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We consider a superconducting half-wavelength resonator that is grounded at its both ends and contains a
single Josephson junction. Previously this circuit was considered as a unimon qubit in the single-mode approxi-
mation where dc-phase-biasing the junction to π leads to increased anharmonicity and 99.9% experimentally
observed single-qubit gate fidelity. Inspired by the promising first experimental results, we develop here a
theoretical and numerical model for the detailed understanding of the multimode physics of the unimon circuit.
To this end, first, we consider the high-frequency modes of the unimon circuit and find that even though these
modes are at their ground state, they imply a significant renormalization to the Josephson energy. We introduce
an efficient method to fully account for the relevant modes and show that unexcited high-lying modes lead
to corrections in the qubit energy and anharmonicity. Interestingly, provided that the junction is offset from
the middle of the circuit, we find strong cross-Kerr coupling strengths between a few low-lying modes. This
observation paves the way for the utilization of the multimode structure, for example, as several qubits embedded
into a single unimon circuit.

DOI: 10.1103/PhysRevResearch.6.033001

I. INTRODUCTION

Superconducting circuits are one of the most promising
platforms to enable fault-tolerant quantum computing [1].
However, reaching the stage where such devices become
useful in practical applications still seems a major chal-
lenge, calling for gate fidelities and coherence times beyond
the current state-of-the-art qubits, such as transmons [2–4].
Even to achieve useful quantum advantage in the on-going
noisy-intermediate-scale-quantum (NISQ) era [5], gate fideli-
ties exceeding 99.99% for both single-qubit and two-qubit
gates may be required, which has not been achieved in su-
perconducting circuits yet. Thus, increasing the quality of
superconducting qubits through design and fabrication is one
of the greatest on-going technical challenges in the field.

Recently, different types of unconventional qubits com-
bining desired features have been proposed as alternatives to
transmons [6–26]. One of them, the fluxonium, has demon-
strated coherence times of the order of milliseconds [10],
and averaged gate fidelities exceeding 99.99% for single-qubit
gates [10] and 99.7% for two-qubit gates [8,11], thus provid-
ing alternative routes towards large-scale quantum computers.
However, the involved architecture of the fluxonium may limit
its reproducibility in fabrication. In addition, its low frequency
requires special techniques for control, readout, and reset [9].
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The unimon is another unconventional qubit recently pro-
posed and tested experimentally [27]. The unimon circuit
exhibits simplicity since it consists of an inductively shunted
single Josephson junction that can be biased by external flux.
In contrast to the fluxonium, the unimon operates in the
regime where the inductive energy of the shunt is mostly
canceled by the quadratic component of the Josephson poten-
tial. Consequently, the unimon circuit promotes not only high
anharmonicity but also full insensitivity to dc charge noise and
reduced sensitivity to homogeneous flux noise. In particular,
a comprehensive grasp of the fundamental multimode effects
originating from the coupling between the Josephson junction
and the coplanar waveguide (CPW) resonator is important.
This is because the high-frequency modes of the CPW res-
onator can significantly alter the energy levels that encode
the unimon qubit. The theoretical models employed in the
description of the unimon to date have been restricted to the
first and second-lowest normal modes of the system [27].
Even though they provide a good qualitative agreement with
the experimental results, these models do not fully capture the
influence of the high-frequency modes. Hence, there is a de-
mand in development of more involved models of the unimon.

In this paper, we develop the theory of multimode unimon
circuits and address the physical phenomena induced by
its high-frequency modes. Starting from the continuous
distributed-element circuit, we quantize the system obtaining
an auxiliary-mode Hamiltonian that is equivalent to the
effective Hamiltonian obtained using the path-integral-based
approach in Ref. [27]. We then proceed with a partial
linearization procedure [29–34] and find a renormalization
of the Josephson energy [34,35] that was overlooked in
Ref. [27]. The Hamiltonian is then represented in a unimon
basis that allows for efficient numerical diagonalization within
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FIG. 1. (a) Schematic representation of a unimon circuit featuring a single Josephson junction (EJ, CJ) that is displaced from the center of
the coplanar waveguide (CPW) resonator (xJ �= 0) with a total length of 2l . The CPW capacitance and inductance per unit length are denoted
as Cl and Ll . The white regions symbolize silicon (Si), and the light blue areas represent niobium (Nb), excluding the Josephson junction
composed of aluminum. The external magnetic flux biases through the first and second loops are labeled as �ext,1 and �ext,2. Voltage profiles
for the first three modes (m = 1, 2, 3) are illustrated with solid lines [28]. The displacement of the Josephson junction renders its coupling to
all modes to be more evenly distributed, as emphasized by the discontinuity in the voltage profile. Please note that the color-coding for the
modes remains constant throughout the figure. (b) The effective charging energy EC,m = c2

me2/(2Ceff ), (c) transition frequency (Em,1 − Em,0)/h
of mode m, (d) anharmonicity [see Eq. (17)] of mode m, and (e) cross-Kerr interaction [see Eq. (18)] between modes m − n as functions of
the displacement xJ of the Josephson junction. For panels (b)–(e), the simulations were conducted using the parameter values from Table II
with the number of low-lying modes set at M0 = 8. The results depicted in (c)–(e) are derived from the energy levels featured in Fig. 3(a). As
a consequence, the avoided crossings lead to visible discontinuities in these results.

the low-energy subspace, an approach that bears resemblance
to the one introduced in Ref. [36]. We put forward an efficient
method to obtain corrections of the qubit energies and
anharmonicities induced by the coupling of the qubit mode
to a several unoccupied high-frequency modes. For typical
unimon parameters, we find anharmonicity reductions of
roughly 30% when up to eight modes are taken into account.

Previously, unimon has been studied in the special case
where junction is located at the center of the circuit, lead-
ing to half of the modes being decoupled from the junction.
Importantly, our results indicate that an asymmetric arrange-
ment where the junction is offset from the center provides a
rich profile of distributed nonlinearity, which is expressed by
significant self- and cross-Kerr couplings between the modes.
Particularly, the numerical findings from both two- and
three-mode scenarios display moderate nonlinearity across all
modes concurrently, hinting at the potential for multimon-like
qubit operations [37–39] within unimon circuits. However, to
achieve high-fidelity multiqubit operations, unimon circuits
with more intricate designs or additional components are
likely needed. We further study the accuracy of our numer-
ical findings by analytically solving for self- and cross-Kerr
interactions within the harmonic-oscillator basis.

This paper is organized as follows. In Sec. II, we introduce
our model and notation, detailing the linearization procedure
and obtaining spectrum of the qubit. In Sec. III, we describe
the effects of the high-frequency modes on the unimon-qubit
mode comparing them with the results predicted by the single-
mode model and the auxiliary-mode model introduced in
Ref. [27]. In Sec. IV, we study the multimode structure of
the unimon, focusing on the self- and cross-Kerr terms. Our
conclusions are presented in Sec. V.

II. MULTIMODE MODEL FOR THE UNIMON

We study a single-junction unimon circuit with multi-
ple modes taken into account. The system is schematically
illustrated in Fig. 1(a). Our primary motivation is to un-
derstand how the position of the Josephson junction within
the half-wavelength resonator influences the nonlinearity
of the modes. Key indicators of this nonlinearity, namely
the mode effective charging energy, transition frequency,
anharmonicity, and cross-Kerr coupling between modes, are
presented in Figs. 1(b)–1(e). To accurately compute these
values, we introduce an effective theoretical model, which is
elaborated upon in the subsequent sections. Table I provides
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TABLE I. Descriptions for various symbols.

Symbol Description

Cl Capacitance per unit lenght of the CPW resonator

Ll Inductance per unit lenght of the CPW resonator

CJ Capacitance of the Josephson junction [40]

2l
Total lenght of the center conductor of the CPW
resonator

xJ
Location of the Josephson junction on the center
conductor of the CPW resonator; xJ ∈ [−l, l]

�diff
Half difference of the applied external magnetic fluxes;
�diff = (�ext,1 − �ext,2)/2

�0 Magnetic flux quantum

φ0 dc flux across the Josephson junction [Eq. (B3)]

ϕ0 dc phase across the junction; ϕ0 = 2πφ0/�0

Zc
Characteristic impedance of the CPW resonator;
Zc = √

Ll/Cl

M
The amount of auxiliary modes included into the
auxiliary-mode Hamiltonian [Eq. (1)]

�m

Resonance frequency of the m:th auxiliary mode, i.e.,
�m = πmv/(2l ). Corresponds to normal modes of the
CPW resonator

Ceff

Effective capacitance felt by the flux across the
Josephson junction [Eq. (2)]. Incorporates a correction
originating from the CPW structure that vanishes as
M → ∞, i.e., Ceff → CJ

Leff

Effective inductance felt by the flux across the
Josephson junction [Eq. (3)]. Incorporates an inductive
shunt caused by the CPW resonator and an M
dependent correction

ξm
Inductive coupling strength between the nonlinear
mode and auxiliary mode [Eq. (4)]

M0

The amount of lower modes, i.e., all unimon modes that
include at least two energy levels with lower energy
than Ecutoff

ẼJ (E∗
J )

Renormalized Josephson energy in unimon (harmonic
oscillator) basis [Eqs. (12) and (D1)]

L̃m Effective inductance of the m:th normal mode [Eq. (7)]

ωm Resonance frequency of the m:th normal mode

cm
Contribution of m:th normal mode to flux across the
Josephson junction [Eq. (5)]

EC,m
Effective charging energy of the m:th normal mode;
EC,m(ϕ0) = c2

m(ϕ0)e2/(2Ceff )

EL,m
Effective inductive energy of the m:th normal mode;
EL,m(ϕ0) = �2

0/(2π )2/[L̃mc2
m(ϕ0)]

λm Zero-point fluctuations of m:th normal mode

αm Anharmonicity of m:th mode

Knm Cross-Kerr interaction between modes n and m

a compiled list of symbols used in the text, along with their
descriptions.

A. Effective multimode unimon Hamiltonian

As a starting point for our multimode treatment of
the unimon circuit, we use a Hamiltonian that comprises
a nonlinear mode with �̂ describing the magnetic flux

difference across the Josephson junction and being con-
jugate to the charge Q̂. In addition, the Hamiltonian in-
cludes M linear auxiliary modes with fluxes χ̂m that are
conjugate to charges 
̂m, where m = 1, . . . , M. The rel-
evant nonzero single-operator commutation relations these
operators satisfy are [�̂, Q̂] = ih̄ and [χ̂k, 
̂m] = ih̄δkm. A
detailed derivation for the Hamiltonian is provided in the
Appendix A, and hence, we begin our treatment from the
auxiliary-mode Hamiltonian

Ĥaux = Q̂2

2Ceff
+ �̂2

2Leff
+ �̂

2lLl
(�diff − φ0)

− EJ cos

[
2π

�0
(�̂ − φ0)

]

+
M∑

m=1

[

̂2

m

2Ceff
+ 1

2
Ceff�

2
mχ̂2

m + ξmχ̂m�̂

]
, (1)

where Ceff and Leff are the effective lumped capacitance and
inductance of the nonlinear mode, 2l is the resonator length,
�diff = (�ext,1 − �ext,2)/2 is the half difference of the exter-
nal magnetic fluxes shown in Fig. 1(a), φ0 is the dc magnetic
flux offset across the Josephson junction (Appendix A), EJ

is the Josephson energy, �0 denotes the flux quantum, �m =
πmv/(2l ) is the resonance angular frequency of the auxiliary
mode m, and {ξm} are the coupling strengths of the auxiliary
modes to the nonlinear mode. The definitions for the effective
lumped-element capacitance and inductance are

Ceff = CJ + Cl
(
l2 + 3x2

J

)
6l

−
M∑

m=1

cos2
(

�mxJ
v

+ mπ
2

)
�2

mlLl
, (2)

Leff = 2lLl

[
1 +

M∑
m=1

2 cos2

(
�mxJ

v
+ mπ

2

)]−1

, (3)

and the auxiliary-mode coupling strengths are

ξm =
√

Ceff

lLl
�m cos

(
�mxJ

v
+ mπ

2

)
, (4)

where v = 1/
√

LlCl is the phase velocity, CJ is the ca-
pacitance of the Josephson junction [40], Cl denotes the
capacitance per unit length, and xJ ∈ [−l, l] represents the
location of the Josephson junction in the CPW resonator.

Intuitively, the auxiliary-mode Hamiltonian can be thought
of as a nonlinear oscillator (first two rows) that is linearly
coupled (last term) with a set of linear oscillators (first two
terms on the last row) referred to as auxiliary modes. From
a physical perspective, the nonlinear oscillator corresponds to
the flux difference across the Josephson junction, whereas the
auxiliary modes can be thought of as the normal modes of the
CPW resonator in the absence of the Josephson junction.

The auxiliary-mode Hamiltonian in Eq. (1) contains M
auxiliary modes. Although this expression becomes exact as
M → ∞, numerical calculations necessitate limiting the num-
ber of modes at a finite M. Note that even when we set M = 0,
the nonlinear oscillator feels the effect of the CPW modes
through the inductive shunt and capacitive correction given
by the first term in Eq. (3) and second term in Eq. (2). How to
choose M is addressed in more detail in Sec. III.
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The auxiliary modes couple to the nonlinear mode in-
ductively, providing corrections to the unimon qubit energy
levels. The auxiliary-mode Hamiltonian in Eq. (1) is well-
adapted for studying the unimon circuit if our interest is
focused only on the lowest mode, as in Ref. [27]. Since the
auxiliary-mode frequencies are integer multiples of the lowest
auxiliary mode, �m = πmv/(2l ), only the few lowest modes
are energetically close enough to the nonlinear mode �̂ to
significantly interact with it. Furthermore, the location of the
Josephson junction can be chosen strategically to leave certain
auxiliary modes uncoupled, thus reducing the computational
load. In an optimal scenario, this approach allows for fairly
accurate results for unimon qubit energy levels to be obtained
by incorporating just a single auxiliary mode, effectively re-
ducing the problem to solving a two-dimensional Schrödinger
equation in the flux basis [27]. However, extending the con-
sideration from the energy levels of the lowest mode to those
of a multimode system necessitates an alternative approach,
primarily due to the rapid escalation of computational demand
as more auxiliary modes are included.

To adapt the Hamiltonian of the unimon circuit for numer-
ical analysis in cases involving multiple modes, we divide the
auxiliary-mode Hamiltonian in Eq. (1) into linear and non-
linear parts, Ĥaux = Ĥlin + Ĥnl, by expanding the nonlinear
Josephson term and moving the resulting quadratic term to the
linear part (Appendix B). To elucidate different modes in the
system and simplify subsequent analysis, we find the classical
normal modes of the linear part, Ĥlin, using a basis transfor-
mation. This process, which effectively removes the linear
coupling between the flux operators in Eq. (1), is detailed in
the Appendix B. We note that similar linearization procedures
to find the normal modes of system have been employed in
earlier works, as seen in Refs. [29–34]. The basis transfor-
mation gives rise to the normal-mode flux operators and the
corresponding conjugate charge operators which are denoted
by φ̂m and q̂m, respectively. These new operators continue to
satisfy the canonical commutation relations [φ̂k, q̂m] = ih̄δkm.
The transformation also yields the normal-mode representa-
tion of the magnetic flux across the Josephson junction:

�̂ =
M+1∑
m=1

cmφ̂m, (5)

where the constant factors cm are coefficients determined by
the transformation and describe the contribution from each
normal mode to the overall magnetic flux across the junction.
In addition, the diagonalization process reveals the normal-
mode frequencies, denoted by ωm/(2π ), m = 1, . . . , M + 1.
Insertion of Eq. (5) into the nonlinear part Ĥnl gives us the full
normal-mode representation of the Hamiltonian in Eq. (1) as

Ĥaux =
M+1∑
m=1

[
q̂2

m

2Ceff
+ φ̂2

m

2L̃m
+ Ic sin

(
2πφ0

�0

)
cmφ̂m

]

− EJ cos

[
2π

�0

(
M+1∑
m=1

cmφ̂m − φ0

)]

− 1

2LJ
cos

(
2πφ0

�0

) M+1∑
m,k=1
m �=k

cmckφ̂mφ̂k, (6)

where we have defined the Josephson inductance
LJ = (�0/2π )2/EJ, the critical current Ic = 2πEJ/�0 and

L̃m =
[
Ceffω

2
m − cos(2πφ0/�0)

LJ
c2

m

]−1

, (7)

to represent the effective inductance of the m:th normal mode.
Above, we described the Hamiltonian of the unimon circuit

in the normal-mode basis of the linearized version of the
circuit. However, the challenge still remains, since finding the
energy levels of the unimon qubit, while including the inter-
actions from the higher number of modes, requires solving
a high-dimensional Schrödinger equation. Thus an improved
basis is needed.

To simplify the notation, we introduce dimensionless oper-
ators n̂m = (q̂m/cm)/(2e) and ϕ̂m = 2πcmφ̂m/�0, where e is
the elementary charge. We divide the Hamiltonian in Eq. (6)
into parts describing the single-mode unimon Hamiltonians
Ĥm and the interaction part Ĥint, leading to

Ĥaux =
M+1∑
m=1

Ĥm + Ĥint. (8)

These constituent Hamiltonians can be expressed as

Ĥm = 4EC,m(ϕ0)n̂2
m + 1

2 EL,m(ϕ0)ϕ̂2
m

+ EJ[sin(ϕ0)ϕ̂m − cos(ϕ̂m − ϕ0)] (9)

and

Ĥint = EJ

[
M+1∑
m=1

cos(ϕ̂m − ϕ0) − cos

(
M+1∑
m=1

ϕ̂m − ϕ0

)

− cos(ϕ0)

2

M+1∑
m,k=1
m �=k

ϕ̂mϕ̂k

]
, (10)

where we have defined an effective charging energy of the
m:th mode as EC,m(ϕ0) = c2

m(ϕ0)e2/(2Ceff ), effective induc-
tive energy as EL,m(ϕ0) = �2

0/(2π )2/[L̃mc2
m(ϕ0)], and the dc

phase across the junction is denoted as ϕ0 = 2πφ0/�0. Note
that the coefficients cm introduce the dependence of EC,m and
EL,m on ϕ0.

This normal-mode representation of the auxiliary-mode
Hamiltonian is beneficial for several reasons. On one hand,
it fully separates the single-mode components from the in-
teraction terms. This becomes particularly clear on the first
row of Eq. (10), where the first term cancels the concealed
single-mode terms in the second term (see Appendix C).
Due to the utilization of normal mode coordinates of Ĥlin,
the interaction part Ĥint is exclusively composed of nonlin-
ear interactions. On the other hand, the single-mode unimon
Hamiltonian Ĥm can be diagonalized efficiently using the one-
dimensional Schrödinger equation, Ĥm| jm〉 = Em, j | jm〉, where
| jm〉 and Em, j denote the j:th eigenstate of the m:th mode
and the corresponding eigenenergy. In the remaining text, the
energy levels are assumed to be shifted such that Em,0 = 0.
Moreover, the eigenstates of Ĥm form a set of basis states
(referred as unimon basis) that can be used to represent the
interaction part Ĥint in a matrix form. In practice, this is
accomplished by applying the generalized trigonometric sum
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relation

cos

(
N∑

i=1

ϕ̂i

)
=

N∑
k=0

even k

(−1)
k
2

∑
A⊆{1,...,N}

|A|=k

×
[∏

i∈A

sin(ϕ̂i )
∏
i/∈A

cos(ϕ̂i )

]
(11)

for a cosine of sums, and subsequently calculating ma-
trix elements of three different types, 〈 jm|cos(ϕ̂m)| j′m〉,
〈 jm|sin(ϕ̂m)| j′m〉, and 〈 jm|ϕ̂m| j′m〉, in Eq. (10). The last sum-
mation in Eq. (11) represents a sum over all possible subsets
of {1, . . . , N} with a size of k. The product over i /∈ A refers
to all elements in {1, . . . , N} not included in A. When k = 0,
A is an empty set, and the product over i /∈ A encompasses all
elements of {1, . . . , N}.

The form of the single-mode unimon Hamiltonian in
Eq. (9) is equivalent with the model 1 introduced in Ref. [27].
Intuitively, it can be interpreted as a nonlinear oscillator com-
posed of a Josephson junction with effective inductive and
capacitive shunts. Both of these shunts, as well as the nonlin-
ear Josephson junction term, depend on the external magnetic
field. While these effective shunts and their dependence on
the external magnetic field physically originate from the CPW
resonator structure, the single-mode approach falls short in
accurately capturing the multimode effects. This is the point at
which the interaction Hamiltonian in Eq. (10) becomes signif-
icant and our model effectively diverges from the single-mode
approach presented in Ref. [27].

B. Energy cutoff for Hilbert space

After establishing a matrix representation in the unimon
basis, we need to manage the dimensions of the Hilbert space
before proceeding with an efficient diagonalization of the
matrix. To this end, we restrict the total size of the Hilbert
space, which ensures computational feasibility and accuracy
of the numerical approximations.

Although the number of energy levels for each mode is
theoretically infinite, ideal quantum computation takes place
in a finite-dimensional space and, therefore, is compatible
with the concept of an energy cutoff, Ecutoff. Consequently, we
disregard all eigenstates of the single-mode unimon Hamil-
tonian Ĥm with energies exceeding Ecutoff. The value of the
energy cutoff is determined by the convergence of the low-
energy eigenstates of the full Hamiltonian that we aim to

accurately model. Since the bare frequencies of the modes
increase with the mode number m, we only need to consider
states beyond the ground state for a limited number of modes.
This is attributed to the fact that the energy required to excite
such a mode exceeds the established energy cutoff. Although
eigenstates with energy below the cutoff can interact with
those above it, the significance of these interactions (including
higher-order processes) diminishes as Ecutoff is increased. This
effect is particularly pronounced for low-energy eigenstates,
which have the potential to be utilized for encoding qubits.
The convergence of low-energy eigenstates with respect to the
energy cutoff is briefly addressed in Appendix E.

We categorize the complete set of modes (m =
1, 2, . . . , M + 1) into two distinct groups, referred to as
the lower modes and higher modes. The lower modes, defined
by an integer M0 and m ∈ {1, . . . , M0}, include all modes
where any excited states are considered. Conversely, for the
higher modes, for which m ∈ {M0 + 1, . . . , M + 1}, only
their vacuum state is included due to the energy cutoff.

To simplify numerical computations, we assume that the
system is operated at a flux sweet spot where �diff =
�0/2 and ϕ0 = π . This condition results in a symme-
try 〈ϕm| jm〉 = |〈−ϕm| jm〉|. For the vacuum state, we have
〈ϕm|0m〉 = 〈−ϕm|0m〉, and hence the expectation values of
operators antisymmetric in ϕ̂m vanish for the vacuum sate.
For example, 〈0m|sin(ϕ̂m)|0m〉 = 0 and 〈0m|ϕ̂m|0m〉 = 0. In-
terestingly, utilization of the energy cutoff and symmetric
eigenstates implies that the impact of the higher modes on
the system primarily contributes to a renormalization of the
Josephson energy, denoted as

ẼJ = EJ

M+1∏
m=M0+1

〈0m|cos(ϕ̂m)|0m〉. (12)

The physical origin of this effect is in the zero-point fluctua-
tions of the higher modes that interact with the lower modes
through the second term in Eq. (10). A more comprehensive
exploration of this renormalization effect and its implications
can be found in Sec. III.

After incorporating all of the above-described steps, we
arrive at the final form of the total Hamiltonian

Ĥãux =
M0∑

m=1

Ĥm + Ĥ ĩnt , (13)

where the Hilbert space has been truncated based on the en-
ergy cutoff, and the interaction term is expressed as

Ĥ ĩnt = −EJ

⎡⎢⎣ M0∑
n=1

cos(ϕ̂n) − 1

2

M0∑
l,k=1
l �=k

ϕ̂l ϕ̂k

⎤⎥⎦+
M0∑
j=0

even j

(−1)
j
2

∑
A⊆{1,...,M0}|A|= j

ẼJ

[∏
i∈A

sin(ϕ̂i )
∏
i/∈A

cos(ϕ̂i )

]
, (14)

after using Eq. (11). We consider this form of the total Hamil-
tonian to be one of the main results of this paper.

In our model, the Hamiltonian described by Eq. (13) is
expressed in a matrix form using the unimon basis, where

matrix elements are expressed as

[Hãux]
i′0 j′1...k

′
M0

i0 j1...kM0
= 〈

i0 j1 . . . kM0

∣∣Ĥãux

∣∣i′0 j′1 . . . k′
M0

〉
, (15)
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Matrix representation 
in unimon basis:

Diagonalize the truncated 
matrix form of

Auxiliary mode
Hamiltonian Linearize &

find normal
modes

Separate single-mode &
interaction parts

Normal mode expansion

Solve SE:

Lower modes Higher modes
Determine energy cutoff to find:

Limit the number of
states per mode

Renormalization of EJ

FIG. 2. Process chart illustrating the method for solving the en-
ergy levels and eigenstates of the unimon circuit in a multimode
scenario. This schematic provides a visual summary of the more
detailed instructions and definitions given in Sec. II.

and each state |i0 j1 . . . kM0〉 must meet the energy cutoff con-
dition 〈

i0 j1 . . . kM0

∣∣∣∣∣
M0∑

m=1

Ĥm

∣∣∣∣∣i0 j1 . . . kM0

〉
� Ecutoff. (16)

By carefully selecting the energy cutoff, the diagonalization
of the matrix can be accomplished with adequate numerical
efficiency and accuracy.

The above-introduced process of solving the eigenstates of
the unimon circuit is visually summarized in Fig. 2.

C. Labeling of eigenstates

Upon diagonalizing the matrix, we acquire a new set
of eigenstates along with corresponding energy eigenvalues,
which can be interpreted as perturbed versions of the single-
mode Hamiltonian [Eq. (9)] eigenstates. To enhance our
understanding of the effects of the interactions between the
modes, it is fruitful to study the energy differences between
the perturbed and noninteracting scenarios.

Although visual inspection of the energy levels can
yield insight in specific cases, this approach tends to be-
come increasingly demanding in general. To streamline this
process, we compare the energy eigenstates of the interact-
ing Hamiltonian with those of the noninteracting case. In
practice, this is achieved by calculating the state overlaps
|〈i0 j1 . . . kM0 |αn〉|, where |αn〉 represents the n:th eigenstate of
Ĥãux and |i0 j1 . . . kM0〉 corresponds to an eigenstate of the non-
interacting Hamiltonian

∑M0
m=1 Ĥm. We then identify the state

|i0 j1 . . . kM0〉 that exhibits the maximum overlap with |αn〉, and
label |αn〉 as the perturbed counterpart of |i0 j1 . . . kM0〉.

Note that our labeling method may produce ambiguous
results. This ambiguity arises from transverse-type interac-
tions introduced by the interaction term, leading to strong

FIG. 3. Energy levels of the unimon circuit as functions of (a) the
location of the Josephson junction xJ, (b) Josephson energy EJ, and
(c) characteristic impedance Zc of the CPW. The solid lines represent
the qubit subspace of the three first modes, under the condition that
the rest of the modes are in their vacuum state. All other states are
represented by dashed lines. The inset of panel (a) provides a close
view of an example avoided crossing. For these simulations, we used
the parameters from Table II, with the number of lower modes set
to M0 = 8. Note that the sweep of the characteristic impedance is
carried out in such a way that the frequency of the lowest auxiliary
mode, represented by �1 = π/(2l

√
LlCl ), remains constant.

hybridization between eigenstates near suitable degeneracy
points. Figure 3(a) illustrates the effects of the hybridization
in the energy level diagram, exhibiting avoided crossings
between levels. Where eigenstate labeling is applied on quan-
tities such as anharmonicity or cross-Kerr interaction, the
effects of hybridization are exposed through sudden discon-
tinuities as found in Figs. 1(d) and 1(e).

D. Summary of different models for unimon

Here, we summarize the different unimon models that are
relevant for the remaining text. We started with the auxiliary-
mode Hamiltonian in flux basis [Eq. (1)]. While its derivation
employs a different approach, this Hamiltonian is equivalent
to the one derived using the path-integral-based model de-
tailed in Ref. [27] (see Appendix A). The auxiliary-mode
Hamiltonian becomes exact at the limit M → ∞. However,
realistically, it can only be solved for a limited number of
auxiliary modes. We refer to this way of solving the eigen-
states and their energies as auxiliary-mode model (AMM). We
note that the presentation of the auxiliary-mode Hamiltonian
in Eq. (1) differs slightly from the one presented in Ref. [27].
The distinction lies in the dc flux offset parameter φ0 that
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TABLE II. Physical parameters used in the simulations unless otherwise explicitly stated.

2l (mm) Ll (µH/m) Cl (pF/m) CJ (fF) EJ/h (GHz) xJ/l (-) Zc (�) �1/(2π ) (GHz) �diff/�0 (-)

8.0 0.821 87.1 1.4 19.0 0.51 97.1 7.39 0.5

we introduce (Appendix A) to facilitate our derivation of the
multimode model.

In our treatment above, the auxiliary-mode Hamiltonian
has been transformed into normal-mode coordinates and
separated into single-mode and interaction components, as
illustrated in Eq. (8). The single-mode components in Eq. (9)
closely resemble the model 1 from Ref. [27], which also
employs normal-mode coordinates. In fact, the two models
become equivalent as M → ∞. However, an excellent ap-
proximation is also achieved for a finite number of auxiliary
modes (e.g., M ≈ 100). We define this single-mode approach
as the single-mode model (SMM). While this model is the
simplest to solve, it compromises accuracy by neglecting the
interaction component described in Eq. (10).

In Eq. (12), we define a renormalized version of the Joseph-
son energy to approximate the influence of higher modes on
the system. As a special case of this, we consider M0 = 1,
where all modes except the lowest one are categorized as
higher modes. This assumption leads to a modified version
of the single-mode Hamiltonian in Eq. (9), where the standard
EJ is replaced with the renormalized ẼJ. We denote this as the
renormalized single-mode model (RSSM). The advantage of
this model is that it retains the simplicity and efficiency of the
single-mode model, while enhances accuracy by incorporat-
ing the zero-point fluctuations of the higher modes.

The main result of our derivations is presented in Eq. (13).
We obtained this Hamiltonian by imposing the energy cutoff
condition in Eq. (16). In order to determine the eigenstates
and corresponding energy levels, the Hamiltonian is diago-
nalized in the unimon basis. We refer to this approach as
the multimode model (MMM). Its primary advantage lies in
the improved accuracy through the inclusion of multimode
interactions [Eq. (14)], while simultaneously maintaining ef-
ficiency by truncating the Hilbert space.

III. MULTIMODE EFFECTS IN THE UNIMON CIRCUIT

Our next step is to analyze how the modes above the lowest
mode affect the energy levels and anharmonicity of the lowest
mode. This is important since the lowest mode is typically
used to encode a unimon qubit. First, we focus on the anhar-
monicity calculated by using the renormalized single-mode
model, and compare it with the previously used single-mode
model in Eq. (9). Second, we discuss the anharmonicity re-
sults from the multimode model [Eq. (13)] and juxtapose them
with the outcomes of the renormalized single-mode model.
As a further point of comparison, we discuss how the above-
mentioned models compare with the auxiliary-mode model
[Eq. (1)].

A. Effect of renormalization

As indicated in Eq. (12), the higher modes influence the
energy levels of the unimon even in their vacuum state through
zero-point phase fluctuations. These fluctuations couple to

the lowest mode, effectively causing a renormalization of
the Josephson energy within the system [34,35]. Since the
renormalization coefficient is simply a product of the vacuum
state expectation values of a cosine function, it follows that
ẼJ/EJ � 1. As a result, we observe a decrease in the anhar-
monicity of the lowest mode.

Interestingly, this decrease in anharmonicity due to the
renormalization of the Josephson energy offers an explana-
tion for the discrepancies observed between the single-mode
model and the auxiliary-mode model used in Ref. [27]. The
auxiliary-mode model, as described in Eq. (1), is expected to
yield more accurate results when a few low-frequency linear
modes are included compared to the single-mode model that
incorporates only one normal mode.

In Fig. 4(a), the anharmonicities of the lowest mode, as cal-
culated with each model, are displayed. Between the single-
mode and auxiliary-mode (M = 2) models the difference is
roughly 20% at xJ = 0. By including the renormalization
(RSSM), we observe an approximate 20% decrease in the an-
harmonicity compared to the single-mode model, bringing the
result close to the predictions of the auxiliary-mode model. In
Fig. 4(b), we further detail the behavior of the renormalization
coefficient, which changes only weakly as a function of xJ.

It is worth mentioning that based on physically moti-
vated mode-cutoff frequencies [34,41], the number of modes
M included in the renormalization process should be finite.
Here we introduce a cutoff that is based on the magnitude
of the superconductor gap parameter �gap. Namely, we set
�m � 2�gap, which imposes a limit on the number of modes
[34,42,43]. However, the renormalization coefficient appears
to be insensitive to the precise number of modes included and
seems to converge as M → ∞. This is demonstrated in the
inset of Fig. 4(b), which shows that the contribution from each
mode around the cutoff frequency (M ≈ 100) is negligible.
More detailed discussion regarding the convergence of the
renormalization coefficient is found in Appendix D.

Our numerical findings shown in Fig. 4 demonstrate
that the renormalization of the Josephson energy leads to
anharmonicities close to those obtained from the flux basis
solution of the auxiliary-mode Hamiltonian. Importantly,
compared to the single-mode model, the renormalized
single-mode model achieves a level of accuracy comparable
to the auxiliary-mode approach (M = 2), with virtually no
increase in the computational load.

B. Effects beyond renormalization

In addition to the renormalization effect of vacuum states,
we aim to understand how the energy levels of the unimon
qubit are influenced when some excited eigenstates in modes
m > 1 are kept within the computational Hilbert space. There-
fore we employ the multimode model to determine the energy
levels and anharmonicities of the full Hamiltonian in the
unimon basis as shown in Eq. (15). The truncation of the
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(a) (b)SMM
RSMM
MMM
AMM
AMM
AMM

FIG. 4. (a) Anharmonicity of the unimon qubit encoded into the lowest-frequency mode and (b) the renormalization coefficient ẼJ/EJ as
function of the location of the junction xJ. We show in (a) the anharmonicity obtained using the single-mode model (solid line), renormalized
single-mode model (dashed line), and the multimode model (dotted line) including M0 = 8 lower modes. The anharmonicities computed
directly from the auxiliary-mode model at xJ = 0 are indicated by markers, accounting for different numbers of auxiliary modes: M = 0
(circle), M = 2 (square), and M = 4 (triangle). The inset in (b) shows the contribution from each mode to the renormalization coefficient for
xJ/l = 0 (green line) and xJ/l = 0.46 (orange line) [see Eq. (12)]. These numerical calculations are carried out using the parameters listed in
Table II.

Hilbert space is executed based on an energy cutoff, which
is set to be at least several times higher than the highest
energy level utilized for qubit encoding. Our findings show
that the anharmonicity is further reduced when compared to
the renormalized single-mode model. This indicates that the
multimode model should be used to achieve accurate results.

We also propose that this model exhibits higher numerical
accuracy with a given number of computational resources
compared to solving the auxiliary-mode model in the flux
basis. This claim is supported by two factors. First, solving the
auxiliary-mode model becomes in general very challenging
for increasing M > 2 owing to the exponential increase in
the dimension of the computational Hilbert space. Second, as
depicted in Fig. 4, the results derived from the auxiliary-mode
model appear to converge towards those obtained from our
multimode model with increasing M. However, due to the
substantial computational demand imposed by the auxiliary-
mode model, we are unable to verify this comprehensively.
Note that, in special cases such as xJ/l = 0, we are capable
of solving the auxiliary-mode model for M = 4 since only
auxiliary modes with an even ordinal number exhibit nonzero
coupling with the nonlinear mode. In addition, we emphasize
that the multimode model requires significantly less com-
putational time than the auxiliary-mode model to achieve a
comparable accuracy. More details on the accuracy of the
multimode model can be found in Appendix E.

IV. INTERACTIONS BETWEEN THE LOWEST
MODES OF THE UNIMON CIRCUIT

A. Energy levels and avoided crossings

Let us leverage the model developed in Sec. II to its full
extent by examining the interactions among the three lowest

modes of the unimon circuit. This involves solving the multi-
mode Hamiltonian in the unimon basis as given in Eqs. (15),
and subsequently employing our labeling method to map the
obtained eigenstates onto the states of the unimon basis. The
energies of the labeled eigenstates are denoted as Ei jk , where
i, j, and k represent the number of excitations in the first,
second, and third modes, respectively. In Fig. 3, we show all
obtained energy levels as functions of xJ, EJ, and Zc. Here,
Zc = √

Ll/Cl represents the characteristic impedance of the
transmission line forming the resonator. Within the energy
levels, we highlight the labeled states where each of the initial
three modes has at most one excitation. In Fig. 3(a), the
energy levels manifest fairly intricate interactions with each
other as a function of xJ. We observe a correlation between
the first excited states and the effective charging energies
shown in Fig. 1(b), which is evident in the alignment of the
local extrema. The effective charging energy for the mode
depends on the weight coefficient cm which is related to the
coupling between the Josephson junction and mode m [see
Eq. (5)]. Figures 3(b) and 3(c) illustrate that an increase in
either the Josephson energy or the characteristic impedance
results in a decrease in energy for the first excited states. This
behavior can be attributed to the cancellation of quadratic
terms as either EJ or Zc increases. As these quadratic terms
decrease, the potential becomes less steep, which in turn nar-
rows the energy gap between the ground state and the excited
states. However, the energies of the excited states of the third
mode remain largely unchanged, given their weak coupling
with the Josephson junction. As discussed in Sec. II C, these
interactions often manifest as avoided crossings. An inter-
action exemplifying this can be observed between energy
levels E010 and E300 at xJ/l = 0.42, visualized in the inset of
Fig. 3(a).
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In qubit operations, avoided crossings are undesirable. If
qubit energy levels become hybridized, there is a risk of
unintended leakage into other participating states. This can ad-
versely affect the coherence time of the qubit. Consequently,
it is preferable to operate in parameter regimes where hy-
bridization of the qubit states is minimized. The prevalence
of avoided crossings increases with energy, rendering the
use of high-frequency normal modes (m � 2) challenging for
qubit operation. Nonetheless, in most parameter regimes, the
qubit of the lowest mode (m = 1) remains unaffected by these
avoided crossings up to its second excited state.

B. Anharmonicities and cross-Kerr interactions

We employ the labeled energy levels to compute key prop-
erties, such as the anharmonicity and cross-Kerr interaction.
For the lowest mode m = 1, the anharmonicity is defined as

α1(i, k) = (E2ik − E1ik ) − (E1ik − E0ik )

h
, (17)

and the cross-Kerr interaction between the modes 1 and 2 is
defined as

K12(i) = (E11i − E01i ) − (E10i − E00i )

h
. (18)

In general, the subscripts in αm and Kmn define which modes
are considered. It is customary to consider anharmonicity
involving only one mode and cross-Kerr interaction involving
two modes. However, higher-order terms become significant
when excitations in other modes are allowed. In this case, the
anharmonicity of a mode depends on the occupation number
of the other two modes, while the cross-Kerr interaction be-
tween two given modes is influenced by the state of the third
mode. We consider these effects in more detail in Sec. IV C.

By employing Eqs. (17) and (18), we compute the an-
harmonicity and cross-Kerr interaction for scenarios where
only the two lowest modes are allowed to hold excitations.
Consequently, both modes exhibit two state-dependent anhar-
monicities and the cross-Kerr interaction between these two
modes can be characterized by a single value. The results
for this two-mode scenario are displayed in Fig. 5. Our ob-
servations indicate that within the two-mode framework, it is
feasible to identify a set of parameters that distribute the non-
linearity relatively evenly across both modes. For example,
using the parameters given in Table II, the anharmonicity of
both modes remains above a 50-MHz threshold if the other
mode is kept in the vacuum state. Furthermore, the cross-Kerr
interaction energy lies around 200 MHz, peaking approxi-
mately at the same value of xJ as α2(0, 0). However, it is
evident that the anharmonicity of the lowest mode consistently
surpasses that of the second mode. Transferring an excitation
to a mode appears to have a diminishing effect on the anhar-
monicity of the other mode. The relative difference, between
the anharmonicities with and without excitations present in
the other mode, continues to increase with either increasing
Josephson energy or characteristic impedance, even though
the overarching trend is an increase in anharmonicity. Inter-
estingly, the value of α1(1, 0), however, begins to decrease
once EJ or Zc exceed a certain threshold. More details on this
effect are found in Sec. IV C.

FIG. 5. Anharmonicities and cross-Kerr interaction energies for
the two lowest modes of the unimon circuit as functions of (a) the
location of Josephson junction xJ, (b) Josephson energy EJ, and
(c) characteristic impedance Zc of the CPW. The dashed vertical line
in panel (a) indicates the value of xJ, which is subsequently used for
the graphs in (b) and (c). The notation αm(i, j) corresponds to the
anharmonicity of the m:th mode (m = 1, 2, 3), with the other two
modes having i and j excitations. The left argument (i) pertains to
the lower mode of the two arguments. The cross-Kerr interaction
is denoted by Knm(i), where n and m (n, m = 1, 2, 3) represent the
modes between which the interaction is computed. The argument
(i) equals to the number of excitations in the mode not primarily
involved in the interaction. The simulations utilize the parameter
values of Table II.

Our numerical calculations also extend to anharmonicities
and cross-Kerr interactions for the three-mode scenario, the
results of which are illustrated in Fig. 6. In our efforts to
spread the nonlinearity across all three modes, we adjusted
the location of the Josephson junction to xJ = 0.62 during the
sweeps with respect to EJ and Zc. In the case of three modes,
the number of anharmonicities per mode increases to four,
owing different combinations of excitations in the other two
modes. Similarly, the number of cross-Kerr interactions for
any pair of modes doubles, reflecting the influence exerted
by the state of the remaining mode. The results highlight the
challenge in discovering a set of parameters that ensures all
anharmonicities exceed a 10-MHz threshold. As discussed in
the context of the two-mode case, augmenting EJ or Zc is not a
feasible solution as it would result in a decrease in the lowest
anharmonicity and cross-Kerr interaction. This outcome is
visible for the anharmonicity α2(1, 0) as shown in Figs. 6(b)
and 6(c), and for the cross-Kerr interaction K23(1) as depicted
in Figs. 6(e) and 6(f).

C. Analysis of Kerr-type terms

Although our model lends itself well to numerical sim-
ulations, it does not facilitate analytical derivations. This
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FIG. 6. [(a)–(c)] Anharmonicities and [(d)–(f)] cross-Kerr interaction energies for the three lowest modes of the unimon circuit as functions
of [(a) and (d)] the Josephson junction location, [(b) and (e)] Josephson energy, and [(c) and (f)] characteristic impedance of the CPW. The
notation αm(i, j) and Knm(i) is defined in Eqs. (17) and (18), respectively, and in Fig. 5. For the parameter values that are not swept, we use
Table II, except for the Josephson junction location set at xJ/l = 0.62, as marked by the vertical dashed line in (a) and (d).

limitation stems from the fact that the eigenstates of the
single-mode unimon Hamiltonian seem not analytically
solvable in general. Therefore, to analytically investigate
the anharmonicities and cross-Kerr interactions, we make
use of the harmonic-oscillator basis [31]. Here, E∗

J =
EJ
∏M+1

m=1 e−λ2
m/2 represents the renormalized Josephson en-

ergy in the harmonic-oscillator basis [34,35], where λm =
2
√

EC,m/(h̄ωm) signifies the zero-point fluctuations of the
m:th mode. We refer to the different modes with the indices
n, m, and k. Under these definitions, the analytical expressions
for the anharmonicity and cross-Kerr interaction are expressed
as

αm(Nn, Nk ) = Kmm

(
1 −

√
2Knn

E∗
J /h

Nn −
√

2Kkk

E∗
J /h

Nk

+ Knk

E∗
J /h

NnNk

)
, (19)

Knm(Nk ) = Knm

(
1 −

√
2Kkk

E∗
J /h

Nk

)
, (20)

where Nm denotes the occupation number of the m:th mode
and the self-Kerr and cross-Kerr interactions, when no excita-

tion present in other modes, are given by [29,31]

Kmm = E∗
J

2h
λ4

m = 8E∗
J

h

(
EC,m

h̄ωm

)2

, (21)

Kmn = 2
√

KmmKnn, ∀ m �= n. (22)

For more details on the derivation of these expressions, refer
to Appendix G.

1. Modes in vacuum state

We begin our analysis with Eqs. (21) and (22), which rep-
resent the case without additional excitations in the system. To
gain insight into the behavior of the self-Kerr interaction with
respect to xJ, we represent Kmm in a more suggestive form,
Kmm ∝ (EC,m/ωm)2, where both EC,m and ωm are dependent
on xJ as depicted in Figs. 1(b) and 1(c).

Out of these two quantities, the effective charging energy
EC,m is notably more sensitive to variations in xJ. As a result,
EC,m largely determines the dependence of the anharmonicity
of mode m on xJ. Interestingly, the dependence of EC,m on xJ

follows the magnitude of the voltage discontinuity of mode m
across the junction, suggesting that EC,m serves as an indicator
of the coupling strength between mode m and the Josephson
junction.
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On the other hand, the transition frequency, ωm/(2π ), sig-
nificantly influences the level of the anharmonicity for each
mode. A higher transition frequency corresponds to reduced
anharmonicity, as depicted in Fig. 1(d). Note that we do not
consider the dependence of E∗

J on xJ in detail because it is
relatively weak, as illustrated in Fig. 4(b).

The analytical form of the cross-Kerr interaction Knm re-
veals a simple, yet important relationship with the self-Kerr
interactions Kmm and Knn. Specifically, the cross-Kerr inter-
action Kmn is twice the geometric mean of the self-Kerr
interactions Kmm and Knn. This indicates that the most efficient
way to increase the cross-Kerr interaction between the modes,
is to augment the self-Kerr interaction of both modes by an
equal amount. Such conclusions regarding the behavior of the
cross-Kerr interaction also applies for the parameter sweeps
respect to EJ and Zc.

We continue by examining the parameter sweep with
respect to the Josephson energy EJ. In this case, the self-Kerr
term of mode m can be expressed as Kmm ∝ ẼJ(EC,m/ωm)2,
highlighting the dependency of the self-Kerr on EJ. From the
Fig. 3(b), we observe that the transition energies from the
vacuum state E000 to the first excited states E100, E010, and
E001 decrease with increasing EJ. Consequently, this leads
to an increasing effect on Kmm, a trend also evident in the
numerical results.

In addition, increase in Josephson energy has an enhancing
effect on Kmm, even if the renormalization coefficient may de-
crease with increasing EJ. As a result, the self-Kerr interaction
strength is anticipated to increase more rapidly with respect to
EJ for the lowest mode than for the other modes, a pattern
consistent with our numerical calculations. Another approach
to reach this conclusion is by examining the quadratic part
of the single-mode Hamiltonian in Eq. (9), given by (EL,m −
EJ)ϕ̂2

m/2. As EJ/EL,m → 1, this term approaches zero, while
the magnitude of the nonlinear terms grows [27].

For the sweep with respect to Zc, we expect similar
behavior of the self-Kerr interaction to that for EJ. This is
substantiated by the observation that when the operators
in the auxiliary-mode Hamiltonian of Eq. (1) are rescaled,
the outcomes of increasing either EJ or Zc are approxi-
mately equal in the linear approximation (Appendix F).
At the sweet spot, the linear effects are pronounced because
the main cause of the increase in self-Kerr interaction is
the cancellation of quadratic flux term as EJ/EL,m → 1.
Nevertheless, higher-order terms indicate different behavior
between the characteristic impedance Zc and the Josephson
energy EJ. Such disparities are particularly evident in the case
of high-frequency modes, where the effect of the cancellation
diminishes. For additional details, refer to Appendix F.

2. Effect of excitations

We turn our attention to the impact of excitations on both
anharmonicity and cross-Kerr interactions. The origins of
these effects can be traced back to nonlinear Hamiltonian
terms, which are elaborated upon in Eqs. (19) and (20).

Introducing a single excitation into the k:th mode yields
two notable outcomes. First, there is a negative correction to
the anharmonicity of mode m. Second, a corresponding nega-
tive correction appears in the cross-Kerr interactions between

modes m and n. The relative decline for both of these effects
is captured mathematically as

αm(1, 0) − Kmm

Kmm
= Kmn(1) − Kmn

Kmn
= −

√
2Kkk

E∗
J /h

, (23)

which reveals that the decrease caused by the excitation is at
its maximum where Kkk/E∗

J attains its peak value. Further-
more, the equation suggests that a mode with a larger self-Kerr
interaction induces a larger relative correction. These effects
are evident in Fig. 5 for the anharmonicity and in Figs. 6(d)–
6(f) for the cross-Kerr interaction.

Finally, we examine the anharmonicity when another ex-
citation is introduced to the previously unoccupied mode n.
The difference between this and the preceding case can be
expressed as

αm(1, 1) − αm(1, 0)

Kmm
= λ2

n

(
λ2

k − 1
)
. (24)

The magnitude of the zero-point fluctuations in mode k,
which is the mode excited for Eq. (23), determines the sign
of the correction. Although the strength of the zero-point
fluctuations in mode n does not influence the sign, it acts
as a scaling coefficient, influencing the magnitude of the
correction. Based on this analysis, the observed trends in
Fig. 6 align well with our expectations. For a majority of
the parameter configurations, the lowest mode shows that
α1(1, 1) is the smallest anharmonicity. For the other two
modes, we consistently find that αm(1, 1) > αm(1, 0). From
a qualitative perspective this makes sense since the lowest
mode has the largest zero-point fluctuation. However, quan-
titatively this behavior is not explained by Eq. (24), since
positive correction requires λ2

1 > 1 which is not satisfied in
this case.

It is important, however, to recognize the limits of this ana-
lytical methodology. Although instrumental in elucidating the
qualitative behavior of Kerr-type interactions, the approach
does not encompass transverse-type or other rotating-wave
interactions. These interactions may be significant, especially
in systems with notable nonlinearity.

V. CONCLUSIONS

In this work, we explored the effects arising from the mul-
timode nature of the single-junction unimon circuit. Whereas
our primary focus was on the impact of the high-lying modes
on the lowest mode, we also investigated the influence of
the nonlinearity on other modes for different locations of
the Josephson junction. To facilitate our study, we devel-
oped a theory of multimode unimon circuits. This framework
was leveraged to determine the energy spectrum for several
low-lying modes using numerical diagonalization in the low-
energy subspace.

Our model, referred to as multimode model, markedly
differs from the one presented in Ref. [44] that describes the
multimode physics in Josephson-junction array fluxonium
circuits. While the effectiveness of their model relies on
the decoupling of the qubit mode from all other modes,
the distinctiveness of our model arises from the large energy
separation between the qubit subspace and the high-frequency
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modes, which is a consequence of the CPW structure.
Furthermore, the methods of numerical diagonalization for
fluxonium qubits presented in Refs. [14,33] differ from our
approach, particularly with respect to the chosen basis. In
Ref. [14], diagonalization is executed in the normal-mode
flux basis, which enforces a mode cutoff that includes only
two modes. On the other hand, the Hamiltonian in Ref. [33]
is expressed in the harmonic-oscillator basis, leading to a
less efficient convergence of the low-energy eigenstates when
compared to our unimon basis. By adjusting the choice of
basis to the problem at hand, we expect that the presented
model is also applicable to a class of multimode qubits known
as noise-protected qubits [22–24,45–47].

Our findings reveal that multimode effects introduce sig-
nificant corrections to both the transition frequency and
anharmonicity of the unimon qubit. Utilizing our multimode
model, the decrease in anharmonicity can be as much as
30% when the junction is centrally located, with more pro-
nounced effects observed at other positions. We also showed
that by solely considering the vacuum states, the multimode
effects can be condensed into a single coefficient, leading to
a renormalization of the Josephson energy. The decrease in
the anharmonicity owing to the renormalization can be com-
pensated by the choice of an increased bare Josephson energy.
Compared to the single-mode model introduced in Ref. [27],
this method seamlessly incorporates certain multimode ef-
fects without greatly increasing the required computational
resources.

A numerical comparison of the unimon models described
in this study with those presented in Ref. [27] indicates that
the multimode model not only matches the accuracy of the
best existing models but also surpasses them in efficiency.
This advantage is particularly notable at the sweet spots,
where the multimode model achieves its highest accuracy.
Although the multimode model accurately fits the lowest-
frequency mode of the unimon circuit, determining its efficacy
in describing modes beyond the lowest one remains an impor-
tant question for future research.

We found that the second and third modes present a diverse
nonlinearity profile, but their peaks do not coincide. This
misalignment poses a challenge in identifying an operational
regime where all three of the lowest modes exhibit substantial
nonlinearity. Yet, for the first and second modes, we identified
a position with notable nonlinearity in both.

Our work significantly expands upon the prior theoretical
descriptions of the unimon [27] by introducing a theoretical
framework to systematically investigate the multimode
physics of the unimon circuit and its potential applications.
An interesting application for unimon circuits is to encode
multiple qubits into a single device in the spirit of multimon
qubits [37–39]. However, although we identified parameter
configurations where two modes simultaneously exhibit
significant nonlinearity, we did not find promising parameters
for particularly high-fidelity qubits. In our future research,
we aim to apply our theoretical framework for more complex
unimon circuits. For example, by implementing a ring-like
geometry and adding more junctions, we expect to witness
behavior similar to transmon-based multimons, characterized
by a relatively uniform distribution of nonlinearity among the
modes with high intrinsic anharmonicity.
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APPENDIX A: DERIVATION OF AUXILIARY-MODE
HAMILTONIAN

Here, we derive the auxiliary-mode Hamiltonian that was
used as a starting point for the theoretical considerations in
Sec. II of the main text.

1. Equations of motion of the distributed-element circuit

We begin by formulating the total Lagrangian for the con-
tinuous distributed-element circuit, presented as

Ltot =
∫ l

−l
L
(

ψ,
∂ψ

∂x
,
∂ψ

∂t
; x, t

)
dx + L(�, �̇; t ), (A1)

where we have defined

ψ (x, t ) =
{
ψ1(x, t ), −l < x < xJ

ψ2(x, t ), xJ < x < l
, (A2)

which describes the flux of the grounded CPW resonator
and �(t ) = ψ2(xJ, t ) − ψ1(xJ, t ) denotes the flux difference
across the Josephson junction. The Lagrangian density L of
the CPW and the Lagrangian L describing the flux across the
junction are defined as [48]

L =Cl

2
[ψ̇ (x, t )]2 − 1

2Ll
[∂xψ (x, t )]2

L =CJ

2
[�̇(t )]2 + EJ cos

{
2π

�0
[�(t ) − �diff]

}
, (A3)

where �diff is the total flux difference across the loops and the
system obeys the boundary condition ψ (−l, t ) = ψ (l, t ) = 0.
We apply the Hamilton’s principle [49] to minimize the ac-
tion, defined as S = ∫ t2

t1
Ltotdt . This is done by requiring that

δS = 0. The variations of the action can expressed as

δS = δ

∫ t2

t1

[∫ l

−l
L
(

ψ,
∂ψ

∂x
,
∂ψ

∂t
; x, t

)
dx + L(�, �̇; t )

]
dt

=
∫ t2

t1

dt
∫ xJ

−l
dx

[
∂L
∂ψ1

− ∂

∂t

∂L
∂ψ̇1

− ∂

∂x

∂L
∂ (∂xψ1)

]
δψ1

+
∫ t2

t1

dt
∫ l

xJ

dx

[
∂L
∂ψ2

− ∂

∂t

∂L
∂ψ̇2

− ∂

∂x

∂L
∂ (∂xψ2)

]
δψ2

+
∫ t2

t1

dt

[
∂L

∂ψJ,1
− ∂

∂t

∂L

∂ψ̇J,1
+ ∂L

∂ (∂xψ1)

∣∣∣∣
x=xJ

]
δψJ,1

+
∫ t2

t1

dt

[
∂L

∂ψJ,2
− ∂

∂t

∂L

∂ψ̇J,2
− ∂L

∂ (∂xψ2)

∣∣∣∣
x=xJ

]
δψJ,2,

(A4)
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which results into a set of Euler-Lagrange equations, defined
as

∂L
∂ψi

− ∂

∂t

∂L
∂ (∂ψi/∂t )

− ∂

∂x

∂L
∂ (∂ψi/∂x)

= 0, (A5)

∂L

∂ψJ,i
− ∂

∂t

∂L

∂ψ̇J,i
− (−1)i ∂L

∂ (∂ψi/∂x)

∣∣∣∣
x=xJ

= 0, (A6)

where i ∈ {1, 2} and ψJ,i ≡ ψi(xJ, t ). To utilize the Euler-
Lagrange framework, we derive the subsequent equations of
motion

∂2
x ψi(x, t ) = 1

v2
∂2

t ψi(x, t ), i ∈ {1, 2}, (A7)

CJ�̈(t ) + Ic sin

{
2π

�0
[�(t ) − �diff]

}
= 1

Ll
∂xψi(x, t )

∣∣
x=xJ

, i ∈ {1, 2}, (A8)

where the phase velocity is denoted as v = 1/
√

LlCl .

2. Variable elimination in frequency domain

Our interest is to eliminate the variable ψi and express the
equation of motion solely with the variable �. In order to
achieve this, we move to a frequency domain by using Fourier
transformation, which is defined as

f̃ (ω) = F[ f ](ω) =
∫ ∞

−∞
dt exp(−iωt ) f (t ), (A9)

where f : R → R, f ∈ L2[R]. Starting with the wave equa-
tion in Eq. (A7), we apply Eq. (A9) and a property
F[∂t f ](ω) = iω f̃ (ω) to express the wave equation in angular
frequency domain as

∂2
x ψ̃i(x, ω) = −ω2

v2
ψ̃i(x, ω), i ∈ {1, 2}, (A10)

where ψ̃i(x, ω) ≡ F[ψi](ω). The solution for the wave equa-
tion in angular frequency domain is

ψ̃i(x, ω) = A(s)
i (ω) sin(kωx) + A(c)

i (ω) cos(kωx), (A11)

where the wave number is denoted as kω = ω/v.
We can determine the coefficients A(s)

i and A(c)
i by taking

the Fourier transformation of Eq. (A8), which results in

1

Ll
∂xψ̃2(xJ, ω) = 1

Ll
∂xψ̃1(xJ, ω). (A12)

This condition ensures that the current across the Josephson
junction is continuous. In addition, incorporating the bound-
ary conditions of the grounded CPW and the flux difference
across the junction, we can extract the frequency-dependent
coefficients as

A(s)
1 (ω) = −1

2
�̃(ω)

cos[kω(xJ − l )]

sin(kωl )
, (A13)

A(c)
1 (ω) = −1

2
�̃(ω)

cos[kω(xJ − l )]

cos(kωl )
, (A14)

A(s)
2 (ω) = −1

2
�̃(ω)

cos[kω(xJ + l )]

sin(kωl )
, (A15)

A(c)
2 (ω) = 1

2
�̃(ω)

cos[kω(xJ + l )]

cos(kωl )
. (A16)

By inserting the derived coefficients into Eqs. (A11) and
(A12), we obtain

1

Ll
∂xψ̃i(xJ, ω) = −K̃ (ω)�̃(ω), (A17)

where the kernel function is defined as

K̃ (ω) = kω cos[kω(xJ + l )] cos[kω(xJ − l )]

Ll sin(2kωl )
. (A18)

This kernel K̃ encapsulates the intricate relationship between
the Josephson junction and the CPW resonator, enabling us to
focus solely on the � variable.

Switching back to the time domain with the help of
the inverse Fourier transformation, gives rise to the integro-
differential equation

CJ�̈(t ) + Ic sin

{
2π

�0
[�(t ) − �diff]

}
+
∫ ∞

−∞
K (t − τ )�(τ )dτ = 0. (A19)

Although this equation provides a stepping stone into the
classical dynamics of the system, our end goal is to formulate
the quantized Hamiltonian. For this purpose, we continue in
the frequency domain, aiming to replace the kernel function
with resonator eigenmodes.

3. Pole expansion of the kernel function

To carry out a pole decomposition of the kernel K̃ , we treat
ω as a complex variable. This lets us use a Mittag-Leffler
variant to express the kernel function [50]. The decomposition
is expressed as

K̃ (ω) =
∞∑

n=0

dnK̃ (ω)

dωn

∣∣∣∣
ω=0

ωn

n!

+
M∑

m=1

{
2rm�m

ω2 − �2
m

+ rm

�m

∞∑
n=0

[1 + (−1)n]
( ω

�m

)n
}
,

(A20)

where M is a positive integer that denotes the number modes
and the location of the poles, �m = πvm/(2l ), correspond
to the harmonic modes of the resonator as can be observed
from Eq. (A18). The residues for each pole are denoted as
rm = r[K̃ (ω),�m]. The first summation in Eq. (A18) repre-
sents the Maclaurin series, providing an estimate of K̃ (ω) at
low frequencies. The second summation term is introduced by
adding zeros in a form of geometric series as

0 = rm

ω − �m
+ rm

�m

∞∑
n=0

(
ω

�m

)n

, (A21)
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which is valid under the condition |ω/�m| < 1. The residues
of each pole are given by

rm = �m cos2
(

�mxJ
v

+ π
2 m

)
2lLl

, (A22)

which satisfies rm = −r−m.

4. Introducing auxiliary modes

Using the pole decomposition form of the kernel function,
the convolution term in Eq. (A19) can be expressed as∫ ∞

−∞
K (t − τ )�(τ )dτ

= F−1

[
M∑

m=1

2rm�m

ω2 − �2
m

�̃(ω)

]
(t )

+
∞∑

n=0
even n

{
1

n!

dnK̃ (ω)

dωn

∣∣∣∣
ω=0

+
M∑

m=1

2rm

�n+1
m

}
(−i)n∂n

t �(t )

≈
[

K̃ (0) +
M∑

m=1

2rm

�m

]
�(t ) −

[
K̃ ′′(0)

2
+

M∑
m=1

2rm

�3
m

]
�̈(t )

+ F−1

[
M∑

m=1

2rm�m

ω2 − �2
m

�̃(ω)

]
(t ), (A23)

where F−1 denotes the inverse Fourier transform. We have
also used the convolution theorem, defined as∫ ∞

−∞
f (τ )g(t − τ )dτ = F−1[ f̃ g̃](t ), (A24)

and the fact that contribution from odd time derivatives of flux
is zero. This is evidenced by the fact that, if n is odd, both
dnK̃ (ω)/(dωn)|ω=0 and the latter term in the second row of
Eq. (A20) are zero.

In addition, since the only lumped element which depends
on time-derivatives of flux is capacitance, we may utilize the
low-frequency assumption made with the pole expansion to
approximate the convolution by neglecting time derivatives
∂n

t �(t ) when n > 2. Interestingly, this low-frequency approx-
imation made in the convolution expression in Eq. (A23)
becomes exact in the limit of M → ∞. In this limit, Mittag-
Leffler theorem [51] allows us to express the kernel in
Eq. (A20) as

K̃ (ω) = K̃ (0) +
∞∑

m=1

{
2rm�m

ω2 − �2
m

+ 2rm

�m

}
, (A25)

where all contributions from kernel K̃ (ω) to the time deriva-
tives in the convolution term [Eq. (A23)] vanish. Similar
technique has been previously utilized in the context of net-
work synthesis of prescribed impedance functions [52].

The approximation of convolution, as given in Eq. (A23),
leads us to a more tractable expression for the full equation of

motion in Eq. (A19) which takes the form

Ceff�̈(t ) + L−1
eff �(t ) + Ic sin

{
2π

�0
[�(t ) − �diff]

}

= −F−1

[
M∑

m=1

2rm�m

ω2 − �2
m

�̃(ω)

]
(t ), (A26)

where we used the definitions for Ceff and Leff given in the
Eqs. (2) and (3) of the main text.

To handle the temporally nonlocal term, we employ a set
of auxiliary modes, denoted as

χm(t ) = F−1

[√
2rm�m

Ceff

�̃(ω)

ω2 − �2
m

]
(t ). (A27)

This helps us to express Eq. (A26) as

Ceff�̈(t ) + L−1
eff �(t ) +

M∑
m=1

ξmχm(t )

= −Ic sin

{
2π

�0
[�(t ) − �diff]

}
, (A28)

where ξm = √
2rm�mCeff. For a complete description of the

system dynamics, we derive the equations for each auxiliary
mode.

We begin by taking the second order time derivative of the
Eq. (A27), which gives us

χ̈m(t ) =
√

2rm�m

Ceff
F−1

[
ω2

ω2 − �2
m

�̃(ω)

]
(t ). (A29)

By utilizing the convolution theorem in Eq. (A24) and
relations

F−1

[
ω2

ω2 − �2
m

]
(t ) = δ(t ) − �m

2
sgn(t ) sin(�mt ), (A30)

F[sgn(t ) sin(�mt )](ω) = − 2�m

ω2 − �2
m

, (A31)

we obtain the equations of motion for the auxiliary modes,
which can be expressed as

Ceffχ̈m(t ) + ξm�(t ) + Ceff�
2
mχm(t ) = 0. (A32)

By introducing auxiliary modes, we have successfully elimi-
nated the need to compute temporal convolutions.

5. Classical treatment of the dc flux

In the pursuit of computing the normal modes of the
system, it is convenient to redefine the fluxes such that
they vanish at the minima of their effective potentials. To
this end, we define the shifted flux and the auxiliary vari-
ables as follows: � ′(t ) = �(t ) − �diff + φ0, where the dc
flux component φ0 is separated from the dynamic component
� ′(t ). Similarly, for the auxiliary modes, we define χ ′

m(t ) =
χm(t ) + xm.
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Substituting these into our earlier equations, we obtain

Ceff�̈
′(t ) + L−1

eff �
′(t ) +

M∑
m=1

ξmχ ′
m(t )

+ Ic sin

{
2π

�0
[� ′(t ) − φ0]

}
+ Ic sin

(
2πφ0

�0

)

= −L−1
eff (�diff − φ0) −

M∑
m=1

ξmxm + Ic sin

(
2πφ0

�0

)
(A33)

Ceffχ̈
′
m(t ) + ξm� ′(t ) + Ceff�

2
mχ ′

m(t )

= −ξm(�diff − φ0) − Ceff�
2
mxm. (A34)

It is clear that the right side of these equations captures the
time-independent behavior, with the left side containing time-
dependent part of the system.

Conveniently, the time-independent parts of Eqs. (A33)
and (A34) can be solved independently from the time-
dependent parts, giving us a set of new equations

Ic sin

(
2πφ0

�0

)
− �diff − φ0

Leff
=

M∑
m=1

ξmxm (A35)

Ceff�
2
mxm = −ξm(�diff − φ0). (A36)

From these equations, by eliminating the variables xm, we
obtain the relation

�diff − φ0

2lLl
− Ic sin

(
2πφ0

�0

)
= 0. (A37)

This equation links the dc flux across our junction to the
external magnetic flux, encapsulating the dc flux behavior of
our system in the presence of an external magnetic influence.
Note that the Eq. (A37) becomes multi-valued if 2lLl/LJ > 1
[53–55], a parameter region we aim to avoid.

6. Finding the Hamiltonian and quantization

The Lagrangian that corresponds to the left side of
Eqs. (A33) and (A34) can be expressed as

Laux = Ceff�̇
′2

2
− � ′2

2Leff
+ EJ cos

(
2π

�0
[� ′ − φ0]

)

+
M∑

m=1

Ceff

[
χ̇ ′2

m

2
− �2

m

χ ′2
m

2

]
−

M∑
m=1

ξmχ ′
m� ′

− � ′

2lLl
(�diff − φ0), (A38)

where we omitted the explicit temporal dependencies for
brevity.

In order to transition to the Hamiltonian formalism, we
define the conjugate momenta associated with � ′ and χ ′

m as

Q′ = Ceff�̇
′, 
′

m = Ceffχ̇
′
m. (A39)

Using a Legendre transformation and subsequent quantiza-
tion, we obtain

Ĥaux = Q̂′2

2Ceff
+ �̂ ′2

2Leff
+ �̂ ′

2lLl
(�diff − φ0)

+
M∑

m=1

[

̂′2

m

2Ceff
+ Ceff�

2
m

χ̂ ′2
m

2

]
+

M∑
m=1

ξmχ̂ ′
m�̂ ′

− EJ cos

[
2π

�0
(�̂ ′ − φ0)

]
, (A40)

where the associated quantum operators obey the commu-
tation relations [�̂ ′, Q̂′] = ih̄ and [χ̂ ′

n, 
̂
′
m] = ih̄δnm with all

other commutators giving zero. Omission of primes in this
Hamiltonian leads to the auxiliary-mode Hamiltonian in
Eq. (1).

7. Comparison with prior models

In Ref. [27], an equivalent Hamiltonian is derived by em-
ploying path integrals. In this path-integral-based approach,
the degrees of freedom of the CPW are eliminated using
the path integral formalism, leading to a temporally nonlocal
kernel function similar to that in Eq. (A18). The resulting Eu-
clidean action is then compared to a specifically chosen trial
action, which has the same form as the corresponding action
for the Lagrangian in Eq. (A38). By equating these actions,
one can derive a Hamiltonian for the system that aligns with
the auxiliary-mode Hamiltonian presented in Eq. (1).

Despite leading to the same end result, the alternative
derivation presented here offers two main advantages. First,
it avoids the conceptually challenging path-integral tech-
nique. Second, the auxiliary-mode Lagrangian, as expressed
in Eq. (A38), can be derived without resorting to a trial action.
This approach simplifies the process, enabling one to reach the
final result without requiring prior intuition about its form.

The model 1 in Ref. [27] departs from both of these ap-
proaches. Contrary to the derivation presented above, which
relies on pole expansion in the frequency domain to identify a
set of auxiliary modes for easy conversion into a Hamiltonian
representation, the model 1 approach focuses on identifying
normal modes from the linearized equations of motion and
then constructing the Hamiltonian using these normal-mode
coordinates. However, a major disadvantage of this approach
is that the normal-mode frequencies cannot be expressed
analytically, resulting in a Hamiltonian that lacks an exact
analytical form. In contrast, the auxiliary-mode Hamiltonian
in Eq. (1) does not encounter this issue. This advantage arises
because the kernel function is analytically expressible through
the pole expansion detailed in Eq. (A20), where the location
of the poles corresponds exactly with CPW resonator mode
frequencies. This alignment is not surprising, as the kernel
function describes how the flux across the Josephson junc-
tion is influenced by the CPW structure, as evidenced by the
relation in Eq. (A17).

APPENDIX B: LINEARIZATION
OF AUXILIARY-MODE HAMILTONIAN

In this Appendix, we supplement the derivation of
the normal-mode representation of the auxiliary-mode
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Hamiltonian Ĥaux with details that were omitted in the
Sec. II A of the main text.

The linear and nonlinear parts of the auxiliary-mode
Hamiltonian are defined as

Ĥlin = Q̂2

2Ceff
+ 1

2

[
1

Leff
+ cos(2πφ0/�0)

LJ

]
�̂2

+
M∑

m=1

[

̂2

m

2Ceff
+ 1

2
Ceff�

2
mχ̂2

m + ξmχ̂m�̂

]
, (B1)

Ĥnl = − EJ cos

[
2π

�0
(�̂ − φ0)

]
+ Ic sin

(
2πφ0

�0

)
�̂

− 1

2LJ
cos

(
2πφ0

�0

)
�̂2, (B2)

where the last two terms cancel out the first- and second-order
contributions from the cosine function, consequently showing
that Ĥnl contributes to fully nonlinear dynamics. This becomes
particularly clear if the trigonometric identity cos(x − y) =
cos x cos y + sin x sin y is applied. We also note that the dc
magnetic flux offset across the junction φ0 and the half differ-
ence of the external magnetic flux �diff are connected through
a relation

�diff − φ0

2lLl
− Ic sin

(
2πφ0

�0

)
= 0, (B3)

which is used in Eq. (B1). As elaborated upon in Appendix A,
this relation arises from the time-independent part of the
classical Lagrange equation for the system. Specifically, it
demonstrates how the dc flux difference across the Josephson
junction is influenced by the difference in external fluxes
passing through the two loops.

In a matrix form the linear part is expressed as

Ĥlin = 1
2 Q†C−1Q + 1

2 V†L−1V, (B4)

where the flux vector V is defined as [V]0 = �̂, [V]m =
χ̂m, m ∈ {1, 2, . . . , M} and correspondingly the charge vector
Q is defined as [Q]0 = Q̂, [Q]m = 
̂m, m ∈ {1, 2, . . . , M}.
Since there is no capacitive coupling present in the system,
the inverse of the capacitance matrix is simply [C−1]nn =
1/Ceff, n ∈ {0, 1, 2, . . . , M}. For the inverse of the inductance
matrix, the nonzero elements are defined as [L−1]00 = L−1

eff +
cos(ϕ0)/LJ, [L−1]mm = Ceff�

2
m and [L−1]0m = [L−1]m0 =

ξm, m ∈ {1, 2, . . . , M}.
Such matrix can be diagonalized by introducing an unitary

matrix U that satisfies D = UTL−1U, where the matrix D is
diagonal. By utilizing this, the Hamiltonian in Eq. (B4) can
be expressed as

Ĥlin = 1
2 q†C−1q + 1

2 v†Dv, (B5)

where [q]n = [U†Q]n = q̂n, n ∈ {0, 1, 2, . . . , M} and [v]n =
[U†V]n = φ̂n, n ∈ {0, 1, 2, . . . , M}.

Finally, the linear part of the Hamiltonian can be expressed
as

Ĥlin =
M∑

m=0

[
q̂2

m

2Ceff
+ 1

2
Ceffω

2
mφ̂2

m

]
, (B6)

where the normal-mode frequencies are denoted as ωm/(2π ).
Furthermore, the normal-mode decompositions for operators

�̂ and χ̂m take the form

�̂ =
M+1∑
m=1

[U]0,m−1φ̂m, χ̂m =
M+1∑
n=1

[U]m,n−1φ̂n, (B7)

and thus, the coefficients cm in Eq. (5) of the main text are
given by cm = [U]0,m−1.

APPENDIX C: DIVISION TO SINGLE-MODE
AND INTERACTION PARTS

Starting with the assumption that ϕ0=π and inspecting
Eq. (11) of the main text, we note that only the term containing
only cosines is a single-mode term. All other terms involve
products of sines, which introduce coupling between the
modes. We proceed by expressing the product of cosines as

N∏
i=1

[1 + (cos ϕ̂i − 1)]

= 1 +
N∑

k=1

(cos ϕ̂i − 1) +
N∑

k=2

∑
A⊆{1,...,N}

|A|=k

∏
i∈A

(cos ϕ̂i − 1),

(C1)

The significance of (cos ϕ̂m − 1) arises from the cancellation
of the constant term. Consequently, the last summation
term inevitably includes only interaction terms, whereas the
second summation term holds the single-mode contribution.
By applying the above steps to Eq. (10), the single-mode
contributions conveniently cancel each other out, and hence
only interaction terms remain.

APPENDIX D: SCALING OF THE
RENORMALIZATION COEFFICIENT

Here, we study the scaling properties of the renormal-
ization coefficient ẼJ/EJ in more detail. We put forward a
convincing argument that the mode cutoff frequency used in
the multimode model of the main text is reasonable.

In Fig. 7, we show the renormalization coefficient for the
lowest mode as a function of the total number of modes that
are coupled to the Josephson junction. Importantly, the renor-
malization coefficient appears to converge to a value slightly
below 0.90. This supports our choice of the mode cutoff
frequency, based on the superconducting gap, which yielded
a renormalization coefficient of approximately ẼJ/EJ ≈ 0.90
(see Sec. III in the main text).

To understand this behavior, we consider the renor-
malization coefficient expressed in the harmonic-oscillator
basis as

E∗
J /EJ =

M∏
m=2

e−λ2
m/2, λm = 2

√
EC,m

h̄ωm
, (D1)

where λm denotes the zero-point fluctuations of the mode
m. In the exponent, both the inverse of the mode angular
eigenfrequency and the effective charging energy are present,
which are both depicted in the inset of Fig. 7 as functions
of mode number m. Due to the CPW structure, the eigen-
frequency scales as ∼1/m. This scaling alone would lead
to E∗

J /EJ ∼ 1/M, causing the renormalization coefficient to
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FIG. 7. Renormalization coefficient ẼJ/EJ (M0 = 1) as a func-
tion of the total number of modes M (black curve). The inset shows
the inverse of the mode eigenfrequency (red curve) and effective
charging energy EC,m = c2

me2/(2Ceff ) (blue curve) as functions of the
mode number m. The calculations are carried out for xJ/l = 0 and
φ0 = π . Note that only modes that couple to the Josephson junction
are included. In this case only every other mode is coupled.

vanish in the limit M → ∞. However, the effective charging
energy appears to scale as ∼1/mγ , where γ > 1. Note that
there is a clear change in the scaling behavior around m ≈ 20,
after which the effective charging energy decreases faster than
the inverse eigenfrequency, implying that γ > 1 in the limit
m → ∞. In the context of the exponent in Eq. (D1), this
results in a scaling given by λm ∼ (1/m)1+γ . Should the as-
sumption γ > 1 hold true, it implies that the renormalization
coefficient converges to a nonzero value, consistent with the
behavior observed in Fig. 7.

Similar arguments regarding the convergence of the renor-
malization effects, especially when considering a Josephson
junction that is capacitively coupled to the end of a CPW,
are discussed in Refs. [41,56,57]. These works demonstrated
that the magnitude of the coupling between the qubit mode
and the high-frequency modes exhibits a natural cutoff fre-
quency. This cutoff is primarily dependent on the Josephson
capacitance CJ as M → ∞. We observed similar behavior in
the mode-dependent effective charging energies of the unimon
circuit. Specifically, in the inset of Fig. 7, a natural frequency
cutoff is apparent around M ≈ 50. Although not shown in the
figure, this cutoff is influenced by the selected value of CJ.

APPENDIX E: ACCURACY OF THE MULTIMODE MODEL

In this Appendix, we address the accuracy of the multi-
mode model [Eq. (13)] compared with the single-mode model
[Eq. (9)] and auxiliary-mode model [Eq. (1)]. Figure 8 il-
lustrates that significant discrepancies in the lowest-mode
anharmonicity between the two models arise primarily at two
flux bias points: �diff/�0 = 0.39 and 0.50. We observe that if
the number of auxiliary modes increases from M = 2 to M =
4, the anharmonicity undergoes corrections of approximately

FIG. 8. Anharmonicity of the lowest mode as a function of the
�diff/�0 for the multimode (M0 = 10) and auxiliary-mode (M = 2)
models. In addition, two data points for the auxiliary-mode model
with M = 4 are shown at positions where the deviation between
the two models is most pronounced (�diff/�0 = 0.39 and 0.50).
The inset shows the anharmonicity of lowest mode as a func-
tion of the energy cutoff Ecutoff, as determined by the multimode
model. The parameters used for these calculations are xJ/l = 0,
Ll = 0.83 µH/m, Cl = 83.0 pF/m, and EJ/h = 19.0 GHz.

15 MHz in magnitude. In both instances, these corrections
move the value closer to what is obtained with the multimode
model. In addition, the inset of Fig. 8 reveals a convergent be-
havior for the multimode model, exhibiting markedly smaller
deviations than the auxiliary-mode model as the energy cutoff
Ecutoff surpasses 100 GHz. For instance, if Ecutoff is increased
from 150 to 200 GHz, the correction to the anharmonicity is
roughly 1 MHz.

We also performed a fitting procedure for the multimode
model by using the measurement results from Ref. [27]. A
good fit for the transition frequencies f01 and f02, as func-
tion of �diff, was found by using parameter values Ll ≈
0.809 µH/m, Cl ≈ 88.1 pF/m, and EJ/h ≈ 21.2 GHz. The
fitting results of MMM, along with the other models, are
depicted in Fig. 9, while the fitting parameters for each model
are detailed in Table III.

The multimode model demonstrates a high degree of
agreement with the experimental data, particularly at the
sweet spots. Nonetheless, minor deviations from the measured
transition frequencies are observed outside of these sweet
spots across all models. As expected, the multimode model
consistently outperforms the single-mode model, offering a
universally superior fit. The fitting results reflect the renormal-
ization of the Josephson energy, attributed to the zero-point
fluctuations of the additional modes, resulting in an increase
in the Josephson energy as predicted by the multimode model
(refer to Table III). The renormalization coefficient, calculated
as ẼJ/EJ ≈ 19.0/21.2 = 0.896, aligns closely with theoretical
predictions in Fig. 4(b).

Surprisingly, the auxiliary-mode model provides a better
fit compared to the multimode model, which is especially
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FIG. 9. Fitting results for the transition frequencies f01 and f02, utilizing multimode model (MMM), single-mode model (SMM), and
auxiliary-mode model (AMM), based on measurement results from Ref. [27]. Optimized fitting parameters for each model are detailed in
Table III.

clear outside of the sweet spots. The observed discrepancy
is modest, approximately 10 MHz for f02/2 at �diff/�0 =
−0.36, and could be partially attributed to the exclusion
of the first excited levels for modes m > M0. This omis-
sion is significant because the coupling strength between the
ground state of the mode and its first excited level peaks
away from the sweet spots, closely mirroring the behavior
described by the function |sin(ϕ0)|. Supporting this explana-
tion, the deviation between the two models also approximates
the form of |sin(ϕ0)|, with both reaching the maximum value
at �diff/�0 ≈ −0.38. Although not implemented here, we
anticipate that the Schrieffer-Wolff transformation could ef-
fectively approximate this effect.

APPENDIX F: DEPENDENCE OF THE UNIMON
PHYSICS ON EJ and Zc

We investigate the interplay between the Josephson energy,
EJ, and the characteristic impedance, Zc, in a unimon operated
at its sweet spot of ϕ = π . We aim to understand how changes
in these parameters influence the behavior of the system.

TABLE III. Optimal fitting parameters (EJ, Ll , and Cl ) for
the multimode model (MMM), single-mode model (SMM), and
auxiliary-mode model (AMM), determined by fitting the models
using measurement results from Ref. [27].

EJ/h (GHz) Ll (µH/m) Cl (pF/m)

MMM 21.2 0.810 88.1
SMM 19.0 0.821 87.1
AMM 19.4 0.832 86.4

Starting with the auxiliary-mode Hamiltonian given by
Eq. (1), we define new rescaled flux operators as ˆ̃� = √

Ceff�̂

and ˆ̃χm = √
Ceffχ̂m. The corresponding charge operators are

defined as ˆ̃Q = Q̂/
√

Ceff and ˆ̃
m = 
̂m/
√

Ceff. This modifi-
cation presents us with the Hamiltonian

Ĥaux =
ˆ̃Q2

2
+

ˆ̃�2

2LeffCeff
+ EJ cos

(
2π

�0

ˆ̃�√
Ceff

)

+
M∑

m=1

[ ˆ̃
2
m

2
+ 1

2
�2

m
ˆ̃χ2

m + ξm

Ceff

ˆ̃χm
ˆ̃�

]
, (F1)

where we have used effective inductance defined in Eq. (3).
We assume that, given the high plasma frequency ωp =
1/

√
LJCJ compared to the frequencies of the primary nor-

mal modes, the Josephson capacitance CJ in the effective
capacitance can be reasonably neglected. This assumption is
reinforced by our numerical findings.

The characteristic impedance Zc manifests in the relevant
quantities as

Ceff ∝ Z−1
c , Leff ∝ Zc, ξm ∝ Z−1

c . (F2)

Applying these relations to Eq. (F1), it follows that the cosine
term is the only one depending on Zc. An expansion using a
Taylor series provides

EJ cos

( ˆ̃ϕ√
Ceff

)
= EJ − β2EJZcϕ̂

2 + β4EJZ2
c ϕ̂4 + . . . ,

where β2 and β4 are constants, and ˆ̃ϕ = 2π ˆ̃�/�0.
This expansion highlights an essential observation, that

EJ and Zc influence the system in roughly identical ways
up to the second order. However, the distinction emerges in
higher-order terms. Notably, the sensitivity of anharmonicity

033001-18



MULTIMODE PHYSICS OF THE UNIMON CIRCUIT PHYSICAL REVIEW RESEARCH 6, 033001 (2024)

to changes in Zc increases with increasing Zc. Yet, one must
also account for the renormalization effects from other modes.
These effects, which become more pronounced at greater Zc,
act to temper the increase in anharmonicity.

In summary, our investigation reveals that, within the
bounds of our assumptions, an equal relative change in either
EJ or Zc produces an identical outcome on the system up
to linear order. The differences primarily arise in high-order
behavior and in the distinct effects of renormalization at an
elevated Zc.

APPENDIX G: ANALYTICAL CALCULATIONS
IN THE HARMONIC-OSCILLATOR BASIS

We begin with examining the cosine term in the normal-
mode representation, EJ cos(

∑M+1
m=1 ϕ̂m), which is the source

of nonlinearity in our system. Following the steps taken in
Ref. [34], we neglect the transverse-type interactions, rapidly
rotating terms by the rotating-wave approximation, and Kerr-
type interactions operating on more than three modes. This
allows us to express the cosine term as

EJ cos

(
M+1∑
m=1

ϕ̂m

)
≈ EJ

M+1∏
m=1

e−λ2
m/2

(
1 − λ2

mâ†
mâm + λ4

m

4
â†

mâ†
mâmâm + . . .

)

≈ −E∗
J

M+1∑
m=1

(
λ2

mâ†
mâm − λ4

m

4
â†

mâ†
mâmâm + . . .

)⎡⎢⎣1 −
M+1∑
n=1
n �=m

λ2
nâ†

nân + 1

2

M+1∑
k=1
k �=m

λ2
k â†

k âk

M+1∑
l=1

l /∈{m,k}

λ2
l â†

l âl

⎤⎥⎦, (G1)

where we have used the harmonic-oscillator basis ϕ̂m = λm(â†
m + âm) and E∗

J = EJ
∏M+1

m=1 e−λ2
m/2. From this result, we identify

the self- and cross-Kerr interactions including high-order corrections for any three-mode combination as given in Eqs. (19) and
(20) of the main text.
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