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Abstract We present a probabilistic multiple cause

model for the analysis of binary (0–1) data. A distinctive

feature of the aspect Bernoulli (AB) model is its ability to

automatically detect and distinguish between ‘‘true absen-

ces’’ and ‘‘false absences’’ (both of which are coded as 0 in

the data), and similarly, between ‘‘true presences’’ and

‘‘false presences’’ (both of which are coded as 1). This is

accomplished by specific additive noise components which

explicitly account for such non-content bearing causes. The

AB model is thus suitable for noise removal and data

explanatory purposes, including omission/addition detec-

tion. An important application of AB that we demonstrate

is data-driven reasoning about palaeontological recordings.

Additionally, results on recovering corrupted handwritten

digit images and expanding short text documents are also

given, and comparisons to other methods are demonstrated

and discussed.

Keywords Data mining �
Probabilistic latent variable models �
Multiple cause models � 0–1 data

1 Introduction

In multivariate binary data, only the presence (1) or

absence (0) of each attribute is known, in contrast to count

data where the actual frequencies of attribute occurrences

are taken into account. Binary data arise in various appli-

cations, ranging from information retrieval, link analysis,

transaction analysis and telecommunications to bioinfor-

matics, to name a few. In this paper, we concentrate on

probabilistic latent variable modelling of multivariate

binary data, meaning that we aim at estimating the proper-

ties of the underlying system that has generated the

observed data. It is assumed that the data arise due to latent

(hidden) causes and their combinations. Revealing these

causes gives new insight into the underlying system, and

enables one to characterise the data in a compressed form.

Probabilistic latent variable modelling is typically unsu-

pervised, i.e. no ‘‘training data’’ with known latent causes

are available.

Multiple cause models, termed also as factor models or

distributed models ([1–5] and others) allow for several

explanatory variables for each observation vector. That is,

the elements of a vector-valued observation may have

different underlying causes. In terms of clustering, an

observation may belong to several clusters simultaneously.

We present a probabilistic, multiple-cause latent vari-

able model for binary data. The aspect Bernoulli (AB)

model, previously presented in a short preliminary version

[6], can formally be seen as a Bernoulli analogue of the

multinomial decomposition model known under the names
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of aspect model, PLSA [3], and their generative versions

such as latent Dirichlet allocation (LDA) [5] and multi-

nomial principal component analysis (MPCA) [7].

Contrarily to multinomial models, where the event space is

the set of attributes, for AB, the event space is the set

[presence (0), absence (1)]. For a comprehensive exposi-

tion of event models for discrete data focusing on the

difference between the independent Bernoulli and the

multinomial event models in the context of text encoding

see McCallum and Nigam [8]. A characteristic feature of

the AB model is that noise in this event space is separated

into one or a few distinct components, and this may further

be straightforwardly exploited for noise removal.

Multiple-cause models for binary data have been

devised before in the literature. Most notably, Saund’s

model [2] asserts an interaction model for the 1s in the

data, which takes the form of a noisy-OR. However, the 0s

are suppressed this way, and observing 0s remains a default

uninteresting event. By contrast, in a linear Bernoulli

model, the 0s and 1s are interchangeable. Keeping our

model linear provides symmetry to AB enabling the ana-

lysis of the causes behind not only the ones (presences) but

also the zeros (absences) in the data. Indeed in many

applications it is of interest to model the zeros as well,

when it comes to inferring hidden causes, as the absence

(0) of an attribute might be indicative of an important

underlying cause of interest. To give an illustrative

example, the semantic content of two images that contain

the digits ‘3’ and ‘8’, respectively, differ by pixels that are

‘off’ rather than ‘on’. In various situations we may also

encounter noise factors, which exclusively generate 0s,

’’wiping off‘‘ some of the content-bearing 1s. This is the

case in text document data, where certain attributes (words)

are genuinely absent, i.e. they have no intersection with the

topical content of the observation (document) whereas

others are absent for no specific reason other than the

document is short. Similarly, black-and-white images may

contain corrosion which turns a black pixel (1) into white

(0). Stated briefly, there might be two kinds of zeros, which

of course look the same in the data: ’’true absences’’ which

agree with the content of an observation, or ‘‘false absen-

ces’’ (omitted presences), which might well have been 1s

but due to some underlying cause remain unobserved. We

have no prior knowledge about whether or not a data set

under study contains such distorted observations and it is of

interest to infer this from the data. As we will see, this is

what the AB model is designed for. It enables us to auto-

matically detect and distinguish between these two types of

zeros under the AB model’s generative assumptions.

Detecting omitted presences may help, e.g. in query

expansion in which short documents can be augmented by

topically related words, or in image restoration by detect-

ing the corrupted pixels. Clearly, by symmetry, the AB

model can also distinguish between ’’true presences’’

(which are in accordance with the content of the observa-

tion) and ‘‘false presences’’ (which are due to a noise cause

which explicitly turns 0s into 1s). This may be of use, e.g.

in text-based forensic investigations.

In addition to the mentioned potential uses, in this paper,

we demonstrate the abilities of the AB model in an actual

application, in the context of palaeontological data [9]

consisting of remains of mammal genera found at various

sites of excavation across Europe and Asia. We may con-

jecture that there are underlying causes that can explain

this data, such as those that reflect the communities of

genera. Furthermore, if remains of a mammal genus were

found on a site, we can infer that the mammal lived at or

near that site. However, if no remains of a mammal genus

were found, what can we infer? The palaeontological data

are inherently noisy: It might be that remains of a genus are

not recorded at a particular site even though the genus lived

in the location of the site. As such, the data demands a

model that is able to distinguish between true absences and

false absences, both of which are coded as ‘‘0’’. We will

show that the AB model is suitable for these purposes.

In addition to the actual palaeontological application, we

will also demonstrate results on black-and-white raster

images and binary coded text in order to assess the noise

detection and removal performance on systematic and

controlled experimental settings.

Our AB model can formally be seen as a special case of

a more general matrix factorisation theory discussed, e.g.

by Srebro [10]. It can also be seen as a special case of the

models proposed for collaborative filtering by Hofmann

and Puzicha [11] and Hofmann [12] and the URP model of

Marlin and Zemel [13], if the observations are to be

restricted to 0/1. A more complete review of related models

will be given in Sect. 2.4. However, while these frame-

works are formally closely related to our approach, our

inferential scope is rather different. Our purpose here is to

devise an appropriate model for reasoning about 0–1 data

by detecting and separating out interpretable content-

bearing factors, as well as ’’noise’’ factors in an automated

manner. Separating out noise factors is quite important

because when such factors are detected, they can subse-

quently be removed from the data. There is no readily

available algorithm for this task, since most of the deno-

ising literature is concerned with real-valued data.

Secondly, it is also of interest here to study how such a

specific instantiation of factorisation models compares to

other models of 0–1 data, in terms of prediction and genera-

lisation on real-world data.

Before proceeding, we make a note regarding the use of

a number of almost synonymous terms in the paper:

‘‘aspect’’, ’’cause’’, ‘‘component’’, ’’factor’’, ‘‘prototype’’

and ’’basis’’. To avoid confusion, in this paper, we will
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follow certain guidelines in the term usage. First of all,

‘‘cause’’ refers to a true underlying phenomenon in the

data. In general, the causes are modelled by ’’components’’

which can further be characterised as follows. A compo-

nent is called a ‘‘factor’’ in factor models, a group of

models in which aspect models belong to, and hence the

term ’’aspect’’ refers to a component of a linear convex

factor model. A ‘‘prototype’’ is a component that has an

interpretable representation, e.g. a cluster-centre. In turn,

the term ’’basis’’ refers to the coefficients of the linear

combination for a particular component, which may or may

not be directly interpretable.

This paper is organised as follows. We first describe the

model and place it in the context of various other models in

Sect. 2. Experimental results are shown in Sect. 3, and

Sect. 4 draws some conclusions and discusses possible

future directions.

2 The model

In this section, we first describe the data generation process

assumed in the AB model, and derive an implementation-

friendly algorithm for estimating the model parameters.

We then discuss related work and place AB in a broader

context.

2.1 Derivation of the algorithm

We start by describing the data generation process of the

aspect Bernoulli model. The indices n = 1,…,N,

t = 1,…,T and k = 1,…,K are used to index the observa-

tions, attributes and latent aspects, respectively. Let xn

denote a T-dimensional multivariate binary observation

and xtn the value of its tth attribute. The elements xtn may

be generated by different latent aspects k with probabilities

specific to observation n and aspect k. The nth observation

vector xn is assumed to be generated as follows:

• Pick a discrete distribution p(1|n),…,p(K|n) over all the

latent aspects k = 1,…,K. The distribution is picked

uniformly from the set of all such distributions.

• Separately for each element xtn of xn, the following two

steps are taken:
• Pick a latent aspect k with probability p(k|n)

• Let the latent aspect k generate 1 (presence) or 0

(absence) of the tth attribute. The Bernoulli prob-

ability of generating 1, p(1|k,t), only depends on k

and t and not on the observation index n.

Thus, there are two sets of unknown probability para-

meters in the model. Let us denote by skn = p(k|n) the

probability of choosing a latent aspect k in observation1 n,

and by atk = p(1|t,k) the Bernoulli probability of the tth

attribute being ‘‘on’’ conditioned on the latent aspect k.

As K is typically significantly smaller than N, the total

number (T � K + K � N) of unknown parameters is smaller

than the size (T � N) of the original data set, allowing for

a compressed representation of the data.

In addition, a ’’dummy’’ indicator variable ztn will

denote which of the latent aspects generated the 0/1 event

at the tth attribute of the nth instance: d(ztn - k) will equal

one for exactly one aspect k, and d(ztn - k0) = 0 for all

k0 = k. We will use the shortcut ztnk = d(ztn - k).

Summarising the generative process, we have the fol-

lowing dependency structure in the complete data likelihood

of an instance n

pðxn; zn; snjaÞ ¼ pðsnÞ
YT

t¼1

pðztnjsnÞpðxtnjztn; atÞ ð1Þ

where sn = (s1n,…,sKn) are the probabilities of selecting

one of the K aspects, a = (a11,…,aTK) are parameters of the

model, consisting of the Bernoulli probabilities and

zn = (z1n1,…,zTn1,…,zTnK). Further, we have

pðsnÞ ¼ UMðsnÞ
pðztnjsnÞ ¼

Y

k

sztnk

kn

pðxtnjztn; atÞ ¼
Y

k

½axtn

tk ð1� atkÞ1�xtn �ztnk

where UM is a uniform distribution on a simplex. The

graphical representation as a plate diagram is shown in

Fig. 1. The model assumes that the elements xtn of xn are

conditionally independent given the latent variable sn. This

is a standard assumption in generative modelling, and it

signifies that all dependencies that exist in the observations

are meant to be explained by the hidden variables of the

model.

Thus, the complete data likelihood (1) now reads as

pðxn; zn; snjaÞ ¼ UMðsnÞ
YT

t¼1

YK

k¼1

½sknaxtn

tk ð1� atkÞ1�xtn �ztnk ð2Þ

and so the probability of a data point under the model is

obtained by marginalising the hidden variables:

pðxnjaÞ ¼
Z

dsnUMðsnÞ
X

zn

YT

t¼1

YK

k¼1

½sknaxtn

tk ð1� atkÞ1�xtn �ztnk

ð3Þ

¼
Z

dsnUMðsnÞ
YT

t¼1

XK

k¼1

sknaxtn

tk ð1� atkÞ1�xtn ð4Þ

1 Note that at each attribute t of observation n, the latent aspect k is

sampled anew from the distribution p(1|n),…,p(K|n).
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where the summation in the first row is taken over all

possible combinations of the ztnk, and in the second row we

have used the fact that only one of ztnk equals 1 at each pair

t and n.

This integral is analytically intractable for computing;

therefore, the posterior distribution p(sn|xn,a) is intractable

as well (since its normalisation factor is exactly the above

integral). A variety of approximate methods are available

to use, such as the maximum a posteriori (MAP) point

estimate, variational mean estimates or sampling-based

methods.

It is outside the scope of this paper to analyse or com-

pare the various possible estimation methods—for such a

comparison in a fairly general setting of discrete latent

variable models see Buntine and Jakulin [14]. For the

purposes of this paper, we derive MAP estimates. This is

the maximiser of the true posterior (the most probable sn

for each n) and it can be computed without requiring the

availability of the full posterior of s.

Of course, we should note that in general, one needs to

be careful and aware that MAP estimates are prone to

overfitting, especially when the data available for the

estimation are scarce. However, as we demonstrate in the

experimental section, AB being a factor-type model rather

than a mixture over high-dimensional data, we did not

encounter severe overfitting problems for a number of data

sets analysed. In situations of excessively scarce data in

turn, approximate Bayesian methods should be pursued to

avoid overfitting. One could then treat the uniform density

as a Dirichlet with all hyperparameters equal to 1, and

employ the variational techniques developed in LDA [5],

URP [15] or MPCA [7]. Indeed, we pursued some of these

techniques for binary data analysis elsewhere [16, 17].

Since we have a uniform prior on s, the maximum

argument of the posterior coincides with the maximum

argument of the likelihood; in other words, the MAP

solution coincides with the maximum likelihood (ML)

solution:

sn ¼ argmax
s

pðsjxn; aÞ ¼ argmax
s

pðxn; sjaÞ

¼ argmax
s

pðxnjs; aÞ ¼ argmax
s

log pðxnjs; aÞ
ð5Þ

The same expression needs to be maximised also in a, for

parameter estimation. Expanding these expressions, we

need to maximise the following, as a function of a and sn, V
n = 1,…,N:

XN

n¼1

log pðxnjsn; aÞ ¼
XN

n¼1

XT

t¼1

log
XK

k¼1

sknaxtn

tk ð1� atkÞ1�xtn

ð6Þ

subject to the constraint
P

kskn = 1 and atk[[0,1].

There is no closed-form solution and so we carry out this

maximisation iteratively, making use of the EM methodo-

logy. Details are given for completeness in Appendix A.

The resulting EM algorithm is then the following: ini-

tialise all sn and a within the required range. Then, iterate

till convergence:

E-step:

qk;t;n;xtn
¼ sknaxtn

tk ð1� atkÞ1�xtn

P
‘ s‘naxtn

t‘ ð1� at‘Þ1�xtn
ð7Þ

M-step:

skn ¼
X

t

qk;t;n;xtn
=T ð8Þ

atk ¼
P

n xtnqk;t;n;xtnP
n qk;t;n;xtn

ð9Þ

where qk;t;n;xtn
¼ pðztn ¼ kjxtn; sn; atÞ:

2.2 Discussion and an implementation-friendly

rewriting

Let us now analyse the above model in more detail. To start

with, consider the likelihood of a single multivariate Ber-

noulli:
Q

t pxtn
t ð1� ptÞ1�xtn where pt = p(xtn = 1) is the

probability for observing 1 in the tth element of any

observation vector xn. A well-known extension of this

is the single-cause mixtures of Bernoulli (MB) model

...z

x

1n

n

1n

z z

x x

2n Tn

2n Tn

s

N

a1 a2 aT

Fig. 1 Plate diagram representation of the aspect Bernoulli model.

The textured nodes represent observed variables, the white nodes are

unknown variables. Of these, those that have no parent nodes are

treated as parameters of the model
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[18, 19]
P

k pk

Q
t axtn

tk ð1� atkÞ1�xtn where atk = p(1|t,k) and

pk is the prior probability of the kth mixture component.

Now let us instead extend the original simple parametric

model in another vein, giving each observation vector n its

own set of parameters ptn = p(xtn = 1). This is clearly an

over-parameterisation, so let us restrict it into a convex

combination ptn =
P

k atkskn where
P

k skn = 1 and 0 B atk

B 1 for all t and k. This is indeed the core of the AB model,

and we see this by rewriting:

pðxnjsn; aÞ ¼
YT

t¼1

XK

k¼1

sknaxtn

tk ð1� atkÞ1�xtn ð10Þ

¼
YT

t¼1

XK

k¼1

atkskn

 !xtn

1�
XK

k¼1

atkskn

 !1�xtn

: ð11Þ

To see the equality between (10) and (11), note that when

xtn = 1, then according to both (10) and (11) we have that

p(xtn|sn) =
P

k atkskn; and for the case when xtn = 0 we have

p(xtn|sn) =
P

k (1 - atk)skn from both (10) and (11). In

obtaining the latter equality, we have used the convexity of

the combination—note that 1 -
P

k atkskn =
P

k(1 - atk)skn.

The likelihood in (11) indeed resembles the well-known

Bernoulli likelihood if we denote by ptn: = p(xtn = 1|sn) =P
k atkskn the Bernoulli probability of obtaining 1. Thus,

the Bernoulli mean is factorised in a convex combination—

which is a useful insight for relating this model to other

distributed models of 0–1 data, as will be seen in the

experimental section.

We can also rewrite the (7)–(9) to gain savings in the

memory requirements and obtain a more convenient

implementation, using the following observations.

1. The M-step updates only require sums over qk;t;n;xtn
:

Since the data are binary, we can re-write the E-step

update expression (7), by separating the terms in which

xtn = 1 and those in which xtn = 0, yielding

qk;t;n;xtn
¼ skn

xtnP
‘ at‘s‘n

atk þ skn
1� xtn

1�
P

‘ at‘s‘n
ð1� atkÞ

ð12Þ

2. From the theory of EM we know that each of the three

update equations of the EM algorithm, (7)–(9), taken

individually, is guaranteed not to decrease the

objective that we maximise, i.e. (6). In addition, note

that the M-step update of skn does not depend on any

other parameters except through q and similarly, the

same holds for each atk update. We can therefore

choose to perform an E-step after each of the M-step

updates and we are still guaranteed not to decrease the

objective. Thus, in each iteration, we will perform the

list of updates (7) and (8), and (7) and (9), or

equivalently (12) and (8), and (12) and (9).

The reason why this is convenient is that we can then

express the effect of one E-step and one of the M-step updates

with a single equation simply by replacing the expression on

the r.h.s. of the E-step update (12) into the M-step update.

Doing this for both M-step updates, i.e. combining (12) and

(8) and again (12) and (9), yields the following:

skn ¼ skn

X

t

xtnP
‘ at‘s‘n

atk þ
1� xtn

1�
P

‘ at‘s‘n
ð1� atkÞ

( )
=T

ð13Þ

atk ¼ atk

X

n

xtnP
‘ at‘s‘n

skn=ctk ð14Þ

where the denominator is

ctk ¼ atk

X

n

xtnP
‘ at‘s‘n

skn þ ð1� atkÞ
X

n

ð1� xtnÞ
1�

P
‘ at‘s‘n

skn:

ð15Þ

As we see, the result is a multiplicative form update for

both skn and atk, and by construction, both of these latter

updates are guaranteed not to decrease the maximisation

objective. Therefore, alternating these two multiplicative

form updates will necessarily converge to a local optimum

of the likelihood.

It may also be interesting to note that the obtained algo-

rithm can also be derived as an alternating optimisation

(details given in Appendix B). However, although this

simpler derivation yields the same multiplicative form fixed-

point equations, it does not reveal the convergence guaran-

tee. This guarantee comes from the EM interpretation.

The benefit of the so rewritten version of the algorithm

is that we need not explicitly compute and store the pos-

teriors qk;t;n;xtn
for estimating s and a. Moreover, this

version can easily be expressed in matrix form, which is

more convenient to implement. This is justified by similar

arguments as discussed above: choosing to combine the

group of qk;t;n;xtn
updates (performed for all k,t,n using all

parameter values fixed at their current values) with the

group of skn updates (performed for all k,n using all q

values fixed at their previously obtained current values);

then again the group of qk;t;n;xtn
with that of the atk updates

is still guaranteed not to decrease the likelihood, since

every single constitutive update has this guarantee.

2.2.1 Algorithm

The summary of the obtained algorithm in a matrix-form

notation is listed below.

• Initialise A and S within the appropriate domains.

• Iterate until convergence
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�A ¼ 1� A ð16Þ

S ¼ S� AT X[AS½ � þ �A
T ð1� XÞ[�AS
� �n o

ð17Þ

S ¼ S[R ð18Þ

A ¼ A� X[AS½ �ST
� �

ð19Þ
�A ¼ �A� ð1� XÞ[�AS

� �
ST

� �
ð20Þ

A ¼ A[ Aþ �A
� �

ð21Þ

where R denotes the matrix of normalisation factors of

elements Rkn =
P

‘ s‘ n, V k, and � and [ denote element-

wise matrix product and division, respectively.

2.3 Scaling

The scaling per iteration of the ML estimation of an AB is

OðNTKÞ: This is less convenient as the Oð#ðnonzeroÞKÞ
scaling of multinomial aspect models, which scale linearly

in the number of nonzero attribute occurrences in the data.

However, this is the price we have to pay for having an

independent Bernoulli likelihood model conditioned on a

and s. Independent Bernoulli component models, with very

few exceptions [20], typically do not scale better than AB:

The scaling per iteration of the Bernoulli mixtures is the

same OðNTKÞ: Logistic PCA [21], a recently introduced

nonlinear distributed model for binary data, discussed in

some detail later, scales as OðNTK3Þ due to the matrix

inversions that it requires.

2.4 Relation to other models

So far we have seen that AB is a probabilistic linear

multiple cause model for 0–1 data that factorises the mean

of the Bernoulli distribution into a convex combination of

hidden causes, and explains both the 0s and the 1s in the

data. Let us then contrast these properties to those of other

models.

Starting from the factorisation in (11), we can draw

parallels to a number of other multiple cause models in

which a somewhat similar factorisation of the mean of the

data distribution takes place. Perhaps, the most well-known

probabilistic model for binary data is the single cause

mixtures of Bernoulli (MB) model [18, 19], already men-

tioned in Sect. 2.1; however, as a single-cause model it

assumes that all elements of the multivariate observation

share the same latent cause. The Logistic PCA model [21]

and the models of Tipping [22] and Collins et al. [23]

decompose the so-called natural parameter h of the Ber-

noulli distribution as htn: =
P

k atk skn, and the Bernoulli

mean is then obtained using the logistic function ptn ¼
1=ð1þ e�htnÞ: The nonlinear logistic function gives more

flexibility as the parameters a and s need not be probabi-

lities but can take any real values. For this reason, these

models fit well to the data. However, a disadvantage of

these models is the loss of interpretability of the parameters

a and s. In contrast, the parameters of the linear decom-

position in the AB model allow for insightful

interpretations, as will be demonstrated later in this paper.

Apart from these Bernoulli-type models, the PLSA

(probabilistic latent semantic analysis) [3], LDA (latent

Dirichlet allocation) [5] and MPCA (multinomial PCA) [7]

models for multinomial data have been quite popular over

the past few years. Similarly to AB, these can be viewed as

models that factorise the mean-parameter vector of a

multinomial sampling model into a convex combination of

‘latent causes’. The generative process of AB is almost

identical to that of LDA, except that rather than a multi-

nomial sampling, AB employs a conditionally independent

Bernoulli sampling (conditioned on the parameters).

Although from the technical point of view this may seem

like a rather small difference, it dramatically affects the

type of data that AB is suited to analyse and thus the sort of

inferences that it is meant to accomplish. In a multinomial

sampling model over some attribute space, at each draw,

the attribute that gets drawn is present, all others are nec-

essarily absent. In turn, in our independent Bernoulli

sampling model, given a and s, the presence or absence

information is sampled independently for each attribute. In

other words, conditioned on the model parameters, the

presence of an attribute does not tell us anything about the

presence of another attribute, and several attributes can be

present in the same time. Therefore, despite the formal

similarity between AB and the PLSA, LDA or MPCA

models, AB needs to model and ‘explain’ both the presence

and the absence events for each attribute and each datum

instance. Most of this paper is concerned with demon-

strating what sort of useful information we can learn from

binary data by doing such an analysis.

As already mentioned, AB could formally be seen as a

special case of the URP model [15]. The URP model was

designed for collaborative filtering, and it posits several

conditionally independent multinomials (to model some

discrete set of ratings), one for each product. Thus, with

ratings restricted to 0/1, URP would reduce to AB—how-

ever, such a model has not been previously investigated.

Previous related collaborative filtering methods have also

been studied by Hofmann and Puzicha [24] and Hofmann

[12]; the model presented in the latter can be used for

arbitrary response scales.

Saund’s model [2] is one of the first multiple cause

models for binary data. It does not perform a linear

decomposition of the Bernoulli mean parameter but instead
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it identifies a nonlinear ‘‘noisy-OR’’ relationship between

the hidden causes. A closed-form solution is not available

but a gradient algorithm maximising the likelihood is given

[2] and a mean-field approximate solution has been pro-

vided later [25]. A somewhat similar model is the topic

model presented by Seppänen et al. [26]; there the rela-

tionship between latent causes is described by a discrete

logical OR function. The problem of finding an optimal

topic assignment is shown to be NP-hard, and approxi-

mative iterative algorithms for the estimation of the

parameters are given [26]. A discrete logical OR function

is also discussed by Jaakkola [27] who gives upper and

lower bounds for the likelihood.

Early approaches to multiple cause models have been

presented by Barlow et al. [28], Földiák [29], Schmidhuber

[30] and Zemel [31]; in these models the data are not

necessarily assumed binary valued. Later, Dayan and

Zemel [25] have presented a model where the latent

components compete with each other and thus ensure that

they account for representing different parts of the binary

data space. Yet another formulation is given by Marlin and

Zemel [13] in their multiple multiplicative factor models,

also allowing different components to specialise to a subset

of the data space; their models are given for multinomial

data but can be easily adapted for binary. Recently, an

interesting approach of latent class modelling in relational

binary data has been presented by Kemp et al. [32].

Non-probabilistic methods for the analysis of binary

data include the method of frequent sets [33] which as such

does not give a model of the data but instead reveals local

patterns of co-occurrence of attributes. Subspace cluster-

ing, also known as co-clustering or double clustering [34],

analyses the structure of binary data and partitions the data

both on the level of observations and on the level of

attributes; in contrast to latent variable methods, no

underlying causes are assumed to have generated the data,

and no overlap between the clusters are allowed. Yet

another method of unsupervised learning from 0–1 data is

the famous Boltzmann machine [35].

Apart from binary data, well-known methods for fac-

toring continuous data include principal component

analysis (PCA) [36], independent component analysis

(ICA) [4] and nonnegative matrix factorisation (NMF)

[37–39]. Of these, NMF is perhaps the closest to our

approach, as its decomposition reads xtn =
P

k atkskn

where atk and skn are nonnegative but not restricted to be

probabilities. A probabilistic version of PCA is given by

Tipping and Bishop [40] and further discussed, e.g. by

Dahyot et al. [41].

Srebro and Jaakkola [42, 10] and Gordon [43] discuss

the general class of matrix factorisations and give an

overall view to the problem. Haft et al [44] present a latent

variable model with binary sources and continuous data.

Having placed our approach in the more general context of

matrix factorisation and multiple cause modelling literature,

we now turn to further analyse and experimentally demon-

strate the use of AB on real world data sets, contrasting it to

some of the related models reviewed here. In particular, AB

turns out to be well suited to modelling high-dimensional 0–1

data and noise removal from 0–1 data. We will also analyse

the representational tendencies of AB and other models

through a number of examples and this contributes to better

understanding of different matrix factorisation models in

general and the AB model in particular.

3 Experiments

In this section, we first describe the data sets used in the

experiments. Model selection in terms of choosing an

optimal number of latent aspects is then addressed, fol-

lowed by detailed analyses of the representation tendencies

of the AB model, the interpretability of model parameters

and model’s ability to detect and remove discrete 0–1

noise, such as ‘omissions’ and ‘additions’ of presences or

absences.

In the experiments, the AB model is compared to mix-

tures of Bernoulli (MB) [18, 19], probabilistic latent

semantic analysis (PLSA) [3], logistic PCA (LPCA) [21]

and nonnegative matrix factorisation (NMF) [39], when

appropriate. Of these, the first two are estimated using an

EM algorithm; the LPCA model is estimated by alternating

least-squares optimisation; and NMF is estimated by a

multiplicative update scheme that optimises an Euclidean

distance. The methods are implemented in Matlab, in the

form presented in the respective references.

3.1 Data sets

The data sets used to demonstrate the performance of the

aspect Bernoulli model are quite distinct in their nature:

palaeontological findings of mammals at various sites of

excavation; black-and-white images of handwritten digits;

and binary coded newsgroup documents.

3.1.1 Palaeontological data

Our palaeontological data come from the NOW database, a

public resource based on a collaboration between mammal

palaeontologists.2 The NOW data derive from the published

2 NOW: Neogene of the Old World, http://www.helsinki.fi/science/

now/.
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literature as well as from unpublished compilations by

contributors.

The data set we use comes from NOW public release

030717. We have excluded small mammals (orders

Insectivora, Chiroptera, Lagomorpha and Rodentia), and

limited the geographic coverage to Europe, arbitrarily

truncated towards Asia at 60� eastern longitude. Our data

set consists of 501 sites (localities where fossils have been

recovered, usually by excavation), in which occurrences of

139 genera are observed. Genera with less than 10 occur-

rences and sites with single genera have been excluded. We

interpret the fossil sites as observations and the genera as

attributes. The data are quite sparse: 5.08% of the entries

are 1. The data matrix is seen in Fig. 2.

In addition, we have access to the ages of the fossil sites.

The age is estimated from all available evidence, including,

at best, radiometric dating and palaeomagnetism, but the

majority of the sites are dated by means of mammal bio-

chronology, i.e., the evolutionary change observed in the

mammals themselves. For technical details of how age is

handled in NOW see Fortelius et al. [9] or the NOW web

site. The age estimates in our data set vary between 2 and

23 million years. The age information will be used to

validate and visualise the results shown later.

The palaeontological data are inherently noisy: it might

be that remains of a genus are not recorded at a particular

site even though the genus lived in the location of the site.

There are a number of reasons why an observation may not

be recorded in the data. Sampling plays a major role: in

small samples, only the most common genera tend to be

recorded, and the number of rarer genera present continues

to increase with sampling for most represented sample

sizes [9]. The preservation, recovery, and identification of

fossils are all random to some extent; in addition, there are

more systematic reasons for spurious absences. Mammals

differ in size and anatomy, and as a result some are more

likely than others to be preserved and correctly identified.

Sometimes, only one group of genera (e.g. the primates, the

pigs) has yet been studied from a site. Similarly, the dis-

covery of remains of common genera is rarely published

without some particular reason, such as new discoveries of

more rare ones. A third systematic reason is that a rare

genus might not be recognised because no specialist was

available. All these phenomena incur absences of attributes

in the data.

The NOW data used here are quite typical of palaeon-

tological data sets; if anything, most data sets are even

more sparse. From a palaeontologist’s point of view, the

possibility to distinguish between ‘‘true absences’’ and

‘‘false absences’’ therefore has great appeal, along with

other methods that strive to compensate for the low level of

sampling (e.g. [45, 46]). Our AB analysis may provide new

insights into this issue, as will be demonstrated in the

following.

3.1.2 Black-and-white raster images

Another data set considered for studying the performance

of the aspect Bernoulli model is a collection of 2000 binary

digit images of handwritten numerals.3 There are 200

instances from each digit category (‘0’, ‘1’,…,‘9’), each

image containing 15 9 16 pixels, each of which can be

either ‘‘on’’ (1) or ‘‘off’’ (0). In the original setting, any

pixel that is off can be explained by the content of the

image and is thus a ‘‘true absence’’. We later add corro-

sion-like new causes to the observed pixel values in the

data, by randomly turning some pixels off or on. This data

set is thus suitable as a basis for controlled experimental

validation. Especially, we will demonstrate the perfor-

mance of AB and several other methods in correcting for

such corrosion.

3.1.3 Binary coded text

The third real-world data set is a subset of the 20 newsgroup

corpus:4 short Usenet messages from four newsgroups

‘sci.crypt’, ‘sci.med’, ‘sci.space’ and ‘soc.religion.chris-

tian’. We selected 100 consecutive documents from each

newsgroup and converted them into a binary term by docu-

ment matrix using the Bow toolkit.5 Text document data

inherently contains omitted presences of words—not all
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Fig. 2 Palaeontological data: rows correspond to genera and columns

to sites of excavation

3 http://www.ics.uci.edu/*mlearn/MLSummary.html.
4 http://www.cs.cmu.edu/*textlearning/.
5 http://www.cs.cmu.edu/*mccallum/bow/.
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words that may express a topic are covered in a document

about that topic. Some documents are really short, made up

by just a few words, and some longer ones utilise a richer

dictionary. Typically, there is a dispersion of the richness

from very concise to quite extensive documents in a col-

lection, and of course, not the same words are omitted each

time when expressing a given topic. Thus, obviously there

may be different reasons why words do not appear—as well

as there may be different reasons why they do. Revealing

such ambiguities can be useful in, e.g. query based search.

We note that previous statistical text modelling approaches

have only been concerned with ambiguities created by

presences of terms (not their absences!), such as synonymy

and polysemy.

3.2 Model order selection

Here we consider the issue of how many components is

the optimal choice. A number of model selection criteria

are available to use. However, the optimal model order

may depend on the application [47] and this is often

overlooked in the machine learning literature. Of foremost

importance in nearly all cases is the out-of-sample per-

formance. Smyth [48] emphasises the use of cross

validation for this reason. Generally, a model selection

that reflects the objective of the modelling process should

be adopted. For prediction problems, the model selection

criterion should be based on the quality of predictions,

whereas in data-explanatory tasks the aim is often related

to Occam’s philosophical principle, namely to finding the

most parsimonious model that explains the data, but not

simpler than that. The choice between prediction and

explanation as the purpose for model selection is also

discussed by Heckerman and Chickering [49] in the

Bayesian model selection framework. We will consider

two methods to cover both of these considerations within

our frequentist approach.

3.2.1 Cross-validation-based model selection for data

prediction

Let us first consider a model selection criterion for pre-

dictive purposes. Figure 3 shows the ten-fold cross-

validated out-of-sample log likelihoods of the models

investigated here, for all data sets. The out of sample

likelihood is a measure that reflects the predictive capa-

bilities of the models on these data. The procedure we are

using is known as ‘‘empirical Bayes’’ and so we compute

the empirical Bayes test likelihood, which is the

following:
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Fig. 3 Out-of-sample log likelihood for AB, LPCA, MB and PLSA,

measuring the predictive capabilities of the models on the palaeon-

tological data (top panel), handwritten digit data (middle panel) and

newsgroup document data (bottom panel). Horizontal axis Model

order (number of estimated components K). Error bars show one

standard error on both sides of the mean of the folds in 10-fold cross-

validation. In the middle panel, PLSA is below -3 and thus not

shown
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log

Z

s

pðxtestjs; aÞpðsÞds ð22Þ

where p(s)& 1/Ntrain

P
n d(s - sn) is the empirical sample

density of the estimates of s as obtained from the training

data of size Ntrain [50, 5]. For AB, the empirical Bayes test

log likelihood associated with one test point is computed as

the following:

log
1

Ntrain

X

n

Y

t

X

k

atkskn

 !xt;test

1�
X

k

atkskn

 !1�xt;test

;

ð23Þ

for PLSA it reads

log
1

Ntrain

X

n

Y

t

X

k

atkskn

 !xt;test

ð24Þ

and for LPCA, respectively

log
1

Ntrain

X

n

Y

t

1

1þ exp �
P

k atkskn

� �
 !xt;test

� 1� 1

1þ exp �
P

k atkskn

� �
 !1�xt;test

:

ð25Þ

For MB, the test log likelihood does not involve a density

over s:

log
X

k

pk

Y

t

a
xt;test

tk ð1� atkÞ1�xt;test : ð26Þ

In the above formulae, n ranges over the training points;

specifically, skn are obtained for the training point xn.

Instead, xt,test is the tth dimension of a new, previously

unseen test point. The empirical test likelihood for an out

of sample set of test points is then simply the average of the

test likelihoods obtained for the individual test points.

Figure 3 shows the 10-fold cross-validated test likeli-

hoods over a range of model orders. From these results, it is

clear that AB consistently and significantly outperforms

MB, except for the newsgroup data, in which the AB

likelihood is higher but the error bars overlap. PLSA

remains the poorest in this comparison, partially because

its likelihood is computed differently: the zero entries of

data do not contribute to the log likelihood (24) as

log (
P

k atkskn)x = 0 when x = 0. One might expect NMF to

behave similarly to PLSA (see Buntine [7] for a discussion

of the similarity of NMF and PLSA)—in general, com-

paring the likelihoods of multinomial and Bernoulli models

is problematic.

Interestingly, AB does not over-fit on these data sets

over a wide range of model orders considered. (In the

palaeontological data, over-fitting has been experienced

after 30 components only.) In comparison with LPCA, AB

requires more components but it achieves comparable

performance. Given the cubic scaling of LPCA versus the

multi-linear scaling of AB, as discussed in Sect. 2.3, AB

may then be a preferable choice for modelling and analysis

of binary data matrices. In addition, the most important

advantage of AB is its intuitive data explanatory capability,

which will be demonstrated in the next few sections. This

is a consequence of the constrained nature of the AB

parameters, which are all positive and probabilistic quan-

tities, and thus easy to interpret. In turn, the LPCA

parameters are unconstrained, resulting in a greater com-

pression capacity but lack of interpretability.

3.2.2 AIC-based model selection for data explanation

Contrarily to prediction tasks, one often prefers a parsi-

monious data explanatory model. Following the arguments

given by Ripley [47], a procedure designed to achieve this

objective, in models estimated by maximum likelihood, is

the Akaike Information Criterion (AIC) [51]:

AICðKÞ ¼ �LðKÞ þ PðKÞ ð27Þ

where K is the number of latent components, L is the in-

sample log likelihood of the model and P is the number of

free parameters that need to be estimated. In the AB model,

P(K) = TK + (K - 1)N. The optimal model order is then

found by minimising (27) under K.

For the palaeontological data, the AIC suggests K = 4

components; for the newsgroup data K = 5 and for the

handwritten digit data K = 15.

3.3 Omission/addition detection by ‘‘phantom’’ latent

aspects: an analysis

Here we provide some insights into the representational

properties of the AB decompositions. In particular, we

discuss the ability of the AB model to detect and distin-

guish between two types of zeros (’’true absences’’ and

‘‘false absences’’) and similarly between two types of ones

(’’true presences’’ and ‘‘false presences’’). These abilities

were not discussed above when the model and algorithm

were presented, and indeed the abilities are not ’’hard-

coded’’ into the model. Instead, the detection of values that

disagree with the topical content of an observation, namely

false absences or presences, is accomplished by factors that

we will call ‘‘phantom’’ latent aspects. A ‘‘white phantom’’

is a latent aspect which has a negligible probability of

generating a value 1 at any attribute, meaning atk & 0 at all

t, and thus it explicitly generates zeros in the data and can

be used to detect and distinguish false absences from true

absences. In contrast, a ‘‘black phantom’’ generates the
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value 1 at all attributes, atk & 1 at all t, and it can be used

to distinguish added presences from true ones. We would

like to stress that the phantoms are never imposed but

instead found in the learning procedure when appropriate.

To provide an insight into this representation scheme,

we analyse the implications of the optimisation performed

by the EM algorithm, in terms of the entropies of the

parameters involved.

At the stationary point of the log likelihood, using for-

mulae (8)–(9), the sum of conditional expectations of the

joint likelihood of the data and latent variables zn, condi-

tioned on sn and a—i.e. the first part of the F-term in

Eq. (38) in Appendix A—is the following.
X

n

X

zn

qnðznÞ log pðxn; znjsn; aÞ ð28Þ

¼
X

n;k

log skn

X

t

qk;n;t;xtn
þ
X

k;t

log atk

X

n

xtnqk;n;t;xtn

þ
X

k;t

logð1� atkÞ
X

n

ð1� xtnÞqk;n;t;xtn

ð29Þ

¼ T
X

n;k

skn log skn þ
X

k;t

atk log atk

X

n

qk;n;t;xtn

þ
X

k;t

ð1� atkÞ logð1� atkÞ
X

n

qk;n;t;xtn

ð30Þ

¼ �T
X

n

HðsnÞ �
X

k;t

Hð½atk; 1� atk�Þ
X

n

qk;n;t;xtn
ð31Þ

which is a weighted sum of the entropies of the model

parameters. Here we have used qn(�) : p(�|xn,sn, a) and

pðxn; znjsn; aÞ ¼
Q

t

Q
k½sknaxtn

tk ð1� atkÞ1�xtn �ztnk and
P

zn
qn

ðznÞztnk ¼ qk;t;n;xtn
: The latter equality is obtained as

detailed in Appendix A.

It is of interest now to follow how this weighted sum of

entropies modifies during the EM iterations (7–9). Figure 4

shows the monitoring of (31) and the data likelihood (6)

against iterations, for the data sets analysed.

We observe that the weighted sum of entropies

decreases monotonically with the EM iterations. The

decrease is very similar to the increase of the data log

likelihood. This behaviour intuitively explains two repre-

sentational tendencies of the model:

• a tendency towards a sparse distribution of sn (only a

few latent aspects are active at a time), due to the first

sum of terms in (31)

• a tendency towards extreme binary values in atk, due to

the second sum of terms in (31)

Specifically, in the extreme case when the data support

that only one latent cause is active at a time, the

representation reduces to a single-cause mixture; this

implies that the bases atk are local averages of data.

Averaging black and white (which is the case when a

varying degree of omissions or additions are present in the

data at random locations) would result in grey values in atk,

i.e. high entropy Bernoullis—this is not preferable in the

light of (31), so the method chooses to keep two active

causes, namely one content-bearing aspect and one

‘‘phantom’’ aspect. The reduction of grey values in atk this

way obtained compensates for the slight increase in the

entropy of sn when more than one skn become active for a

given n.
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Fig. 4 Top Log likelihood of data (Formula 6). Bottom The weighted sum of parameter entropies (Formula 31). Horizontal axis EM iterations
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A somewhat similar analysis has been useful for

understanding the behaviour of other discrete variable

models too [52–54].

Interestingly, an analogous derivation can be performed

in the single-cause Bernoulli mixture model: the corre-

sponding lower bound of the complete data likelihood can be

written as Q = - N H(p) -
P

k,t H([atk, 1 - atk])
P

n skn

where p = (p1,…,pK) is a vector of the prior probabilities

of the mixture components and skn is the posterior proba-

bility of component k causing observation n. However,

phantom-type components cannot arise as only one mixture

component is allowed per observation and a phantom alone

cannot explain both the ones and the zeros in the

observation.

3.4 Parameter interpretability in palaeontological data

In this section, we will demonstrate that the modelling

assumptions of AB give rise to quite intuitive and inter-

pretable representations.

On the basis of the Akaike Information Criterion, the

model order of K = 4 latent aspects was chosen for the

analysis of palaeontological data. We now estimate the

corresponding AB model. Figure 5a shows the values of

the parameters atk giving the probability that the latent

aspect k generates a value 1 at attribute (genus) t. White

corresponds to zero probability and black to one. We can

see that the aspects concentrate on distinct time intervals

(the attributes in the data set are roughly ordered based on

their ages). Also, there is one blank aspect to explain

unknown false absences, giving a zero probability for all

attributes. We call this kind of aspect a ‘‘white phantom’’.

It generates zeros in the data, in contrast to other latent

aspects that generate both zeros and ones.

To avoid ending up in a local minimum of likelihood,

we estimate the model repeatedly with random initialisa-

tions and choose the in-sample likelihood-optimal values

for presentation. A phantom such as the one in Fig. 5 was

found in 28 out of 30 randomly initialised restarts.

Let us visualise the grouping of genera by drawing a box

plot of the ages of genera captured by different latent

aspects. Figure 5b shows for each latent aspect k the distri-

bution of the ages of genera t weighted by the probabilities

atk. We can see that different latent aspects indeed concen-

trate on different periods in time. The Wilcoxon rank sum

test applied on all pairs of distributions indicates that they

are distinct: the P values range between 0.0000 and 0.0201

for the null hypothesis of median equality.

The latent aspects can be viewed from a different angle if

we consider the distributions skn giving the probability of

latent aspect k being present in observation (site) n. The

distributions are shown in Fig. 6a. The fourth aspect, the

‘‘phantom’’, is again different in its behaviour: it seems to

have a nonzero probability in most observations. Thus, the

model proposes that a phantom cause is present in a number
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of observations; by its presence, it generates absences of

attributes, as seen in Fig. 5a. The varying probability of the

phantom has a negative correlation with the number of ones

per observation: The observations having only a few attri-

bute occurrences have a large probability of the phantom

being present, as seen in Fig. 6b.

The parameters atk and skn given by the LPCA, MB,

PLSA and NMF models in turn (not shown) do not separate

any blank cause to explain unknown false absences.

Instead, the parameters given by MB, PLSA and NMF

merely group with respect to time, quite similarly to the

non-phantom parameters of the AB. The parameters given

by LPCA, as well as the bias term included in the model,

range across positive and negative values as they are not

restricted to be probabilities but instead give the decom-

position of the natural parameter h of the Bernoulli

distribution, up to rotation; the parameters are thus difficult

to interpret.

3.5 Text document representation

We now turn to the newsgroup document data and dem-

onstrate the latent aspects found by the AB model. The

latent aspects can be visualised by listing for each aspect k

the terms t having the largest probability atk of being

generated by the aspect. We estimate K = 5 aspects sug-

gested by the Akaike Information Criterion (27). Table 1

lists the keywords and their probabilities in descending

order. The second aspect is a ‘‘phantom’’ aspect which

gives a zero probability for the presence of any term. The

other four are clearly related to the various topics of dis-

cussion. The model was estimated repeatedly, with random

initialisations, and a phantom was found in 28 out of 30

initialisations.

The probabilities atk and skn in the newsgroup data

behave quite similarly to those in the palaeontological data:

for each aspect k, a group of terms t has a large probability

atk of being ‘‘on’’, except for the phantom aspect.

Respectively, each aspect k is active mainly in a subset of

documents n, represented by the distributions skn, except

for the phantom aspect which is active in most documents.

This is seen in Table 1: the figures on top of each column k

give
P

n skn, the sum of the probabilities of the kth aspect

in all documents; we see that the ‘‘phantom’’ aspect has a

large overall probability compared to the other aspects.

In Table 1 we also note that in addition to the ambi-

guities regarding absences of terms, solved in the AB

model in an original manner with the aid of ‘‘phantom’’

aspects, AB is also able to capture the well-known ambi-

guities that are associated with presences of terms—

synonymy and polysemy. An example of synonymy can be

noted in the given example within the medical aspect,

where both ‘medic’ and ‘doctor’ are terms whose presence

is highly probable. Polysemy is captured by that the pres-

ence of the same word may be generated by several topical

aspects, e.g. the presence of the word ‘system’ is generated

by both the space-related and cryptographic aspects. The

aspect identifiers, shown in the table header, have inten-

tionally been chosen as adjectives, in order to emphasise

that the keyword lists represent in fact common features

extracted from the corpus and are in general not cluster-

centres. Naturally, if the corpus consists of well separated

clusters then the main features will consequently be close

to the cluster-centres, due to the clustering tendency of the

model. However, the clustered structure is not artificially

imposed, as in the case of single-cause mixtures. Indeed,

e.g. the omission of words is a common feature of all text-

based documents and this has been accounted for by the

phantom topic.

Table 1 Five aspects k in a document collection of Usenet newsgroups sci.crypt, sci.med, sci.space and soc.religion.christian, presented as lists

of terms t having the largest probabilities atk (shown after the terms)

Religious 45.1 Phantom 152.9 Cryptographic 42.9 Medical 48.2 Space-related 59.0

god 1.00 agre 1e-03 kei 1.00 effect 0.84 space 0.76

christian 1.00 sternlight 1e-11 encrypt 1.00 peopl 0.72 nasa 0.59

peopl 0.95 bless 3e-12 system 1.00 medic 0.66 orbit 0.49

rutger 0.81 truth 3e-15 govern 0.90 doctor 0.52 man 0.37

word 0.63 peopl 2e-15 public 0.89 patient 0.47 cost 0.35

church 0.63 comput 3e-16 clipper 0.84 diseas 0.42 system 0.34

bibl 0.61 system 9e-19 chip 0.83 treatment 0.40 pat 0.33

faith 0.60 man 1e-19 secur 0.82 medicin 0.40 launch 0.32

christ 0.59 nsa 1e-21 peopl 0.70 food 0.35 mission 0.30

jesu 0.56 shuttl 4e-22 comput 0.65 med 0.33 flight 0.28

Besides four aspects representing the topical features of discussion, there is an additional ‘‘phantom’’ aspect common to all documents,

explaining absences of words which are not due to real topical causes. The top row gives
P

n skn reflecting the overall probability of aspect k
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Figure 7 depicts scatter plots of the probabilities skn of

each aspect k against the number of distinct words which

appear in the documents n, one subplot for each k. The

probability of the phantom correlates negatively with the

richness of the document. All real topical aspects in turn

correlate positively with the richness of the documents.

Also, as an example, three documents are highlighted. It is

seen that despite skn sums to one w.r.t. k at each n, it is still

possible to represent multiple causes of the same document

n by letting skn take values in the whole range [0,1]. In

contrast, in a single-cause model, we would have sk’n = 1

for one k = k0 and 0 for other k = k0.
The analysis of individual documents is continued in

Table 2. The first column lists the words t which are

present in the document n, and in the second column the

most probable aspects k for each word are given along with

their posterior probabilities qk;t;n;xtn
(7) where k [{1,…,5} in

this experiment. Small probability values are omitted for

brevity; however, a complete list in each row would of

course sum to one. We can observe that some of the more

common words share a number of topic-aspects which

explain them with a certain probability.

In addition we show how documents can be augmented

with terms suggested by the phantom. Table 3 lists the

terms t for which qk;t;n;xtn
is the largest for the phantom

aspect k in a document n. The results are given for ten

randomly selected documents in the corpus. The terms are

not present in the corresponding document; however, they

fit nicely to the topical content of the original document,

suggesting the possible use of this method for query

expansion, as queries are typically short and incomplete.

The above analyses cannot be computed for MB, LPCA,

NMF or PLSA because no single component accounts for

the missing terms.

3.6 Detecting and removing ‘‘false absences’’ and

‘‘false presences’’: an evaluation

In this section, we measure the performance of the AB

model in detecting non-content-bearing causes. It should be

stressed that there is no ‘‘clean’’ data available for training,

instead the algorithm only sees the possibly corrupted data,

without knowing about the existence of noise processes

a priori.

Note that the use of factor models for noise separation

and removal is not recent. PCA and ICA have both been

used for this purpose quite extensively, in continuous-
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Fig. 7 The probability skn of the individual aspects (topics) plotted

against the number of different words in document n (horizontal axis).

The probability of the phantom-topic (aspect no. 2) is negatively

correlated with the richness of the documents, whereas the real-topics

are positively correlated with the richness. Three documents are

highlighted: circle ‘‘system’’ ‘‘medicin’’—a very short document;

square ‘‘peopl’’ ‘‘public’’ ‘‘system’’ ‘‘agre’’ ‘‘faith’’ ‘‘accept’’ ‘‘christ’’

‘‘teach’’ ‘‘clinic’’ ‘‘mission‘‘ ’’religion‘‘ ‘‘jesu’’ ‘‘holi’’ ‘‘doctrin’’

‘‘scriptur’’—a fairly long document with rich heterogeneous topical

content; and arrowhead ‘‘govern’’ ‘‘secur’’ ‘‘access’’ ‘‘scheme’’

‘‘system’’ ‘‘devic’’—a medium size document focused on a single

topic

Table 2 Analysis of three heterogeneous newsgroup documents

Words Latent aspects and their posterior probabilities

system medical 0.55, cryptogr. 0.44, space 0.01

medicin medical 1.00

peopl religious 0.75, cryptogr. 0.08, medical 0.13, space 0.04

public cryptogr. 0.58, religious 0.42

system cryptogr. 0.44, medical 0.19, space 0.37

agre religious 0.95

faith religious 1.00

accept religious 0.88

christ religious 1.00

teach religious 0.97

clinic medical 1.00

mission space 1.00

religious religious 1.00

jesu religious 1.00

holi religious 1.00

doctrin religious 1.00

scriptur religious 1.00

govern cryptogr. 1.00

peopl cryptogr. 0.66, medical 0.13, space 0.20

christ religious 1.00

food medical 1.00

rutger cryptogr. 1.00

church religious 1.00

atho religious 1.00

The first column lists the words t which are present in the document n.

In the second column, the most probable aspects k are given along

with their posterior probabilities qk;t;n;xtn
: Note the uncertainty in

explaining some of the more common words
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valued signal processing. Denoising of gene expression

arrays [55] and denoising EEG signals [56] are two of the

most known examples.

However, noise removal from discrete domains has not

been attempted so far, up to the best of our knowledge, and

the use of discrete factor models or aspect models to this

task has not been studied. This is what we attempt in the

remainder of this section, in the binary data setting.

Interestingly, in the natural binary data considered, we

only encounter noise factors that create attribute absences

by turning a 1 into a 0. Nevertheless, in order to show that

our model is not restricted to detect this type of noise factor

but also the symmetrical counterpart of it (when some of

the zeros are randomly flipped to ones), we will create such

situations artificially in some of the presented examples.

3.6.1 Detection of missing or added remains

from palaeontological data

3.6.1.1 Filling in false absences We assume that a genus

(an attribute) is absent in a site (an observation) either

because the genus did not live in the area, or because it did

but no remains were recorded. The former is a true absence

and the latter a false absence. Reasons for the missingness

were discussed in Sect. 3.1.1. One might quite safely

assume that in case a genus is observed at several sites, the

sites should be consecutive in their ages. That is, observing

a genus at sites n and n + l, l [ 1 implies that the genus

should also have been observed at all intermediate sites

n + 1,…,n + l - 1, if the sites are sorted according to their

ages. Not observing the genus t at an intermediate site n0

means that the zero at xn’t is a false absence.

In the experiments that follow, the original data is fed to

the AB model, without labels indicating the type of zeros.

We would like to stress that the order of the observations is

by no means utilised in the AB model or in the estimation

procedure.

As the missingness is largely identified by one latent

aspect as shown in Sect. 3.4, we can correct for the miss-

ingness by post-processing the data by removing the

‘‘phantom’’ aspect and reconstructing the data again. More

precisely, first identify the phantom aspect by looking at

the values of atk and finding the k for which atk & 0 Vt;

denote this by k*. Then remove the phantom aspect k* by

setting sk*n = 0 Vn and normalise all skn such that
P

k

skn = 1 holds again for all n. Then compute the recon-

struction of the data as ptn =
P

k atkskn where skn was

updated as described above. Finally, round the ptn to 0 or 1.

For comparison, we also reconstruct the data by other

methods: MB, LPCA, NMF and PLSA. In MB, LPCA and

NMF, the reconstruction is computed similarly by rounding

ptn to 0 or 1, except that no component is removed, as the

missingness in these methods is not separated by any one

component but instead the components collaborate in

explaining the data as it is. NMF and PLSA are not

designed for binary data and are thus somewhat problem-

atic to employ, due to the lack of suitable probabilistic

interpretation. With NMF, values above 1 are possible as

NMF does not treat the values as probabilities, so we

Table 3 Expansion of ten

randomly selected documents

from the four newsgroups

collection

For each document, the first line

contains the terms present in the

document, followed by the top

list of terms that the phantom-

topic is responsible for, along

with the posterior probability

qk;t;n;xtn
of the phantom

govern secur access scheme system devic

kei 0.99 encrypt 0.99 public 0.98 clipper 0.92 chip 0.91 peopl 0.89 comput 0.84 escrow 0.83

encrypt decrypt tap

system 1.00 kei 1.00 public 1.00 govern 0.98 secur 0.98 clipper 0.97 chip 0.97 peopl 0.96 comput 0.94

algorithm encrypt secur access peopl scheme system comput

kei 0.98 public 0.97 govern 0.92 clipper 0.87 chip 0.85 escrow 0.75 secret 0.63 nsa 0.63 devic 0.62

peopl effect diseas medicin diagnos

medic 0.98 doctor 0.77 patient 0.75 treatment 0.71 physician 0.66 food 0.66 symptom 0.65 med 0.65

system medicin

effect 0.97 medic 0.96 peopl 0.96 doctor 0.92 patient 0.92 diseas 0.91 treatment 0.91 physician 0.89

peopl secret effect cost doctor patient food pain

medic 0.48 diseas 0.28 treatment 0.27 medicin 0.27 physician 0.24 symptom 0.24 med 0.24 diet 0.24

peopl effect doctor

medic 0.98 patient 0.87 diseas 0.85 treatment 0.84 medicin 0.84 physician 0.81 food 0.81

peopl sin love christ rutger geneva jesu

god 0.99 christian 0.99 church 0.79 word 0.79 bibl 0.78 faith 0.78 agre 0.74 accept 0.73 scriptur 0.73

peopl public system agre faith accept christ teach clinic mission religion jesu holi doctrin scriptur

god 0.05 christian 0.05 rutger 0.04 word 0.03 church 0.03 bibl 0.03 love 0.03 man 0.03 truth 0.03

govern peopl christ food rutger church atho

god 0.74 christian 0.74 word 0.66 accept 0.64 bibl 0.64 faith 0.64 jesu 0.63 agre 0.63 effect 0.63
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simply turn those to 1. The data model of PLSA is quite

different too, as already discussed in Sect. 2.4. The

parameters give p(t|n), the probability of generating word t

into any word position of document n having Ln words. In

the palaentological setting, ‘‘words’’ now correspond to

genera, and ‘‘documents’’ correspond to sites. We resort to

interpreting a 0–1 vector in the light of PLSA as follows.

Let Ln be the unknown length of document n, and compute

the probability of word t appearing at least once in the

document—this corresponds to binary coding of the docu-

ment. The probability is then

pð0attribute t appears at least once in observation n0Þ
¼ 1� ð1� pðtjnÞÞLn

ð32Þ

in which we assume the unknown document length Ln to be

the number of ones in the observation.6 The probability

thus obtained is again rounded to 0 or 1.

Table 4 shows the decrease in the number of missing

presences (false absences) when the data are reconstructed

using AB, MB, LPCA, NMF and PLSA. The decrease is

largest in AB when the data are post-processed by

removing the phantom as described above; the result of

plain AB without the post-processing is also given for

comparison. It is well possible that new false absences are

generated in the reconstruction process, if new 1s are

inserted outside the original range of the observations of a

genus. Indeed, such new missing values are generated

especially at PLSA. The results shown are optimal among

50 random initialisations.

3.6.1.2 Detecting added noise A more challenging set-

ting is obtained by artificially introducing an extra noise

factor by randomly adding extra presences (1s) into the

original data. In this case, not only the 0s have two under-

lying explanations (a ‘‘true absence’’ or a ‘‘false absence’’)

but also the 1s may be true or false. We corrupt the data

such that the proportion of extra7 1s in each observation

(site) is distributed according to Uniform[0,0.4]; in the

original data the percentage of 1s is 5.08% and in the cor-

rupted data it is 12.5%—more than doubled. We then

estimate K = 5 latent aspects in the corrupted data and

obtain one ‘‘white phantom’’ having a negligible probability

of generating any genus, and one ‘‘black phantom’’ having a

large probability of generating any genus, and three real

aspects.

The posterior probability qk;t;n;xtn
that the aspect k has

generated the observation xtn is computed as in Formula

(7). The histograms of the posteriors qk;t;n;xtn
for true 1s,

added 1s and 0s are seen in Fig. 8. They are computed as

pðkjtrue onesÞ /
X

t;n:xtn¼1 originally

qk;t;n;xtn
ð33Þ

pðkjadded onesÞ /
X

t;n:xtn¼1 added

qk;t;n;xtn
ð34Þ

pðkjzerosÞ /
X

t;n:xtn¼0

qk;t;n;xtn
ð35Þ

The quantities (33)–(35) are normalised such that each of

them sums to 1 over k. We can see in Fig. 8a that the

‘‘white phantom’’ (the leftmost bar in all plots) has a very

small or zero probability in true or added 1s and corres-

pondingly a high probability at zeros. The ‘‘black

phantom’’ (the third bar in all plots) has a large posterior

probability in the added 1s and a very small probability at

zeros. The real aspects behave in an opposite manner.

For comparison, Fig. 8b, c give the corresponding val-

ues for MB and PLSA. The number of components is

chosen such that the total number of parameters is equal in

all models considered—this gives K = 19 for MB and

K = 5 for PLSA. At each model, the parameters used are

from an in-sample log likelihood-optimal run over 10

repeated runs. No latent component differentiates between

0s and true and added 1s either in MB or in PLSA. Using

K = 5 in MB would not result in a ‘‘white phantom’’ or a

‘‘black phantom’’ either. For LPCA and NMF, the quan-

tities (33)–(35) cannot directly be computed, as the

posterior of a component is not a well defined concept.

3.6.2 Detecting and correcting distortions in raster images

The data set of raster images of handwritten digits origi-

nally has no inherent pixel omissions or additions;

therefore, it can be used for objective and controlled

assessment. We create the two types of distortion studied in

Table 4 Decrease in the number of missing values when the palae-

ontological data are reconstructed using the model parameters

AB post-proc. AB MB LPCA NMF PLSA

745 47 54 155 75 -39

Generation of new missing values is possible, as indicated by the

negative decrease of PLSA. ‘‘AB post-proc.’’ refers to post-process-

ing the data by removing the phantom

6 Another way would be to average over Ln, assuming that Ln ranges

uniformly between the number of ones in the observation and some

manually chosen upper limit; in Table 4 this would give inferior

results for many choices of the upper limit.

7 This is indeed not the proportion of 0s turned to 1s, but instead

includes new 1s superimposed at existing 1s, which have no effect.
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this section artificially and measure the ability of AB in

detecting them.

First we add a corrosion cause into the data: we turn

‘‘off’’ a uniformly varying amount of pixels that were ‘‘on’’

in the original images. In the original data, any pixel that is

‘‘off’’ (0) is a ‘‘true absence’’ and can be explained by the

content of the image. In the corrupted data, however, a 0 is

either a true absence as before, or a false absence,

explained by the corrosion.

3.6.2.1 Noise removal We then demonstrate the use of

the AB model in noise removal. As the noise is identified

by one latent aspect, we can correct for the noise by

removing the noise aspect and reconstructing the data

again. Similarly to what was described in Sect. 3.6.1, we

identify k* as the aspect corresponding to noise, by atk* &
0 V t.8 We then set sk* n = 0 V n and normalise all skn by

requiring
P

k skn = 1. The reconstruction of the data is then

computed by rounding ptn =
P

k atkskn to 0 or 1.

Figure 9 shows the success in reconstructing corrupted

digits where some pixels are turned to 0: the proportion of

extra 0s is drawn from a Uniform[0,0.4] distribution. The

noise removal rate is measured as 1 - (fp + fn)/2 where fp

is the rate of false positives, occurring if a true 0 is turned

to 1, and fn is the rate of false negatives, occurring if a false

0 is not turned to 1. At MB, LPCA, NMF and PLSA, the

reconstruction is computed as described in Sect. 3.6.1

related to Table 4.

In Fig. 9 we see that aspect Bernoulli is very successful

in binary noise removal when the parameters are post-

processed by removing the aspect corresponding to noise,

as described above. Without such post-processing (not

shown), AB behaves quite similarly to NMF. LPCA is

comparable at very small K only, and PLSA is not very

successful: in both methods, the rate of false negatives is

quite large even though false positives are rare. The error

bars give the standard error on both sides of the mean, over

5 disjoint subsets of the data.

3.6.2.2 Multiple causes of presences and absences Let us

then see how the basis images combine to reconstruct

instances of observed digit images. As an example we

analyse the corrupted digit data where the proportion of

extra 0s was drawn from a Uniform [0,0.4] distribution; the

same data set was used to create Fig. 9. The number of

latent aspects was chosen based on the AIC as K = 14. The

top row of Fig. 10 shows the 14 bases (parameters atk)

obtained for this data set; these are in-sample log likelihood

optimal values over 30 random initialisations. In addition

to bases that look like prototypical images as they contain

high probabilities on corresponding pixels, we also have
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Fig. 8 Posterior probabilities of

the latent aspects k in corrupted

palaeontological data. a AB,

b MB, c PLSA. At each case,

the leftmost plot shows the

probabilities at true 1s (33), the

middle one at added 1s (34) and

the rightmost at 0s (35). The

number of components is

chosen such that the total

number of parameters is the

same in all models. In AB,

aspects k = 1 and 3 differentiate

between the three cases

8 At large K, several aspects may correspond to noise, but for

simplicity we only select the one having the smallest value of
P

t atk.
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one phantom basis for which atk is almost zero at all pixels

t. To demonstrate the role of the phantom and the way the

aspects may combine, we then analyse 6 observed images,

shown in the leftmost column. For each image n and aspect

k, the posterior probability qk;t;n;xtn
that the kth aspect

explains the observed value (0 or 1) of all pixels

t = 1,…,240 is then given. On all these plots, the level of

darkness of a pixel is proportional to the probability of it

being ‘‘on’’.

The ‘5’ depicted on the first data instance (second row of

Fig. 10) is largely explained by the basis image which is a

prototype of ‘5’. In addition, the basis ‘6’ explains the

pixels that are left unexplained by the basis ‘5’. A similar

phenomenon is seen in the second and third data instances

where a ‘6’ and an ‘8’ are analysed. The pixels that are

‘‘on’’ have multiple causes and so several bases contribute

to explaining the observed data.

The fourth data instance is a ‘2’ that has suffered cor-

rosion. It is well explained by the basis ‘2’, except for the

pixels which are off due to the artificially created corro-

sion. These pixels are explained by the phantom with the

highest probability. A similar case is seen in the fifth data

instance where a corrupted ‘1’ is analysed.

The last example does not directly resemble any one of

the basis images, and it is explained by a combination of

bases ’7’ and ’6’ and the phantom.

The bases given by MB, LPCA, PLSA and NMF are

shown in Fig. 11. No single basis corresponds to the cor-

ruption, instead the bases resemble parts of digits. For the

ease of comparison, K = 14 bases are estimated; however,

the results at different K are quite similar.

Similarly, using AB in the case of added 1s (not shown)

we get one ‘‘black phantom’’ which has a high posterior

probability of having created the non-content-bearing black

pixels. The content-bearing pixels (both white and black)

are explained by one or a few content-bearing latent

aspects.

3.6.3 Detecting added words from Usenet text messages

In Sect. 3.5 we have seen that term occurrences in text

messages naturally contain a factor of word omission and

AB is able to detect that factor. However, for text, the

goodness of this detection can only be assessed in a sub-

jective manner. In order to conduct an objective evaluation

we create an artificial setting, in the same way as with the

palaeontological data. We randomly add 1s in the data such

that the proportion of extra 1s in each document is dis-

tributed according to Uniform[0,0.4]; in the original data

the percentage of 1s is 6.3% and in the added data it is

13.7%. We then estimate K = 6 latent aspects in the cor-

rupted data, and obtain four aspects reflecting the four
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1−
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fn
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BINARY RECONSTRUCTION

AB−postproc
MB
LPCA
NMF
PLSA

Fig. 9 Noise removal in artificially corrupted binary handwritten

digit images. The parameters of AB are post-processed by removing

the component explaining the noise, re-normalising the parameters,

and reconstructing the data. In the other methods, the data are

reconstructed from the original estimated parameters, as no single

component explains the noise. Horizontal axis Number of compo-

nents. Vertical axis 1 - (fp + fn)/2 where fp = false-positive rate,

fn = false-negative rate

Fig. 10 Results on artificially corrupted binary handwritten digit

images where some pixels have been turned to white. The images on

the top line depict the reshaped parameters atk as basis images. Some

examples from this data set are shown in the first column, and their

analysis as provided by the AB model in the next columns. For each

datum instance n and each aspect k, the probability values qk;t;n;xtn
are

shown for each pixel t [{1,…,240}. On all these plots, the level of

darkness of a pixel is proportional to the probability of it being ‘on’

Fig. 11 Basis images estimated by MB (top row), LPCA (second
row), PLSA (third row) and NMF (bottom row) in artificially

corrupted binary handwritten digits
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newsgroups; in addition there is a ‘‘white phantom’’ having

a negligible probability of generating any term, and a

‘‘black phantom’’ having a large probability of generating

any term. The black phantom explains the artificially

added terms which do not fit the topical contents of the

documents.

We can also measure the degree to which the models are

able to distinguish between different 1 s. Figure 12 shows

the normalised histograms of the posterior probabilities of

latent aspects k. For each k, we compute p(k|true 1),

p(k|added 1) and p(k|0) similarly as before by AB (a), MB

(b) and PLSA (c). At MB and PLSA, the number of

components is chosen such that the number of parameters

in all methods are equal. The results shown are in-sample

log likelihood optimal results over 10 random initialisa-

tions. In Fig. 12 (a) in the first histogram we see that the

‘‘white phantom’’ (k = 5) of AB explains none of the true

1s. Correspondingly, the ‘‘black phantom’’ (k = 1) explains

the added 1s to a high degree, as seen in the second his-

togram. The third histogram shows that the white phantom

(k = 5) explains most of the zeros whereas the black

phantom (k = 1) only explains a small fraction of them. In

text document data, the zeros might be ‘‘true absences’’ or

‘‘false absences’’ but we cannot manually distinguish

between them, and so the numerical accuracies cannot be

measured in this respect. In Fig. 12b, the sixth Bernoulli

mixture component explains the added 1s to a high degree,

but it also explains the true 1s and 0s to a large degree. In

Fig. 12c, none of the PLSA components deviates.

4 Conclusions

This paper presented a probabilistic multiple cause model

for 0–1 data. The AB model analyses the causes behind not

only the presences (1) but also the absences (0) of attri-

butes, and produces interpretable explanations to these,

which is in contrast to all existing models for 0–1 data. A

distinctive feature of the aspect Bernoulli model is its

ability to separate binary noise factors (both omissions and

additions) in the data by automatically creating specific

‘‘phantom’’ latent aspects. A ‘‘white phantom’’ gives a

negligible probability of appearance to any attribute and

thus it is used to explain omissions in the data; in contrast,

a ‘‘black phantom’’ generates occurrences of all attributes

with probability close to 1 and as such it explains additions

in the data. The phantoms are not hard-coded into the

model but arise automatically.

We have also demonstrated how the AB model outper-

forms related models in the task of noise removal from

binary data. In addition we studied and contrasted AB to

related Bernoulli models in several settings in terms of

scaling, out-of-sample likelihood and parameter interpret-

ability: AB scales equally to the mixtures of Bernoulli
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Fig. 12 Posterior probabilities

of the latent aspects k = 1,…,6

in corrupted newsgroup data. a
AB, b MB, c PLSA. At each

case, the leftmost plot shows the

probabilities at true 1s (33), the

middle one at added 1s (34) and

the rightmost at 0s (35). In AB,

aspects k = 1 and 5 differentiate

between the three cases
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model and outperforms that in terms of out-of-sample

likelihood; AB scales favourably compared with logistic

PCA while their out-of-sample likelihoods tend to be

similar; finally, AB gives interpretable parameters whereas

logistic PCA does not.

In addition to the variety of related factorisation models

discussed, let us briefly mention a few models that hard-

wire the presence of a common (noise-)component. The

mixture of Gaussians model of Law et al. [57] has one

content-bearing latent cause for each observation; then for

each attribute, the value of the attribute is either generated

from a distribution specific to the latent cause chosen, or

from a common cause. The models of Hofmann [58],

Barnard et al. [59, 60] and Blei et al. [61] present hierar-

chical architectures where the latent components are

arranged into a tree; the root node is a common component

that may participate in the generation of all observations.

Recently a somewhat similar tree-construction has been

considered explicitly for finding uninformative features by

Wang and Kabán [62].

An intermediate model between Logistic PCA and aspect

Bernoulli could also be constructed for completeness. The

likelihood of such a model reads pðxjs; aÞ ¼
Q

n

Q
t

g
P

k atkskn

� �xtn 1� g
P

k atkskn

� �� �1�xtn where the parameters

atk and skn are not restricted to probabilities. In our studies (not

shown), using g(u) = (exp(u) - 1)/(exp(u) + 1), the results

of such a model have indeed consistently been between those

of LPCA and AB in all respects. However, the data repre-

sentation is similar to NMF, and the noise is not separated out

into any specific components.

In this paper, we have shown how the AB model can

successfully analyse both noisy and noiseless 0–1 data in a

variety of application areas, of which the palaeontological

setting is perhaps the most demanding. From a palaeon-

tologist’s point of view, the possibility to distinguish

between true and false absences has great appeal, as there

are several systematic and random sources of bias in the

data collection process. In addition to studies involving

palaeobiodiversity and turnover, the method has potential

applicability in palaeoecology, including the generation of

‘‘proxy’’ data for palaeoenvironment reconstruction, for

palaeocommunity reconstruction, and for the study of

evolutionary dynamics at the community and metacom-

munity levels. A very practical use of the method is to

characterise and summarise the taxonomic deficiencies of

the palaeontological data: for example, a group of genera

(attributes) having a lot of false absences can be concluded

as too noisy to be included in further studies.
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Appendix A

The following holds for any distributions qn(�):
X

n

log pðxnjsn; aÞ

¼
X

n

X

zn

qnðznÞ log pðxnjsn; aÞ
ð36Þ

¼
X

n

X

zn

qnðznÞ log
pðxn; znjsn; aÞ
pðznjxn; sn; aÞ

qnðznÞ
qnðznÞ

ð37Þ

¼
X

n

X

zn

qnðznÞ logpðxn;znjsn;aÞ�
X

zn

qnðznÞ logqnðznÞ
" #

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fs1 ;...;sN ;a

ðx1;...;xN ; q1ð�Þ;...;qN ð�ÞÞ

þ
X

n

X

zn

qnðznÞ log
qnðznÞ

pnðznjxn;sn;aÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KLðqnð�Þjjpð�jxn;sn;aÞÞ

ð38Þ

We can recognise that the first term of F in (38) is the sum

of conditional expectations of the joint likelihood of the

data and latent variables zn, conditioned on sn. The second

term is the sum of entropies of qn. Finally, the last term is

the sum of Kullback–Leibler distances between the (so far

arbitrary) distributions qn over zn and the true conditional

posterior distributions of zn, conditioned on sn.

Since the KL divergence is always positive [63] (which

can easily be shown by using Jensen’s inequality), F is

always a lower bound to the log likelihood log p(xn|sn,a),

irrespective of the distributions qn(�). When qn(�):
p(�|xn,sn,a), Vn = 1,…,N, then the KL divergence becomes

zero and, therefore, the lower bound approaches the log

likelihood exactly.

The iterative EM procedure is then: In the E-step, hav-

ing some fixed estimates of sn, n = 1,…,N and a, we

maximise Fs1;...;sN ;aðx1; . . .; xN ; q1ð�Þ; . . .; qNð�ÞÞ with

respect to all qn(�). This is achieved by setting these to the

true conditional posteriors p(�|xn,sn, a), for all n = 1,…,N,

which—from Bayes’ rule—are the following:

pðznjxn; sn; aÞ ¼
pðxnjzn; aÞpðznjsnÞP
zn

pðxnjzn; aÞpðznjsnÞ
ð39Þ

¼
Q

t

Q
k½a

xtn

tk ð1� atkÞ1�xtn �ztnk
Q

t

Q
k½skn�ztnk

Q
t

P
k sknaxtn

tk ð1� atkÞ1�xtn
ð40Þ

¼
Y

t

Q
k½sknaxtn

tk ð1� atkÞ1�xtn �ztnk

P
k sknaxtn

tk ð1� atkÞ1�xtn
ð41Þ

¼
Y

t

pðztnjxtn; sn; atÞ ð42Þ

In (39), we used that p(xn|zn,a) = p(xn|sn,zn,a), which fol-

lows from the dependency structure of AB, namely that xn
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depends on sn only through zn, therefore, knowing zn makes

xn independent of sn.

It may be interesting to note that the above conditional

posterior distribution p(zn|xn,sn,a) factorises naturally,

without having imposed a factor form. Of course, as we

know, this posterior is conditioned on the value of sn, so

even though it is an exact conditional posterior quantity,

there is no tractable exact posterior over the joint distri-

bution of all hidden variables of the model, which would

be p(sn,zn|xn,a) = p(sn|xn, a)p(zn|xn,sn, a). The latter term

is what we just computed, while the former term is

intractable as discussed earlier in the main text, and so a

point estimate for sn will be obtained as part of the

M-step.

In the M-step, we keep the posterior distributions qn(�)
fixed at the values computed in the previous E-step, and

compute the most probable value of sn for each xn as well

as the parameters a. This is achieved by maximising

Fs1;...;sN ;aðx1; . . .; xN ; q1ð�Þ; . . .; qNð�ÞÞ with respect to all sn

and a.

To ensure the constraint
P

k skn = 1 is met, we add a

Lagrangian term. Denoting

qk;t;n;xtn
� pðztn ¼ kjxtn; sn; atÞ ¼

sknaxtn

tk ð1� atkÞ1�xtn

P
‘ s‘naxtn

t‘ ð1� at‘Þ1�xtn

ð43Þ

where the last equality follows from (41), and replacing the

result obtained from the previous E-step into F, the

expression to maximise, up to a constant term, is

Q ¼
X

n

X

zn

qnðznÞ log pðxn; znjsn; aÞ � kn

X

k

skn � 1

 !" #

ð44Þ

¼
X

n

X

t

X

k

X

zn

qnðznÞztnk

" #"

� log½sknaxtn

tk ð1� atkÞ1�xtn � � kn

X

k

skn � 1

 !# ð45Þ

¼
X

n

X

t

X

k

qk;t;n;xtn
log½sknaxtn

tk ð1� atkÞ1�xtn �
"

�kn

X

k

skn � 1

 !# ð46Þ

where kn are Lagrange multipliers, and the second term of

F (the entropy term) was omitted for being a constant w.r.t.

the variables of interest. Eq. (45) was obtained by

expanding pðxn; znjsn; aÞ ¼
Q

t

Q
k½sknaxtn

tk ð1� atkÞ1�xtn �ztnk

and grouping together the terms with ztnk. To obtain (46),

we used the result (42) and the notation (43), so that

P
zn

qnðznÞztnk ¼
P

zn

Q
t pðztnjxtn; sn; atÞztnk¼ pðztn ¼ kjxtn;

sn; atÞ ¼ qk;t;n;xtn
:

The terms that depend on elements of sn are

Qsn
¼
X

k

X

t

qk;t;n;xtn
log skn � kn

X

k

skn � 1

 !
þ const:

ð47Þ

Now, we solve the system of stationary equations w.r.t. skn,

which are the following.

oQsn

oskn
¼
X

t

qk;t;n;xtn
=skn ¼ kn ð48Þ

Multiplying both sides by skn, we obtain
X

t

qk;t;n;xtn
¼ knskn ð49Þ

from which we have that

skn ¼
X

t

qk;t;n;xtn
=kn ð50Þ

The value of kn is obtained by summing both sides, and

using
P

k skn = 1. This gives kn ¼
P

k

P
t qk;t;n;xtn

¼ T;

since by its definition,
P

k qk;t;n;xtn
¼ 1:

To complete the M-step, we now maximise Q w.r.t. a.

The terms that depend on elements of a up to constants, are

the following.

Qa ¼
X

n

X

k

X

t

qk;t;n;xtn
½xtn log atk þ ð1� xtnÞ

� logð1� atkÞ�
ð51Þ

The stationary equations are then the following.

oQa

oatk
¼
X

n

qk;t;n;xtn

xtn

atk
� 1� xtn

1� atk

� 	

¼
X

n

qk;t;n;xtn

xtn � atk

atkð1� atkÞ
¼ 0 ð52Þ

The denominator is the variance of the Bernoulli and

always non-negative, it can be simplified and by isolating

atk we have the solution:

atk ¼
P

n xtnqk;t;n;xtnP
n qk;t;n;xtn

ð53Þ

Note that the constraint atk [ [0,1] needed not be explicitly

imposed in this model setting, as it is automatically satis-

fied for binary data.9

9 This also fallows from the first moment identity for exponential

family of distributions, of which the Bernoulli distribution is a

member [50].

Pattern Anal Applic

123



Appendix B

The derivation of the fixed point equations (13)–(15) as an

alternating optimisation of
P

n p(xn| sn,a) (or equivalentlyP
n p(xn, sn|a)) is as follows.

Denote atk ¼ 1� atk: The log likelihood (11) is maxi-

mised, subject to the constraints
P

k skn = 1 and atk þ atk ¼ 1:

The corresponding Lagrangian is thus the following:

L ¼
X

n

X

t

xtn log
X

k

atkskn þ ð1� xtnÞ log
X

k

atkskn

"

�ctkðatk þ atk � 1Þ � kn

X

k

skn � 1

 !#

ð54Þ

where ctk and kn are Lagrangian multipliers, and we have

rewritten (1 -
P

k atkskn) as
P

k atkskn: The stationary

equations of L with respect to both atk and atk are

oL
oatk
¼
X

n

xtnP
‘ at‘s‘n

skn � ctk ¼ 0 ð55Þ

oL
oatk
¼
X

n

1� xtnP
‘ at‘s‘n

skn � ctk ¼ 0 ð56Þ

Multiplying the first of the above equations by atk and the

second by atk we obtain

atk

X

n

xtnP
‘ at‘s‘n

skn � ctkatk ¼ 0 ð57Þ

atk

X

n

1� xtnP
‘ at‘s‘n

skn � ctkatk ¼ 0 ð58Þ

Summing both sides and using atk þ atk ¼ 1 provides the

Lagrangian multiplier ctk:

ctk ¼ atk

X

n

xtnP
‘ at‘s‘n

skn þ atk

X

n

1� xtnP
‘ at‘s‘n

skn ð59Þ

as in (15). From (57) we have the solution for atk in the

form of a fixed point equation:

atk ¼ atk

X

n

xtnP
‘ at‘s‘n

skn=ctk ð60Þ

as in (14). Solving for skn proceeds similarly: the stationary

equation is

oL
oskn
¼
X

t

xtnP
‘ at‘s‘n

atk þ
1� xtnP
‘ at‘s‘n

atk

� 	
� kn ¼ 0 ð61Þ

Multiplying both sides by skn we obtain

X

t

xtnP
‘ at‘s‘n

atkskn þ
1� xtnP
‘ at‘s‘n

atkskn

� 	
¼ knskn ð62Þ

Summing over k and using
P

k skn = 1 we have the

Lagrange multiplier kn:

kn ¼
X

t

xtnP
‘ at‘s‘n

X

k

atkskn þ
X

t

1� xtnP
‘ at‘s‘n

X

k

atkskn

ð63Þ

¼
X

t

xtn þ
X

t

ð1� xtnÞ ¼ T ð64Þ

Having computed kn, from (62) we obtain the fixed point

equation for skn, identical to (13):

skn ¼ skn

X

t

xtnP
‘ at‘s‘n

atk þ
1� xtnP
‘ at‘s‘n

atk

( )
=T ð65Þ

As discussed in the text, this derivation is simpler and yields

the same multiplicative updates (13)–(15), obtained also via

rewriting the EM algorithm (7)–(9). However, the fact that

we need not iterate each multiplicative fixed point update to

convergence separately before alternating these inner loops,

but we can actually just alternate them while still obtainining

a convergent algorithm, is less apparent from the derivation

given in this section. Instead, this is a consequence of the EM

interpretation presented in Appendix A. Indeed, recall that

every single multiplicative update is a combination of a full

E-step and an M-step update for one (group of) variables,

hence it is guaranteed not to decrease the likelihood.
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