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Abstract: The growing number of end-of-life (EoL) photovoltaic (PV) panels as waste materials
is forcing many countries to face the challenge of addressing this issue. The presented research
explores the utilization of a by-product of this waste material, namely glass powder, with gypsum in
geotechnical engineering to improve clay-soil properties. The approach is to integrate these materials
to address the sustainable management of EoL PV panels, an underutilized resource in geotechnical
applications. Furthermore, the study extensively examines the physical properties of clay soil,
gypsum, and glass powder. Composite samples are created by adjusting the proportions of gypsum
(0%, 5%, 10%, and 15%) and glass powder (0%, 4%, 8%, and 12%) relative to the soil’s dry mass.
Compaction processes are performed at dry densities of 1500 and 1700 kg/m3, with 7, 28, and 56 days
of curing duration. Various tests, including ultrasonic pulse velocity (UPV), unconfined compressive
strength (UCS), assessments of wet and dry cycle durability, scanning electron microscope (SEM)
analyses, and X-ray diffraction (XRD) analyses, are conducted. The results reveal that gypsum
consistently improves the soil’s strength and stiffness features, while initially adding glass powder
reduces these properties before showing improvement at a 12% content. Correlations have been
proposed to determine the unconfined compressive strength (qu), initial shear modulus (G0), and
modulus of elasticity (E) to be acquired utilizing just a single test. Moreover, a correlation has been
developed to predict the unconfined compressive strength and elastic modulus of any specimen
through non-destructive testing. Additionally, microstructural analyses unveil intricate interactions,
showcasing the progress of pozzolanic reactions, identifying silicon-rich compounds from glass
powder, and elucidating how additives transform soil structure.

Keywords: glass powder; sustainable management; waste utilization; clay stabilization; microstructures

1. Introduction

The continuous surge in solid-waste generation, driven by population expansion,
urbanization, and economic growth, poses a mounting challenge regarding landfill man-
agement and recycling efforts. Indeed, waste management has become a paramount con-
cern for researchers committed to sustainable environmental practices. In recent decades,
geotechnical scientists have embarked on extensive investigations to restrain the produc-
tion of diverse waste materials across the globe by integrating them into geotechnical
applications, including pavement construction, retaining walls, and foundation structures.
Among these increasing waste concerns is the disposal of PV panels at the end of their
life cycle.

PV panels, widely renowned for their role in electricity generation and sustainable
energy production, paradoxically contribute to the growing solid-waste issue upon reaching
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their end-of-life stage, often due to malfunctions or inefficacy [1]. Projections indicate that,
by 2050, there will be a significant amount of PV-panel waste, estimated to be about
60 to 70 million tons [2,3]. These PV panels are primarily constructed from materials,
such as silicon, glass, and metal, that possess recyclable attributes, albeit hindered by the
limited global availability of a recycling infrastructure. Furthermore, PV panels consist of
dangerous substances, posing significant threats to both human well-being and the natural
surroundings [4–8]. These hazardous components, including selenide (Se), copper indium
gallium selenide (CIGS) with cadmium (Cd), lead (Pb), crystalline silicon (c-Si) with Pb, and
cadmium telluride (CdTe) featuring Cd and Pb [9–11], have prompted extensive research
to mitigate the production of PV-panel waste materials.

In response to more than two decades of large-scale PV panel deployment in various
countries, particularly the United States and China, researchers have sought innovative
solutions to decrease the environmental impact of PV-panel waste. This involves extending
the longevity and resilience of PV panels through improved design and durability and
enhancing the recycling processes to make them more accessible and cost-effective [12,13].
Notably, one critical facet of EoL PV panels is their glass shields, which have motivated
the present study’s application of glass powder and sintered gypsum to improve the
geotechnical properties of clay soil.

Gypsum, or calcium sulfate dihydrate (CaSO4·2H2O), enhances the unconfined com-
pressive strength (UCS) of clay soils through chemical interactions that create cementitious
bonds. However, its efficacy can vary in gypseous soils due to potential volumetric fluc-
tuations from hydration and dehydration processes [14]. Additionally, sintered gypsum,
produced by heating gypsum, exhibits pozzolanic properties that react with calcium hy-
droxide, Ca(OH)2, to form cement-like compounds, improving soil strength. Combining
sintered gypsum with cement enhances the strength and stiffness features of stabilized
clayey soil, and improvements in sulfate-rich soils are observed when cement and lime
are used, benefiting from gypsum’s pozzolanic reactions. Effective soil stabilization with
gypsum requires understanding its interactions with each soil type [15].

Recent decades have witnessed a surge in research focusing on the integration of
modern waste materials, including glass powder, plastics, and electronic waste, into soil-
enhancement strategies. Glass powder, a significant global waste commodity, is exemplified
by India’s production of 2.48 million tons in 2019 alone [16]. This mechanical stabilization
approach distinguishes itself from resource-intensive laboratory testing. Additionally,
this method avoids environmental threats and inherently embodies sustainable waste
management, offering an eco-friendly alternative to conventional landfill practices [17].

Incorporating waste materials into expansive soils has been the subject of numerous
research projects that aim to enhance the expansive soil’s engineering properties while
addressing their environmental impacts. These efforts have highlighted waste glass as
a promising component for soil stabilization [18–23]. For instance, Canakci et al. [24]
employed waste soda lime glass powder (WSLGP) to enhance clay soil across various
concentrations (3%, 6%, 9%, and 12%), revealing an increase in UCS within the 3% to
6% range but a decline from 6% to 12%. Similarly, Hassnawi et al. [25] explored the
impact of waste glass powder (at concentrations of 3%, 5%, 7%, and 9% by dry soil
weight), concluding that 7% waste glass powder yielded the optimal results in CBR and
UCS tests. The engineering properties of black cotton soil were studied by [26]. They
found that adding 4% waste glass powder improved the UCS and CBR values, which
indicate improved bearing capacity. Other percentages tested were 2%, 6%, and 8% by dry
soil weight.

Noteworthy is the contrast with previous studies, which primarily focused on RG
(recycled glass) powder at concentrations of up to 10%. In the current investigation, the
study offered to incorporate sand-size particles and elevate RG content to 40%, yielding
a 30% reduction in the plasticity of mixtures. Furthermore, adding 25% RG led to a
remarkable 45% increase in strength and an astonishing 130% surge in bearing capacity. In
stark contrast, a mere 6% glass powder yielded a striking 100% strength enhancement and
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an impressive 200% boost in bearing capacity [27]. In addition, Ibrahim et al. [28] utilized
glass powder for expansive clay soil, varying the concentrations (6%, 12%, 18%, 27%, and
36% of dry soil weight) and achieving a notable enhancement in UCS of up to 27% waste
glass powder incorporation, subsequently reduced at 36%.

This study aims to explore additional applications of glass powder in geotechnical
engineering. However, combining glass powder and sintered gypsum to enhance clay soil
has barely been attempted. Moreover, the tempered glass from PV panels remains scarcely
utilized within geotechnical engineering practices.

An innovative aspect of this investigation involves the utilization of EoL PV panels
in geotechnical applications. This approach presents a novel idea that could address the
disposal issue of EoL PV panels and their sustainable management.

2. Experiment Program

The experimental procedures commenced with a sieve analysis and an assessment of
the physical characteristics of clay soil, gypsum, and glass powder. Examining the physical
characteristics involved forming composite samples by incorporating gypsum at varying
proportions (0%, 5%, 10%, and 15%) and glass powder at different ratios (0%, 4%, 8%, and
12%). These percentages were determined concerning the dry mass of the soil.

The compaction process for the samples entailed dry densities of 1500 and 1700 kg/m3,
with 1700 kg/m3 representing the maximum dry density. The two intended dry densities
were adopted to evaluate the effect of compaction on different blends. The samples were
cured for 7, 28, and 56 days. In order to determine the specimens’ strength, initial shear
modulus (G0), durability, uniaxial compression strength (UCS), ultrasonic pulse velocity
(UPV), and wetting–drying cycle, durability tests were carried out. X-ray diffraction
(XRD) analyses and scanning electron microscopy (SEM) were also performed to determine
the microstructural transformations. Table 1 provides a comprehensive overview of the
physical characteristics of clay soil, gypsum, and glass powder (GP) as essential additives
in the experimental program.

Table 1. Physical characteristics of clay soil, sintered gypsum, and glass powder.

Properties Clay Sintered Gypsum
Powder

Glass
Powder

Consistency Limits (ASTM D4318-17e1) [29]
Plasticity index (%) 26 - -
Liquid limit (%) 46 - -
Specific gravity (ASTM D854-14) [30] 2.66 2.33 2.64
Particle-Size Distribution (ASTM D6913/D6913M-17 [31]
D50 (mm) 0.005 0.1 1
Clay (diameter < 0.002 mm) (%) 40 - -
Silt (0.002 mm < diameter < 0.075 mm) (%) 54 25 2.53
Fine sand (0.075 mm < diameter < 0.425 mm) (%) 6 75 25
Standard Compaction Characteristics
(ASTM D698-12e2) [32]
Maximum Dry Density (kg/m3) 1700 - -
Optimum moisture Content (%) 17 - -

2.1. Materials
2.1.1. Clay Soil

This investigation’s clay soil came from a 2 m deep hole dug in the northern part of
Nicosia, in the center region of Cyprus. The chosen site lies within a river basin character-
ized by alluvial deposits. Prior to utilization, the collected soil underwent a drying process
at 105 ◦C. To evaluate the soil’s physical characteristics, a series of laboratory tests were
conducted, encompassing Atterberg limits [29], sieve analysis [30], and specific gravity
measurements [31]. By the Unified Soil Classification System (USCS) [29], the tested soil
was classified as non-organic clay with low plasticity (CL). Furthermore, the specific gravity
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was found to be 2.66. The grain size distribution of the studied sample is illustrated in
Figure 1.
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Figure 1. Glass powder, sintered gypsum, and clay soil particle size distribution.

2.1.2. Glass Powder

The glass material employed in this investigation was obtained from discarded solar
panels, known for their challenging disassembly due to their firm adherence to the solar
cells. A chopper machine was employed to facilitate the separation process and overcome
this challenge. Afterward, the glass pieces were further crushed within a metallic cylinder
using a hammer. The crushed glass was sieved through sieve number 230 with a 0.045 mm
opening to obtain the required glass powder.

2.1.3. Sintered Gypsum

For this study, gypsum rock was obtained from a field as raw material and was crushed
using the Los Angeles apparatus. Subsequently, the material was passed through sieve
number 120, which allows only particles smaller than 0.125 mm. The prepared gypsum
was then subjected to a sintering process in an oven, conducted at 1050 degrees Celsius
for 24 h. After the sintering process, the material underwent an additional sieving to
separate any undesirable particles that may have accumulated in the gypsum during the
sintering operation.

2.2. Method
2.2.1. Molding Specimens and Curing Procedure

To conduct UCS testing, precise cylindrical specimens were carefully crafted to possess
a diameter of 50 mm and a height of 100 mm, adhering to the guidelines outlined in (ASTM
C39/C39M-20) [33]. Initially, specific dry densities were targeted for the specimens. In this
study, two target densities were selected, namely 1500 and 1700 kg/m3, aligning with the
maximum dry density of the clay at its optimal moisture content (17%). To accomplish this,
the soil samples were first dehydrated in an oven at a temperature of 105 degrees Celsius
for 24 h. It was followed by the process of pulverization using the Los Angeles apparatus.
Subsequently, the clay material was passed through sieve number 18 (with an opening of
1 mm).

Adhering to the predetermined density requirements, the proportions of clay, glass
powder, and sintered gypsum were then accurately considered. The specified quantities of
dry materials were blended in a moisture-free environment until a consistent dispersion
was attained, which usually required at least 5 min. After this, a predetermined quantity
of water was incrementally added and mixed with the binder materials until a uniform
blend was achieved. The amount of water used was based on the clay’s compression
curve, which showed two different densities: the highest density (1700 kg/m3) and a lower
density (1500 kg/m3). Three samples were prepared for each mixture. Two of them were
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subjected to the UCS test, while one was tested for the determination of the initial shear
modulus (G0).

The blend was later divided into three equal layers and compacted using a split mold
to reach the pre-determined density, following the compaction procedure proposed by
Selig and Ladd [34]. After molding, the sample was delicately removed from the mold, and
its dimensions were gauged. Following this, the specimens underwent a curing process by
(ASTM C0511-19) [35] for different durations of 7, 28, and 56 days.

After the curing process, each sample was submerged in water for 24 h, ensuring the
highest degree of saturation and assessing its capacity to withstand this long immersion
without failure. The table expressed detailed information regarding specimen preparation,
the additive contents, and the tests conducted.

2.2.2. Unconfined Compressive Strength (UCS)

UCS Methods based on (ASTM D1632-17) were employed to evaluate the effects of
the additives on the clay’s compressive strength, maintaining a constant strain rate of
1 mm/min by the specifications detailed in the (ASTM D1632-17) standard [36].

Before conducting the tests, each sample was fully saturated by immersion in water
maintained at room temperature for 24 h. After removing the specimens from the water,
their dimensions and weights were measured prior to commencing the testing process.
Vertical displacement and load data were inspected to ascertain the strength values after
finishing the test. Furthermore, E was derived for all the tested specimens through the
elastic segment of the stress–strain graphs using Equation (1).

E =
∆σ

∆ε
(1)

In this equation, ∆σ represents the difference in UCS in the vertical stress, while ∆ε

signifies the axial displacement.

2.2.3. Ultrasonic Pulse-Velocity Tests

Initially, the UPV tests were accomplished on all specimens to evaluate their shear
modulus before the UCS tests, following the guidelines of the (ASTM C597-02) [37] stan-
dard. A MATEST Ultrasonic Tester Model C368 was employed for these tests. The shear
waves’ recorded velocity (Vs) considered the sample’s length as the travel distance [38].
Equation (2) was employed to derive the maximal shear modulus (G0) from the sample’s
density (ρ).

G0 = ρ × V2
s (2)

2.2.4. Durability Test (Wetting–Drying Cycles)

The durability performance of the blends was assessed by subjecting the samples to
a maximum of 12 wetting–drying cycles based on the guidelines outlined in the (ASTM
D559) [39] standard. Following the curing process, the specimens were initially immersed
in water for 6 h. Subsequently, they underwent a drying phase in an oven at 74 ◦C ± 2 ◦C
for 42 h. After each wetting–drying cycle, the surfaces of the specimens were brushed
with a force equivalent to 15 N. After each cycle, the masses of the samples were recorded,
allowing for the calculation of the loss of mass for each cycle and ultimately determining
the accumulated loss of mass (ALM) after the maximum of the twelfth cycle.

2.2.5. Microstructural Tests

The pozzolanic response between soil additives and soil was studied by microstruc-
tural testing, focusing on the interaction between clay soil and sintered gypsum in a
water-containing environment. These investigations involved techniques including XRD
and SEM. A field-emission scanning electron microscope (QUANTA 400F) was used for
SEM testing. Sample pieces, approximately 10 mm in size, were mounted on aluminum
stubs. Under the electron beam, a thin layer of gold was placed to reduce the impact of
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the charges. From 1 K to 10 K, various magnification levels were used to capture SEM
pictures. An X-ray powder diffractometer (XRD) equipped with a Bruker AXS D8 Ad-
vance Model X-ray Diffractometer was utilized. The device utilized a high-speed PSD: a
Vantec-1 detector and a Cu-Kα X-ray source. Scans were conducted in a 2-theta range of
2–90 degrees at a rate of 2 degrees per minute, with step intervals of 0.02 degrees, operating
at 40 kV and 30 mA. In order to identify peaks, the International Center for Diffraction
Data’s (ICDD) database was queried, utilizing Crystal Impact Match Software, Version
3.11.1. XRD analyses were conducted via HighScore (Plus version 3.0.5).

3. Results and Analysis
3.1. Impact of Test Variables on Strength and Stiffness

The study conducted a statistical analysis of the dry densities (1700 and 1500 kg/m3),
glass-powder contents, gypsum contents, and curing durations. This assessment explains
the distinct effects of individual factors on the (UCS), as shown in Figure 2a–c, (G0) depicted
in Figure 2d–f, and (E) represented in Figure 2g–i. Regardless of other factors’ influence, the
calculated factors exhibited a noticeable increase when the specimens were compacted to a
greater dry density. It is attributed to the porosity reduction and enhanced interaction of
soil particles and additive materials in denser specimens. The increase in gypsum content
resulted in a consistent improvement across all strength and stiffness features. It is worth
noting that the increase was more significant in denser samples when compared to less
dense ones.
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powder, (f) G0-curing days, (g) E-gypsum, (h) Es-glass powder, (i) E-curing days.
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On the other hand, the behavior of the glass-powder content was inconsistent across
all strength and stiffness features. It was observed that, for all mentioned features (UCS, G0,
and E), increments from 0% to 8% led to a decrease, and suddenly, for the 12% content, a
shift to an increasing trend was noted. It highlights the significance of a 12% glass-powder
content in the samples, implying a critical threshold for this material. The analysis also
shows that the test variables exert the most significant impact on the G0 and a comparatively
lesser impact on the E.

The statistical analysis demonstrated a significant correlation between the variables of
the tests and the strength and stiffness characteristics of the samples. It was found that the
gypsum content had the most pronounced impact on these characteristics.

3.2. Influence of Porosity–Binder Index on UCS

Figure 3 illustrates the correlation between the UCS and the corrected porosity–binder
(P/B) ratio (η/Xiv

α) for various samples with varying additives, densities, and curing
durations [40].
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Figure 3. The associations between the UCS and the modified P/B index for all curing durations and
different amounts of sintered gypsum, with (a) 0% GP, (b) 4% GP, (c) 8% GP, (d) 12% GP for both
samples’ dry densities.

This study shows that porosity significantly impacts blend behavior, as evidenced by
the power coefficient α. It is consistent with prior research findings [41]. When α assumes
a value of less than 1, it implies that porosity has a more significant influence [42]. Within
the present investigation, the optimal fit was at α = 0.15. It aligns with earlier empirical
studies, where the α values typically ranged from 0.12 to 0.35, primarily depending on the
specific soil type, as demonstrated in previous research.

As can be seen from Figure 3a–d, by increasing the porosity index, the decrease in qu
has been achieved, which aligned with prior studies [43–45]. Considering the amount of
glass powder, it was revealed that samples with 12% GP, compared to the other percentages
of GP, have a lesser range of porosity that yields higher amounts of qu. This jump of
qu from 8% to 12% of GP is because of a higher reduction in the porosity investigated
in a microstructural analysis. On the other hand, the high regressions of curvatures in
Figure 3a–d represent a significant relation between qu and porosity in all samples.
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Moreover, regarding the graphs in Figure 3, curing days play a significant role in
sample strengthening. As shown in Figure 3a–d, graphs of 7, 28, and 56 curing days are
positioned above each other, respectively, except for samples with a GP content of 8%. In
addition, graphs related to seven curing days are notably distinguished from the other two
graphs in each chart regarding the distance, especially at high porosities. The growth of
qu by increasing the curing days is predictable; however, the case of GP content of 8% is
discussed in the microstructural analysis part.

3.3. Influence of P/B Index on G0

Figure 4 illustrates how the G0 relates to the modified porosity-to-binder index
(η/Xiv

0.15). In contrast to the findings of the UCS test, the diagrams show lower regression
coefficients. Due to the regression status of the charts, there is an excellent correlation
between the porosity index and stiffness; again, graphs with 12% glass powder have the
highest regression coefficient among the other GP percentages.
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Figure 4. The associations between the G0 and the modified P/B index for all curing durations and
different amounts of sintered gypsum with (a) 0% GP, (b) 4% GP, (c) 8% GP, (d) 12% GP for both
samples’ dry densities.

Here, similar to the previous part, the graphs’ positions are predictable, which means
that an increase in curing periods increases the samples’ stiffness, except for the chart
related to samples with a GP content of 8%. Furthermore, the results for the seven-day-
cured samples are not close to the 28- and 56-day curing duration results, and the behaviors
of these samples are more linear in comparison with the qu graphs. In other words, the
additives’ effects on soil improvement are negligible on short curing days. However, the
chart with 8% GP exhibits an exception again.

3.4. Influence of P/B Index on Normalized UCS and G0

Figures 5 and 6 express the sample’s normalized results of UCS and G0, respectively.
Through this normalization process, a heightened level of comprehension and enhanced
predictive capabilities have been achieved.
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Figure 5. The relationships between the normalized UCS and the modified P/B index for all curing
durations and different amounts of sintered gypsum with (a) 0% GP, (b) 4% GP, (c) 8% GP, (d) 12%
GP, (e) all tested samples in one chart, and (f) all GP-improved samples with additives in one chart
for both samples’ dry densities.

Notably, Equations (3) and (4) display high regression coefficients, with R2 = 0.87 and
R2 = 0.82 correspondingly. Regardless of the amount of additives and the curing length,
these statistical connections are vital for determining qu and G0 for certain mixtures of clay
types, as shown by one test. It is recommended to do this test with three similar samples to
achieve a typical strength amount for the selected value of η/Xiv

0.15, represented as ∇, for
improved accuracy. The decision to use ∇ amounts near 25 was made in this work because
it is recommended in recent studies on different materials [42,43].

qu = qu
(η/Xiv

0.15=29)
× (10,044, 565,830.22)

(
η/Xiv

0.15
)(−6.87)

(3)

G0 = G0(η/Xiv
0.15=29) × (1679, 377,468.80)

(
η/Xiv

0.15
)(−6.33)

(4)
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Figure 6. The relationships between the normalized G0 and the modified P/B index for all curing
durations and different amounts of sintered gypsum with (a) 0% GP, (b) 4% GP, (c) 8% GP, (d) 12%
GP, (e) all tested samples in one chart, and (f) all GP-improved samples with additives in one chart
for both samples’ dry densities.

3.5. Relations between Strength and Stiffness

Figure 7 reveals a strong correlation between physical properties, characterized by
high regression values. A well-fitted power diagram effectively represents the relationship
between the qu-G0 graph in Figure 7a and Equation (5), exhibiting a high regression
coefficient (R2 = 0.89). Furthermore, Figure 7c illustrates the relationship between E and
G0 for all the mixtures under examination, as described by Equation (6), which displays a
power diagram with a notable coefficient of regression of R2 = 0.88.

Equations (3) and (5) play an essential role in determining the G0 of specimens pre-
pared at the specified value of η/(Xiv)0.15 = 29, and they are linked to the relevant pa-
rameters of UCS and E in Equations (3) and (4). The significance of Figure 7a,c lies in
the fact that, at different GP and sintered gypsum amounts, qu and E can be determined
using Equations (5) and (6) for various clay blends over specific curation through the non-
destructive assessment of G0.

qu = 8.508G0
0.7757 (5)

E = 0.6374G0
0.8799 (6)
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Figure 7. Correlation between (a) UCS and G0, (b) UCS and E, and (c) E and G0.

3.6. Durability Assessment of Soil Samples by Sintered Gypsum and Glass Powder

As shown in Figure 8a–d, the presence of GP aggravates the durability factor of mixed
samples. However, by increasing the GP content from 4% to 12%, the porosity decreases
lightly, and it is declared that the worst GP content for durability is 4%. Regarding the
charts, samples with more curing days express less ALM (%), which means that pozzolanic
reactions between additives and the clay soil continue over 56 days. It is discussed in the
microstructural analysis. As seen from the high regression values of the ALM graphs, the
relation between the ALM and porosity in this study is meaningful. After normalization
of the ALM graph for all durability tests and comparing Figure 8e,f, an increase of 1% is
apparent, strengthening the link between the ALM and the porosity index.
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Figure 8. The associations between the ALM and the modified P/B index for all curing durations
and different amounts of sintered gypsum with (a) 0% GP, (b) 4% GP, (c) 8% GP, (d) 12% GP, (e) all
GP-improved samples in one chart, and (f) all normalized ALM for GP-improved samples with
additives in one chart for both samples’ dry densities.

Conversely, similar to the formulas in the physical properties part, a formula has been
generated to predict the ALM by various combinations of additives. Equation (7), with a
strong regression coefficient (R2 = 0.867), expresses an accurate prediction tool for the ALM
assessment in further investigations.

ALM = ALM(η/Xiv
0.15=29) × (0.00000069)

(
η/Xiv

0.15
)

x(4.21) (7)

3.7. Microstructural Analysis

XRD and SEM analyses were performed to provide a comprehensive microstructural
assessment in this investigation. Figure 9 presents the XRD findings, encompassing 12 dis-
tinct samples characterized by two levels of GP content (0% and 8%) and two gypsum
content variations (5% and 15%) across curing durations of 7, 28, and 56 days, maintaining
a density of 1700 kg/m3. The predominant phases identified in these samples are quartz
(Q) and calcite (C), with silicon (Si) and alumina (Al) present as minor constituents. The
reflections observed indicate the presence of smectite, illite, and a chlorite–kaolinite mix
within the phyllosilicates, suggesting a complex mineralogical composition.

Notably, the XRD patterns exhibit a visible peak (silicon) between the two prominent
peaks (quartz and calcite). This intermediary peak demonstrates an increasing trend from
samples 1 to 3, shown in a red oval (Figure 9), with the extension of curing duration for
samples lacking GP, whereas the converse is observed for samples containing GP from
samples 10 to 12. This distinct variation is attributed to the heightened silicon concentration
inherent in the glass powder. Across the 7- to 56-day curing period, a pronounced rate of
pozzolanic reactions involving silicon was observed within the samples incorporating GP,
explaining the observed trends in the XRD patterns.
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The SEM microphotograph in Figure 10 illustrates a sample containing 15% gypsum
content, subjected to a 28-day curing period, and without glass powder, showcasing crucial
features influencing the strength properties of clay soil. Needle-like structures, representing
ettringite, are observed alongside distinct aluminum phases and hydrated silicate identified
as C-A-H and C-S-H, respectively [46]. These compounds, formed through chemical
reactions with stabilizing agents, significantly enhance the engineering properties of clay
soil. Ettringite plays a positive role in soil blends by forming a tough network that binds
soil particles together, increasing the soil’s strength, stiffness, and erosion resistance. This
network reduces the plasticity of clay soils, enhances their compaction, and improves their
durability. C-S-H acts as a binding agent, creating a gel-like matrix that strengthens the soil
and reduces its permeability. Moreover, C-A-H is a reinforcing element that strengthens
the soil structure and facilitates pozzolanic reactions to generate additional cementitious
compounds. The early arrangement of aluminum hydrates contributes to refining the
composite’s porosity.
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Figure 10. SEM photo of treated sample, which includes major structures.

The series of microphotographs, shown in Figure 11a–c, systematically investigate the
influence of varying curing durations on the observed structural changes. Evident within
these microphotographs is a progressive increase of C-S-H, C-A-H, and ettringite with the
increase in curing days. Specifically, Figure 11c exhibits an apparent reduction in porous
structures, which is attributed to the hydration and crystallization processes. This results in
a more closely packed and interconnected arrangement of calcite particles; a primary phase
identified in the XRD analysis. Also, the sample with 8% GP (Figure 11c), shows differences
in the texture of the ettringite and C-S-H gel formation, with fewer hollow structures than
Figure 11d. The absence of GP in Figure 11d accentuates the noticeable cavities attributed
to the lack of filler material, while unreacted clay particles remained unreacted. Nano-silica
is a refined form of silica that improves the geotechnical properties of clay soil by making it
easier for clay particles to stick together. This reduces the number of empty spaces between
the particles without the need for pozzolanic reactions.
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Figure 12a shows a big difference between a sample with the same additives cured
for only 28 days (Figure 12b) and one cured for 56 days (Figure 12a). The difference is that
the sample in Figure 12a has more pores and clear particle separation. This observation
supports the different behavior exhibited in Figures 3c and 4c. Specifically, the distinct soil
structures shown in Figure 12b contribute to enhanced strength and are more significant
than the sample in Figure 12a. Differences in soil structure and composition due to varying
curing periods show their effects on strength and stiffness. This highlights a considerable
association between curing time, soil microstructure, and the resulting mechanical behavior
in specific blends.
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4. Conclusions

The investigation focused on assessing the physical, mechanical, and microstructural
alterations induced by varying proportions of GP (0%, 4%, 8%, and 12%) and sintered
gypsum (0%, 5%, 10%, and 15%) at different curing durations (7, 28, and 56 days) and dry
densities (1500 and 1700 kg/m3). The experimental program encompassed various tests,
including UCS, wetting–drying cycle durability, UPV tests, and microstructural analyses
via SEM and XRD.

• The results showed strong relationships between the test variables and the samples’
strength and stiffness. The strength and stiffness of the clay specimens were con-
tinuously enhanced by increased density and gypsum content, which is notable.
Conversely, the influence of glass-powder content exhibited a non-uniform behavior,
where the addition of 12% GP emerged as a critical threshold, revealing an unexpected
shift in the trend toward improved strength and stiffness features compared to lower
GP percentages;

• The study also found a strong link between the P/B index and UCS and G0. Normal-
ization of the data enhanced the predictability of these properties, yielding valuable
equations for predicting qu and G0 for specific clay blends and facilitating efficient
material design and assessment. Additionally, the durability assessment revealed
that low GP content aggravated the durability factor of the specimens. The worst GP
content for durability was 4%, while an increase to 12% GP led to a slight decrease in
porosity and improved durability. The generated equation for the ALM proved to be
an accurate tool for predicting the ALM for varying additive contents;

• Microstructural analyses via SEM and XRD clarified critical insights into the pozzolanic
reactions induced by GP and sintered gypsum. SEM microphotographs unveiled the
formation of ettringite, C-A-H, and C-S-H compounds, contributing significantly to
enhanced strength, stiffness, and erosion resistance in the treated samples. Moreover,
microstructural analyses highlighted the pronounced impact of the curing duration
on the soil’s structure, explaining its significant influence on mechanical behavior.
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In conclusion, this comprehensive study demonstrated the significant potential of
glass powder and sintered gypsum as effective additives for improving the geotechnical
characteristics of clay soil. The research findings offer valuable insights into the intricate
relationships between test variables, strength and stiffness features, and microstructural
transformations, providing a foundation for informed material design and application in
geotechnical engineering practices. The established correlations and predictive equations
are practical tools for optimizing additive compositions and assessing the mechanical
performance of clay-based materials in diverse construction applications. Ultimately,
this study contributes to advancing sustainable practices by repurposing waste materials,
especially from EoL PV panels, and developing innovation in geotechnical engineering.
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