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Adaptive cache policy optimization through deep reinforcement
learning in dynamic cellular networks

Ashvin Srinivasan*, Mohsen Amidzadeh, Junshan Zhang, and Olav Tirkkonen

Abstract: We explore the use of caching both at the network edge and within User Equipment (UE) to alleviate traffic

load  of  wireless  networks.  We  develop  a  joint  cache  placement  and  delivery  policy  that  maximizes  the  Quality  of

Service  (QoS)  while  simultaneously  minimizing  backhaul  load  and  UE  power  consumption,  in  the  presence  of  an

unknown  time-variant  file  popularity.  With  file  requests  in  a  time  slot  being  affected  by  download  success  in  the

previous slot, the caching system becomes a non-stationary Partial Observable Markov Decision Process (POMDP). We

solve  the  problem  in  a  deep  reinforcement  learning  framework  based  on  the  Advantageous  Actor-Critic  (A2C)

algorithm,  comparing  Feed  Forward  Neural  Networks  (FFNN)  with  a  Long  Short-Term  Memory  (LSTM)  approach

specifically designed to exploit the correlation of file popularity distribution across time slots. Simulation results show

that using LSTM-based A2C outperforms FFNN-based A2C in terms of sample efficiency and optimality, demonstrating

superior  performance  for  the  non-stationary  POMDP  problem.  For  caching  at  the  UEs,  we  provide  a  distributed

algorithm  that  reaches  the  objectives  dictated  by  the  agent  controlling  the  network,  with  minimum  energy

consumption at the UEs, and minimum communication overhead.

Key  words:   wireless  caching; deep  reinforcement  learning; advantageous  actor  critic; long  short  term  memory; non-

stationary Partial Observable Markov Decision Process (POMDP)

1    Introduction

Wireless  caching  in  cellular  networks  is  a  highly
effective  method  for  alleviating  traffic  congestion
problems[1].  A  variety  of  methods  have  been  explored
to develop efficient  policies for  the two phases of  this
problem, cache placement and cache delivery[2].

In  Ref.  [3],  probabilistic  cache  placement  is
considered, focusing on determining how Base Stations
(BSs)  should  store  files.  This  probabilistic  approach
serves as the foundation for designing an optimal cache

policy,  which  in  turn,  ensures  the  highest  total  hit
probability for random network topologies[4].

During  the  cache  delivery  phase,  it  is  crucial  to
differentiate between unicast and multicast methods, as
well as between single-point approaches, where a file is
delivered  by  the  caching  BS  with  the  highest  signal
power,  and  multipoint  approaches,  where  a  user
downloading a file receives simultaneous transmissions
from multiple BSs. Single-Point Unicast (SPUC) cache
delivery has been analyzed in Refs. [3–11]. In Ref. [5],
a  dynamic  network  architecture  is  considered,  where
the nearest BS responds to a User Equipment (UE) that
demands  service.  In  Ref.  [6],  BSs  are  equipped  with
multiple  antennas.  Each  BS  utilizes  beamforming
transmissions  eliminate  interference  within  a  chosen
group  of  cooperating  BSs.  An  SPUC  scheme  is
considered  in  Ref.  [8]  in  a  Heterogeneous  Network
(HetNet)  setup,  incorporating  zero-forcing
beamforming BSs and cache-enabled helper-nodes.

Cache  delivery  based  on  Single-Point  Multicast
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(SPMC)  transmission  is  considered  in  Refs.  [12–16].
The  approach  involves  caching  BSs  that  multicast  or
broadcast  different  files  to  requesting  UEs  using
multiple  access  techniques.  For  instance,  in  Refs.
[12, 13],  probabilistic  caching  is  considered  in  a
HetNet environment, where each BS multicasts  files
using pre-assigned resources that each span  of the
total available bandwidth. In Ref. [14], optimal random
caching  designs  for  perfect,  imperfect,  and  unknown
file  popularity  distributions  in  a  large-scale  multi-tier
wireless  network are  considered.  In  Ref.  [16],  Peng et
al. investigated multicast sparse beamforming based on
a deterministic cache placement.

References  [17, 18]  have  examined  deterministic
caching  with  on-demand  Multipoint  Unicast  (MPUC)
cache  delivery.  In  Ref.  [17],  caching  BSs  deliver  a
cached  file  to  the  requesting  UE  using  a  distinct
resource,  with  network  resources  orthogonalized
among UEs to avert interference. This scheme does not
incorporate  collaborative  beamforming  based  on
Channel State Information (CSI), and the BSs only use
a  single  antenna.  In  contrast,  Ref.  [18]  applies
Coordinated  Multipoint  (CoMP)  transmission  with
zero-forcing  beamforming.  It  assumes  known  CSI
between  UEs  and  a  group  of  serving  BSs.  Here,  each
UE receives unicast CoMP transmissions from a set of
serving BSs, which inevitably leads to multiple access
interference.

Here,  we  use  Orthogonal  Multipoint  Multicast
(OMPMC)[19] for  cache  delivery.  OMPMC  caters  to
file  requests  through  a  location-independent,  content-
specific  multicast  scheme.  This  approach  significantly
reduces  the  complexity  of  content  delivery  while
ensuring efficient utilization of network resources.

The  dynamic  nature  of  network  traffic,  and  user
mobility,  necessitate  the  development  of  more
intelligent  caching  mechanisms.  Deep  Reinforcement
Learning (DRL) has  emerged as  a  promising solution,
offering  a  robust  framework  for  addressing  these
challenges[20–23].  In  Ref.  [20],  an  actor-critic  learning
method  is  employed  to  identify  an  optimal  policy  for
user  scheduling  and  cache  placement  in  a
heterogeneous  network  with  constant  file  popularity.
This  approach  aims  to  optimize  network  performance

and user experience simultaneously. In Ref. [21], DRL
is  utilized  to  achieve  an  optimal  policy  in  terms  of
average transmission delay for a cellular network. This
optimization  process  is  crucial  for  ensuring  timely
delivery of information and enhancing overall network
efficiency.  In  Ref.  [22],  Long  Short-Term  Memory
(LSTM)-based  DRL is  applied  for  inter-slice  resource
management  in  cellular  networks.  This  advanced
technique  enables  dynamic  allocation  and  reallocation
of  resources,  leading  to  more  efficient  network
performance.  A  coded  caching  policy  is  developed
using  a  DRL algorithm with  an  LSTM architecture  in
Ref.  [23].  This  policy  is  subsequently  optimized  in
terms  of  transmission  delay  and  cache  replacement
cost,  resulting  in  significant  improvements  in  network
efficiency  and  cost-effectiveness.  A  dynamic  cache
policy  is  designed  in  Ref.  [24],  incorporating  a  non-
optimal  methodology  for  placing  files  on  UE  caches.
This  approach  seeks  to  strike  a  balance  between
performance and complexity.

In  this  paper,  we  study  a  cache  policy  optimization
problem  where  UEs  cache  content  proactively,  in
addition to  edge caching at  BSs;  and cache placement
at  both  BSs  and  UEs  is  probabilistic.  Departing  from
Ref.  [24],  we  allow  the  network  to  control  the  UE
caches,  which  is  essential  for  maintaining  the  balance
between  resource  allocation,  user  experience,  and  UE
power  consumption  during  proactive  file  downloads.
To  take  into  account  the  time-varying  nature  of
dynamic  caching,  the  file  preference  distribution  is
modeled as  a  non-stationary  stochastic  process;  this  is
in contrast to Refs. [19, 20, 24], where the dynamics of
the  network  are  treated  as  stationary,  and  the  state
space  is  considered  finite.  We  also  assume  that  the
underlying  file  popularity  distribution  is  unknown  to
the  network,  making  the  problem  only  partially
observable.

We  thus  formulate  the  cache  policy  optimization
problem  as  a  Non-stationary  Partially  Observable
Markov Decision Process (N-POMDP), a sophisticated
model  that  considers  the  uncertainties  inherent  in
cellular  networks.  To  find  an  optimal  policy,  we
employ an Advantage Actor-Critic (A2C)[24] algorithm,
which  is  supported  by  an  LSTM-based  neural
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network[25] to  handle  the  non-stationarity.  This
approach  differs  from  Ref.  [23],  where  a  prediction
mechanism  is  applied  to  learn  a  cache  policy  for  a
system  with  unknown  parameters.  An  LSTM-based
Reinforcement  Learning  (RL)  algorithm  to  solve  the
formulated  POMDP  offers  a  more  rigorous  and
systematic approach to cache policy optimization.

The  remainder  of  the  paper  is  organized  as  follows:
Section  2  outlines  the  system  and  file  popularity
models.  The  problem  is  formulated  in  Section  3.
Section  4  details  the  UE  cache  placement  procedure,
while  the  deep  reinforcement  learning  framework  is
introduced in Section 5. Numeric simulation results are
provided  in  Section  6,  and  Section  7  concludes  the
paper.

aT

m b bm{
bm

}p
m=1 b

m = 1 m = p 1 0

Notation:  We  use  bold-face  lower-case  letters  to
indicate  vectors,  and  is  the  transpose  of  a  vector.
We  indicate  the -th  element  of  vector  by ,  and

 collects  the  components  of  vector  from
 to .  Moreover,  and  denote  the  vector

with all elements equal to one and zero, respectively.

2    System model

F
N

We examine a cellular  access network that  consists  of
cache-equipped  BSs,  UEs,  and  a  library  containing

 different files. Without loss of generality, each file is
assumed to be normalized to a value of 1. The BSs are
connected  to  the  core  network  through  error-free
backhaul links. In this network, the BSs are responsible
for  responding  to  aggregated  content  requests  from
UEs.  To  fulfill  these  requests,  the  BSs  fetch  the
required  contents  and  store  them  in  their  caches.  To
determine the placement of contents in the BS caches,
a  probabilistic  approach  is  employed,  as  described  in
Ref.  [3].  This  approach  utilizes  a  common probability
distribution.

The  cache  delivery  process  utilizes  OMPMC,  as  in
Ref.  [19].  According  to  this  scheme,  each  file  is
transmitted  simultaneously  across  the  network  by  all
BSs  that  cache  that  particular  file,  using  a  dedicated
resource  specific  to  that  file.  This  resource
orthogonality  ensures  that  co-channel  interference  is
avoided, as distinct files are transmitted using different
resources. UEs request files from the network based on

{
pn

}N
n=1 pn

n

a  file  popularity  distribution ,  where 
represents the probability of file  being preferred. The
transmitted  files  are  then  stored  at  UEs’ caches  based
on a probabilistic cache placement strategy.

t

t

The  network  operates  in  a  time-slotted  manner,
where  each  time  slot  is  indexed  by .  The  network
operation  within  each  time  slot  can  be  divided  into
three  phases.  In  the  first  phase,  UEs,  distributed
according  to  a  spatial  poisson  distribution,  request
content  from  the  network  based  on  file  popularity.  In
the  second  phase,  the  BSs  retrieve  the  requested  files
from the  core  network  based  on  the  aggregate  sum of
requests  for  different  files,  and update  their  respective
caches. The third phase involves the broadcast of files
using OMPMC[26], and the update of UEs’ caches. We
assume  that  all  these  phases  occur  sequentially  on  a
time-slot basis. The interactions among UEs, BSs, and
the core network for  a  given time slot  are illustrated
in Fig. 1.

2.1    Cache placement and delivery

ρ(t) =
{
ρn(t)

}N
n=1 ρn(t)

n

Lb

N∑
n=1

ρn(t) ⩽ Lb

The  network  applies  probabilistic  cache  placement
strategy  characterized  by  a  file-specific  probability
distribution[4],  denoted  as ,  where 
represents  the  probability  of  file  being  cached  at  a
randomly selected BS. Each BS has a maximum cache

capacity  of ,  thus  we  have .  Without

loss  of  generality,  we  assume  that  all  files  have  the
same  size.  If  files  are  of  different  sizes,  they  can  be
segmented  into  equal-sized  chunks,  and  each  segment
could  be  treated  as  an  individual  entity  in  the  caching
policy.  Instead  of  formulating  the  popularity
distribution of entire files, we would then consider the
popularity of the individual segments.

Lb

Lb

{
ρn(t)

}N
n=1

Lb

For  caching  at  the  BSs,  we  follow  the  principle  of
Ref. [4].  segments of length 1 are used to represent
the  units of cache memory at the BSs, as shown in
Fig. 2. The segments are filled according to the weights

.  When  a  segment  becomes  full  and  cannot
completely  accommodate  a  given  weight,  the
remaining  probability  weight  is  filled  into  the  next
segment.  As  a  result,  each  of  these  segments
accommodates a variety of potential files that could be
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U

[0,1]

n

ρn

stored  in  the  corresponding  portion  of  the  memory.
Once  all  segments  have  been  populated,  the  BS
generates a uniformly distributed random variable  in
the  range .  The  BS  then  stores  the  files  that
coincide with this the position of this random variable
in each segment. The probability of file  to be cached
becomes precisely .

For  proactive  caching  at  UEs,  we  also  employ  a
probabilistic  cache  placement  strategy,  based  on
multicast cache delivery from BSs to UEs. We adopt a
one-shot probabilistic UE-caching principle, where the
network broadcasts dictating messages to the UEs, and
UEs  fill  their  caches  accordingly  from  cache  delivery

Lu

Lu

Lu

transmissions of the network. The process of filling UE
caches,  differs  from filling BS caches in  two essential
ways.  First,  the  success  of  cache  delivery  from  BS
caches  to  UEs  depends  on  randomness  of  wireless
channels.  As  a  consequence,  if  there  is  a  strict  UE
cache capability , such that in each UE cache at any
time,  there  is  at  most  files,  a  UE-cache  placement
policy  which  always  would  fill  all  UE  caches  would
have to be based on feedback, to mitigate packet losses
in  wireless  transmission.  To  avoid  this,  we  assume an
average  cache  capacity  constraint  at  UEs;  on  average,
the  number  of  files  cached  at  a  UE  is  not  larger  than

.  This  can  be  realized  as  a  service-level  agreement,
where  a  fraction  of  the  UEs  memory,  on  average,  is
allocated  to  the  caching  service.  Second,  to  minimize
UE power consumption, the amount of files that a UE
attempts to decode should be kept at a minimum.

s(t) sn(t)

n

t

Lu

To  achieve  this,  we  apply  a  proactive  UE  caching
method  where  file  decoding  attempts  at  a  UE  depend
on  the  dictating  messages  and  the  cache  contents.  On
the population level, the UE caching probability vector

 describes the state of the UE caches. Element 
represents  the  probability  of  file  being  cached  at  a
UE  at  time-slot .  Each  UE  cache  has  a  restricted
capacity of . We thus have 

 

Base station

Base station cache

UE

UE cache

Cache delivery

Back haul link

Aggregated file request at the BS

Core network

(b) ρn(t+1)

(c) sn(t)

(a) pn(t)

fn(t)

 
Fig. 1    Communication  and  coordination  among  UE,  BS,  and  the  core  network  for  cache  placement  and  delivery.
(a)  File  request  mechanism  at  the  BS.  (b)  BS  caching  probability  mechanism.  (c)  UE  caching  mechanism  provided  by  the
network.
 

0.18

ρ3 ρ4 ρ5 ρ6

ρ1 ρ2 ρ3

0 1

 
Lb

ρ

ρ1 ρ3

Fig. 2    Example  showcasing  probabilistic  caching  for  =
2, and N = 6 files with caching probabilities  = [0.4, 0.3, 0.5,
0.2, 0.3, 0.3]. A random number U = 0.18 is drawn from the
uniform distribution over [0,  1],  represented by the vertical
line.  The line intersects at  and ,  indicating that Files 1
and 3 will be cached.
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N∑
n=1

sn(t) ⩽ Lu (1)

2N ×2N

At  their  most  general,  the  dictating  messages  from
the  network  to  the  population  of  UEs  consist  of  two

 matrices,  where  for  each  possible  cache
content  of  a  UE,  there  is  a  probability  to  attempt  to
decode  certain  files,  or  a  probability  to  flush  certain
files from memory.

{
wn(t)

}N
n=1

wn(t)

Cache delivery from BSs towards the UEs uses file-
specific  resources  through  the  OMPMC
scheme.  In  this  scheme,  the  network  responds  to  the
aggregated  UE  requests  by  broadcasting  the  cached
files.  Each  file  is  simultaneously  broadcasted  in
resource  by all the BSs that cache that particular
file[19].

m n γm,n

Rth

Rth

Rth

n m

wnW log2
(
1+γm,n

)
< Rth W

α = Rth/W

t m n

wn(t)

We assume that the users experience block Rayleigh
fading  in  addition  to  large-scale  distance  dependent
path loss. The instantaneous Signal to Interference plus
Noise Ratio (SINR) for UE  receiving file  is .
We  assume  that  transmission  of  the  files  happen  at  a
rate ,  and  that  Additive  White  Gaussian  Noise
(AWGN) capacity achieving codebooks at this rate are
used. Accordingly,  becomes a threshold rate; if the
instantaneous  AWGN-capacity  of  a  user  receiving  a
file  is  larger  than ,  the  user  succeeds  in  decoding,
otherwise the user is in outage. Assuming that all files
have the same size, file  is thus in outage at UE  if

,  where  is  the  total
bandwidth  of  the  transmission.  We  can  thus  define  a
spectral  efficiency  threshold ,  such  that  at
time , the outage probability for UE  receiving file 
in the dedicated fractional resource  becomes[19]
 

on(t) = P(wn(t) log2
(
1+γm,n(t)

)
< α).

βpl = 4

p

λbs

σ2
0 n

ρn(t)
wn(t)

We  utilize  two  independent  homogeneous  Poisson
Point  Processes  (PPPs)  to  model  the  locations  of  UEs
and BSs in the network. For a network using OMPMC
scheme  with  a  propagation  environment  of  path  loss
exponent ,  with  BSs  having  the  average
transmission  power  distributed  according  to  a  PPP
with  intensity ,  and  UEs  having  the  receiver  noise
power ,  the  outage  probability  for  file  being
cached  at  BSs  with  caching  probability ,
transmitted  using  frequency  resource  then

becomes[24]
 

on(t) = erfc
(
π2λbsρn(t)

4
√
ηn(t)

)
(2)

erfc(·)

ηn(t) =
σ2

0

p
(2α/wn(t)−1)

where  is  the  complementary  error  function  and

 is a channel gain threshold.

2.2    File popularity

F

pn(t) n

p(t)
N∑

n=1

pn(t) = 1

In each time slot, users request files from the library .
A user either finds the requested file in its cache, or it
attempts to decode it from an OMPMC transmission of
the  network,  which may or  may not  be  in  outage.  We
assume that  irrespective of  whether  or  not  a  requested
file  is  in  the  cache  and/or  in  outage,  users  inform  the
network  about  the  request  for  the  time  slot.  These
requests  are  then  aggregated  by  the  network  to  a  file
request  probability  for  each  file ,  forming  the
file request probability vector . We assume that this

is a probability, such that .

fn(t)

n

m t−1

t

t

fn(t)

ζ Om

m t−1

There  is  an  underlying  dynamic  file  popularity
distribution driving the user’s requests, with  being
the popularity of file .  We model two types of users,
patient  and  impatient  ones.  If  a  patient  user  requests
file  in slot , if the file is not in the user’s cache
and  the  user  faces  outage,  this  user  will  request  the
same file again in slot .  An impatient user facing this
situation,  in  contrast,  selects  a  file  at  random in  slot 
according  to .  We  assume  that  a  user  is  patient
with probability . Assume an event , where a user
requests  file  in  slot ,  it  is  not  in  the  UE cache,
and  reception  from  the  network  fails.  The  probability
of this event is
 

P(Om) =
(
1− sm(t−1)

)
om(t−1) pm(t−1) (3)

n tThe  probability  that  file  is  requested  in  slot  is
then
 

P(n|Om) = ζ δnm+ (1− ζ) fn(t) (4)

δnmwhere  is the Kronecker delta function.
Om

m t−1

t

fn(t)

Furthermore, we assume that in the event  where
the user requests file  in slot  and either finds it in
its  cache  or  successfully  receives  it,  the  user  will  not
request  the  same  file  in  slot .  Otherwise,  the  user
chooses the file freely according to : 
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P(n|Om) =
fn(t)

1− fm(t)
(1−δnm) (5)

The probability of this event is
 

P(Om) = pm(t−1)−P(Om) (6)

νn(t)Finally, we assume that there is Gaussian noise 
affecting  the  file  request  process,  reflecting  the
randomness  of  user  activation,  and  differences  in  real
preferences  of  users.  The  file  request  probability
dynamics before normalization thus becomes
 

pn(t) =νn(t)+
N∑

m=1

P(n|Om) P(Om)+P(n|Om) P(Om) =

fn(t)
N∑

m=1

(
1− ξm(t−1)

)
pm(t−1)+

ξn(t−1) pn(t−1) + νn(t) (7)

where
 

ξn(t) =ζ (1− sn(t))on(t)−
fn(t+1)

1− fn(t+1)
(1−on(t)(1− sn(t))) ,

arises  from  the  non-stationary  driving  popularity
distribution.  The  final  normalization  step  adds  a  mild
non-linearity to the problem.

For  concreteness,  we  model  the  underlying  file
popularity distribution in terms of a modification of the
diffusion model applied in Ref. [27]:
 

fn(t) =
2 mn

1+ cosh
(

e(t− tn,0)
hn

)
(8)

tn,0
hn

mn = n−τ/
N∑

i=1

i−τ

τ e = 4ln(1+
√

2)

where  is a file-specific time-shift that describes the
time instance when the interest in the file peaks,  is a
file-specific half-width of the file interest peak in units

of  time  slots,  and  is  a  diffusion

amplitude  characterizing  the  peak  interest  in  the  file,
which we draw from a Zipf distribution with skewness

[28], and  is a constant.

fn(t)

It  is  important  to  note  that  the  model  developed  in
Eq.  (7)  is  not  confined  to  a  specific  form  of .
Rather, it exhibits a degree of flexibility, allowing it to
be  applied  across  various  contexts  and  systems.  We
assume that the stochastic dynamics in Eq. (7) is not a
priori  known  to  the  network.  The  network  does  not

fn(t)

pn(t)

know the underlying popularity distribution , while
it  does  know  the  realized  file  request  probabilities

.

3    UE cache placement

s

The network employs an updating mechanism in order
to  manage  the  cache  contents  of  UEs  to  adhere  to  a
target  probability  distribution .  For  this,  the  network
broadcasts  dictating  messages.  The  UEs  act  as
independent agents. Depending on the cache content of
an individual UE, and the dictating messages, the UEs
attempt  to  decode  files  and/or  flush  files.  In  this
section, we shall find an optimal distributed procedure
that  the  UE  agents  follow,  such  that  the  aggregate
action of the UE agents leads to the state desired by the
network  with  minimum  energy  consumption.  We
assume  that  UE  energy  consumption  for  the  caching
policy directly depends on the number of file decoding
attempts. As discussed in Section 2.1, we have Formula
(1) on the average cache size of the UEs.

t

{sn(t+1)}

sn(t)

In  time-slot ,  the  network  generates  the  target  UE
cache  probabilities  for  the  files  for  the  next
time  slot.  It  then  broadcasts  dictating  messages  to  the
UEs, with the objective of changing  to the target
values.

s

s Ls

2N

N

2N

2N

First, we observe that while the continuous variables
 describe  the  probabilities  to  find  files  in  the  user

caches, when considering the cache of a given user, the
probabilities  of  finding  different  files  are  not
independent.  This  is  directly  seen  in  an  extreme  case,
where  is such that the same set of  files is cached
in every UE. The probability space describing possible
UE  cache  contents  thus  is -dimensional.  A  priori,
any one of the  files may or may not be cached at  a
given  UE.  Similarly,  there  are  different
combinations of files that a UE may attempt to decode
in a time slot, and in principle  combinations of files
that  a  UE  may  flush.  Despite  this  rather  complicated
setting,  we  find  that  for  an  energy  consumption
minimizing UE caching policy with the average cache
size  constraint,  correlations  between  probabilities  of
files being cached do not need to be taken into account.
It  is  sufficient  for  each  UE  to  treat  each  file
independently.
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sn(t+1) > sn(t) t+1

n

t sn(t+1) ⩽ sn(t)

If ,  it  implies  that  at  time-slot ,
more UEs should cache file  as compared to time-slot
 while if , some UEs should discard the

file  from  their  caches.  To  realize  the  target  caching
probability, the population of users follow a procedure
as follows. Based on the caching probablity changes
 

∆n(t+1) = sn(t+1)− sn(t) ,

we define the dictating variables:
 

dn(t) =


∆n(t+1)

(1− sn(t))(1−on(t))
, ∆n(t+1) > 0;

∆n(t+1)
sn(t)

, ∆n(t+1) ⩽ 0
(9)

|dn(t)|
n

dn(t)

This  number  is  positive  if  more  caching  is  needed,
and negative if less is needed. The quantity  is the
probability  a  UE  should  decode  file ,  if  it  is  not
already  cached,  or  that  it  should  discard  it  if  it  is
cached. The network broadcasts  to the UEs. Each
UE now independently follows the update procedure of
Algorithm 1. We have

t{
sn(t)

}
n on(t)

{
sn(t+1)

}

Proposition  1　 Consider  a  population  of  UEs
storing  files  at  time-slot  with  aggregate  cache
probability ,  experiencing  an  outage  during
downloading  file  with  probability ,  and
following independently the cache update procedure of
Algorithm  1.  In  the  limit  of  an  infinite  population,
Algorithm 1 leads to cache probability  with a
minimum number of file decoding attempts per UE.

t+1 + t

s+ s

t c
a

b
N

Proof　As a  shorthand,  we  denote  variables  in  slot
 with  a “ ”,  and  variables  in  slot  without.  The

target  cache  probability  vector ,  and  then
represents  a  global  view  of  the  network  on  UE  cache
contents. The cache content of an individual UE at time
 is  given  by  the  set ,  a  set  of  decoding  attempts

performed by an individual UE is denoted by , and a
set of files flushed by a UE is denoted by . These can
be  interchangeably  thought  of  as -dimensional

F

2N

pc

pa pb

vectors, or subsets of . These represent the local view
of  a  UE  of  its  cache  content,  and  the  actions  it  may
take.  The  probability  of  a  UE  having  a  given  cache
content can be summarized in a -dimensional vector

, while the probabilities of decoding attempt and file
flushing events are  and , respectively.

Pa|c

Pb|c

2N ×2N

The conditional probability for a combination of file
decoding  attempts  given  a  UE  cache  content  is ,
and  the  conditional  probability  for  a  combination  of
files  being  flushed  given  a  UE  cache  content  is .
Both can be understood as  matrices. A generic
probabilistic UE cache update policy can be described
in terms of these two conditional probability matrices.

pb|c = 0

b 1 c

pa|c = 0 a∩ c , ∅

First,  it  is  worth  to  observe  that  a  file  cannot  be
flushed if it  is not cached, thus the matrix elements of
the  conditional  flushing  probability  fulfill  if

.  Also, if  a file is already cached, downloading it
does not  change the cache content  and only consumes
energy, thus we require that  if .

2N

N

s N ×2N

J {0,1}

To  move  between  the -dimensional  probability
space  of  UE  cache  contents  and  the -dimensional
space of , we use an  constant indicator matrix

.  This  matrix  has  entries  in .  Each  column  is  a
possible  cache  content,  and  the  ones  indicate  the  files
in the cache.

With these notations, the probability that a file in the
library  is  cached  at  an  arbitrary  UE  is  given  by  the
vector
 

s = J pc (10)

un

n vn

n N

while the expected number of decoding attempts  of
file  by  a  UE  and  the  expected  number  of  times 
that  file  is  flushed  by  a  UE,  collected  to -
dimensional vectors, are
 

u = J Pa|c pc ; v = J Pb|c pc (11)

c, a b
Note  that  here  we  use  matrix  notation,  such  that

summation over , and  is implicitly understood.
As the decoding attempts face channel uncertainty in

terms  of  packet  loss,  the  UE-cache  update  equation
becomes
 

s+− s = (Do)u− v (12)

Do

1−on

where the diagonal matrix  has the packet decoding
success probabilities  on the diagonal.

 

Algorithm 1　Cache-updating procedure
dn(t) > 0　if  then

n t　　if file  is already cached at  do nothing
dn(t)　　else attempt to decode it with probability .

　else
n t　　if file  is not cached at  do nothing

|dn(t)|　　else discard it with probability .
　end if
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∥u∥1
u v

The objective is to minimize UE power consumption
spent  on  decoding  attempts,  i.e.,  the  expected  number
of file decoding attempts given by the one-norm .
As both  and  have non-negative entries, we find the
rather obvious fact that, assuming that none of the files
has outage probability 1, the optimum expectations for
decoding attempts and flushing fulfill
 

u∗ = D−1
o

[(
s+− s

)]
+ ; v∗ =

[(
s− s+

)]
+ (13)

[x]+ =
1
2

(x+ |x|)

dn

where  the  non-negative  part  of  a  number  is  given  by

.  This  can  be  achieved  by  defining  the

conditional  decoding  attempt  probabilities  based  on
independent probabilities  of Formula (9) as
 

pa|c =


∏

m∈ a
dm

∏
k∈ c\a

(1−dk), if a∩ c = ∅;

0, else
(14)

c̄ c

a

where  is  the  complement  of  in  the  file  index  set,
and  \  denotes  set  subtraction.  With  this  conditional
probability,  we  have  for  the  probability  of  attempting
file download combination :
 

pa =
∑

c; c∩a=∅
pa|c pc =

∏
m∈a

dm

 ∑
c; c∩a=∅

pc
∏

k∈ c̄\a
(1−dk)

(15)

n

and the probability that a UE attempts downloading file
 is

 

un =
∑
a∋n

pa = dn

∑
ã⊂F̃

∏
m∈ã

dm

∑
c⊂ ¯̃a

pc
∏

k∈ ¯̃a\c
(1−dk) =

dn

∑
c⊂F̃

pc
∑
ã⊂c̄

∏
m∈ã

dm

∏
k∈c̄\ã

(1−dk) =

dn

∑
c⊂F̃

pc = dn(1− cn) (16)

a
n ã a

n F̃ n
¯̃a ã F̃

ā c̄
c F̃

F̃ ã c

P S

Here the sum in the first expression is over all sets 
that  have  as  an  element,  is  the  set  with  the
element  removed,  is  the  file  index  set  with 
removed,  and  is  the  complement  of  in ,  i.e.,  it
coincides  with  inside  the  sum.  Furthermore, 
denotes  the  complement  of  in .  The  second  line
follows  from  changing  the  order  of  summations;  we
divide  to  the  disjoint  sets , ,  and  their
complement. The last line follows from the fact that for
a  sum over  the  power  set  of  a  set  of  indices  one
has
 

∑
a∈P

∏
m∈ a

dm

∏
k∈S \a

(1−dk) = 1 (17)

n 1− cn

which  is  a  direct  consequence  of  the  multinomial
theorem.  The  final  equality  follows  from  the  fact  that
the  sum  of  the  probability  over  all  cache  contents
where  is not included is  by definition. We thus
have found that
 

u = diag([dn]+) J pc = diag([dn]+) (1− s) .

dn

Pb|c

c

s+

Using the values of  in Formula (9), one sees that
this  realizes  the  first  part  of  Eq.  (13).  A  similar
argument for  leads to the second part. This policy
thus is a minimum energy solution. Each UE executes
Algorithm 1  on  one  sample .  In  the  asymptotic  limit
of  an  infinite  population,  the  sample  expectation
coincides  with  the  probabilistic  one,  and  is
realized. ■

sn(t+1)

sn(t)

N

Note  that  there  may  be  a  continuum  of  UE  cache
update policies that would realize  starting from

 with  the  same  energy  consumption.  Algorithm  1
is set  apart  by its  communication complexity—instead
of  dictating  messages  consisting  of  large-dimensional
matrices,  only  an -dimensional  vector  is  needed.
Note  that  this  is  the  minimum  overhead—due  to  the
outage probabilities, the dictating variables do not sum
up to 0.

4    Cache policy formulation

With  the  probabilistic  caching  UE-cach  update  policy
define, we concentrate on determining the cache policy
of the network. The objective is to maximize Quality of
Service (QoS) while minimizing the network backhaul
load  and  UE  power  consumption  under  the  time-
varying file request dynamics Eq. (7).

4.1    State, observation, and action

For the cache policy optimization problem, the state of
the system is defined as the vector
 

x(t) =
[
p(t)T, s(t)T, f (t)T

]T
(18)

The  system  state  consists  of  the  realization  of  the
stochastic  request  process  Eq.  (7),  the  content  of  the
UE  caches,  and  the  time-varying  file  popularity
distribution.

p(t)While the network has access to the file requests 
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s(t)

f (t)

and  the  UE  cache  contents ,  the  underlying  file
popularity  distribution  remains  unknown  to  the
network.  Consequently,  we  define  an  observation
vector as
 

q(t) = [p(t)T, s(t)T ]T (19)

Accordingly, the observation space is given as
 

Q = {(p, s) | pn ⩾ 0, 1T p= 1, sn ⩾ 0, 1Ts ⩽ Lu}.

{
ρn(t)

}N
n=1{

wn(t)
}N
n=1

{
dn(t)

}N
n=1

The network is equipped with three control variables:
the  BS  cache  probability ,  the  resource
allocation  used  by  the  network  when
transmitting  files  by  OMPMC,  and  the  dictating
messages . We then define the action vector
 

u(t) = [ρ(t)T, w(t)T, d(t)T ]T (20)

The action space is given by
 

U ={(ρ,w, d) | ρn ⩾ 0, 1Tρ ⩽ Lb,

wn ⩾ 0, 1Tw = 1, −1 ⩽ dm ⩽ 1} (21)

Accordingly, the process of file retrieval is controlled
by  the  variables  provided  by  the  RL  agent.  Using  the
optimal  policy,  it  determines  which  files  are  essential
for  proactive  caching  by  the  BSs  from  the  core
network,  hence  maintaining  the  consistency  and
reliability of the system.

4.2    POMDP

on(t)

wn(t) wn(t)

fn(t)

fn(t)

The  file  request  dynamics  in  Eq.  (7)  involves  the
outage probability , which is a function of resource
allocation  as  given  in  Eq.  (2).  Since  is  an
action  variable,  the  dynamics  leads  to  a  Markov
Decision  Process  (MDP).  As  the  underlying  file
popularity , modeled in Eq. (8), is time-varying we
have a non-stationary MDP. Furthermore, since  is
unknown  to  the  agent,  our  cache  policy  formulation
leads  to  a  N-POMDP.  The  objective  of  this  work  is
thus  to  formulate  a  cache  policy  based  on  this  N-
POMDP.

(
X ,O,U ,PT (· ; t),PO(· ; t),r(·)) X

O ⊂ X
U

PT (· ; t)

PO(· ; t)

An  N-POMDP  is  characterized  by  a  tuple
,  where  represents  the

state  space,  denotes  the  observation  space,  and
 signifies  the  action  space.  The  time-varying

transition  probability  describes  the  system
environment,  while  the  time-varying  observation
distribution  and the immediate reward function

r(·) provide  additional  information  about  the
environment and the agent’s performance.

t x(t) ∈ X

q(t) ∈ O u(t) ∈ U
PT (x(t+1) | x(t),u(t); t)

x(t)

u(t)

x(t+1)

The system state at time  is represented by .
The  observation  and  action  at  the  same  time  instance
are denoted by  and , respectively. The
transition  probability  indicates
the time-variant probability that being in state  and
performing  action  will  result  in  the  next  state

.  It  is  important  to  note  that  in  our  model,  the
transition probability changes over time,  reflecting the
dynamic nature of the environment.

x(t)

q(t)

PO
( · |x(t+1); t

)

In a POMDP framework, the state  is not directly
observable  for  an  agent  interacting  with  the
environment.  Instead,  the  agent  has  access  to  the
observation ,  which is  drawn from the  distribution

.  This  means  that  the  agent  must  make
decisions  based  on  incomplete  information  of  the
environment state,  adding a layer of complexity to the
decision-making process.

In  the  context  of  file  popularity,  this  framework  is
adept  at  modeling  environments  with  non-stationary
dynamics, relevant for situations with time-variant file
popularities  and  UE  caching  probabilities.  More
specifically,  it  captures  the  time-varying  nature  of
transition  probability,  observation  distribution,  and
reward  function,  accurately  modeling  the  intricate
cache policy dynamics. The uncertainty and incomplete
information  of  the  cache  policy  problem  is  modelled
based  on  an  N-POMDP  problem.  By  leveraging
learning  techniques  robust  against  N-POMDP
environment  such  as  LSTM-based  reinforcement
learning,  we  can  find  effective  solutions  for  cache
policies[29].  The  approach  facilitated  by  the  POMDP
encourages  the  development  of  joint  cache  placement
and  delivery  policies  that  maximize  system
performance,  while  also  revealing  the  underlying
structure and dynamics of the cache policy problem for
a deeper understanding of influential factors.

4.3    Optimization objective

This  paper  focuses  on  three  metrics  for  evaluating
network  performance.  The  first  metric  is  QoS,  which
measures  the  likelihood  of  a  requesting  UE  being
satisfied  by  the  OMPMC networking.  This  metric  can
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be  quantified  as  the  probability  of  successful  requests
compared to the total number of requests made by UEs.
 

cqos(t) =
N∑

n=1

pn(t)
(
1− sn(t)

)
on(t) (22)

pn(t)

From Eq. (22), if the file is not cached then the cost
is  directly proportional  to  the outage probability  when
minimized the QoS metric improves. It is important to
note  that  the  QoS metric  depends on ,  which is  a
part of the state vector.

t

t−1 ρn(t)−ρn(t−1)

n

Next, we examine the backhaul load associated with
the retrieval of files by the BSs from the core network.
When the difference between the file load at time  and
the previous time , i.e.,  is less than
or  equal  to  zero,  it  indicates  that  there  is  no  backhaul
load  since  no  files  are  being  fetched.  However,  if  the
difference  is  greater  than  zero,  it  implies  that  certain
BSs are required to cache file  due to the presence of
a backhaul load. This makes the backhaul load depends
on  the  action  vector.  The  backhaul  cost  function  is
defined as[24]
 

cbh(t) =
N∑

n=1

[ρn(t)−ρn(t−1) ]+ (23)

U

Note that this assumes that the BSs are conservative
in  filling  their  caches,  they  do  not.  This  backhaul
function  can  be  realized,  e.g.,  by  BSs  following  the
method  of  Section  2.1,  such  that  each  BS  keeps  it
random  variable  determining  the  cache  content
static, while the probability weights of the files change
from time instant to next.

n

dn(t)

Thirdly,  we investigate a power consumption metric
that  arises  from  UEs  downloading  files  according  to
their  preferences,  and  for  updating  their  caches.  We
assume  that  discarding  files  does  not  cost  energy.  As
each  UE  not  caching  file  attempts  to  download  it
with  probability ,  the  power  consumption  metric
depends both on the state and the action vector:
 

cuep(t) =
M∑

n=1

(1− sn(t) )(pn(t)+ [dn(t)]+) (24)

This  measures  the  average number  of  file  download
attempts  that  users  perform  both  to  fulfill  their
requests, and for proactive caching.

rwt(t)We then formally define a weighted reward  to
be optimized as
 

rwt(t) = −
(
cqos(t)+λbhcbh(t)+λuepcuep(t)

)
(25)

λbh λuep

t

T

where  and  are  the  Lagrange  multipliers  for
backhaul  and  UE  power  consumption  costs.
Considering the dynamics introduced by the stochastic
difference  Eq.  (7),  we  formulate  a  discounted
cumulative reward starting from time-slot  until a time
horizon ,
 

Rac(t) =
T∑

k=t

γk−tE
[
rwt(k)

]
(26)

γ ∈ [0,1)

T

Rac(t)

where E(·)  is  the  expectation operator,  is  the
discount factor, and  is the total number of time-slots
for  the  caching  policy  design.  We  maximize 
considering  the  interplay  between  the  state  and  action
reflecting  the  UE  aggregated  sum  requests  and
accordingly network cache policy.

π
(
u|q) u(t)

q(t)

The  objective  is  to  find  a  probabilistic  cache  policy
,  which  defines  the  probability  of  action 

given  the  observation .  This  policy  is  obtained  by
addressing the constrained optimization problem:
 

P1 : max
{π(·|q)}

Rac(t), 0 ⩽ t ⩽ T,

s.t., (ρ,w, d) ∈ U (27)

The utility cost function is defined in Eqs. (22)−(26),
while the underlying file request dynamics are defined
in Eqs. (2)−(7).

5    Reinforcement learning framework

π∗
( · |q(t)

)
P1

We  employ  an  RL  agent  to  obtain  the  optimal  policy
 that solves problem . To facilitate this, we

utilize  neural  networks  for  functional  approximation,
leveraging  their  universal  approximation
capabilities[30].

Among  several  RL  algorithms,  we  use  a  policy
gradient  algorithm:  A2C.  A2C  offers  several  benefits
over Deep Q-Network (DQN) in various reinforcement
learning  scenarios.  A2C  directly  optimizes  the  policy
using the actor network, enabling it  to learn stochastic
policies  that  can be advantageous in  non-deterministic
environments[31] or  where  exploration  is  crucial.  In
contrast,  DQN  optimizes  the  action-value  function.

    90 Intelligent and Converged Networks,  2024, 5(2): 81−99

 



Consequently, A2C stochastic policy can lead to more
efficient  exploration  and  faster  convergence  to  an
optimal  policy  compared  to  DQN’s  epsilon-greedy
strategy.  A2C  method,  as  on-policy  algorithm,  is
particularly  adept  at  handling  dynamic  environments,
where  file  requests  are  non-stationary.  It  optimizes
policy  based  on  ongoing  experiences,  providing  an
effective exploration-exploitation trade-off, as the actor
learns  the  best  policy  and  the  critic  evaluates  it,  often
aided  by  an  entropy  term  to  encourage  further
exploration[24].  A2C  continually  learns  from  new
experiences, a feature less prominent in algorithms like
DQN which rely on a replay buffer of past experiences.

Furthermore,  A2C  is  better  suited  for  tasks  with
continuous  action  spaces  as  it  can  handle  them
naturally, while DQN requires discretization which can
lead  to  loss  in  precision[32].  The  parallelism  and
scalability  of  A2C  make  it  an  attractive  choice  for
large-scale  problems,  as  it  can  be  easily  parallelized
using  multiple  workers.  Finally,  A2C  advantage
function  estimates  the  value  of  taking  an  action,
reducing  the  variance  of  the  policy  gradient  and
resulting in more stable learning and potentially better
convergence properties.

πθ(·) θ

The A2C algorithm consists of two neural networks.
The  actor  network,  embedded  within  the  RL  agent,
provides a policy distribution  parameterized by ,
facilitating  interaction  with  the  environment.
Additionally, the critic network approximates the state-
value function, which is defined as
 

V
(
q(t)

)
= E

 T∑
k=t

γk−trwt(k)
∣∣∣∣∣ q(t)

 (28)

ϕ

Vϕ(·)
For this, the critic network is parameterized by  and

denoted by .

5.1    LSTM cell

LSTM  networks,  a  specialized  subset  of  recurrent
neural  networks,  are  crafted  to  tackle  challenges  in
learning  long-term  dependencies  within  sequential
data. Central to the LSTM is the cell state, acting as a
parallel  memory  unit  that  facilitates  prolonged
information retention. The internal architecture features
three  pivotal  gates—input,  forget,  and  output—

regulating  the  influx,  relevance,  and  output  of
information.  This  enables  LSTM to  selectively  update
and  employ  information,  effectively  addressing  the
vanishing  gradient  problem  inherent  in  traditional
recurrent networks. Additionally, the LSTM includes a
hidden  state  for  short-term  memory  and  incorporates
feedback  connections[22, 33] spanning  various  time
steps,  allowing  it  to  adeptly  capture  dependencies
across  extended  sequences.  This  dynamic  interplay,
coupled  with  the  adaptive  updates  of  the  cell  state
through  input  and  forget  gates,  enables  LSTM  to
distinguish  and  retain  essential  information  while
discarding  extraneous  details.  We  incorporate  LSTM
architecture  to  address  the  N-POMDP environment  of
study formulated in Section 4.

5.2    Actor-critic and state processing network

[q(t−5), q(t−4), . . . , q(t)] LSTM6s

The  A2C  architecture  comprises  of  three  distinct
networks: a state processing network, an actor network,
and  a  critic  network  as  in Fig.  3.  To  address  the  non-
stationarity  of  the  environment  as  formulated  in
Section  4,  we  incorporate  an  LSTM  architecture  for
state  processing.  An  LSTM  cell  includes  feedback
connections[22, 23],  a distinctive feature absent in Feed-
Forward  Neural  Networks  (FFNN).  The  state
processing network incorporates an LSTM layer and a
fully  connected  layer.  With  LSTM,  the  network
processes  a  sequence  of  observation  vectors  ranging
from  two  to  six  time-slots,  generating  input  for  the
fully  connected  layer.  For  example,  LSTM  with  six
time-slots  processes  the  observation  vectors

 and  is  denoted  as .
The output of the fully connected layer serves as input
for both the actor and critic networks.

FF2s

[q(t−1), q(t)]

We bench mark LSTM-based state processing with a
two  time  slot  FFNN  state  processing  architecture,
denoted  by .  It  processes  observation  vectors

,  and  consists  of  two  fully  connected
layers.

The actor and critic network take input from the state
processing  network.  The  actor  network  produces  a
probabilistic  caching  policy,  while  the  critic  network
provides an estimate of the value function. Each of the
actor  and  critic  networks  consists  of  an  independent
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fully  connected  layer,  receiving  input  from  the  state
processing unit.

To guarantee normalized outputs, we draw the action
vector  at  random  from  two  independent  Dirichlet
distributions such that
 

u(t) ∼
[
Lb Dirich

(
ρ′θ(t)

)T,Dirich
(
w′θ(t)

)T, d′θ(t)
T
]T
,

ρ′θ(t) w′θ(t) d′θ(t)
θ Dirich(·)

where , , and  are the outputs of the actor
network  parameterized  by ,  and  stands  for
the  multivariate  Dirichlet  distribution.  Utilizing
Dirichlet  distributions  offers  notable  benefits,  such  as
improved  exploration-exploitation  balance  due  to
providing  random  actions  with  learnable  parameters
controlling  the  stochasticity.  This  approach  allows  the
model to capture uncertainty across multiple actions as
well  as  ensures  compliance  with  control  parameter
constraints Eq. (21).

5.3    A2C algorithm

πθ(·|q(t))

Vϕ(q(t))

The RL actor  network  generates  an  action  for  a  given
state  based  on  the  parametric  policy  distribution

.  When  the  agent  interacts  with  the
environment,  it  receives  an  immediate  reward  and
progresses  to  the  next  state.  The  critic  network
produces  an  estimate  of  the  state-value  function

 for  the  current  observation.  The  immediate
reward,  action  vector,  and  estimated  state-value

T

function  is  stored  in  a  buffer,  which  is  used  to  update
the actor and critic parameters after  time-slots.  This
entire  process  forms  a  single  episodic  trajectory,  with
multiple  trajectories  needed  for  the  training  process.
The  parameter  of  the  actor  and  critic  networks  are
changed as[34]

 

∆ϕ =αϕ

T∑
t=1

Aϕ(q(t),u(t))∇ϕVϕ(q(t)),

∆θ =αθ

T∑
t=1

[Aϕ(q(t),u(t))∇θ log(πθ(u(t)|q(t)))+

β∇θH(πθ(u(t)|q(t)))] (29)

αϕ αθwhere  and  are the learning rates of the critic and
actor agents, respectively,
 

Aϕ
(
q(t),u(t)

)
= rwt

(
q(t),u(t)

)
+γVϕ

(
q(t+1)

)−Vϕ
(
q(t)

)
(30)

H(·)
β

is an estimate of the accumulated reward Eq. (26), and
 is the entropy term used with regularization factor

 for  trading off  between exploration and exploitation
in  order  to  prevent  A2C  from  converging  to  sub-
optimal policies.

Emax

Algorithm 2 shows the pseudo code for the modified
A2C algorithm used in this paper. Note that  is the
total  number  of  updates  involved  in  the  training
process, and update is the iteration number after which
the model parameters are updated.

 

Fully connected layer

State processing network

Fully connected layer

Fully connected layer

LSTM…LSTMLSTM

ot−L ot−(L−1) ot

Actor network

ρʹθ(t), wʹθ(t), dʹθ(t)
VΦ(o(t))

Cri�c network

 
Fig. 3    LSTM-based A2C architecture.
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6    Simulation and discussion

In  order  to  assess  the  performance  of  the  proposed
DRL  cache  policy,  we  examine  a  cellular  network
consisting of BSs and UEs positioned according to two
independent PPPs.

2

28

βpl = 4

L = 128+βpl lgd d

p
σ2

0

≈ 1

λbs = 300 km2

In our experimental setup, we follow the urban Non-
Line of Sight (NLOS) conditions defined by 3GPP[35],
with  carrier  frequency  GHz  and  BS  transmission
power of  dBm. The BS antenna gain is 8 dBi, while
UE  antenna  gain  is  0  dBi.  The  noise  power  spectrum
density  is −174  dBm,  the  noise  figure  of  the  UEs  is
9  dB,  and  the  bandwidth  is  2  MHz.  We  consider  the
path-loss exponent , with the path loss given by

,  with  distance  measured  in
kilometers. Hence, the reference Signal to Noise Ratio

(SNR) at the reference distance of 1 km is . We

set the BS density to  BSs per .

τ = 0.6

ζ ∈ {0.1,0.9}

For the diffusion model in Eq. (8), we employ a Zipf
distribution  with  skewness ,  while  the
probability  for  a  user  to  patient,  used  in  Eq.  (4)  is

. The system parameters are summarized in
Table 1.

tanh

128

tanh(·)

Relu(·) Softplus(·)
αθ = αϕ = 10−3

In  the  state-processing  unit  of  the  LSTM
architecture,  LSTM  output  is  linked  to  a  fully
connected  hidden  layer  of  128  neurons  with 
activation  function.  The  actor  and  critic  networks
consist  of  one  fully  connected  hidden  layer  of 
neurons  activated  by  a  function.  The  output
activation  functions  for  the  actor  and  critic  networks
are  and ,  respectively.  The  learning
rates  are  set  to ,  and Adam optimizer  is
used.

Emax = 104

[λbh,λuep] = [0.05,0.05]

β = 0.005

For  the  hyperparameters  of  Algorithm 2,  we  set  the
total  number  of  updates  to ,  the  Lagrange
multipliers  of  the  weighted  reward  in  Eq.  (25)  to

,  and  the  entropy  regulation
term  to .  The  system  parameters  used  in  the
simulations are configured accordingly.

Figure 4 presents the training performance of FFNN
and  LSTM  architectures  when  they  process  the
observations  of  two  time-slots.  Performance  is
measured  in  terms  of  normalized  discounted
cumulative  costs  of  QoS,  backhaul  and  UE  power
consumption;
 

cqos =
1
T

T∑
t=1

γt−1cqos(t),

cbh =
1
T

T∑
t=1

γt−1cbh(t),

cuep =
1
T

T∑
t=1

γt−1cuep(t),

plotted  as  a  function  of  update  samples.  The  results
indicate  that  LSTM  outperforms  FFNN  in  all  cost

 

Table 1    Simulation parameters.

System parameter Value
LbBS capacity, 6
LuUE capacity, 3

NNumber of files, 40
EmaxTotal number of updates, 10 000
λbh,λuepCost regularization parameters, 0.05
βEntropy regularization term, 0.005

τFile skewness, 0.6
αTarget spectral efficiency, 0.1

λbsBS intensity, 300
TRL update after  slots 256

ζProbability of UE patience, 0.1, 0.9

 

Algorithm 2　Modified A2C algorithm
θ πθ

(
u(·)|q(·)) ϕ

Vϕ
(
q(·))Input: A -parametrized policy distribution , -

parametrized approximation of state-value function .
θ P1Output: optimal solution  of problem .

update = 1 Emaxfor  to  do
update　if  == 1 then

q(1)　　Initialize observation vector  to some random point.
　else

q(1) = qT　　Set  based on previous update.
　end if

t = 1 T　for  to  do
u(t) πθ

(
u(t)|q(t)

)
　　Draw action  from policy .

Vϕ
(
q(t)

)
　　Fit value function,  from the critic network.

Aϕ
(
q(t),u(t)

)
= r(t+1)+

γVϕ
(
q(t+1)

)−Vϕ
(
q(t)

)　　Evaluate the advantage function 
.

q(t+1)
r(t+1)

　　Get new observation vector , and immediate reward
.
Vϕ

(
q(t)

)
q(t) r(t+1) log(πθ

(
u(t)|q(t)

)
) H(πθ

(
u(t)|q(t)

)
)　　Buffer , , , , .

　end for
　Update parameters for actor and critic networks based on the

updating rules Eq. (29).
qT = q(T )　Set .

end for

  Ashvin Srinivasan et al.:   Adaptive cache policy optimization through deep reinforcement learning in dynamic... 93

 



metrics  from  a  sample-efficiency  standpoint.  LSTM
converges in approximately one-third of the number of
samples as compared to FFNN.

{
fn(t)

}N
n=1

The LSTM architecture is thus better at capturing the
non-stationarity  of  the  POMDP  environment  than
conventional  FFNN.  This  can  be  attributed  to  the
feedback  connections  of  the  LSTM  network,  which
play  a  crucial  role  in  learning  the  evolution  of  file
popularity  that  is  latent  in  the  observation
vector.

In  order  to  establish  a  benchmark  for  the  RL-based
cache  policy,  we  consider  a  static  cache  solution
obtained  using  an  interior-point  algorithm.  The  policy
is  independently  optimized  in  each  time-slot  based  on
the immediate reward rather than a cumulative reward.
We refer to this solution as “Static”.

ζ = 0.1

Figures 5 and 6 showcase the test performance of the
static  optimization  solution  in  comparison  to  dynamic
RL-based solutions with various Neural Network (NN)
architectures. In Fig. 5, impatient users with  are
consdered,  while  in Fig.  6,  the  users  are  patient,  with
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Fig. 4    Training performance of LSTM and FFNN with two
states for  = 0.98. (a) Normalized cumulative QoS cost. (b)
Normalized  cumulative  backhaul  cost.  (c)  Normalized
cumulative UE power consumption cost.
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ζFig. 5    Test performance for impatient users with  = 0.1 for static and RL-based solutions with different NN architectures as

a  function  of  discount  factor.  (a)  and  (d)  show  QoS  cost.  (b)  and  (e)  show  backhaul  cost.  (c)  and  (f)  show  UE  power
consumption cost.
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ζ = 0.9

γ ∈ [0.9,1)

γ = 1 cqos

cbh cuep T

. For the RL-based solutions, the agent is trained
for  different  values  of  the  discount  factor ,
after which the agent is evaluated during a test scenario
with  discount  factor .  The  cumulative  costs ,

, and  averaged over the testing time duration 
are shown.

P1

Figures  5 and 6 show  that  the  LSTM  architecture
outperforms  FFNN  in  terms  of  optimality.
Additionally,  increasing  the  observation  length  of
LSTM cells leads to a decrease in all cumulative costs.
This  implies  that  incorporating  a  longer  observation
history improves the RL agent’s performance due to an
enhanced  ability  to  uncover  latent  information.  The
static  solution  performs  better  than  the  dynamic  RL
solution  of  an  FFNN  with  one  state.  However,  when
compared  to  the  dynamic  RL  solutions  that  exploit
multiple  time  slots,  regardless  of  whether  FFNN  or
LSTM is used, the static solution performs poorly. This
outcome  validates  the  use  of  cumulative  reward
optimization as in  for dynamic cache policy design.
Also,  this  demonstrates  that  the  developed  A2C

ζ = 0.9

algorithm  can  find  a  near  optimal  solution  for  the
formulated  POMDP  problem.  Comparing Figs.  5 and
6,  we  see  that  for  patient  users  with ,  all  costs
are  higher.  This  is  understandable;  if  a  user  insists  on
getting  a  rare  file,  the  network  is  forced  to  use
resources  for  that  file,  which  reduces  the  performance
related to more popular files.

x(t)

q(t)

γ = 1

γ ∈ [0.9,1) γ = 0.98

ζ = 0.9

ζ = 0.1

In  order  to  assess  how  the  partial  observability
influences  performance,  we  consider  an  MDP
environment, where the state vector  from Eq. (18)
is  utilized  instead  of  the  observation  vector .
Figures  7 and 8 compare  the  test  performance  in
POMDP  and  MDP  environments  in  terms  of  average
cumulative  costs  with .  The  POMDP approaches
are  shown  for  training  discount  factors  in  the  range

. The MDP solutions are trained for ,
and  are  represented  by  dotted  lines. Figure  7 shows
patient  users  ( )  and Fig.  8 impatient  ones
( ).

Figures  7 and 8 show  that  the  difference  between
cumulative costs for MDP and POMDP is significantly
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ζFig. 6    Test performance when for patient users with  = 0.9 for static and RL-based solutions with different NN architectures

as a function of discount factor. (a) and (d) show QoS cost.  (b) and (e) show backhaul cost.  (c) and (f) show UE show power
consumption cost.
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smaller  for  the  LSTM architecture  as  compared to  the
FFNN  architecture,  suggesting  that  LSTM  is  more
capable  of  handling  the  complexity  and  uncertainties
associated with POMDP settings.

7    Conclusion

In  this  study,  we  present  a  dynamic  cache  placement
and  delivery  problem  optimized  by  an  RL  algorithm.
Files  are  proactively  cached  both  at  the  BSs  and  at
UEs. Our objective is to optimize the quality of service,
backhaul  load,  and  UE  power  consumption  by
leveraging  the  A2C  algorithm.  We  first  provide  a
distributed  UE  cache  placement  algorithm,  where  the
population  of  UEs  achieves  a  target  distribution  of
cached  files,  which  minimizes  the  UE  energy
consumption in  terms of  file  decoding attempts.  Next,

we  investigate  the  RL  agents  at  the  network  side  for
optimizing  the  cache  placement  and  delivery
parameters  in  an  orthogonal  multipoint  multicasting
networking scenario. Two types of architectures for the
RL  agent  are  considered:  FFNN  and  LSTM.  The
motivation behind exploring these two architectures  is
to  identify  the  most  suitable  approach  for  addressing
the  considered  problem.  Our  simulation  results  not
only provide justification for utilizing the POMDP for
problem  formulation  but  also  demonstrate  that  the
proposed LSTM-based A2C surpasses the FFNN-based
A2C  in  terms  of  sample  efficiency  and  optimality.
Moreover,  our  findings  indicate  that  the  LSTM-based
A2C can deliver significantly improved performance in
a  POMDP  environment  compared  to  its  FFNN
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ζFig. 7    Test  performance  for  patient  users  with  =  0.9  for

POMDP and MDP environments. (a) Normalized cumulative
QoS  cost.  (b)  Normalized  cumulative  backhaul  cost.  (c)
Normalized cumulative UE power consumption cost.
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ζFig. 8    Test  performance  when  =  0.1  for  POMDP  and

MDP environments. (a) Normalized cumulative QoS cost. (b)
Normalized  cumulative  backhaul  cost.  (c)  Normalized
cumulative UE power consumption cost.
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counterpart.  This  highlights  the  potential  of  using
LSTM-based  methods  in  reinforcement  learning
scenarios  where  the  problem  formulation  requires
consideration of the POMDP framework.
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