

model parameters with lowest average Euclidean distance of all the landmarks on the valida-

tion set. Parameter updates were calculated using AdamW optimizer (γ = 0.001, λ = 0.01).

During the training process, the training data was augmented using the random crops (0–75%

each axis), local elastic deformation, random rotation (−15˚, 15˚), random translation (−10%,

10%), and random contrast and brightness changes.

Evaluation metrics

As the main evaluation metric for the localization performance, we use the following Euclidean

distance:

dðt; pÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtx � pxÞ
2
þ ðty � pyÞ

2
þ ðtz � pzÞ

2
q

;

where t and p are the target and predicted coordinates, respectively. The localization perfor-

mance is considered clinically usable when the Euclidean distance is� 2 mm [48]. The rate of

clinically usable cases is defined as the successful detection rate (SDR) measure. The statistical

significance tests between the cohort and device groups are based on the Mann-Whitney U

test with Benjamini–Hochberg procedure to correct for multiple testing, in which p< 0.05 is

considered significant. In addition, prior to main evaluation a qualitative analysis of the largest

errors in the test set was made by a radiologist visually inspecting the landmarks and categoriz-

ing each one of them as subjective difference or as an objective annotation error which were

included or discarded from the final analysis, respectively.

Fig 2. The architecture of the deep learning model a. A U-net style deep learning system architecture with a contracting pathway, an expanding pathway, and connecting

pathways between. b. Single residual block consists of three convolutions, each followed by group normalization (GN) and ReLU nonlinearity with elementwise

summation.

https://doi.org/10.1371/journal.pone.0305947.g002
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For the cephalometric characteristic measures, we evaluate either the Euclidean distance

between two landmarks projected into a 2D plane or in 3D. In addition, the angle measures

are calculated between two landmarks or planes. A cephalometric characteristic measure is

considered to be successful with for the distance being� 2 mm or angle being� 2˚.

The performance of model inference was evaluated as the duration of producing the 46

landmark coordinates for a single scan. In this analysis, we evaluate the inference performance

for all the 309 scans. The inference performance is evaluated in two experiments, i.e., one with

a CPU only setup and another using both CPU and GPU. All the experiments are performed

with a single machine using a GTX 1080 Ti GPU and Intel i7–6850K CPU.

Results

In the qualitative analysis, all landmarks with the prediction to target differences above 10 mm

(N = 40) were inspected by senior radiologists. It turned out that 35 of these differences were

caused by an objective annotation error, while 5 of the differences were caused by the DLS

error. The annotation errors included landmark pairs that were in incorrect order (N = 6),

dental landmarks on incorrect teeth (N = 10), annotator misinterpretations (N = 10), and

incorrectly localized markings (N = 9). In the following analysis, the incorrectly ordered land-

marks (N = 6) were corrected and included while the landmarks with the other annotator

errors (N = 29) were not included. The results prior to the filtering based on the qualitative

analysis are reported in the Figs B and C in S1 Appendix.

In terms of device specific comparisons, the method performed with statistically significant

difference for both the distance and SDR on all devices except for Viso G7 and DentiScan in

the case of SDR. Specifically, the Scanora 3Dx scans resulted in the mean distance of

1.77 ± 1.20 mm and SDR of 68.1%, the Viso G7 the mean distance of 1.99 ± 1.26 mm with

60.8% SDR, and the DentiScan the mean distance of 1.99 ± 1.55 mm and SDR of 61.3%. When

comparing the two cohorts, no statistically significant differences were found for both evaluat-

ing the distance and SDR. Specifically, the Finnish scans had the mean distance of 1.96 ± 1.25

mm and SDR of 61.7%, and the Thai scans had the mean distance of 1.99 ± 1.55 mm and SDR

of 64.3%. The full comparisons with the device or cohort grouping are depicted in Fig 3. Addi-

tional cohort comparison results when grouped by landmark group type, radiation dosage,

and location on bony surface are reported in Fig A in S1 Appendix. Moreover, the robustness

of landmarking performance when evaluated on partial volumes is reported in Table A in S1

Appendix.

In terms of landmark specific results, for the Finnish cohort the mean distances turned out

to be 2.04 ± 1.31 mm, 1.95 ± 1.22 mm, 1.90 ± 1.22 mm for the left, right and midline land-

marks, respectively. For the Thai cohort the left, right and midline landmarks had the mean

values of 1.91 ± 1.61 mm, 1.83 ± 1.35 mm, 2.27 ± 1.65 mm, respectively. When grouped by the

left and middle sides the landmarks had statistically significant difference between the two

cohorts with (p< 0.05). Overall, there was 13 statistically significant differences (p< 0.05)

between the two cohorts. The smallest and the largest median error for the Finnish cohort

turned out to be for the landmarks Ba and PoL having the median (IQR) values of 1.07 (0.60)

mm and 3.23 (2.37) mm, respectively. For the Thai cohort the smallest median error was 0.84

(0.35) mm with the JL and the largest error was 3.49 (3.43) mm for the OrL. The smallest

median difference between these two cohorts was for the Right Foramen Mentale with median

(IQR) values of 1.45 (0.97) mm and 1.46 (0.75) mm, for the Finnish and Thai cohort, respec-

tively. The largest median difference between the two cohorts turned out to be for the OrR

landmarks having the median (IQR) values of 1.58 (1.16) mm and 3.30 (2.70) mm with the
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with the Finnish cohort and Thai cohort, respectively. The full results for all the landmarks are

reported in Fig 4 and Table 2.

For the cephalometric characteristic measures the SDR on all 15 measures turned out to be

84.0% for the Finnish cohort and the mean values for 3D point-to-point, components of a vec-

tor, and plane-to-plane angle measures was 1.3 ± 1.0 mm, 1.2 ± 0.9 mm, and 1.0 ± 0.8˚, respec-

tively. For the Thai cohort the average SDR was 71.3% and the mean values for 3D point-to-

point, components of a vector, and plane-to-plane angle measures was 1.2 ± 1.0 mm, 1.6 ± 1.7

mm, and 1.4 ± 1.6˚, respectively. The lowest performing measure was Pogonion to Nasion per-

pendicular with the Finnish cohort having on average error of 1.8 ± 1.1 mm and 70.4% SDR,

and the Thai cohort having on 2.7 ± 2.0 mm error and 40.9% SDR. The best performing mea-

sure was SNA—SNB with 0.6 ± 0.4˚ error and 97.5% SDR on the Finnish cohort and Frankfort

horizontal plane on Thai cohort with 0.8 ± 0.9 mm and 72.7% SDR on the Thai cohort. The

full results are reported in the Fig 5 and Table 3.

The DLS pipeline was evaluated for inference performance when running GPU and CPU-

only setups for all the 309 scans included in the study. The mean and standard deviation of

inference duration was 0.77 ± 0.07s for the GPU and 2.27 ± 0.22s for the CPU only setup.

Inference duration for all scans ranged from 0.29 to 0.79 s with the GPU setup and from 0.83

to 2.54 s with the CPU only setup.

Discussion

In this study, we have developed a fast deep learning method for automatic 3D cephalometric

analysis using multi-ethnic, multi-center, and multi-vendor CBCT scans to evaluate the

robustness of our method with a large dataset including two heterogeneous cohorts. The

method turned out to localize the landmarks with clinically sufficient precision and provide

accurate cephalometric characteristic information in the majority of the cases for both cohorts.

Furthermore, there was no statistically significant difference with 72% of the landmarks and

Fig 3. Boxplots of landmarking results evaluated with Euclidean distance when grouping by (a) device and (b) cohort. Barplots landmarking success detection rate

(SDR) when grouping by (c) device and (d) cohort. Statistical significance was determined using the Mann-Whitney U test with Benjamini–Hochberg correction

procedure.

https://doi.org/10.1371/journal.pone.0305947.g003
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100% of the cephalometric characteristics between the two cohorts, demonstrating the robust-

ness of the method. Our single-stage approach for the deep learning model provided computa-

tionally light automatic landmarking. Moreover, the ambiguity in the localization of

landmarks between graders such as seen with the left and right Orbitales in our dataset high-

lights the need for standardization of the 3D cephalometric landmarking and the use of multi-

ple graders or consensus.

Clinical usability of automatic 3D cephalometric analysis is dependent on the selection of

landmarks, which lacks a standard as is evident in the previous works [17, 36]. In our analysis,

we have evaluated the method for localizing three types of clinically relevant cephalometric

landmarks. In the first skeletal group, the landmarks or cephalometric points are also used in

conventional 2D cephalometric analysis. In the second dental group, the landmarks are used

Fig 4. Boxplot of landmarking results with each row having (a) the left, (b) right and (c) midline landmarks shown individually and as a group. Statistical

significance was determined using the Mann-Whitney U test with Benjamini–Hochberg correction procedure. *)statistically significant difference (p< 0.05).

https://doi.org/10.1371/journal.pone.0305947.g004
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Table 2. Comparison of the mean and standard deviation of distances and successful detection rate for the landmarks between the cohorts.

Group Landmark Distance (mm) SDR (%)

Finnish cohort Thai cohort p-value Finnish cohort Thai cohort

Dental (CLI) Center of lower incisors 2.1 ± 1.1 1.5 ± 0.6 0.007* 44.4 68.2

(CUI) Center of upper incisors 1.3 ± 0.9 1.8 ± 1.2 0.057 86.4 68.2

(LIAL) Lower Incisor Apex Left 2.1 ± 1.1 1.7 ± 0.8 0.168 48.1 59.1

(LIAR) Lower Incisor Apex Right 2.2 ± 1.2 1.5 ± 0.8 0.011* 51.9 72.7

(LIEL) Lower Incisor Edge Left 1.9 ± 1.1 1.3 ± 0.8 0.015* 66.7 63.6

(LIER) Lower Incisor Edge Right 1.8 ± 1.2 1.4 ± 0.9 0.042 67.9 81.8

(LMolL) Lower Molar Left 1.8 ± 0.9 1.9 ± 2.9 0.028 60.5 81.8

(LMolR) Lower Molar Right 1.9 ± 1.4 2.2 ± 2.7 0.608 58.0 54.5

(PcmUL) Crestal point between molars, upper left 2.1 ± 1.9 1.6 ± 0.9 0.557 65.4 68.2

(PcmUR) Crestal point between molars, upper right 1.8 ± 1.4 1.7 ± 1.0 0.751 74.1 63.6

(UIAL) Upper Incisor Apex Left 2.5 ± 1.2 1.7 ± 1.2 0.010* 40.7 68.2

(UIAR) Upper Incisor Apex Right 2.5 ± 1.2 1.7 ± 1.0 0.003* 42.0 63.6

Facial surgery (FI) Foramen Incisivum 2.0 ± 1.3 2.4 ± 2.5 0.901 61.7 72.7

(FInfL) Foramen Infraorbitale Left 1.6 ± 0.8 1.9 ± 1.5 0.588 76.5 63.6

(FInfR) Foramen Infraorbitale Right 1.3 ± 0.7 1.7 ± 1.1 0.225 84.0 72.7

(FManL) Foramen Mandibulae Left 2.0 ± 1.1 1.9 ± 1.5 0.232 60.5 68.2

(FManR) Foramen Mandibulae Right 1.7 ± 0.8 2.0 ± 1.2 0.233 70.4 50.0

(FMenL) Foramen Mentale Left 1.2 ± 0.6 1.7 ± 1.5 0.183 87.7 81.8

(FMenR) Foramen Mentale Right 1.6 ± 0.8 1.7 ± 1.2 0.926 76.5 77.3

(FPalL) Foramen Palatinum major Left 2.5 ± 1.4 2.1 ± 1.1 0.211 37.0 50.0

(FPalR) Foramen Palatinum major Right 2.2 ± 1.2 2.2 ± 0.9 0.757 48.1 36.4

Skeletal (A) Subspinale 1.7 ± 1.0 1.8 ± 1.7 0.529 65.4 68.2

(ANS) Anterior Nasal Spine 1.5 ± 0.8 1.6 ± 0.9 0.800 76.5 72.7

(B) Supramentale 2.6 ± 1.6 2.6 ± 2.0 0.642 44.4 45.5

(Ba) Basion 1.1 ± 0.6 3.3 ± 2.4 <0.001* 96.3 31.8

(CoL) Condylion Left 2.3 ± 1.2 2.1 ± 0.9 0.738 48.1 50.0

(CoR) Condylion Right 2.2 ± 0.9 1.8 ± 0.8 0.027 40.7 63.6

(Gn) Gnathion 1.9 ± 1.2 2.8 ± 1.6 0.006* 65.4 31.8

(GoL) Left Gonion 2.4 ± 1.3 2.4 ± 1.3 0.984 50.6 45.5

(GoR) Right Gonion 2.5 ± 1.5 2.2 ± 1.7 0.188 44.4 68.2

(JL) Jugale Left 1.3 ± 0.8 0.9 ± 0.3 0.047 84.0 86.4

(JR) Jugale Right 1.3 ± 0.6 1.2 ± 0.6 0.738 87.7 81.8

(Me) Menton 2.1 ± 1.1 2.6 ± 1.3 0.168 50.6 50.0

(N) Nasion 1.4 ± 0.7 2.3 ± 2.1 0.329 85.2 59.1

(OrL) Left Orbitale 2.1 ± 1.5 4.4 ± 3.1 0.003* 55.6 22.7

(OrR) Right Orbitale 1.9 ± 1.5 3.7 ± 2.3 <0.001* 70.4 22.7

(PNS) Posterior Nasal Spine 1.8 ± 1.3 2.4 ± 1.6 0.016* 77.8 54.5

(PoL) Left Porion 3.3 ± 1.6 2.4 ± 1.6 0.012* 25.9 59.1

(PoR) Right Porion 2.8 ± 1.3 1.8 ± 1.0 <0.001* 33.3 68.2

(Pog) Pogonion 2.1 ± 1.2 2.3 ± 1.3 0.283 59.3 54.5

(S) Sella Turcica 1.8 ± 1.0 2.3 ± 1.4 0.233 58.0 45.5

(SM) Spina Mentalis 3.1 ± 1.4 2.0 ± 0.9 0.001* 22.2 45.5

(UIEL) Upper Incisor Edge Left 1.3 ± 0.8 1.1 ± 0.5 0.621 86.4 95.5

(UIER) Upper Incisor Edge Right 1.4 ± 1.0 1.4 ± 0.8 0.831 80.2 86.4

(UMolL) Upper Molar Left 2.1 ± 1.4 1.6 ± 1.3 0.038 63.0 63.6

(UMolR) Upper Molar Right 2.1 ± 1.2 1.6 ± 1.0 0.069 53.1 63.6

*) Statistically significant differences (p < 0.05) evaluated with the Mann-Whitney U test with the Benjamini–Hochberg correction procedure.

https://doi.org/10.1371/journal.pone.0305947.t002
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Fig 5. Boxplot of performance on cephalometric characteristic measures with 3D point-to-point measures with (a) reference to prediction distance and (b)

error, components of vector with (c) reference to prediction distance and (d) error, and plane-to-plane angle with (e) reference to prediction distance and (f)

error. Cohort difference between each error measures are compared with the Mann-Whitney U test with Benjamini–Hochberg correction procedure.

https://doi.org/10.1371/journal.pone.0305947.g005
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to determine tooth axes and angles in 2D and 3D cephalometric analysis, and some are also

used for tooth segmentation and bite plane determination.

Accurate 3D cephalometric analysis enables standardization of protocols for treatment

planning for orthodontics and orthognathic surgery. This ensures consistency [49], optimizes

resources, and minimizes misdiagnosis risks that leads to better treatment outcomes [50]

while misdiagnosis can result in suboptimal strategies such as relying on dental compensation

instead of orthognathic surgery [2]. This is especially important for patients with periodontitis

as it obscures malocclusions and results in inaccurate diagnoses leading to ineffective treat-

ments [2], while malocclusions can exacerbate periodontitis [51].

The use of 3D cephalometric analysis and 3D computer-assisted surgical planning in

orthognathic surgery has recently been increasing, providing greater efficiency and accuracy

in osteotomy reporting compared to the conventional 2D-based planning methods. The dental

arch images for CAS can be obtained from plaster casts or intraoral scans for direct digital

optical impressions of the dental arch. However, such a fusion of multimodal information

requires accurate and reproducible reference points to reduce surgical inaccuracies [12, 13].

From the dental group the Lower Incisor Edge, Lower Molar, Crestal point between molars,

upper left, Upper Incisor Edge, Upper Molar, Center of lower incisors, and Center of upper

incisors landmarks can be used to fuse surface models with the CBCT data. The third facial

surgical group includes i.e., the Foramen Infraorbitale, Foramen Mandibulae, Foramen Men-

tale, Foramen Palatinum Major, and Foramen Incisivum are independent of the dentition.

They reflect the shape of the face and the relationship between the jaws and can therefore be

used to analyze the three-dimensional structure of the face. This analysis is essential for auto-

mated presetting of surgical planes in orthognathic surgery and for planning various other

types of facial surgery, such as complex trauma or oral cancer reconstructive surgery. In the

follow-up studies, these points can also be used to register slice sets for comparison and to

identify anatomical landmarks in the development of new automated DLS models in the

future.

Table 3. Mean and standard deviation of distances and successful detection rate (SDR) from reference to prediction (Ref.—Pred.) for the cephalometric characteris-

tics. SDR is defined as�2 mm or�2˚ of the absolute error.

Type Characteristic Finnish cohort Thai cohort

Ref.—Pred. (mm) SDR (%) Ref.—Pred. (mm) SDR (%)

3D point-to-point (mm) Anterior facial height 0.6 ± 1.7 74.1 0.9 ± 1.4 77.3

Left effective mandibular length 0.5 ± 1.6 80.2 0.2 ± 1.3 90.9

Left effective midfacial length -0.2 ± 1.3 86.4 -0.4 ± 1.8 81.8

Right effective mandibular length 0.7 ± 1.6 76.5 0.4 ± 1.3 81.8

Right effective midfacial length -0.5 ± 1.4 82.7 -0.2 ± 1.6 77.3

Components of a vector (mm) Nasion perpendicular to point A 1.3 ± 0.7 86.4 2.2 ± 2.0 59.1

Pogonion to Nasion perpendicular 1.8 ± 1.1 70.4 2.7 ± 2.0 40.9

Right Upper Incisor point A vertical -0.7 ± 1.3 81.5 -0.6 ± 1.7 72.7

Left Upper Incisor point A vertical -0.5 ± 1.2 86.4 0.4 ± 1.5 68.2

Right Lower Incisor to point A-pogonion line -0.8 ± 1.2 81.5 -0.8 ± 2.3 59.1

Left Lower Incisor to point A-pogonion line -0.0 ± 1.0 95.1 0.2 ± 1.3 81.8

Plane-to-plane angle (˚) Frankfort horizontal plane 0.9 ± 0.4 98.8 0.8 ± 0.9 72.7

Mandibular plane angle 0.8 ± 1.2 82.7 0.5 ± 1.4 63.6

SNA -0.2 ± 1.6 81.5 -0.4 ± 3.1 63.6

SNB -0.0 ± 1.4 81.5 -0.0 ± 2.2 72.7

SNA—SNB -0.1 ± 0.8 97.5 -0.5 ± 2.1 77.3

https://doi.org/10.1371/journal.pone.0305947.t003
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In the initial qualitative analysis, the method turned out to have 40 errors that were larger

than 10 mm caused by incorrect annotations or the DLS. However, in the test set of 4712 land-

marks, there were only 35 errors (0.7%) and 5 (0.0%) for the annotators and the DLS, respec-

tively. Moreover, the large errors for the DLS were on a Lower Molar point of a patient with

missing lower incisors and premolars. The DLS performance including the annotation errors

are reported in Figs B and C in S1 Appendix. For the landmarking performance, the method

performed similarly to previous work with average 1.96 mm error for all valid landmarks with

most of the landmarks being localized within clinically relevant accuracy i.e.,� 2 mm. The

method was able to learn accurate landmarking for both cohorts as non-significant differences

were found between them. This leads to the conclusion that the method can learn to handle

heterogeneities of different cohorts even for patients of different ethnicity and being imaged

with a different device. For the cephalometric measurements, we used the extended McNa-

mara analysis, which has been shown to improve treatment, diagnosis and planning in orthog-

nathic surgery patients with asymmetries [14]. The DLS turned out to have better success rate,

i.e.,� 2 mm or� 2˚, on average with cephalometric measures to the landmarking. This shows

that the measures are more robust to the landmarking errors. However, this is dependent on

the selection of landmarks and the cephalometric analyses. Similarly to landmarking, the ceph-

alometric measures showed no statistical differences between the two cohorts, showing the

method’s ability to handle the two heterogeneities.

In our study some of the landmarks turned out to be challenging to annotate such as the

Orbitale and Basion from the first group, and from the second group the Lower Molar, Upper

Molar, Crestal point between molars from the second group. No considerable annotation

errors were found in the third group. The Orbitale is the lowest point on the inferior border of

the orbit, located on a curved surface, and therefore difficult to locate in 3D analysis using

CBCT images, a similar finding as in a previous study [52]. In our study, one of the annotators

placed the Orbitale at the bottom of the bony base of the orbit instead of the lowest point of

the lower margin. A similar finding was seen in the second group of dental points, where

annotators made errors by placing the Molar or Crestal points on the wrong molars. The find-

ings highlight the importance of correct annotation in AI development and the potential for

annotator bias. The limited number of DLS landmark position errors and the robustness of

the cephalometric measurements indicate that the DLS can be successfully used in semi-auto-

matic 3D cephalometric analysis. Prior to clinical use, an analysis with temporal and more

multi-ethnic, multi-vendor CBCT data is required to evaluate the generalisability and repeat-

ability of the method. It is also important to develop automated analysis for the fusion of dental

arch images. This will enable the development of an efficient tool for computer-assisted surgi-

cal planning for orthognathic and facial surgery, which would facilitate the workflow for com-

plex surgeries.

There are some limitations in our study. Although the dataset was annotated by multiple

annotators to reduce bias, each scan was annotated only once without verification. This can

lead to some errors some of which were found during the qualitative analysis. In addition,

although our analysis utilized a multi-ethnic, multi-center, and multi-device dataset, the analy-

sis was limited to the aggregate instead of examining each individually. Due to the limited sam-

ples, we did not include generalizability analysis between these datasets.

For clinical use it is necessary to repeat the analysis with temporal and more multi-ethnic,

multi-vendor CBCT data to analyze the generalisability and repeatability of automated land-

mark detection models. It is also important to develop automated analysis for the fusion of

dental arch images. This will enable the development of an efficient tool for computer-assisted

surgical planning for orthognathic surgery, which would facilitate the workflow for complex

surgeries.
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Conclusion

Accurate 3D cephalometric landmarking can improve treatment outcomes and patient quality

of life through standardization of care, reduced misdiagnosis, and suitable treatment planning.

Here we proposed a fast single-stage deep learning method for 3D cephalometric landmarking

using multi-ethnic, multi-provider, and multi-center CBCT dataset for 46 clinically relevant

landmarks. The method provided clinically sufficient accuracy in most of the predicted cases

in terms of landmarking and subsequent cephalometric analysis with slight difference between

the cohorts. The combination of the clinically significant accuracy and fast inference of the

method enables follow-up studies in a practical setting.

Supporting information

S1 Appendix. Supplementary methods and results.
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