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Abstract—In-memory computing (IMC) accelerators have
become a pivotal architecture for enhancing AI algorithm
computations, particularly critical for embedding deep neural
networks (DNNs) in edge devices. The efficiency of these systems
is paramount, yet IMC cores are prone to fluctuations due
to process, temperature, and voltage variations, which can
detrimentally impact DNN accuracy. This research introduces
an innovative Built-In Self-Calibration (BISC) methodology,
specifically designed to compensate for temperature-induced
variations in mixed-signal IMC cores. The methodology enables
real-time, on-chip adjustment of DNN weights during computation
within the IMC core without modifying the computation path.
The proposed approach, implemented on a silicon prototype, not
only maintained DNN computation accuracy under substantial
temperature variations but also fully compensated for almost
90% of the offset caused by these variations, without introducing
any non-idealities.

Index Terms—In-memory computing (IMC), multiply-and-
accumulate (MAC), thermal compensation, temperature sensor.

I. INTRODUCTION

Computing artificial intelligence workloads with increased
energy efficiency is crucial to enable the next generation of
automotive, medical, wireless communication or ubiquitous
sensing systems. Hence, the acceleration of machine-learning
models, particularly Deep Neural networks (DNNs), has gained
a huge interest over the past years. In this context, In-Memory
Computing (IMC) accelerators represent a significant advance-
ment in overcoming the limitations of traditional computing
paradigms, by eliminating the need for frequent data transfer
between storage and processing elements [1]. Specifically, IMC
architecture can use efficient analog computations for multiply-
and-accumulate (MAC) operations, which consume most of
DNN’s computing energy [2]. In analog computations, a MAC
is computed using basic Kirchoff’s laws, i.e., multiplication
using resistances or capacitances, and native addition in current
or charge domains [3]. This motivates a large body of research
on emerging architectures for IMC, building the IMC core
with classical charge-based memories [3], or emerging memory
technologies, for instance resistive memories such as resistive
RAM (ReRAM) or phase change memories (PCM) [4]. These
emerging technologies pave the way towards significantly more
integrated and efficient architectures.

However, large-scale integration of IMC computing cores
using emerging memory technologies, such as ReRAM, faces
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Fig. 1: Impact of temperature on mixed-signal IMC cores w.r.t.
relative inference accuracy.

challenges related to reliability and robustness due to inher-
ent variability and endurance issues [5]. These challenges
can significantly impact the accuracy of DNN computations.
Current research efforts are directed towards developing
innovative circuit designs and system architectures to improve
the reliability of IMC cores, addressing these variability and
endurance concerns. In particular, there has been significant
research work documenting the effect of temperature variations
on SRAM-based IMC cores [6], resistive IMC architectures
with high-density resistors [7] or emerging memories such as
ReRAM [8], [9] or PCMs [10].

This is illustrated in Fig. 1, taking as a case study a mixed-
signal IMC core (further detailed in this work) on a typical
DNN workload (MNIST). In this particular case, the worst-case
accuracy loss, compared to the baseline at room temperature,
can be as high as 68%. Hence, compensation methods for
thermal variations are highly required to maintain a reliable
DNN inference across wide temperature ranges. To tackle
this challenge, this work proposes a thermal aware Built-in
Self-Calibration (BISC) technique, which performs on-chip
real-time compensation on mixed-signal IMC cores. With this
compensation method, the effects of temperature fluctuations
on MAC units’ performance are reduced up to 6%, indicating
a 91% improvement in inference accuracy across various
temperatures.

The structure of this paper is as follows: The next section pro-
vides an overview of related work and highlights its limitations.
Section III details the proposed compensation architecture,
including its building blocks. Section IV elaborates on the
proposed thermal compensation methodology. Experimental
and measurement results are presented in Section V. Finally,
Section VI concludes the paper.



II. RELATED WORK AND LIMITATIONS

A. Existing thermal compensation techniques

Thermal compensation methods can be broadly classified into
two categories: offline compensation, which occurs during or
after training, and online compensation, which takes place
before or during inference. Typically, a system can implement
both categories simultaneously.

1) Offline: Offline compensation targets limiting DNN
accuracy degradation from temperature effects by preemptively
reordering data, weights, or tasks at the IMC core or system
level. Example approaches include weight decomposition or
assigning computations based on core temperature to reduce
thermal variations [8]. While offline methods effectively
manage workloads, they need to be paired with local adaptation
strategies to comprehensively tackle temperature variations [8].

2) Online: Online compensation aims to compensate for
local temperature variations during DNN execution on the ac-
celerator. There are two subcategories: online system adaptation
and BISC.

a) Online system adaptation: These methods have a
similar system-level approach to offline compensation but
enable a finer granularity as they are performed during the
runtime. A first approach pairs IMC cores with different
temperatures, splits the workload between them, and combines
their results to be thermally compensated. A finer-grained
approach would modify the DNN model’s parameters (weights,
bias, etc.) according to different temperatures, using an offline
model trained for various temperatures. As updating all
weights before each inference would be too costly, the batch
normalization parameters of the DNN can be adapted instead
(one set of parameters per chosen temperature range) [11]. In
this case, these parameters are determined using a progressive
knowledge distillation algorithm, injecting noise/variations in
the trained model for various temperatures before deployment
[11]. Although effective, online system adaptation methods
involve complex algorithms and face challenges in addressing
local temperature changes.

b) Built-in Self-Calibration: BISC differs from system
adaptation as it intervenes locally at the hardware level
(typically the MAC units or the IMC column). The objective is
to directly calibrate the computed results to account for local
temperature changes. BISC can can be used in complement to
system-level approaches. One example of BISC is to adjust
the output current of the IMC column, using current mirrors of
variable ratios according to the temperature [8]. The column
current compensation can also be done using an on-chip
temperature dependent, variable current generator, at the same
time compensating for process variations [7]. However, these
methods require precise current ratios for each column [8]
or off-chip components [7], complicating the final integration.
An alternative approach is to use one additional column of
the IMC core for temperature compensation [6], [10]. Taking
the example of [10], the dummy column weights are learned
offline from thermal model simulations, stored in a look-up
table, and set according to different temperatures online. A
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Fig. 2: Overall system architecture of the proposed temperature
compensation scheme seamlessly integrated with a mixed-signal
IMC core.

more fine-grained approach would adjust the weight of each
resistive element (or conductance) in the IMC core according
to temperature. For instance, the least significant bit of the
weight can be downgraded if the core temperature goes across
a predefined threshold [9]. Yet, the compensation is limited to
one bit of change in the weights.

B. Proposed contribution

This work addresses the highlighted limitations by: 1.) devel-
oping a fully integrated, real-time BISC for mixed-signal IMC
cores to handle both local and global temperature variations
without requiring complex algorithms; 2.) minimally impacting
the IMC core’s computation path by updating stored weights
rather than analog currents/voltages; and 3.) validating the
calibration algorithm across a broad temperature range with
silicon devices.

III. PROPOSED ARCHITECTURE

Fig. 2 depicts the proposed architecture for thermal compen-
sation, focused on localized and hardware-efficient thermal
management solutions. The scheme exploits existing circuitry
within the IMC core as much as possible and is tailored to
preserve the accuracy of MAC operations. The key principle
is to directly adjust the weight values of the MAC units stored
in SRAM cells according to the temperature variations sensed
by an on-chip sensor. This section highlights the key system
functionalities.

A. System architecture

The overall system is composed of an IMC core and a BISC
circuitry which adjusts the stored weights directly online. This
precise adjustment is achieved through the integration of a
moderate resolution SAR ADC (e.g., 4-bit), a Finite State
Machine (FSM), and a Look-up Table (LUT).



a) IMC core: The IMC core features a crossbar array of
size (N × M). At each intersection of this crossbar lies a mixed-
signal MAC unit to multiply a vector of input voltages VINi

with their respective weights Wij stored in a SRAM memory
within each unit. The multiplication is realized with an NW-bit
R-2R Multiplying Digital-to-Analog Converter (MDAC) and
NW 6T-SRAM cells, where NW represents the precision of
the weights in the MAC unit. Hence, weights are digitally
represented as conductance values Wij = Gij = 1/Rij, encoded
in the MAC units at each (i, j) position in the array (see details
in Section III-B). Then, the output current Iout of each unit is
accumulated along each column, representing the results of
the MAC operations.

b) Input/output peripherals: Input and output peripherals
are crucial for IMC cores, handling tasks around MAC
operations such as data conversion and sampling, distributing
data across the memory crossbar, and interfacing with external
devices like digital processors. A critical output component
is the Summing Amplifier (SA), particularly Transimpedance
Amplifiers (TIA), crucial for converting output currents from
memory columns into voltages for further processing, including
activation functions, pooling, and ADC conversions.

c) SRAM control: The SRAM control block and the
row/column decoders are integral part of an effective sys-
tem management, responsible for programming, writing, and
reading the weight values in the NW 6T-SRAM cells of each
MAC unit. The row and column decoders accurately select the
specific cells within the core. The SRAM cells are arranged
using a half-butterfly configuration to optimize data routing
and SRAM read/write efficiency by providing an efficient data
transfer pathway crucial for parallel processing tasks. The
half-butterfly layout is chosen for its balance between high
performance and manageable complexity in the memory layout.

d) Thermal BISC block: The proposed BISC method
incorporates a temperature sensor font-end, as well as an FSM
and a LUT for the temperature compensation. The sensor front-
end can accurately detect a wide temperature range, from -40°C
to 80°C, with a granularity of 7.5°C. The proposed calibration
method is particularly suited for integration into existing sys-
tems, requiring minimal alterations, thereby offering a practical
solution in rapidly evolving technological environments (see
details in Section IV).

B. MAC units

Fig. 3 illustrates the proposed MAC unit based on a R-2R
MDAC topology. It is similar to a typical R-2R DAC topology,
yet has the reference voltage as a variable input. As a complete
integration of emerging resistive memories with state-of-the-
art CMOS technologies is still a work in progress, the R-2R
MDACs are realized with CMOS resistors. Prospectively, these
CMOS resistors can be replaced with high-density resistor
technologies that enable MΩ resistor values in compact spaces
comparable to standard SRAM cells [12]. Using R-2R MDACs
allows to obtain linear and programmable features, offering
a solution to the typically fixed and non-linear behaviour of
ReRAM cells. Indeed, this architecture enables to perform
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Fig. 3: Schematic of R-2R MDAC interfaced with 6T-SRAM
cells as an integrated component of a mixed-signal MAC unit.

an analog multiplication while storing weights digitally in
SRAM cells. The intrinsic linearity of the R-2R ladder topology
ensures a direct and proportional relationship between digital
weights and analog outputs, making it suitable for applications
requiring frequent weight adjustments and high precision. In
the context of temperature compensation, this dual approach
not only streamlines the design but also significantly boosts the
accuracy and efficiency of temperature compensation. Digitally
storing weights results in more precise and stable calibration, a
key factor in maintaining consistent performance across varying
temperatures.

The output current of an MDAC cell is given by

IOUT =
VIN − VGND

RU
·

NW−1∑
k=0

2k ·Dk

2NW
, (1)

where VGND is the virtual ground voltage, and RU is the unit
resistance. The second term in the equation represents the
decimal equivalent of the digital weight (D) relative to the
converter’s resolution, where Dk is the binary value at kth

bit position. Hence, the consistency and predictability of R-
2R MDACs make them a suitable case study for testing the
proposed temperature compensation method.

C. 5-T Temperature sensor

The temperature sensing front-end relies on an on-chip all
NMOS, 5-T (Transistor) based temperature sensor, based on a
modification of [13], as shown in Fig. 4. The circuit generates
a complementary to absolute temperature (CTAT) voltage as
an output w.r.t change in temperature. It consists of three types
of transistors: a native transistors M1A, M1B with almost zero
threshold voltage (VTH), a thin-oxide transistor M2 with low
VTH and two thick-oxide transistors M3 and M4 with high
VTH. A supply voltage of VDD is provided to the circuit, and
the temperature dependant voltage output is obtained at VOUT.
All the transistors operate in sub-threshold region to optimize
power consumption. M1 consists of stacked identical transistors
M1A and M1B to obtain a good line sensitivity. M3 and M4
are used as an active load to provide a temperature-dependent
output voltage. The output voltage value is the sum of VDS of
both the transistors. The VOUT is given by
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VOUT =VTH4,3
− m4,3

m2
VTH2

+m2VT ln
COX2

(m2 − 1)(W2/L2)

COX4
(m4,3 − 1)(W4/L4,3)

,
(2)

where W and L are the width and length of the device, µ is the
mobility, COX is the gate oxide thickness, m is the subthreshold
slope, VT is the thermal voltage of the transistors, which are
denoted by the subscript. From (2), it can be inferred that
by selecting the aspect ratio of M2, M3 and M4, the desired
CTAT voltage characteristic can be achieved from the proposed
circuit.

IV. THERMAL COMPENSATION METHODOLOGY

A. Compensation algorithm

The proposed temperature compensation algorithm, detailed
in pseudocode in Algorithm 1, includes key components such
as the sensor front-end (temperature sensor and ADC) and
calibration circuitry (FSM and LUT). Upon initiating the BISC
with a threshold, the system acquires the temperature, and
the digital FSM evaluates the necessity for compensation.
Compensation is triggered by a temperature change of at least
7.5°C, corresponding to a voltage shift of 6.25mV, as outlined
in the steps below:

• Detection and triggering: The FSM continuously tracks
the ADC’s output for significant temperature changes, ∆T.
Upon detection, it initiates the calibration process for each
layer during inference on the IMC core, transitioning to
the compensation state to execute calibration.

• Calibration execution: In this phase, the system tem-
porarily deactivates all MAC units except one selected
cell, which undergoes a weight sweep from 0 to 2NW

- 1, with NW being the MAC unit’s bit count. Output
values at the new temperature are noted and compared to
reference values recorded at a standard room temperature
of 27°C on silicon samples. This comparison is essential
for evaluating the binary weight change (∆D) variation.

• ∆D calculation: Temperature changes create different
changes in ∆D values, which are recorded in a LUT
for thermal adjustment. An on-chip microprocessor or a

Algorithm 1 Online Temperature Compensation Algorithm

1: Initialize the system and compile the LUT.
2: Monitor ADC output for significant ∆T, w.r.t. 27°C.
3: if Temperature change ∆T ≥ 7.5°C then
4: for each DNN layer do
5: for each SRAM weight stored in the array do
6: Read the weight Wij for each SRAM word stored

at address Aij (SRAM Read Cycle).
7: if Wij = 0 then
8: Skip to address Aij + 1
9: else

10: Find ∆D for Wij at Aij from LUT.
11: Update the weight, W’ ij = Wij - (∆D × 1LSB)

(SRAM Write Cycle).
12: end if
13: end for
14: end for
15: Calculate the temperature-compensated layer output.
16: end if=0

similar digital logic can update this LUT in real time. This
update happens only once for each temperature change in
the IMC core. ∆D is normalized to the least significant
bit (LSB), defined as 1 LSB = IMAX/2NO . Here, IMAX is
the MAC unit’s maximum output current, and the output
precision, NO is the sum of the MAC unit’s input precision
NI and weight precision NW.

• Weight adjustment: For each non-zero weight in the IMC
core, the FSM generates the SRAM controls to update
the MAC unit’s weight: W’ij = Wij-∆D×1 LSB for the
respective ∆T.

As a key feature, the LUT enhances online re-compensation
efficiency by storing ∆D for each weight across the temperature
range. If BISC detects a known temperature, the FSM skips
recalibration, directly adjusting weights with ∆D from the LUT,
avoiding unnecessary IMC core or microprocessor interactions.
This approach minimizes redundant calibrations, improving
long-term system efficiency and reducing power consumption.

V. MEASUREMENT RESULTS

Fig. 5 shows the microphotograph and layout of the test circuit
in 65 nm CMOS technology, including a column of MAC
units, a Summing Amplifier (SA), and a temperature sensor.
The dimensions are 232 µm × 38 µm for each MAC unit,
202 µm × 532 µm for the column, 71 µm × 47 µm for the
temperature sensor, and 57 µm × 36 µm for the SA. Weights
are programmed via an on-chip interface, with MAC units
powered by individual buffered supplies from AD8656 buffers
and a Keysight N6705C DC Power Analyser for precise control.
The temperature is tested in a controlled environment in the
Weisstechnik Labevent chamber ranging from -20°C to 60°C.

A. Building the compensation scheme

Data from a silicon prototype is collected by measuring a
single MAC unit’s output current across temperatures (-20°C
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to 60°C, in 7.5°C steps) and input voltages (1V to 1.1V).
This information is used to create a database that quantifies
output currents for each quantization level across all 7-bit
inputs and weights, with these currents normalized across the
range. This database is further used to generate MAC unit
multiplication results at various temperatures and constructing
an LUT model for the BISC approach. To handle the extensive
data from testing the 7-bit MAC unit’s full input voltage and
weight range, a strategy focusing on the input dynamic range’s
midpoint simplifies calibration, i.e., fixing the input voltage to
be in the middle of the range. This practical and robust approach
simplifies calibration, enabling complete on-chip compensation
without the complexity of a large dataset.

B. Evaluation of the BISC scheme

Fig. 6 shows the measurement results of the temperature sensor,
which provides a temperature coefficient of 1550 ppm/°C. The
designed circuit consumes a power of 16.54 nW under an
operating voltage of 1.2 V.

Fig. 7 shows the impact of temperature compensation on a
single MAC unit across temperatures from -20°C to 60°C, using
a full scale of 7-bit weights and input values with 0.787 mV
quantization step. The output current is recorded for all these
values at various temperatures. The figure reports the deviations
in LSB from the 27°C reference baseline. Results reveal broad
error distribution without compensation, with a mean (µ = -
5.08) and a standard deviation (σ = 2.09), indicating systematic
temperature-related errors and high variability. The proposed
compensation method significantly corrects these errors, nearly
eliminating the mean error (µ = 0.09) and reducing the standard
deviation to below 1 LSB (σ = 0.98), proving its effectiveness
in minimizing MAC errors caused by temperature fluctuations.
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Fig. 8 evaluates MAC unit linearity across temperature
variations, which affect conductance and multiplication ac-
curacy, thus impacting linearity. Uncompensated data show
negative offsets due to temperature changes in a specific
MAC unit. Post-compensation, response curves closely align
with the 27°C reference, indicating preserved linearity across
temperatures. Additionally, the figure presents DNL and INL
of MAC responses before and after compensation, showing
consistent non-linearity errors and confirming the compensation
method maintains system linearity without adding errors.

Table I compares this work with prior works [6], [9],
evaluating a typical DNN workload. Data extracted from
silicon measurements, incorporating the proposed compensation
strategy into TensorFlow, assesses inference accuracy across
temperatures using LeNet-5 architecture on the MNIST dataset
for handwritten digit classification. Training involved 60,000
images, and inference was tested on a separate set of 10,000
images, with accuracy determined from 10,000 predictions.

Although the impact of temperature is severe on the accuracy,
it can be recovered by the proposed methodology, as initially
illustrated in Fig. 1. This recovery process is further evidenced
by data in Table I, which shows that deviations in temperature
from the baseline of 27°C result in accuracy losses of 68.2% and
57.6% for significant positive and negative temperature changes,



TABLE I: COMPARATIVE ANALYSIS OF THE PROPOSED
COMPENSATION METHOD WITH LITERATURE

[6] [9] This Work
Technology 40nm - 65nm

Cell Type 6T-SRAM ReRAM R-2R MDAC
+ 6T-SRAM

In/W/Out precision 1b/1b/8b 1b/2b/8b 7b/7b/7b
Validation Simulation Silicon Silicon

DNN Benchmark MNIST MNIST MNIST
Accuracy -20 °C 83.00%∗ - 36%
without 27 °C 90.97% 90% 85%

compensation 60 °C 87.36%∗ 55% 27%
Accuracy -20 °C 96.14% - 85%

with 27 °C 96.14% 95% 85%
compensation 60 °C 96.14% 92% 89%

Loss relative to 27°C
Before -20 °C 8.76% - 57.6%

compensation 60 °C 3.90% 38.9% 68.2%

Recovered accuracy
relative to 27°C
With -20 °C 100% - 100%

compensation 60 °C 100% 96.84% 104.7%
∗ Linearly extrapolated from the original work.

respectively. Remarkably, the proposed methodology facilitates
a substantial accuracy recovery of 104.7% and 100% relative to
the baseline (room temperature). Despite the baseline accuracy
being lower compared to other designs, it can be significantly
enhanced during the training phase. More importantly, the
recovery measured against this baseline accuracy demonstrates
the proposed approach’s effectiveness in maintaining consistent
performance across different temperatures. During testing,
it was observed that the system’s performance marginally
improves when the temperature ranges from 30°C to 40°C,
as shown in Fig. 1. We hypothesize that this increase in
temperature may uniformly enhance the accuracy of the
MAC units’ outputs in the IMC core, resulting in better
DNN performance compared to room temperature. However,
relying on ambient temperature changes for optimization is
impractical due to temperature variability, emphasizing the
need for a compensation method to ensure accuracy across
various temperatures.

C. Analysis of calibration overheads

In addition to the calibration performance, overheads in
time, power, memory, and area, also need to be analyzed. In
terms of time, there is an overhead due to rewriting part of
the weights into the memory. If most weights are updated, a
30% increase in weight update times can occur. Yet, this is
mitigated by the infrequent need for compensation updates and
the prevalence of zero-value weights. For instance, updating
the weights only every 100 access in the core reduces the time
overhead to less than 0.5%. In terms of power consumption,
the compensation logic adding approximately 14µW, which is
a marginal amount compared to the system’s overall power
demand of a few mW. In terms of memory, the requirements for
the LUT used in temperature compensation depend on the IMC
core size lead. For instance, the memory increase is 112.5%
for a 32x32 IMC core, equating to a total memory of 1.904KB

from an initial 0.896KB, whereas for a larger 128x128 IMC
core, the memory overhead is only 7%. Area overhead follows
a similar trend than memory, with a 3.04% increase for the
32×32 core and reduced to 0.856% for 128×128 core. Overall,
this underscores the efficiency of scaling up the core size in
reducing the proportional impact of the compensation circuit.

VI. CONCLUSION

This work proposes an effective on-chip Built-in Self-
calibration methodology against temperature variations for
mixed-signal In-Memory Computing arrays. It can be realized
fully on-chip, does not change the computation path to preserve
the performance of the system and does not require complex
algorithms to determine the compensation values. The proposed
methodology is validated with a silicon prototype, effectively
limit the error below 1 LSB across a wide temperature range.
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