
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Srinivasan, Ashvin; Amidzade, Mohsen; Zhang, Junshan; Tirkkonen, Olav
Adaptive Cache Policy Optimization Through Deep Reinforcement Learning in Dynamic
Cellular Networks

Published in:
Intelligent and Converged Networks

DOI:
10.23919/ICN.2024.0007

Published: 01/01/2024

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
Srinivasan, A., Amidzade, M., Zhang, J., & Tirkkonen, O. (2024). Adaptive Cache Policy Optimization Through
Deep Reinforcement Learning in Dynamic Cellular Networks. Intelligent and Converged Networks, 5(2), 81-99.
https://doi.org/10.23919/ICN.2024.0007

https://doi.org/10.23919/ICN.2024.0007
https://doi.org/10.23919/ICN.2024.0007

Adaptive cache policy optimization through deep reinforcement
learning in dynamic cellular networks

Ashvin Srinivasan*, Mohsen Amidzadeh, Junshan Zhang, and Olav Tirkkonen

Abstract: We explore the use of caching both at the network edge and within User Equipment (UE) to alleviate traffic

load of wireless networks. We develop a joint cache placement and delivery policy that maximizes the Quality of

Service (QoS) while simultaneously minimizing backhaul load and UE power consumption, in the presence of an

unknown time-variant file popularity. With file requests in a time slot being affected by download success in the

previous slot, the caching system becomes a non-stationary Partial Observable Markov Decision Process (POMDP). We

solve the problem in a deep reinforcement learning framework based on the Advantageous Actor-Critic (A2C)

algorithm, comparing Feed Forward Neural Networks (FFNN) with a Long Short-Term Memory (LSTM) approach

specifically designed to exploit the correlation of file popularity distribution across time slots. Simulation results show

that using LSTM-based A2C outperforms FFNN-based A2C in terms of sample efficiency and optimality, demonstrating

superior performance for the non-stationary POMDP problem. For caching at the UEs, we provide a distributed

algorithm that reaches the objectives dictated by the agent controlling the network, with minimum energy

consumption at the UEs, and minimum communication overhead.

Key words: wireless caching; deep reinforcement learning; advantageous actor critic; long short term memory; non-

stationary Partial Observable Markov Decision Process (POMDP)

1 Introduction

Wireless caching in cellular networks is a highly
effective method for alleviating traffic congestion
problems[1]. A variety of methods have been explored
to develop efficient policies for the two phases of this
problem, cache placement and cache delivery[2].

In Ref. [3], probabilistic cache placement is
considered, focusing on determining how Base Stations
(BSs) should store files. This probabilistic approach
serves as the foundation for designing an optimal cache

policy, which in turn, ensures the highest total hit
probability for random network topologies[4].

During the cache delivery phase, it is crucial to
differentiate between unicast and multicast methods, as
well as between single-point approaches, where a file is
delivered by the caching BS with the highest signal
power, and multipoint approaches, where a user
downloading a file receives simultaneous transmissions
from multiple BSs. Single-Point Unicast (SPUC) cache
delivery has been analyzed in Refs. [3–11]. In Ref. [5],
a dynamic network architecture is considered, where
the nearest BS responds to a User Equipment (UE) that
demands service. In Ref. [6], BSs are equipped with
multiple antennas. Each BS utilizes beamforming
transmissions eliminate interference within a chosen
group of cooperating BSs. An SPUC scheme is
considered in Ref. [8] in a Heterogeneous Network
(HetNet) setup, incorporating zero-forcing
beamforming BSs and cache-enabled helper-nodes.

Cache delivery based on Single-Point Multicast

 Ashvin Srinivasan, Mohsen Amidzadeh, and Olav Tirkkonen

are with the Department of Information and Communications
Engineering, Aalto University, Espoo 02150, Finland. E-mail:
{ashvin.1.srinivasan, mohsen.amidzade, olav.tirkkonen}@aalto.
fi.

 Junshan Zhang is with the Department of Electrical and
Computer Engineering, University of California, Davis, CA
95616, USA. E-mail: jazh@ucdavis.edu.

 * To whom correspondence should be addressed.
 Manuscript received: 2023-06-01; revised: 2023-07-25;

accepted: 2023-11-07

Intelligent and Converged Networks ISSN 2708-6240
2024, 5(2): 81−99 DOI: 10.23919/ICN.2024.0007

© All articles included in the journal are copyrighted to the ITU and TUP. This work is available under the CC BY-NC-ND 3.0 IGO license:

https://creativecommons.org/licenses/by-nc-nd/3.0/igo/.

k

1/k

(SPMC) transmission is considered in Refs. [12–16].
The approach involves caching BSs that multicast or
broadcast different files to requesting UEs using
multiple access techniques. For instance, in Refs.
[12, 13], probabilistic caching is considered in a
HetNet environment, where each BS multicasts files
using pre-assigned resources that each span of the
total available bandwidth. In Ref. [14], optimal random
caching designs for perfect, imperfect, and unknown
file popularity distributions in a large-scale multi-tier
wireless network are considered. In Ref. [16], Peng et
al. investigated multicast sparse beamforming based on
a deterministic cache placement.

References [17, 18] have examined deterministic
caching with on-demand Multipoint Unicast (MPUC)
cache delivery. In Ref. [17], caching BSs deliver a
cached file to the requesting UE using a distinct
resource, with network resources orthogonalized
among UEs to avert interference. This scheme does not
incorporate collaborative beamforming based on
Channel State Information (CSI), and the BSs only use
a single antenna. In contrast, Ref. [18] applies
Coordinated Multipoint (CoMP) transmission with
zero-forcing beamforming. It assumes known CSI
between UEs and a group of serving BSs. Here, each
UE receives unicast CoMP transmissions from a set of
serving BSs, which inevitably leads to multiple access
interference.

Here, we use Orthogonal Multipoint Multicast
(OMPMC)[19] for cache delivery. OMPMC caters to
file requests through a location-independent, content-
specific multicast scheme. This approach significantly
reduces the complexity of content delivery while
ensuring efficient utilization of network resources.

The dynamic nature of network traffic, and user
mobility, necessitate the development of more
intelligent caching mechanisms. Deep Reinforcement
Learning (DRL) has emerged as a promising solution,
offering a robust framework for addressing these
challenges[20–23]. In Ref. [20], an actor-critic learning
method is employed to identify an optimal policy for
user scheduling and cache placement in a
heterogeneous network with constant file popularity.
This approach aims to optimize network performance

and user experience simultaneously. In Ref. [21], DRL
is utilized to achieve an optimal policy in terms of
average transmission delay for a cellular network. This
optimization process is crucial for ensuring timely
delivery of information and enhancing overall network
efficiency. In Ref. [22], Long Short-Term Memory
(LSTM)-based DRL is applied for inter-slice resource
management in cellular networks. This advanced
technique enables dynamic allocation and reallocation
of resources, leading to more efficient network
performance. A coded caching policy is developed
using a DRL algorithm with an LSTM architecture in
Ref. [23]. This policy is subsequently optimized in
terms of transmission delay and cache replacement
cost, resulting in significant improvements in network
efficiency and cost-effectiveness. A dynamic cache
policy is designed in Ref. [24], incorporating a non-
optimal methodology for placing files on UE caches.
This approach seeks to strike a balance between
performance and complexity.

In this paper, we study a cache policy optimization
problem where UEs cache content proactively, in
addition to edge caching at BSs; and cache placement
at both BSs and UEs is probabilistic. Departing from
Ref. [24], we allow the network to control the UE
caches, which is essential for maintaining the balance
between resource allocation, user experience, and UE
power consumption during proactive file downloads.
To take into account the time-varying nature of
dynamic caching, the file preference distribution is
modeled as a non-stationary stochastic process; this is
in contrast to Refs. [19, 20, 24], where the dynamics of
the network are treated as stationary, and the state
space is considered finite. We also assume that the
underlying file popularity distribution is unknown to
the network, making the problem only partially
observable.

We thus formulate the cache policy optimization
problem as a Non-stationary Partially Observable
Markov Decision Process (N-POMDP), a sophisticated
model that considers the uncertainties inherent in
cellular networks. To find an optimal policy, we
employ an Advantage Actor-Critic (A2C)[24] algorithm,
which is supported by an LSTM-based neural

 82 Intelligent and Converged Networks, 2024, 5(2): 81−99

network[25] to handle the non-stationarity. This
approach differs from Ref. [23], where a prediction
mechanism is applied to learn a cache policy for a
system with unknown parameters. An LSTM-based
Reinforcement Learning (RL) algorithm to solve the
formulated POMDP offers a more rigorous and
systematic approach to cache policy optimization.

The remainder of the paper is organized as follows:
Section 2 outlines the system and file popularity
models. The problem is formulated in Section 3.
Section 4 details the UE cache placement procedure,
while the deep reinforcement learning framework is
introduced in Section 5. Numeric simulation results are
provided in Section 6, and Section 7 concludes the
paper.

aT

m b bm{
bm

}p
m=1 b

m = 1 m = p 1 0

Notation: We use bold-face lower-case letters to
indicate vectors, and is the transpose of a vector.
We indicate the -th element of vector by , and

 collects the components of vector from
 to . Moreover, and denote the vector

with all elements equal to one and zero, respectively.

2 System model

F
N

We examine a cellular access network that consists of
cache-equipped BSs, UEs, and a library containing

 different files. Without loss of generality, each file is
assumed to be normalized to a value of 1. The BSs are
connected to the core network through error-free
backhaul links. In this network, the BSs are responsible
for responding to aggregated content requests from
UEs. To fulfill these requests, the BSs fetch the
required contents and store them in their caches. To
determine the placement of contents in the BS caches,
a probabilistic approach is employed, as described in
Ref. [3]. This approach utilizes a common probability
distribution.

The cache delivery process utilizes OMPMC, as in
Ref. [19]. According to this scheme, each file is
transmitted simultaneously across the network by all
BSs that cache that particular file, using a dedicated
resource specific to that file. This resource
orthogonality ensures that co-channel interference is
avoided, as distinct files are transmitted using different
resources. UEs request files from the network based on

{
pn

}N
n=1 pn

n

a file popularity distribution , where
represents the probability of file being preferred. The
transmitted files are then stored at UEs’ caches based
on a probabilistic cache placement strategy.

t

t

The network operates in a time-slotted manner,
where each time slot is indexed by . The network
operation within each time slot can be divided into
three phases. In the first phase, UEs, distributed
according to a spatial poisson distribution, request
content from the network based on file popularity. In
the second phase, the BSs retrieve the requested files
from the core network based on the aggregate sum of
requests for different files, and update their respective
caches. The third phase involves the broadcast of files
using OMPMC[26], and the update of UEs’ caches. We
assume that all these phases occur sequentially on a
time-slot basis. The interactions among UEs, BSs, and
the core network for a given time slot are illustrated
in Fig. 1.

2.1 Cache placement and delivery

ρ(t) =
{
ρn(t)

}N
n=1 ρn(t)

n

Lb

N∑
n=1

ρn(t) ⩽ Lb

The network applies probabilistic cache placement
strategy characterized by a file-specific probability
distribution[4], denoted as , where
represents the probability of file being cached at a
randomly selected BS. Each BS has a maximum cache

capacity of , thus we have . Without

loss of generality, we assume that all files have the
same size. If files are of different sizes, they can be
segmented into equal-sized chunks, and each segment
could be treated as an individual entity in the caching
policy. Instead of formulating the popularity
distribution of entire files, we would then consider the
popularity of the individual segments.

Lb

Lb

{
ρn(t)

}N
n=1

Lb

For caching at the BSs, we follow the principle of
Ref. [4]. segments of length 1 are used to represent
the units of cache memory at the BSs, as shown in
Fig. 2. The segments are filled according to the weights

. When a segment becomes full and cannot
completely accommodate a given weight, the
remaining probability weight is filled into the next
segment. As a result, each of these segments
accommodates a variety of potential files that could be

 Ashvin Srinivasan et al.: Adaptive cache policy optimization through deep reinforcement learning in dynamic... 83

U

[0,1]

n

ρn

stored in the corresponding portion of the memory.
Once all segments have been populated, the BS
generates a uniformly distributed random variable in
the range . The BS then stores the files that
coincide with this the position of this random variable
in each segment. The probability of file to be cached
becomes precisely .

For proactive caching at UEs, we also employ a
probabilistic cache placement strategy, based on
multicast cache delivery from BSs to UEs. We adopt a
one-shot probabilistic UE-caching principle, where the
network broadcasts dictating messages to the UEs, and
UEs fill their caches accordingly from cache delivery

Lu

Lu

Lu

transmissions of the network. The process of filling UE
caches, differs from filling BS caches in two essential
ways. First, the success of cache delivery from BS
caches to UEs depends on randomness of wireless
channels. As a consequence, if there is a strict UE
cache capability , such that in each UE cache at any
time, there is at most files, a UE-cache placement
policy which always would fill all UE caches would
have to be based on feedback, to mitigate packet losses
in wireless transmission. To avoid this, we assume an
average cache capacity constraint at UEs; on average,
the number of files cached at a UE is not larger than

. This can be realized as a service-level agreement,
where a fraction of the UEs memory, on average, is
allocated to the caching service. Second, to minimize
UE power consumption, the amount of files that a UE
attempts to decode should be kept at a minimum.

s(t) sn(t)

n

t

Lu

To achieve this, we apply a proactive UE caching
method where file decoding attempts at a UE depend
on the dictating messages and the cache contents. On
the population level, the UE caching probability vector

 describes the state of the UE caches. Element
represents the probability of file being cached at a
UE at time-slot . Each UE cache has a restricted
capacity of . We thus have

Base station

Base station cache

UE

UE cache

Cache delivery

Back haul link

Aggregated file request at the BS

Core network

(b) ρn(t+1)

(c) sn(t)

(a) pn(t)

fn(t)

Fig. 1 Communication and coordination among UE, BS, and the core network for cache placement and delivery.
(a) File request mechanism at the BS. (b) BS caching probability mechanism. (c) UE caching mechanism provided by the
network.

0.18

ρ3 ρ4 ρ5 ρ6

ρ1 ρ2 ρ3

0 1

Lb

ρ

ρ1 ρ3

Fig. 2 Example showcasing probabilistic caching for =
2, and N = 6 files with caching probabilities = [0.4, 0.3, 0.5,
0.2, 0.3, 0.3]. A random number U = 0.18 is drawn from the
uniform distribution over [0, 1], represented by the vertical
line. The line intersects at and , indicating that Files 1
and 3 will be cached.

 84 Intelligent and Converged Networks, 2024, 5(2): 81−99

N∑
n=1

sn(t) ⩽ Lu (1)

2N ×2N

At their most general, the dictating messages from
the network to the population of UEs consist of two

 matrices, where for each possible cache
content of a UE, there is a probability to attempt to
decode certain files, or a probability to flush certain
files from memory.

{
wn(t)

}N
n=1

wn(t)

Cache delivery from BSs towards the UEs uses file-
specific resources through the OMPMC
scheme. In this scheme, the network responds to the
aggregated UE requests by broadcasting the cached
files. Each file is simultaneously broadcasted in
resource by all the BSs that cache that particular
file[19].

m n γm,n

Rth

Rth

Rth

n m

wnW log2
(
1+γm,n

)
< Rth W

α = Rth/W

t m n

wn(t)

We assume that the users experience block Rayleigh
fading in addition to large-scale distance dependent
path loss. The instantaneous Signal to Interference plus
Noise Ratio (SINR) for UE receiving file is .
We assume that transmission of the files happen at a
rate , and that Additive White Gaussian Noise
(AWGN) capacity achieving codebooks at this rate are
used. Accordingly, becomes a threshold rate; if the
instantaneous AWGN-capacity of a user receiving a
file is larger than , the user succeeds in decoding,
otherwise the user is in outage. Assuming that all files
have the same size, file is thus in outage at UE if

, where is the total
bandwidth of the transmission. We can thus define a
spectral efficiency threshold , such that at
time , the outage probability for UE receiving file
in the dedicated fractional resource becomes[19]

on(t) = P(wn(t) log2
(
1+γm,n(t)

)
< α).

βpl = 4

p

λbs

σ2
0 n

ρn(t)
wn(t)

We utilize two independent homogeneous Poisson
Point Processes (PPPs) to model the locations of UEs
and BSs in the network. For a network using OMPMC
scheme with a propagation environment of path loss
exponent , with BSs having the average
transmission power distributed according to a PPP
with intensity , and UEs having the receiver noise
power , the outage probability for file being
cached at BSs with caching probability ,
transmitted using frequency resource then

becomes[24]

on(t) = erfc
(
π2λbsρn(t)

4
√
ηn(t)

)
(2)

erfc(·)

ηn(t) =
σ2

0

p
(2α/wn(t)−1)

where is the complementary error function and

 is a channel gain threshold.

2.2 File popularity

F

pn(t) n

p(t)
N∑

n=1

pn(t) = 1

In each time slot, users request files from the library .
A user either finds the requested file in its cache, or it
attempts to decode it from an OMPMC transmission of
the network, which may or may not be in outage. We
assume that irrespective of whether or not a requested
file is in the cache and/or in outage, users inform the
network about the request for the time slot. These
requests are then aggregated by the network to a file
request probability for each file , forming the
file request probability vector . We assume that this

is a probability, such that .

fn(t)

n

m t−1

t

t

fn(t)

ζ Om

m t−1

There is an underlying dynamic file popularity
distribution driving the user’s requests, with being
the popularity of file . We model two types of users,
patient and impatient ones. If a patient user requests
file in slot , if the file is not in the user’s cache
and the user faces outage, this user will request the
same file again in slot . An impatient user facing this
situation, in contrast, selects a file at random in slot
according to . We assume that a user is patient
with probability . Assume an event , where a user
requests file in slot , it is not in the UE cache,
and reception from the network fails. The probability
of this event is

P(Om) =
(
1− sm(t−1)

)
om(t−1) pm(t−1) (3)

n tThe probability that file is requested in slot is
then

P(n|Om) = ζ δnm+ (1− ζ) fn(t) (4)

δnmwhere is the Kronecker delta function.
Om

m t−1

t

fn(t)

Furthermore, we assume that in the event where
the user requests file in slot and either finds it in
its cache or successfully receives it, the user will not
request the same file in slot . Otherwise, the user
chooses the file freely according to :

 Ashvin Srinivasan et al.: Adaptive cache policy optimization through deep reinforcement learning in dynamic... 85

P(n|Om) =
fn(t)

1− fm(t)
(1−δnm) (5)

The probability of this event is

P(Om) = pm(t−1)−P(Om) (6)

νn(t)Finally, we assume that there is Gaussian noise
affecting the file request process, reflecting the
randomness of user activation, and differences in real
preferences of users. The file request probability
dynamics before normalization thus becomes

pn(t) =νn(t)+
N∑

m=1

P(n|Om) P(Om)+P(n|Om) P(Om) =

fn(t)
N∑

m=1

(
1− ξm(t−1)

)
pm(t−1)+

ξn(t−1) pn(t−1) + νn(t) (7)

where

ξn(t) =ζ (1− sn(t))on(t)−
fn(t+1)

1− fn(t+1)
(1−on(t)(1− sn(t))) ,

arises from the non-stationary driving popularity
distribution. The final normalization step adds a mild
non-linearity to the problem.

For concreteness, we model the underlying file
popularity distribution in terms of a modification of the
diffusion model applied in Ref. [27]:

fn(t) =
2 mn

1+ cosh
(

e(t− tn,0)
hn

)
(8)

tn,0
hn

mn = n−τ/
N∑

i=1

i−τ

τ e = 4ln(1+
√

2)

where is a file-specific time-shift that describes the
time instance when the interest in the file peaks, is a
file-specific half-width of the file interest peak in units

of time slots, and is a diffusion

amplitude characterizing the peak interest in the file,
which we draw from a Zipf distribution with skewness

[28], and is a constant.

fn(t)

It is important to note that the model developed in
Eq. (7) is not confined to a specific form of .
Rather, it exhibits a degree of flexibility, allowing it to
be applied across various contexts and systems. We
assume that the stochastic dynamics in Eq. (7) is not a
priori known to the network. The network does not

fn(t)

pn(t)

know the underlying popularity distribution , while
it does know the realized file request probabilities

.

3 UE cache placement

s

The network employs an updating mechanism in order
to manage the cache contents of UEs to adhere to a
target probability distribution . For this, the network
broadcasts dictating messages. The UEs act as
independent agents. Depending on the cache content of
an individual UE, and the dictating messages, the UEs
attempt to decode files and/or flush files. In this
section, we shall find an optimal distributed procedure
that the UE agents follow, such that the aggregate
action of the UE agents leads to the state desired by the
network with minimum energy consumption. We
assume that UE energy consumption for the caching
policy directly depends on the number of file decoding
attempts. As discussed in Section 2.1, we have Formula
(1) on the average cache size of the UEs.

t

{sn(t+1)}

sn(t)

In time-slot , the network generates the target UE
cache probabilities for the files for the next
time slot. It then broadcasts dictating messages to the
UEs, with the objective of changing to the target
values.

s

s Ls

2N

N

2N

2N

First, we observe that while the continuous variables
 describe the probabilities to find files in the user

caches, when considering the cache of a given user, the
probabilities of finding different files are not
independent. This is directly seen in an extreme case,
where is such that the same set of files is cached
in every UE. The probability space describing possible
UE cache contents thus is -dimensional. A priori,
any one of the files may or may not be cached at a
given UE. Similarly, there are different
combinations of files that a UE may attempt to decode
in a time slot, and in principle combinations of files
that a UE may flush. Despite this rather complicated
setting, we find that for an energy consumption
minimizing UE caching policy with the average cache
size constraint, correlations between probabilities of
files being cached do not need to be taken into account.
It is sufficient for each UE to treat each file
independently.

 86 Intelligent and Converged Networks, 2024, 5(2): 81−99

sn(t+1) > sn(t) t+1

n

t sn(t+1) ⩽ sn(t)

If , it implies that at time-slot ,
more UEs should cache file as compared to time-slot
 while if , some UEs should discard the

file from their caches. To realize the target caching
probability, the population of users follow a procedure
as follows. Based on the caching probablity changes

∆n(t+1) = sn(t+1)− sn(t) ,

we define the dictating variables:

dn(t) =

∆n(t+1)

(1− sn(t))(1−on(t))
, ∆n(t+1) > 0;

∆n(t+1)
sn(t)

, ∆n(t+1) ⩽ 0
(9)

|dn(t)|
n

dn(t)

This number is positive if more caching is needed,
and negative if less is needed. The quantity is the
probability a UE should decode file , if it is not
already cached, or that it should discard it if it is
cached. The network broadcasts to the UEs. Each
UE now independently follows the update procedure of
Algorithm 1. We have

t{
sn(t)

}
n on(t)

{
sn(t+1)

}

Proposition 1　 Consider a population of UEs
storing files at time-slot with aggregate cache
probability , experiencing an outage during
downloading file with probability , and
following independently the cache update procedure of
Algorithm 1. In the limit of an infinite population,
Algorithm 1 leads to cache probability with a
minimum number of file decoding attempts per UE.

t+1 + t

s+ s

t c
a

b
N

Proof　As a shorthand, we denote variables in slot
 with a “ ”, and variables in slot without. The

target cache probability vector , and then
represents a global view of the network on UE cache
contents. The cache content of an individual UE at time
 is given by the set , a set of decoding attempts

performed by an individual UE is denoted by , and a
set of files flushed by a UE is denoted by . These can
be interchangeably thought of as -dimensional

F

2N

pc

pa pb

vectors, or subsets of . These represent the local view
of a UE of its cache content, and the actions it may
take. The probability of a UE having a given cache
content can be summarized in a -dimensional vector

, while the probabilities of decoding attempt and file
flushing events are and , respectively.

Pa|c

Pb|c

2N ×2N

The conditional probability for a combination of file
decoding attempts given a UE cache content is ,
and the conditional probability for a combination of
files being flushed given a UE cache content is .
Both can be understood as matrices. A generic
probabilistic UE cache update policy can be described
in terms of these two conditional probability matrices.

pb|c = 0

b 1 c

pa|c = 0 a∩ c , ∅

First, it is worth to observe that a file cannot be
flushed if it is not cached, thus the matrix elements of
the conditional flushing probability fulfill if

. Also, if a file is already cached, downloading it
does not change the cache content and only consumes
energy, thus we require that if .

2N

N

s N ×2N

J {0,1}

To move between the -dimensional probability
space of UE cache contents and the -dimensional
space of , we use an constant indicator matrix

. This matrix has entries in . Each column is a
possible cache content, and the ones indicate the files
in the cache.

With these notations, the probability that a file in the
library is cached at an arbitrary UE is given by the
vector

s = J pc (10)

un

n vn

n N

while the expected number of decoding attempts of
file by a UE and the expected number of times
that file is flushed by a UE, collected to -
dimensional vectors, are

u = J Pa|c pc ; v = J Pb|c pc (11)

c, a b
Note that here we use matrix notation, such that

summation over , and is implicitly understood.
As the decoding attempts face channel uncertainty in

terms of packet loss, the UE-cache update equation
becomes

s+− s = (Do)u− v (12)

Do

1−on

where the diagonal matrix has the packet decoding
success probabilities on the diagonal.

Algorithm 1　Cache-updating procedure
dn(t) > 0　if then

n t　　if file is already cached at do nothing
dn(t)　　else attempt to decode it with probability .

　else
n t　　if file is not cached at do nothing

|dn(t)|　　else discard it with probability .
　end if

 Ashvin Srinivasan et al.: Adaptive cache policy optimization through deep reinforcement learning in dynamic... 87

∥u∥1
u v

The objective is to minimize UE power consumption
spent on decoding attempts, i.e., the expected number
of file decoding attempts given by the one-norm .
As both and have non-negative entries, we find the
rather obvious fact that, assuming that none of the files
has outage probability 1, the optimum expectations for
decoding attempts and flushing fulfill

u∗ = D−1
o

[(
s+− s

)]
+ ; v∗ =

[(
s− s+

)]
+ (13)

[x]+ =
1
2

(x+ |x|)

dn

where the non-negative part of a number is given by

. This can be achieved by defining the

conditional decoding attempt probabilities based on
independent probabilities of Formula (9) as

pa|c =

∏

m∈ a
dm

∏
k∈ c\a

(1−dk), if a∩ c = ∅;

0, else
(14)

c̄ c

a

where is the complement of in the file index set,
and \ denotes set subtraction. With this conditional
probability, we have for the probability of attempting
file download combination :

pa =
∑

c; c∩a=∅
pa|c pc =

∏
m∈a

dm

 ∑
c; c∩a=∅

pc
∏

k∈ c̄\a
(1−dk)

(15)

n

and the probability that a UE attempts downloading file
 is

un =
∑
a∋n

pa = dn

∑
ã⊂F̃

∏
m∈ã

dm

∑
c⊂ ¯̃a

pc
∏

k∈ ¯̃a\c
(1−dk) =

dn

∑
c⊂F̃

pc
∑
ã⊂c̄

∏
m∈ã

dm

∏
k∈c̄\ã

(1−dk) =

dn

∑
c⊂F̃

pc = dn(1− cn) (16)

a
n ã a

n F̃ n
¯̃a ã F̃

ā c̄
c F̃

F̃ ã c

P S

Here the sum in the first expression is over all sets
that have as an element, is the set with the
element removed, is the file index set with
removed, and is the complement of in , i.e., it
coincides with inside the sum. Furthermore,
denotes the complement of in . The second line
follows from changing the order of summations; we
divide to the disjoint sets , , and their
complement. The last line follows from the fact that for
a sum over the power set of a set of indices one
has

∑
a∈P

∏
m∈ a

dm

∏
k∈S \a

(1−dk) = 1 (17)

n 1− cn

which is a direct consequence of the multinomial
theorem. The final equality follows from the fact that
the sum of the probability over all cache contents
where is not included is by definition. We thus
have found that

u = diag([dn]+) J pc = diag([dn]+) (1− s) .

dn

Pb|c

c

s+

Using the values of in Formula (9), one sees that
this realizes the first part of Eq. (13). A similar
argument for leads to the second part. This policy
thus is a minimum energy solution. Each UE executes
Algorithm 1 on one sample . In the asymptotic limit
of an infinite population, the sample expectation
coincides with the probabilistic one, and is
realized. ■

sn(t+1)

sn(t)

N

Note that there may be a continuum of UE cache
update policies that would realize starting from

 with the same energy consumption. Algorithm 1
is set apart by its communication complexity—instead
of dictating messages consisting of large-dimensional
matrices, only an -dimensional vector is needed.
Note that this is the minimum overhead—due to the
outage probabilities, the dictating variables do not sum
up to 0.

4 Cache policy formulation

With the probabilistic caching UE-cach update policy
define, we concentrate on determining the cache policy
of the network. The objective is to maximize Quality of
Service (QoS) while minimizing the network backhaul
load and UE power consumption under the time-
varying file request dynamics Eq. (7).

4.1 State, observation, and action

For the cache policy optimization problem, the state of
the system is defined as the vector

x(t) =
[
p(t)T, s(t)T, f (t)T

]T
(18)

The system state consists of the realization of the
stochastic request process Eq. (7), the content of the
UE caches, and the time-varying file popularity
distribution.

p(t)While the network has access to the file requests

 88 Intelligent and Converged Networks, 2024, 5(2): 81−99

s(t)

f (t)

and the UE cache contents , the underlying file
popularity distribution remains unknown to the
network. Consequently, we define an observation
vector as

q(t) = [p(t)T, s(t)T]T (19)

Accordingly, the observation space is given as

Q = {(p, s) | pn ⩾ 0, 1T p= 1, sn ⩾ 0, 1Ts ⩽ Lu}.

{
ρn(t)

}N
n=1{

wn(t)
}N
n=1

{
dn(t)

}N
n=1

The network is equipped with three control variables:
the BS cache probability , the resource
allocation used by the network when
transmitting files by OMPMC, and the dictating
messages . We then define the action vector

u(t) = [ρ(t)T, w(t)T, d(t)T]T (20)

The action space is given by

U ={(ρ,w, d) | ρn ⩾ 0, 1Tρ ⩽ Lb,

wn ⩾ 0, 1Tw = 1, −1 ⩽ dm ⩽ 1} (21)

Accordingly, the process of file retrieval is controlled
by the variables provided by the RL agent. Using the
optimal policy, it determines which files are essential
for proactive caching by the BSs from the core
network, hence maintaining the consistency and
reliability of the system.

4.2 POMDP

on(t)

wn(t) wn(t)

fn(t)

fn(t)

The file request dynamics in Eq. (7) involves the
outage probability , which is a function of resource
allocation as given in Eq. (2). Since is an
action variable, the dynamics leads to a Markov
Decision Process (MDP). As the underlying file
popularity , modeled in Eq. (8), is time-varying we
have a non-stationary MDP. Furthermore, since is
unknown to the agent, our cache policy formulation
leads to a N-POMDP. The objective of this work is
thus to formulate a cache policy based on this N-
POMDP.

(
X ,O,U ,PT (· ; t),PO(· ; t),r(·)) X

O ⊂ X
U

PT (· ; t)

PO(· ; t)

An N-POMDP is characterized by a tuple
, where represents the

state space, denotes the observation space, and
 signifies the action space. The time-varying

transition probability describes the system
environment, while the time-varying observation
distribution and the immediate reward function

r(·) provide additional information about the
environment and the agent’s performance.

t x(t) ∈ X

q(t) ∈ O u(t) ∈ U
PT (x(t+1) | x(t),u(t); t)

x(t)

u(t)

x(t+1)

The system state at time is represented by .
The observation and action at the same time instance
are denoted by and , respectively. The
transition probability indicates
the time-variant probability that being in state and
performing action will result in the next state

. It is important to note that in our model, the
transition probability changes over time, reflecting the
dynamic nature of the environment.

x(t)

q(t)

PO
(· |x(t+1); t

)

In a POMDP framework, the state is not directly
observable for an agent interacting with the
environment. Instead, the agent has access to the
observation , which is drawn from the distribution

. This means that the agent must make
decisions based on incomplete information of the
environment state, adding a layer of complexity to the
decision-making process.

In the context of file popularity, this framework is
adept at modeling environments with non-stationary
dynamics, relevant for situations with time-variant file
popularities and UE caching probabilities. More
specifically, it captures the time-varying nature of
transition probability, observation distribution, and
reward function, accurately modeling the intricate
cache policy dynamics. The uncertainty and incomplete
information of the cache policy problem is modelled
based on an N-POMDP problem. By leveraging
learning techniques robust against N-POMDP
environment such as LSTM-based reinforcement
learning, we can find effective solutions for cache
policies[29]. The approach facilitated by the POMDP
encourages the development of joint cache placement
and delivery policies that maximize system
performance, while also revealing the underlying
structure and dynamics of the cache policy problem for
a deeper understanding of influential factors.

4.3 Optimization objective

This paper focuses on three metrics for evaluating
network performance. The first metric is QoS, which
measures the likelihood of a requesting UE being
satisfied by the OMPMC networking. This metric can

 Ashvin Srinivasan et al.: Adaptive cache policy optimization through deep reinforcement learning in dynamic... 89

be quantified as the probability of successful requests
compared to the total number of requests made by UEs.

cqos(t) =
N∑

n=1

pn(t)
(
1− sn(t)

)
on(t) (22)

pn(t)

From Eq. (22), if the file is not cached then the cost
is directly proportional to the outage probability when
minimized the QoS metric improves. It is important to
note that the QoS metric depends on , which is a
part of the state vector.

t

t−1 ρn(t)−ρn(t−1)

n

Next, we examine the backhaul load associated with
the retrieval of files by the BSs from the core network.
When the difference between the file load at time and
the previous time , i.e., is less than
or equal to zero, it indicates that there is no backhaul
load since no files are being fetched. However, if the
difference is greater than zero, it implies that certain
BSs are required to cache file due to the presence of
a backhaul load. This makes the backhaul load depends
on the action vector. The backhaul cost function is
defined as[24]

cbh(t) =
N∑

n=1

[ρn(t)−ρn(t−1)]+ (23)

U

Note that this assumes that the BSs are conservative
in filling their caches, they do not. This backhaul
function can be realized, e.g., by BSs following the
method of Section 2.1, such that each BS keeps it
random variable determining the cache content
static, while the probability weights of the files change
from time instant to next.

n

dn(t)

Thirdly, we investigate a power consumption metric
that arises from UEs downloading files according to
their preferences, and for updating their caches. We
assume that discarding files does not cost energy. As
each UE not caching file attempts to download it
with probability , the power consumption metric
depends both on the state and the action vector:

cuep(t) =
M∑

n=1

(1− sn(t))(pn(t)+ [dn(t)]+) (24)

This measures the average number of file download
attempts that users perform both to fulfill their
requests, and for proactive caching.

rwt(t)We then formally define a weighted reward to
be optimized as

rwt(t) = −
(
cqos(t)+λbhcbh(t)+λuepcuep(t)

)
(25)

λbh λuep

t

T

where and are the Lagrange multipliers for
backhaul and UE power consumption costs.
Considering the dynamics introduced by the stochastic
difference Eq. (7), we formulate a discounted
cumulative reward starting from time-slot until a time
horizon ,

Rac(t) =
T∑

k=t

γk−tE
[
rwt(k)

]
(26)

γ ∈ [0,1)

T

Rac(t)

where E(·) is the expectation operator, is the
discount factor, and is the total number of time-slots
for the caching policy design. We maximize
considering the interplay between the state and action
reflecting the UE aggregated sum requests and
accordingly network cache policy.

π
(
u|q) u(t)

q(t)

The objective is to find a probabilistic cache policy
, which defines the probability of action

given the observation . This policy is obtained by
addressing the constrained optimization problem:

P1 : max
{π(·|q)}

Rac(t), 0 ⩽ t ⩽ T,

s.t., (ρ,w, d) ∈ U (27)

The utility cost function is defined in Eqs. (22)−(26),
while the underlying file request dynamics are defined
in Eqs. (2)−(7).

5 Reinforcement learning framework

π∗
(· |q(t)

)
P1

We employ an RL agent to obtain the optimal policy
 that solves problem . To facilitate this, we

utilize neural networks for functional approximation,
leveraging their universal approximation
capabilities[30].

Among several RL algorithms, we use a policy
gradient algorithm: A2C. A2C offers several benefits
over Deep Q-Network (DQN) in various reinforcement
learning scenarios. A2C directly optimizes the policy
using the actor network, enabling it to learn stochastic
policies that can be advantageous in non-deterministic
environments[31] or where exploration is crucial. In
contrast, DQN optimizes the action-value function.

 90 Intelligent and Converged Networks, 2024, 5(2): 81−99

Consequently, A2C stochastic policy can lead to more
efficient exploration and faster convergence to an
optimal policy compared to DQN’s epsilon-greedy
strategy. A2C method, as on-policy algorithm, is
particularly adept at handling dynamic environments,
where file requests are non-stationary. It optimizes
policy based on ongoing experiences, providing an
effective exploration-exploitation trade-off, as the actor
learns the best policy and the critic evaluates it, often
aided by an entropy term to encourage further
exploration[24]. A2C continually learns from new
experiences, a feature less prominent in algorithms like
DQN which rely on a replay buffer of past experiences.

Furthermore, A2C is better suited for tasks with
continuous action spaces as it can handle them
naturally, while DQN requires discretization which can
lead to loss in precision[32]. The parallelism and
scalability of A2C make it an attractive choice for
large-scale problems, as it can be easily parallelized
using multiple workers. Finally, A2C advantage
function estimates the value of taking an action,
reducing the variance of the policy gradient and
resulting in more stable learning and potentially better
convergence properties.

πθ(·) θ

The A2C algorithm consists of two neural networks.
The actor network, embedded within the RL agent,
provides a policy distribution parameterized by ,
facilitating interaction with the environment.
Additionally, the critic network approximates the state-
value function, which is defined as

V
(
q(t)

)
= E

 T∑
k=t

γk−trwt(k)
∣∣∣∣∣ q(t)

 (28)

ϕ

Vϕ(·)
For this, the critic network is parameterized by and

denoted by .

5.1 LSTM cell

LSTM networks, a specialized subset of recurrent
neural networks, are crafted to tackle challenges in
learning long-term dependencies within sequential
data. Central to the LSTM is the cell state, acting as a
parallel memory unit that facilitates prolonged
information retention. The internal architecture features
three pivotal gates—input, forget, and output—

regulating the influx, relevance, and output of
information. This enables LSTM to selectively update
and employ information, effectively addressing the
vanishing gradient problem inherent in traditional
recurrent networks. Additionally, the LSTM includes a
hidden state for short-term memory and incorporates
feedback connections[22, 33] spanning various time
steps, allowing it to adeptly capture dependencies
across extended sequences. This dynamic interplay,
coupled with the adaptive updates of the cell state
through input and forget gates, enables LSTM to
distinguish and retain essential information while
discarding extraneous details. We incorporate LSTM
architecture to address the N-POMDP environment of
study formulated in Section 4.

5.2 Actor-critic and state processing network

[q(t−5), q(t−4), . . . , q(t)] LSTM6s

The A2C architecture comprises of three distinct
networks: a state processing network, an actor network,
and a critic network as in Fig. 3. To address the non-
stationarity of the environment as formulated in
Section 4, we incorporate an LSTM architecture for
state processing. An LSTM cell includes feedback
connections[22, 23], a distinctive feature absent in Feed-
Forward Neural Networks (FFNN). The state
processing network incorporates an LSTM layer and a
fully connected layer. With LSTM, the network
processes a sequence of observation vectors ranging
from two to six time-slots, generating input for the
fully connected layer. For example, LSTM with six
time-slots processes the observation vectors

 and is denoted as .
The output of the fully connected layer serves as input
for both the actor and critic networks.

FF2s

[q(t−1), q(t)]

We bench mark LSTM-based state processing with a
two time slot FFNN state processing architecture,
denoted by . It processes observation vectors

, and consists of two fully connected
layers.

The actor and critic network take input from the state
processing network. The actor network produces a
probabilistic caching policy, while the critic network
provides an estimate of the value function. Each of the
actor and critic networks consists of an independent

 Ashvin Srinivasan et al.: Adaptive cache policy optimization through deep reinforcement learning in dynamic... 91

fully connected layer, receiving input from the state
processing unit.

To guarantee normalized outputs, we draw the action
vector at random from two independent Dirichlet
distributions such that

u(t) ∼
[
Lb Dirich

(
ρ′θ(t)

)T,Dirich
(
w′θ(t)

)T, d′θ(t)
T
]T
,

ρ′θ(t) w′θ(t) d′θ(t)
θ Dirich(·)

where , , and are the outputs of the actor
network parameterized by , and stands for
the multivariate Dirichlet distribution. Utilizing
Dirichlet distributions offers notable benefits, such as
improved exploration-exploitation balance due to
providing random actions with learnable parameters
controlling the stochasticity. This approach allows the
model to capture uncertainty across multiple actions as
well as ensures compliance with control parameter
constraints Eq. (21).

5.3 A2C algorithm

πθ(·|q(t))

Vϕ(q(t))

The RL actor network generates an action for a given
state based on the parametric policy distribution

. When the agent interacts with the
environment, it receives an immediate reward and
progresses to the next state. The critic network
produces an estimate of the state-value function

 for the current observation. The immediate
reward, action vector, and estimated state-value

T

function is stored in a buffer, which is used to update
the actor and critic parameters after time-slots. This
entire process forms a single episodic trajectory, with
multiple trajectories needed for the training process.
The parameter of the actor and critic networks are
changed as[34]

∆ϕ =αϕ

T∑
t=1

Aϕ(q(t),u(t))∇ϕVϕ(q(t)),

∆θ =αθ

T∑
t=1

[Aϕ(q(t),u(t))∇θ log(πθ(u(t)|q(t)))+

β∇θH(πθ(u(t)|q(t)))] (29)

αϕ αθwhere and are the learning rates of the critic and
actor agents, respectively,

Aϕ
(
q(t),u(t)

)
= rwt

(
q(t),u(t)

)
+γVϕ

(
q(t+1)

)−Vϕ
(
q(t)

)
(30)

H(·)
β

is an estimate of the accumulated reward Eq. (26), and
 is the entropy term used with regularization factor

 for trading off between exploration and exploitation
in order to prevent A2C from converging to sub-
optimal policies.

Emax

Algorithm 2 shows the pseudo code for the modified
A2C algorithm used in this paper. Note that is the
total number of updates involved in the training
process, and update is the iteration number after which
the model parameters are updated.

Fully connected layer

State processing network

Fully connected layer

Fully connected layer

LSTM…LSTMLSTM

ot−L ot−(L−1) ot

Actor network

ρʹθ(t), wʹθ(t), dʹθ(t)
VΦ(o(t))

Cri�c network

Fig. 3 LSTM-based A2C architecture.

 92 Intelligent and Converged Networks, 2024, 5(2): 81−99

6 Simulation and discussion

In order to assess the performance of the proposed
DRL cache policy, we examine a cellular network
consisting of BSs and UEs positioned according to two
independent PPPs.

2

28

βpl = 4

L = 128+βpl lgd d

p
σ2

0

≈ 1

λbs = 300 km2

In our experimental setup, we follow the urban Non-
Line of Sight (NLOS) conditions defined by 3GPP[35],
with carrier frequency GHz and BS transmission
power of dBm. The BS antenna gain is 8 dBi, while
UE antenna gain is 0 dBi. The noise power spectrum
density is −174 dBm, the noise figure of the UEs is
9 dB, and the bandwidth is 2 MHz. We consider the
path-loss exponent , with the path loss given by

, with distance measured in
kilometers. Hence, the reference Signal to Noise Ratio

(SNR) at the reference distance of 1 km is . We

set the BS density to BSs per .

τ = 0.6

ζ ∈ {0.1,0.9}

For the diffusion model in Eq. (8), we employ a Zipf
distribution with skewness , while the
probability for a user to patient, used in Eq. (4) is

. The system parameters are summarized in
Table 1.

tanh

128

tanh(·)

Relu(·) Softplus(·)
αθ = αϕ = 10−3

In the state-processing unit of the LSTM
architecture, LSTM output is linked to a fully
connected hidden layer of 128 neurons with
activation function. The actor and critic networks
consist of one fully connected hidden layer of
neurons activated by a function. The output
activation functions for the actor and critic networks
are and , respectively. The learning
rates are set to , and Adam optimizer is
used.

Emax = 104

[λbh,λuep] = [0.05,0.05]

β = 0.005

For the hyperparameters of Algorithm 2, we set the
total number of updates to , the Lagrange
multipliers of the weighted reward in Eq. (25) to

, and the entropy regulation
term to . The system parameters used in the
simulations are configured accordingly.

Figure 4 presents the training performance of FFNN
and LSTM architectures when they process the
observations of two time-slots. Performance is
measured in terms of normalized discounted
cumulative costs of QoS, backhaul and UE power
consumption;

cqos =
1
T

T∑
t=1

γt−1cqos(t),

cbh =
1
T

T∑
t=1

γt−1cbh(t),

cuep =
1
T

T∑
t=1

γt−1cuep(t),

plotted as a function of update samples. The results
indicate that LSTM outperforms FFNN in all cost

Table 1 Simulation parameters.

System parameter Value
LbBS capacity, 6
LuUE capacity, 3

NNumber of files, 40
EmaxTotal number of updates, 10 000
λbh,λuepCost regularization parameters, 0.05
βEntropy regularization term, 0.005

τFile skewness, 0.6
αTarget spectral efficiency, 0.1

λbsBS intensity, 300
TRL update after slots 256

ζProbability of UE patience, 0.1, 0.9

Algorithm 2　Modified A2C algorithm
θ πθ

(
u(·)|q(·)) ϕ

Vϕ
(
q(·))Input: A -parametrized policy distribution , -

parametrized approximation of state-value function .
θ P1Output: optimal solution of problem .

update = 1 Emaxfor to do
update　if == 1 then

q(1)　　Initialize observation vector to some random point.
　else

q(1) = qT　　Set based on previous update.
　end if

t = 1 T　for to do
u(t) πθ

(
u(t)|q(t)

)
　　Draw action from policy .

Vϕ
(
q(t)

)
　　Fit value function, from the critic network.

Aϕ
(
q(t),u(t)

)
= r(t+1)+

γVϕ
(
q(t+1)

)−Vϕ
(
q(t)

)　　Evaluate the advantage function
.

q(t+1)
r(t+1)

　　Get new observation vector , and immediate reward
.
Vϕ

(
q(t)

)
q(t) r(t+1) log(πθ

(
u(t)|q(t)

)
) H(πθ

(
u(t)|q(t)

)
)　　Buffer , , , , .

　end for
　Update parameters for actor and critic networks based on the

updating rules Eq. (29).
qT = q(T)　Set .

end for

 Ashvin Srinivasan et al.: Adaptive cache policy optimization through deep reinforcement learning in dynamic... 93

metrics from a sample-efficiency standpoint. LSTM
converges in approximately one-third of the number of
samples as compared to FFNN.

{
fn(t)

}N
n=1

The LSTM architecture is thus better at capturing the
non-stationarity of the POMDP environment than
conventional FFNN. This can be attributed to the
feedback connections of the LSTM network, which
play a crucial role in learning the evolution of file
popularity that is latent in the observation
vector.

In order to establish a benchmark for the RL-based
cache policy, we consider a static cache solution
obtained using an interior-point algorithm. The policy
is independently optimized in each time-slot based on
the immediate reward rather than a cumulative reward.
We refer to this solution as “Static”.

ζ = 0.1

Figures 5 and 6 showcase the test performance of the
static optimization solution in comparison to dynamic
RL-based solutions with various Neural Network (NN)
architectures. In Fig. 5, impatient users with are
consdered, while in Fig. 6, the users are patient, with

0
0

0.2
0.4
0.6
0.8

1000

N
or

m
al

iz
ed

cu
m

ul
at

iv
e

co
st

2000 3000 4000 5000
Number of updates

(a)

6000 7000 8000

FF2s
LSTM2s

9000

0

1

2

3

1000

N
or

m
al

iz
ed

cu
m

ul
at

iv
e

co
st

2000 3000 4000 5000
Number of updates

(b)

6000 7000 8000

FF2s
LSTM2s

9000

0

5
10

20
15

0
1000

N
or

m
al

iz
ed

cu
m

ul
at

iv
e

co
st

2000 3000 4000 5000
Number of updates

(c)

6000 7000 8000

FF2s
LSTM2s

9000

γ

Fig. 4 Training performance of LSTM and FFNN with two
states for = 0.98. (a) Normalized cumulative QoS cost. (b)
Normalized cumulative backhaul cost. (c) Normalized
cumulative UE power consumption cost.

0.080
0.90 0.92 0.94

Training discount factor γ
(a)

0.96 0.98

0.085
0.090
0.095
0.100
0.105
0.110
0.115
0.120

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st Static

FF1s
FF2s

0.90 0.92 0.94
Training discount factor γ

(d)

0.96 0.98

0.0206
0.0208
0.0210
0.0212
0.0214
0.0216
0.0218
0.0220

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st LSTM2s

LSTM4s
LSTM5s
LSTM6s

0.90 0.92 0.94
Training discount factor γ

(e)

0.96 0.98

0.294

0.296

0.298

0.300

0.302

0.304

0.306

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st LSTM2s

LSTM4s
LSTM5s
LSTM6s

0.90 0.92 0.94
Training discount factor γ

(f)

0.96 0.98
0.245
0.250
0.255
0.260
0.265
0.270
0.275
0.280

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st LSTM2s

LSTM4s
LSTM5s
LSTM6s

0.31
0.90 0.92 0.94

Training discount factor γ
(c)

0.96 0.98

0.32

0.33

0.34

0.35

0.36

0.37

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st Static

FF1s
FF2s

0.330
0.90 0.92 0.94

Training discount factor γ
(b)

0.96 0.98

0.335
0.340
0.345
0.350

0.360
0.355

0.365
0.370
0.375

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st Static

FF1s
FF2s

ζFig. 5 Test performance for impatient users with = 0.1 for static and RL-based solutions with different NN architectures as

a function of discount factor. (a) and (d) show QoS cost. (b) and (e) show backhaul cost. (c) and (f) show UE power
consumption cost.

 94 Intelligent and Converged Networks, 2024, 5(2): 81−99

ζ = 0.9

γ ∈ [0.9,1)

γ = 1 cqos

cbh cuep T

. For the RL-based solutions, the agent is trained
for different values of the discount factor ,
after which the agent is evaluated during a test scenario
with discount factor . The cumulative costs ,

, and averaged over the testing time duration
are shown.

P1

Figures 5 and 6 show that the LSTM architecture
outperforms FFNN in terms of optimality.
Additionally, increasing the observation length of
LSTM cells leads to a decrease in all cumulative costs.
This implies that incorporating a longer observation
history improves the RL agent’s performance due to an
enhanced ability to uncover latent information. The
static solution performs better than the dynamic RL
solution of an FFNN with one state. However, when
compared to the dynamic RL solutions that exploit
multiple time slots, regardless of whether FFNN or
LSTM is used, the static solution performs poorly. This
outcome validates the use of cumulative reward
optimization as in for dynamic cache policy design.
Also, this demonstrates that the developed A2C

ζ = 0.9

algorithm can find a near optimal solution for the
formulated POMDP problem. Comparing Figs. 5 and
6, we see that for patient users with , all costs
are higher. This is understandable; if a user insists on
getting a rare file, the network is forced to use
resources for that file, which reduces the performance
related to more popular files.

x(t)

q(t)

γ = 1

γ ∈ [0.9,1) γ = 0.98

ζ = 0.9

ζ = 0.1

In order to assess how the partial observability
influences performance, we consider an MDP
environment, where the state vector from Eq. (18)
is utilized instead of the observation vector .
Figures 7 and 8 compare the test performance in
POMDP and MDP environments in terms of average
cumulative costs with . The POMDP approaches
are shown for training discount factors in the range

. The MDP solutions are trained for ,
and are represented by dotted lines. Figure 7 shows
patient users () and Fig. 8 impatient ones
().

Figures 7 and 8 show that the difference between
cumulative costs for MDP and POMDP is significantly

0.90 0.92 0.94
Training discount factor γ

(a)

0.96 0.98

0.185
0.190
0.195
0.200
0.205
0.210
0.215
0.220

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st Static

FF1s
FF2s

0.90 0.92 0.94
Training discount factor γ

(d)

0.96 0.98
0.0820

0.0824
0.0822

0.0826
0.0828
0.0830
0.0832
0.0834

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st LSTM2s

LSTM4s
LSTM5s
LSTM6s

0.90 0.92 0.94
Training discount factor γ

(e)

0.96 0.98

0.544

0.546

0.548

0.550

0.552

0.554

0.556
N

or
m

al
iz

ed
 c

um
ul

at
iv

e
co

st LSTM2s
LSTM4s
LSTM5s
LSTM6s

0.90 0.92 0.94
Training discount factor γ

(f)

0.96 0.98
0.570
0.575
0.580
0.585
0.590

0.600
0.595

0.605

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st LSTM2s

LSTM4s
LSTM5s
LSTM6s

0.90 0.92 0.94
Training discount factor γ

(c)

0.96 0.98
0.63

0.64

0.65

0.66

0.67

0.68

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st Static

FF1s
FF2s

0.90 0.92 0.94
Training discount factor γ

(b)

0.96 0.98
0.555

0.560

0.565

0.570

0.575

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st Static

FF1s
FF2s

ζFig. 6 Test performance when for patient users with = 0.9 for static and RL-based solutions with different NN architectures

as a function of discount factor. (a) and (d) show QoS cost. (b) and (e) show backhaul cost. (c) and (f) show UE show power
consumption cost.

 Ashvin Srinivasan et al.: Adaptive cache policy optimization through deep reinforcement learning in dynamic... 95

smaller for the LSTM architecture as compared to the
FFNN architecture, suggesting that LSTM is more
capable of handling the complexity and uncertainties
associated with POMDP settings.

7 Conclusion

In this study, we present a dynamic cache placement
and delivery problem optimized by an RL algorithm.
Files are proactively cached both at the BSs and at
UEs. Our objective is to optimize the quality of service,
backhaul load, and UE power consumption by
leveraging the A2C algorithm. We first provide a
distributed UE cache placement algorithm, where the
population of UEs achieves a target distribution of
cached files, which minimizes the UE energy
consumption in terms of file decoding attempts. Next,

we investigate the RL agents at the network side for
optimizing the cache placement and delivery
parameters in an orthogonal multipoint multicasting
networking scenario. Two types of architectures for the
RL agent are considered: FFNN and LSTM. The
motivation behind exploring these two architectures is
to identify the most suitable approach for addressing
the considered problem. Our simulation results not
only provide justification for utilizing the POMDP for
problem formulation but also demonstrate that the
proposed LSTM-based A2C surpasses the FFNN-based
A2C in terms of sample efficiency and optimality.
Moreover, our findings indicate that the LSTM-based
A2C can deliver significantly improved performance in
a POMDP environment compared to its FFNN

0.90
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22

0.92 0.94 0.96 0.98
Training discount factor γ

(a)

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st

FF1s (POMDP)
LSTM6s (POMDP)
FF1s (MDP)
LSTM6s (MDP)

0.90
0.51
0.52
0.53
0.54
0.55
0.56
0.57
0.58

0.92 0.94 0.96 0.98
Training discount factor γ

(b)

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st

FF1s (POMDP)
LSTM6s (POMDP)
FF1s (MDP)
LSTM6s (MDP)

0.90

0.52
0.54
0.56
0.58
0.60

0.64
0.62

0.66
0.68

0.92 0.94 0.96 0.98
Training discount factor γ

(c)

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st

FF1s (POMDP)
LSTM6s (POMDP)
FF1s (MDP)
LSTM6s (MDP)

ζFig. 7 Test performance for patient users with = 0.9 for

POMDP and MDP environments. (a) Normalized cumulative
QoS cost. (b) Normalized cumulative backhaul cost. (c)
Normalized cumulative UE power consumption cost.

0.90
0.02
0.04
0.06
0.08
0.10
0.12

0.92 0.94 0.96 0.98
Training discount factor γ

(a)

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st

FF1s (POMDP)
LSTM6s (POMDP)
FF1s (MDP)
LSTM6s (MDP)

0.90
0.28

0.30

0.32

0.34

0.36

0.92 0.94 0.96 0.98
Training discount factor γ

(b)

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st

FF1s (POMDP)
LSTM6s (POMDP)
FF1s (MDP)
LSTM6s (MDP)

0.90

0.24
0.26
0.28
0.30
0.32

0.36
0.34

0.92 0.94 0.96 0.98
Training discount factor γ

(c)

N
or

m
al

iz
ed

 c
um

ul
at

iv
e

co
st

FF1s (POMDP)
LSTM6s (POMDP)
FF1s (MDP)
LSTM6s (MDP)

ζFig. 8 Test performance when = 0.1 for POMDP and

MDP environments. (a) Normalized cumulative QoS cost. (b)
Normalized cumulative backhaul cost. (c) Normalized
cumulative UE power consumption cost.

 96 Intelligent and Converged Networks, 2024, 5(2): 81−99

counterpart. This highlights the potential of using
LSTM-based methods in reinforcement learning
scenarios where the problem formulation requires
consideration of the POMDP framework.

Acknowledgment

This work was supported in part by the Academy of
Finland (No. 345109).

References

 P. Hassanzadeh, A. M. Tulino, J. Llorca, and E. Erkip,

Rate-memory trade-off for caching and delivery of

correlated sources, IEEE Trans. Inf. Theory, vol. 66, no. 4,

pp. 2219–2251, 2020.

[1]

 H. Wu, Y. Fan, Y. Wang, H. Ma, and L. Xing, A

comprehensive review on edge caching from the

perspective of total process: Placement, policy and

delivery, Sensors, vol. 21, no. 15, p. 5033, 2021.

[2]

 B. Serbetci and J. Goseling, On optimal geographical

caching in heterogeneous cellular networks, in Proc. IEEE

Wireless Communications and Networking Conf. (WCNC),

San Francisco, CA, USA, 2017, pp. 1–6.

[3]

 B. Blaszczyszyn and A. Giovanidis, Optimal geographic

caching in cellular networks, in Proc. IEEE Int. Conf.

Communications (ICC), London, UK, 2015, pp.

3358–3363.

[4]

 Y. Chen, M. Ding, J. Li, Z. Lin, G. Mao, and L. Hanzo,

Probabilistic small-cell caching: Performance analysis and

optimization, IEEE Trans. Veh. Technol., vol. 66, no. 5,

pp. 4341–4354, 2017.

[5]

 X. Xu and M. Tao, Modeling, analysis, and optimization

of caching in multi-antenna small-cell networks,

IEEE Trans. Wirel. Commun., vol. 18, no. 11, pp.

5454–5469, 2019.

[6]

 M. Choi, A. F. Molisch, D. J. Han, D. Kim, J. Kim, and J.

Moon, Probabilistic caching and dynamic delivery policies

for categorized contents and consecutive user demands,

IEEE Trans. Wirel. Commun., vol. 20, no. 4, pp.

2685–2699, 2021.

[7]

 J. Wu, B. Chen, C. Yang, and Q. Li, Caching and

bandwidth allocation policy optimization in heterogeneous

networks, in Proc. IEEE 28th Annual Int. Symp. on

Personal, Indoor, and Mobile Radio Communications

[8]

(PIMRC), Montreal, Canada, 2017, pp. 1–6.
 J. Wen, K. Huang, S. Yang, and V. O. K. Li, Cache-

enabled heterogeneous cellular networks: Optimal tier-

level content placement, IEEE Trans. Wirel. Commun.,

vol. 16, no. 9, pp. 5939–5952, 2017.

[9]

 K. Li, C. Yang, Z. Chen, and M. Tao, Optimization and

analysis of probabilistic caching in N-tier heterogeneous

networks, IEEE Trans. Wirel. Commun., vol. 17, no. 2, pp.

1283–1297, 2018.

[10]

 J. Wu, C. Yang, and B. Chen, Proactive caching and

bandwidth allocation in heterogenous networks by

learning from historical numbers of requests, IEEE Trans.

Commun., vol. 68, no. 7, pp. 4394–4410, 2020.

[11]

 Z. Wang, Z. Cao, Y. Cui, and Y. Yang, Joint and

competitive caching designs in large-scale multi-tier

wireless multicasting networks, in Proc. GLOBECOM

2017—2017 IEEE Global Communications Conf.,

Singapore, 2017, pp. 1–7.

[12]

 Y. Cui and D. Jiang, Analysis and optimization of caching

and multicasting in large-scale cache-enabled

heterogeneous wireless networks, IEEE Trans. Wirel.

Commun., vol. 16, no. 1, pp. 250–264, 2017.

[13]

 C. Ye, Y. Cui, Y. Yang, and R. Wang, Optimal caching

designs for perfect, imperfect, and unknown file popularity

distributions in large-scale multi-tier wireless networks,

IEEE Trans. Commun., vol. 67, no. 9, pp. 6612–6625,

2019.

[14]

 M. Bayat, R. K. Mungara, and G. Caire, Achieving spatial

scalability for coded caching via coded multipoint

multicasting, IEEE Trans. Wirel. Commun., vol. 18, no. 1,

pp. 227–240, 2019.

[15]

 X. Peng, Y. Shi, J. Zhang, and K. B. Letaief, Layered

Group sparse beamforming for cache-enabled green

wireless networks, IEEE Trans. Commun., vol. 65, no. 12,

pp. 5589–5603, 2017.

[16]

 W. Sun, Y. Li, C. Hu, and M. Peng, Joint optimization of

cache placement and bandwidth allocation in

heterogeneous networks, IEEE Access, vol. 6, pp.

37250–37260, 2018.

[17]

 F. Zhou, L. Fan, N. Wang, G. Luo, J. Tang, and W. Chen,

A cache-aided communication scheme for downlink

coordinated multipoint transmission, IEEE Access, vol. 6,

pp. 1416–1427, 2018.

[18]

 M. Amidzadeh, H. Al-Tous, G. Caire, and O. Tirkkonen,[19]

 Ashvin Srinivasan et al.: Adaptive cache policy optimization through deep reinforcement learning in dynamic... 97

Caching in cellular networks based on multipoint multicast

transmissions, IEEE Trans. Wirel. Commun., vol. 22, no.

4, pp. 2393–2408, 2023.
 Y. Wei, Z. Zhang, F. R. Yu, and Z. Han, Joint user

scheduling and content caching strategy for mobile edge

networks using deep reinforcement learning, in Proc.

IEEE Int. Conf. Communications Workshops (ICC

Workshops), Kansas City, MO, USA, 2018, pp. 1–6.

[20]

 D. Li, Y. Han, C. Wang, G. Shi, X. Wang, X. Li, and V.

C. M. Leung, Deep reinforcement learning for cooperative

edge caching in future mobile networks, in Proc. IEEE

Wireless Communications and Networking Conf. (WCNC),

Marrakesh, Morocco, 2019, pp. 1–6.

[21]

 R. Li, C. Wang, Z. Zhao, R. Guo, and H. Zhang, The

LSTM-based advantage actor-critic learning for resource

management in network slicing with user mobility,

IEEE Commun. Lett., vol. 24, no. 9, pp. 2005–2009, 2020.

[22]

 Z. Zhang and M. Tao, Deep learning for wireless coded

caching with unknown and time-variant content

popularity, IEEE Trans. Wirel. Commun., vol. 20, no. 2,

pp. 1152–1163, 2021.

[23]

 M. Amidzadeh, H. Al-Tous, O. Tirkkonen, and J. Zhang,

Joint cache placement and delivery design using

reinforcement learning for cellular networks, in Proc.

IEEE 93rd Vehicular Technology Conf. (VTC2021-

Spring), Helsinki, Finland, 2021, pp. 1–6.

[24]

 T. Ni, B. Eysenbach, and R. Salakhutdinov, Recurrent

model-free RL is a strong baseline for many POMDPs,

arXiv preprint arXiv: 2110.05038, 2021.

[25]

 J. G. Andrews, A. K. Gupta, and H. S. Dhillon, A primer

on cellular network analysis using stochastic geometry,

arXiv preprint arXiv: 1604.03183, 2016.

[26]

 M. Chiang, Networked Life. Cambridge, UK: Cambridge[27]

University Press, 2012.
 L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,

Web caching and Zipf-like distributions: Evidence and

implications, in Proc. IEEE Annual Joint Conference:

INFOCOM, IEEE Computer and Communications

Societies, New York, NY, USA, 1999, pp. 126–134.

[28]

 M. Kumar, R. Rout, and D. Somayajulu, Cooperative

cache update using multi-agent recurrent deep

reinforcement learning for mobile edge networks, Comput.

Netw., vol. 209, p. 108876, 2022.

[29]

 E. Paluzo-Hidalgo, R. Gonzalez-Diaz, and M. A.

Gutiérrez-Naranjo, Two-hidden-layer feed-forward

networks are universal approximators: A constructive

approach, Neural Netw., vol. 131, pp. 29–36, 2020.

[30]

 A. Baisero and C. Amato, Unbiased asymmetric

reinforcement learning under partial observability, arXiv

preprint arXiv: 2105.11674v2, 2022.

[31]

 S. Nath and J. Wu, Deep reinforcement learning for

dynamic computation offloading and resource allocation

in cache-assisted mobile edge computing systems,

Intelligent and Converged Networks, vol. 1, no. 2, pp.

181–198, 2020.

[32]

 S. Hochreiter and J. Schmidhuber, Long short-term

memory, Neural Comput., vol. 9, no. 8, pp. 1735–1780,

1997.

[33]

 I. Grondman, L. Busoniu, G. A. D. Lopes, and R.

Babuska, A survey of actor-critic reinforcement learning:

Standard and natural policy gradients, IEEE Trans. Syst.

Man Cybern. Part C Appl. Rev., vol. 42, no. 6, pp.

1291–1307, 2012.

[34]

 3GPP, UMTS Universal Mobile Telecommunications

System, RF system scenarios (3GPP TR 25.942 version

14.0. 0), Tech. Rep. ETSI TR 125 942, 3GPP, 2017.

[35]

Ashvin Srinivasan received the BEng
degree in communications engineering
from VTU, Belgaum, India in 2009, and
the MSc degree in communications
engineering from Aalto university, Finland
in 2012. He is currently pursuing the PhD
degree at the Department of Information
and Communications Engineering, Aalto

University, Finland. His current research interests include
wireless communications and machine learning.

Mohsen Amidzadeh received the BSc and
MSc degrees in electronic engineering
from Sharif University of Technology,
Tehran, Iran in 2010 and 2012,
respectively. He is currently pursuing the
PhD degree at the Department of
Information and Communications
Engineering, Aalto University, Finland. He

completed a sabbatical program at University of Alberta,
Edmonton, Canada, in 2018. His current research interests
include next-generation cellular networks, wireless
communications, machine learning, optimization problems, and
estimation theory.

 98 Intelligent and Converged Networks, 2024, 5(2): 81−99

Junshan Zhang received the PhD degree
from Purdue University, USA in 2000. He
was on the faculty of the School of
Electrical, Computer and Energy
Engineering, Arizona State University,
USA from 2000 to 2021. He is currently a
professor at the Department of Electrical
and Computer Engineering, University of

California, Davis, USA. He was the recipient of the ONR Young
Investigator Award in 2005 and the NSF CAREER award in
2003. He received the IEEE Wireless Communication Technical
Committee Recognition Award in 2016. His papers have won a
few awards, including the Best Student Paper Award at WiOPT
2018, the Kenneth C. Sevcik Outstanding Student Paper Award
of ACM SIGMETRICS/IFIP Performance 2016, the Best Paper
Runner-up Award of IEEE INFOCOM 2009 and IEEE
INFOCOM 2014, and the Best Paper Award at IEEE ICC 2008
and ICC 2017. He has co-founded Smartiply Inc., a fog
computing startup company delivering boosted network
connectivity and embedded artificial intelligence. He served as
the editor-in-chief for IEEE Transactions on Wireless
Communications during 2019–2022, and is a senior editor for
IEEE/ACM Transactions on Networking. He was Technical
Program Committee (TPC) co-chair for a number of major
conferences in communication networks, including IEEE
INFOCOM 2012 and ACM MOBIHOC 2015. He was the
general chair for ACM/IEEE SEC 2017 and WiOPT 2016. He is
a fellow of IEEE. He was a distinguished lecturer of the IEEE
Communications Society.

Olav Tirkkonen received the MSc and
PhD degrees in theoretical physics from
Helsinki University of Technology,
Helsinki, Finland in 1990 and 1994,
respectively. He is currently a full
professor of communication theory at
Aalto University, Finland, where he has
held a faculty position since 2006. After

postdoctoral positions at The University of British Columbia
(UBC), Vancouver, Canada, and Nordic Institute for Theoretical
Physics (NORDITA), Copenhagen, Denmark, from 1999 to
2010, he was with Nokia Research Center, Helsinki, Finland.
From 2016 to 2017, he was the visiting associate professor at
Cornell University, Ithaca, NY, USA. He has authored or co-
authored 300 papers and is the inventor of some 85 families of
patents and patent applications which include 1% of all patents
declared essential for the first standardized version of 4G LTE.
His research interests include the coding for random access and
quantization, quantum computation, and machine learning for
cellular networks. He served as the general chair of 2022 IEEE
International Symposium on Information Theory, and is a
member of the Executive Editorial Committee of IEEE
Transactions on Wireless Communications. He is a fellow of
IEEE.

 Ashvin Srinivasan et al.: Adaptive cache policy optimization through deep reinforcement learning in dynamic... 99

