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ABSTRACT Texture perception plays a vital role in various fields, from computer vision to geology,
influencing object recognition, image segmentation, and rock classification. Despite advances in
convolutional neural networks (CNNGs), their effectiveness in texture-based classification tasks, particularly
in rock classification, still needs exploration. This paper addresses this gap by evaluating different
CNN architectures using diverse publicly available texture datasets and custom datasets tailored for rock
classification. We investigated the performance of 38 distinct models pre-trained on the ImageNet dataset,
employing both transfer learning and fine-tuning techniques. The study highlights the efficacy of transfer
learning in texture classification tasks and offers valuable perspectives on the performance of different
networks on different datasets. We observe that while CNNs trained on datasets like ImageNet prioritize
texture-based features, they face challenges in nuanced texture-to-texture classification tasks. Our findings
underscore the need for further research to enhance CNNs’ capabilities in texture analysis, particularly in the
context of rock classification. Through this exploration, we contribute insights into the suitability of CNN
architectures for rock texture classification, fostering advancements in both computer vision and geology.

INDEX TERMS Image texture, convolutional neural network, transfer learning, rocks, image classification.

I. INTRODUCTION

For us humans, texture is an important visual cue that is
exploited efficiently and almost effortlessly in our day-to-
day lives, providing crucial details for organizing cohesive
sections and identifying material characteristics. The percep-
tion and understanding of visual texture are also essential in
many fields of expertise, albeit with varying terms being used,
e.g., surface roughness in the Earth sciences [1] and spatial
heterogeneity in medical imaging [2]. In geology, visual
texture plays a crucial role in rock classification, helping
geologists differentiate between rock types based on their
unique surface patterns and features [3], [4]. In computer
vision, texture has been exploited to aid object recognition
and image segmentation [5], [6]. However, contrary to human
vision, the classification of real natural textures is still

The associate editor coordinating the review of this manuscript and
approving it for publication was Wei He.

considered a difficult problem. Natural texture is a complex
class of texture, especially when compared to man-made
objects.

Rock texture is a type of natural texture. Classifying
rocks based on their texture can be crucial to deciphering
the history of the Earth, geological processes, and envi-
ronmental conditions. It provides valuable information on
past environments and events, helps reconstruct geological
events, assesses environmental conditions, and informs
decision-making in engineering and resource exploration.
Traditionally, geologists would perform physical and visual
observation and laboratory testing to determine the type or
category of rocks. Physical and visual characteristics being
analyzed are, e.g., texture, structure, mineral composition,
color, hardness, and density [7], [8], [9], [10]. Such analysis
processes can be expensive and time-consuming.

Advances in computer vision have led to the development
of algorithms that automate rock classification based on

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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visual features extracted from images. Rock classification
using deep learning has garnered considerable attention
among researchers [11]. However, despite the availability of
various CNN architectures [12], [13], [14], their effectiveness
in classifying rock textures still needs to be fully explored.
Many studies tend to focus on a limited range of CNN models
for accuracy assessment, often overlooking the compatibility
of datasets being used with the human visual perception of
texture. As such, not only do results vary, but integrating
computer vision into the practical day-to-day work in the field
will also become challenging.

In this study, we aim to bridge this gap by systematically
examining texture datasets and their potential applications
across different CNN architectures, focusing on the specific
case of rock classification. Taking inspiration from human
perception, we used well-known texture datasets, from more
generic to specific datasets tailored for rock classification.
We used transfer learning and fine-tuning techniques on
CNN models pre-trained with ImageNet to perform rock
classification. By evaluating the performance of different
models in texture analysis, we seek to summarize the
effectiveness of these models and understand their suitability
for texture analysis in the context of rock classification.
A worthy mention is a previous study suggesting that
CNNs trained on the ImageNet dataset often exhibit a
bias towards texture-based features in image classification
tasks [15]. However, we found that although these networks
may prioritize texture over other image attributes, e.g., shape,
they struggle when faced with more nuanced texture-to-
texture classification tasks, highlighting the need for further
investigation into their underlying mechanisms. We also used
Grad-CAM [16] to observe the features that the network pays
attention to when making classification decisions.

Il. RELATED WORKS

Texture analysis within the realm of computer vision applica-
tions can be categorized into four primary domains [17], i.e.,
texture synthesis [18], classification [19], segmentation [20],
and shape from texture [21]. This section comprehensively
reviews texture analysis techniques applied to rock classifi-
cation, highlighting the evolution from traditional methods
to advanced machine learning and deep learning approaches.

A. TEXTURE ANALYSIS FOR ROCK CLASSIFICATION

Visual analysis is one of the primary methods geolo-
gists use to assess rock characteristics. Tamura et al. [22]
introduced six human visual perceptual texture features
derived from psychological experiments, i.e., coarseness,
contrast, directionality, line-likeness, regularity, and rough-
ness. Harinie et al. [23] applied these features to classify
three types of rock, i.e., igneous, sedimentary, and meta-
morphic, and compared their performance with commonly
used methods such as the color co-occurrence matrices, gray-
level co-occurrence matrices (GLCM) [24], and moments.
The results showed that the methods based on the Tamura
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features achieved superior classification accuracy of >87%.
It underscores the effectiveness of leveraging psychological
insights into texture perception to improve rock classi-
fication; however, this study did not undertake subclass
classification of the rocks. Lobos et al. [25] proposed a
multi-scale transform method-based classification approach
for analyzing and classifying natural rock textures. Multi-
scale transform domain representations capture information
at different levels of scale and orientation, allowing for a
more comprehensive analysis of the rock textures. Their
study incorporates both stationary patterns and structural
information, leading to improved performance compared to
conventional techniques.

In a study by Lepisto et al. [26], Gabor filtering-based
feature extraction was combined with a k-nearest neighbor
classifier for the classification of natural rock texture images.
Here, textural features were combined with color information
by applying Gaussian bandpass filtering to different color
channels of the images, resulting in significantly improved
classification accuracy. A similar observation was made by
Bianconi et al. [27], where they compared the performance
of different visual features and five classifiers over a set of
12 granite classes. Their findings suggest that classification
based on both color and texture is highly effective and
outperforms previous methods based solely on textural
features.

Gongalves and Leta [28] used Hierarchical Neuro-Fuzzy
Class for the macroscopic classification of rock texture of
four rock classes, i.e., gneiss, basalt, diabase, and rhyolite.
Each of those classes has 2-5 subclasses, and a classification
accuracy of 73% was achieved. The study used various
texture descriptors, e.g., spatial variation coefficient [29],
Hurst coefficient [30], entropy [31], and co-occurrence
matrix [32]. As there is no fixed structure or a constant num-
ber of adjustable parameters for the neuro-fuzzy class, the
learning algorithm requires more complex programming—
presenting challenges and limitations for its usage. With the
increasing complexity of rock data and texture analysis, many
researchers are turning to convolutional neural networks
(CNNSs) as a solution, due to their superior performance
in various applications, particularly image classification
tasks.

B. CNN-BASED TEXTURE ANALYSIS FOR ROCK
CLASSIFICATION

Deep learning (DL) based methods have existed for some
time, but they did not receive much attention until 2012.
Since then, these methods have been increasingly applied to
a variety of problems related to computer vision, including
texture analysis. FIGURE 1 illustrates the trends in the
number of publications showing applications of deep learning
over the last 20 years within the domains of image, texture,
and rock classifications. Despite a significantly lower number
of publications for rock classification using DL, the figure
demonstrates a growing trend.
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FIGURE 1. Evolution of Deep Learning (DL) Applications over last 20 years (2004-2024), categorized by the trend in a specific application, i.e. for image

classification, texture classification, and rock classification.

Zhang et al. [33] used a CNN based on the Inception-v3
architecture to classify rocks into three distinct classes. Using
a transfer learning approach to train a pre-trained network,
an accuracy of 90% was achieved. However, it was a limited
assessment since the testing only involved three images from
each set, and the accuracy varied with the increasing number
of test images. Houshmand et al. [34] employed supervised
machine learning (ML) algorithms to classify five rock types
based on various measured (non-image based) parameters,
e.g., compression wave velocities (P wave) and shear
wave (S wave), Leeb hardness, and geochemical properties.
In addition, image dataset of approximately 10,000 sliced
images was also used with a CNN based on the ResNet-
50 architecture the classification. Although the CNN-based
classification accuracy outperformed the non-image based
traditional ML, it varied between 89% and 94% for different
classes due to the dataset imbalance. Notably, two classes of
rocks with identical textural features were often misclassified
with each other. A hybrid method combining CNN image
analysis with non-image features was employed to address
this, resulting in 99% classification accuracy.

Ran et al. [10] proposed a custom CNN architecture
(RTCNNSs) with fewer layers than pre-trained CNN architec-
tures, consisting of two convolutional layers followed by a
pooling layer and fully connected layers. They used a custom
dataset comprising 24,315 images cropped from 2,290 high-
resolution field rock photographs to classify six classes,
i.e., mylonite, granite, conglomerate, sandstone, shale, and
limestone. Using transfer learning on the same datasets, they
also compared RTCNNs with pre-trained models VGG-16,
AlexNet, and GoogLeNet Inception-V3. RTCNNs achieved
a classification accuracy of 97.96%, outperforming VGG-16

VOLUME 12, 2024

(94.2%), AlexNet (92.78%), and GoogleNet Inception-
V3 (97.1%). The accuracy of sandstone and limestone
classification was comparatively lower than that of the other
rock classes, likely due to their similar visual features and
possibly the uncontrolled environmental conditions inherent
in field images. Li et al. [35] used transfer learning with pre-
trained VGG-16, ResNet-50, and Inception-V3 architectures
to classify 620 RGB rock images sourced and augmented
from NASA’s Mars Science Laboratory (MSL) datasets [36]
into four distinct groups. Group 1 included dark-toned
aphanitic effusive rocks, e.g., basalt, picro-basalt, trachy-
basalt, and tephrite. Group 2 is of fine-grained intrusive rocks
characterized by rounded edges and flat or curved facets.
Group 3 is comprised of layered sedimentary rocks, while
Group 4 includes conglomerates. The highest accuracy of
100% was achieved using the VGG-16, while Inception-v3
and ResNet-50 achieved 92.19% and 98.54%, respectively.
Achieving the highest accuracy could be attributed to the
notable visual distinctions among these four rock classes
arising from variations in color, texture, and grain size.
Zheng et al. [37] Initially used three CNN architec-
tures, i.e., EfficientNet-B2, MobileNet-V3, and ResNet-50,
to classify six types of sedimentary rocks (quartz arenite,
feldspathic arenite, lithic arenite, siltstone, oolitic packstone,
and dolomite) and achieved an accuracy of 94%, 97%, and
97.7%, respectively. Despite this high accuracy, when the
results were visualized using GradCAM, it was found that the
model was basing its classification on features irrelevant for
distinguishing sedimentary rocks, e.g., cracks, cements, and
scale bars. An attention-based dual neural network was later
used, which considered appropriate features, and achieved an
accuracy of 99%. The study underscores the importance of
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TABLE 1. Summary of deep learning architectures used for rock classification.

DL Architectures Datasets Accuracy Remarks
1 ResNet-50 [34] 10,000 sliced images Varied (89% to 5 classes
94%)
2 Vggl6, ResNet-50, 620 Martin Rocks from MSL Notebook [36] 100%, 91.2%, 4 classes, data augmentation, transfer learn-
Inception-V3 98.5% ing
3 EfficientNet-B2, Sedimentary rock types, custom datasets 94%, 97%, 97.7%, 6 classes, data augmentation, GradCAM
MobileNet-V3, 99%
ResNet-50, and
SEDNet [37]
4 RTCNNSs, AlexNet, Custom datasets with 2,290 field rock 97.96%, 92.78%, 6 classes, Flipping of images
VGG-16, GoogLeNet photographs 94.2%, 97.1%
Inception-V3 [10]
5 Inception-V3 [33] Custom datasets (571 images) compiled 90% 3 classes
from diverse sources, including photographs,
rock databases, and internet searches
6 Custom-designed CNN Custom datasets with 4800 images 98.5% 3 classes (3 level of granularity in sandstone)
architecture [38]
7 ResNet-50 [39] Custom datasets (1000+ images) compiled 84% 10 classes (3 levels of granularity in sand-
from diverse open sources, including stone)
university archives and special collections
8 Inception-ResNet-V2 [40]  Custom dataset: 42,000 images randomly Avg. 95.96% 5 classes (rock structures i.e. mosaic, granu-
cropped from 3,000 raw images of various lar, layered, block and fragmentation)
tunnel faces
9 Inception-v3, Custom datasets with 7000-104000 images Avg. from 86 to 7 classes of carbonate core images
DenseNet-121, 92%
DenseNet-169,
DenseNet-201,
ResNet-50, ResNet-101,
ResNet-152, VGG-16 and
VGG-19 [41]
10 MobileNet-V2 and Custom dataset: 1521 smartphone-acquired 98% and 97% 6 classes (e.g. Basalt, Garnet Schist and
Inception-v3 [42] images Granite)
11 ResNet-34 [43] Custom dataset: 315 rock images (4,096 x 99.1% 7 classes (black coal, gray black mudstone,

3,000 pixels), 382536 images (after
augmentation)

gray argillaceous siltstone, gray fine sand-
stone, light gray fine sandstone, dark gray
silty mudstone and dark gray mudstone)

incorporating feature visualization techniques such as Grad-
CAM when using DL models. Such enables the assessment
of whether a model is effectively capturing relevant features
(aligning its focus with geological expertise), thus providing
insights to enhance model performance.

Even with transfer learning, the dataset size can signif-
icantly impact the classification accuracy of CNN models.
Larger datasets typically enable models to learn more
diverse features, leading to better generalization and higher
accuracy. For example, Chen et al. [43] had a limited number
of 315 training images, resulting in lower classification
accuracy. They then employed data augmentation, resulting
in higher accuracy. Likewise, Dawson et al. [41] evaluated
nine CNN architectures that were pre-trained on ImageNet
weights and then fine-tuned using transfer learning on
datasets of varying sizes (104,000, 42,000, and 7,000
images), emphasizing the impact of dataset size on model
performance.

The study focused on textural information and defined
seven classes: mudstone, wackestone, packstone, grain-
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stone, floatstone, rudstone, and boundstone. Among the
architectures tested (Inception-v3, DenseNet-121, DenseNet-
169, DenseNet-201, ResNet-50, ResNet-101, ResNet-152,
VGG-16, and VGG-19), Inception-v3 achieved the highest
classification accuracy at 92%, while VGG-16 exhibited the
lowest at 86%. The evaluation of the models on varying
dataset sizes generally showed improved accuracy with larger
datasets. Rudstone and floatstone were often misclassified
with each other, likely due to their similar visual features.
Both rudstone and floatstone are part of the Dunham
classification system for carbonate rocks [44], commonly
used to describe limestones with a coarse texture and
large grain size. TABLE 1 summarizes various architectures
utilized for rock classification, including information on the
dataset, results obtained, number of classes, and types of
rocks.

As discussed so far, various pre-trained CNN models
have been used effectively for rock classification with good
accuracy. However, none of these papers underscores the
importance of their choice of a particular CNN model for this
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task. This could be because deep learning models are often
seen as black boxes, and usually, the focus is on achieving
high performance for the task at hand with available resources
and computational time. Appendix B summarizes the key
attributes of these models, providing a general understanding
of their complexity, potential advantages, and limitations.

C. TEXTURE DATASETS

The availability of well-labeled texture datasets with a
sufficient number of images covering a diverse range of
texture classes remains limited. This scarcity is particularly
pronounced in the domain of rock texture datasets, where
expert classification of texture properties by geologists is
essential. Existing datasets often lack the depth and breadth
required for a comprehensive analysis, hindering research
efforts to understand geological textures and to sufficiently
train deep learning models. There is a clear need for more
comprehensive and specialized datasets in this domain. The
following are some available texture datasets, including those
existing for rock textures.

The GMSRI dataset [45] consists of approximately 30,000
images of Martian rocks, each sized at 560 x 500 pixels.
The dataset is divided into five texture-based categories, i.e.,
igneous rocks, sedimentary rocks, cracked rocks, gravels, and
sands; and is further subdivided into 28 distinct categories
based on texture and shape. It also includes both real
Martian images from the Mars32k datasets [46] and synthetic
counterparts generated using generative adversarial networks
(GAN). The Kylberg Texture Dataset version 1.0 [47]
consists of 28 distinct texture categories, each containing
160 individual texture samples, totaling 4480 images. These
images are standardized to a dimension of 576 x 576 pixels
and are represented in 8-bit grayscale PNG format. The
textures encompass a variety of surfaces, including fabrics
and stone, captured within their local environments.

The texture dataset from the University of Illinois Urbana-
Champaign (UIUC) [48] was comprised of 1000 uncalibrated
images featuring 25 distinct textures, each with 40 samples.
These images depict surfaces exhibiting texture variations
primarily attributable to albedo differences (e.g., wood and
marble), three-dimensional shapes (e.g., gravel and fur),
and a blend of both characteristics (e.g., carpet and brick).
While the original dataset link is no longer operational,
an alternative dataset was introduced, i.e., Meta-Album
Textures dataset [49]. This dataset serves as a preprocessed
iteration of the original, consisting of four different datasets:
KTH-TIPS [50], Kylberg, and UIUC. It includes a total of
8675 images, categorizing them into 64 classes, with each
image standardized to a dimension of 128 x 128 pixels.

The publicly accessible dataset known as CoMMonS
(Challenging Microscopic Material Surface Dataset) [51]
consists of 6912 microscopic images capturing 24 fabric
samples with fine details, each at a resolution of 2560 x
1920 pixels. This dataset mainly focuses on three key
properties of fibers: length, smoothness, and toweling
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(c) STex

(d) Rock12

FIGURE 2. Example of images from the four texture datasets used in this
study.

effect, facilitating fine-grained texture classification. Fekri-
Ershad [52] introduced the Stone Texture Image (STI)
dataset, designed for texture image analysis and surface
defect detection. This dataset encompasses four distinct
classes of stone texture images: hatchet, marble, orange
travertine, and creamy travertine. In total, 60 images capture
both defective and defect-free samples across these cate-
gories. For texture analysis, the dataset includes 20 images,
all in JPEG format with a resolution of 72 dpi, with each class
containing five samples.

Brodatz [53] is another texture dataset widely used in
computer vision and image processing. It contains a total
of 111 texture samples, each measuring 200 x 200 pixels.
These samples cover a diverse range of natural and synthetic
textures, including wood grains, stone surfaces, fabrics, and
various other materials. Similarly, the USPtex dataset [54] is
noteworthy, featuring 191 category of natural color textures.
Each category consists of 12 images, resulting in a total
of 2292 images, all standardized to dimensions of 128 x
128 pixels. The MIT Vistex dataset [55] offers a valuable
alternative to the Brodatz dataset, which is not freely
available for research use. It includes examples of many non-
traditional textures, containing 640 texture images organized
into 40 classes, with 16 images per class, each sized at
128 x 128 pixels. The Outex TC-00013 dataset [56] is a
heterogeneous collection comprised of material texture such
as paper, fabric, wool, stone, and more, with 68 texture
classes. Each class contains 20 image samples, each of
128 x 128 pixels in size. Salzburg Texture Image Database
(STex) was created for texture retrieval experiments. It is
significantly larger than VisTex, and more homogeneous than
Outex.
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TABLE 2. Summary of the image datasets used in this study.

Dataset Dimension n classes n images/ class
Rock360 800 x 500 — 800 x 860 30 12

DTD 300 x 300 — 600 x 600 47 120
STex 1024 x 1024 18 10— 77
Rock12 4032 x 3024 12 4—16

Describable Textures Dataset (DTD) [57] is a collection
of textural images annotated with human-centric attributes
inspired by texture perception. The categories in DTD are
not made based on the objects an image contains, as in
a typical texture dataset, but based on textural adjectives
assigned by human observers, e.g., stratified and dotted.
There exists a rock dataset (Rock360) [58], [59] that was
carefully examined by geologists to ensure that sufficient
identifying features are reflected in the images. This dataset
was further used in a psychovisual experiment for rock
classification, resulting in human-centric dimensions [58].

IIl. MATERIALS AND METHODS

A. DATASETS

Four distinct sets of texture datasets are used to evaluate
the performance of different CNN models, i.e., Rock360,
DTD, STex, and Rock12. Several example images from each
dataset are presented in FIGURE 2. These datasets were
selected based on expert suggestion and their alignment with
human texture perception, as well as their comprehensive
representation of texture variations. The Rock360 dataset
consists of 10 common rock types from the igneous,
metamorphic, and sedimentary categories, totaling 30 rock
types. Each rock type consists of 12 images, resulting in a
dataset containing a total of 360 images. The second dataset,
Describable Texture Dataset (DTD), it contains 5640 images
grouped into 47 categories, with 120 images per category,
featuring variable dimensions ranging between 300 x 300 and
640 x 640 pixels.

In addition, we used the STex dataset [60] to cover more
general texture images. It is preferred over other general
texture databases for its size and homogeneity. STex consists
of 476 color texture images grouped into 32 classes. STex
is available in three different packages, with the second and
third packages comprising downsampled and split versions
of the original 476 color images, each with a resolution of
1024 x 1024 pixels. Finally, the Rock12 dataset, provided by
both University of Victoria, Canada and by Aalto University,
Finland, features images of rock samples available at the
se institutions. It shares similarities in rock types with the
Rock360 dataset. TABLE 2 provides a summary of the main
characteristics of each dataset.

B. DATA PREPROCESSING

As specified in TABLE 2, the characteristics of each dataset
vary. Rockl12, Stex, and Rock360 feature high-resolution
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TABLE 3. Image Augmentation using ImageDataGenerator.

Parameters  Values Description
Shear 0.2 shear transformation (skewed)
Zoom 0.2 zoom-in or zoom-out of 20% on an image

Horizontal flip  True
Vertical flip True

may be flipped horizontally
may be flipped vertically

Rotation 20  randomly rotated by up to 20 degrees

Width shift 0.1  vertical translation of up to 10% of image height

Height shift 0.1  horizontal translation of up to 10% of image
width

Fill mode Reflect fill with mirrored or reflected neighboring pixels

TABLE 4. Summary of preprocessed datasets.

Dataset Dimension n classes n images/ n sliced im-
class ages/ class
Rock360 300 x 300 30 12 30 — 60
DTD 300 x 300 — 47 120 120
600 x 600
STex 300 x 300 18 10 — 77 200 — 1100
Rock12 300 x 300 12 4—-16 250 — 950

images. To prepare these images for analysis, they were
sliced into non-overlapping zones. Furthermore, images
with more than 50% white pixels (indicative of a white
background) were excluded to prevent the model from
learning background features, edges, or shapes. Additionally,
since Stex dataset has 32 classes, each with a different
number of images, classes with less than 10 image samples
were eliminated. These images were also converted to PNG
format for compatibility, from their original.pnm format.
DTD images did not require modifications, since most of
them were already smaller in dimensions. Finally, all datasets
were split into training, validation, and testing subsets in a
ratio of 60%, 30%, and 10%, respectively.

Deep learning networks require a substantial amount
of data for effective feature learning during the training
process. Acquiring such a large volume of data can be
challenging for many application domains, including texture
analysis. One way to deal with this is by using data
augmentation techniques, a method used to increase the size
of a training dataset by applying various transformations to
existing data samples [61]. Several research studies [62],
[63] have shown that data augmentation is effective for
image classification tasks. The most used data augmentation
approach in rock texture classification is flipping, rotating,
scaling, etc. [10], [37], [64]. Cui et al. [65] used the CutMix
data augmentation method in their study to classify fine-
grained rocks. It involves randomly clearing some pixel
values and replacing them with pixels from another image,
this improves the localization ability of the model by directing
its focus towards less discriminative parts of the classified
object [66].

In this study, we used the Keras ImageDataGenerator tool
for its automated loading and pre-processing for training
purposes. A summary of the data augmentation settings
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FIGURE 3. Visualization of VGG16 architecture, illustrating frozen and
trainable layers during transfer learning and fine-tuning. Image adapted
from Ref. [69].

used in this study is provided in TABLE 3. The resulting
pre-processed datasets are also summarized in TABLE 4.

C. PRE-TRAINED CNN MODELS

While CNNs are widely used in many applications for
their ability to automatically learn hierarchical features
from the data, they require a large number of annotated
images. This presents a significant challenge in scenarios
where obtaining a substantial volume of labeled images is
impractical or expensive. One solution to this challenge is
transfer learning [67], where knowledge gained from training
a model on one task/ domain is applied to another related
task/ domain. It is computationally effective as it necessitates
a smaller training dataset and significantly reduces training
time compared to training deep learning models from scratch.

Many pre-trained CNN models have been developed for
various applications, each with its unique architecture and
characteristics, e.g., those available through Keras. Other
well-known examples pre-trained on large-scale datasets,
e.g., ImageNet, are also available, e.g., AlexNet, VGGNet,
and DenseNet [68]. These models have been developed with
increasing depth over time, leading to more sophisticated and
powerful networks for, e.g., image classification and object
detection. We refer readers to referenced papers for more
details on these pre-trained networks.

In the first part of this study, we started by setting
up all our models using pre-existing ImageNet weights.
We selected 38 pre-trained CNN models, each of which had
already learned to extract useful features from images through
extensive training on the ImageNet dataset. The models were
then evaluated on the four datasets described previously.
To illustrate our application of transfer learning, let us
consider the VGG16 model. VGG16 is a CNN architecture
trained on the ImageNet dataset, consisting of 1.2 million
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FIGURE 4. Workflow of the overall transfer learning methodology, with
frozen layers drawn inside the red box. Only the layer highlighted inside
the green box was used for training. Phase | demonstrates the transfer
learning method, while Phase Il illustrates transfer learning with
fine-tuning.

images classified into 1000 categories (architecture shown in
FIGURE 3). In its original form, the fully connected layer
of VGG16 produces 1000 distinct output labels, whereas
our specific dataset (e.g., Rock12) contains only 12 classes.
To adapt VGG16 for our task, we first removed its fully
connected layer (also referred to as the top layer), thus
retaining only the convolutional and pooling layers. This
ensured that the model’s rich feature extraction capabilities,
developed during the initial training on ImageNet, were
preserved.

Next, we appended a new fully connected layer and an
output layer customized to our dataset, ensuring the total
number of outputs matched the 12 classes in our dataset.
We froze all layers preceding the newly added fully connected
layers to maintain the integrity of the pre-learned features
during this process. We applied the same methodology to
all 38 models used in this study. By doing so, we ensured
that during the training phase, the weights of the newly
added layers were updated through backpropagation while
the weights of the pre-existing layers remained unchanged.
This approach allowed us to leverage the sophisticated feature
extraction abilities of the pre-trained CNN models while
tailoring the final classification layer to our specific needs.

In the second phase of our experiment, we performed fine-
tuning on the model that achieved optimal results. It is a
specific technique within transfer learning which, in addition
to adding new layers, partially unfreezes and further trains
some of the pre-trained layers. This approach allows for
greater customization of the pre-trained model to a specific
dataset, often leading to improved performance compared
to feature extraction alone. Thus, instead of keeping all
pre-trained layers frozen and only changing the output layer
(like phase one), we empirically selected to unfreeze the last
four convolutional layers of the VGG16 model, in addition
to the output layer. This selective unfreezing was based
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FIGURE 6. Learning curves showing the training and validation loss and
accuracy across epochs for MobileNet architecture trained on the
Rock360 dataset. MobileNet performed comparatively better than other

architectures in FIGURE 5.

on the hypothesis that by updating the weights of these
deeper convolutional layers and the fully connected output
layers during training, the model could learn more relevant
features, potentially leading to improved performance and
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generalization on our task. The overall methodology is also
illustrated in FIGURE 4.

D. CNN INTERPRETABILITY USING GRAD-CAM
Grad-CAM, short for Gradient-weighted Class Activation
Mapping [16], [70], is a technique used to visualize where
in an image a DL network focuses to make its decision.
To compute Grad-CAM, a prediction by, e.g., CNN, was
initially generated by feeding an image into the network.
Since CNN consists of multiple layers, each conducts
computations during the forward pass, we will calculate the
importance map « for a class C, at each spatial location (i, j)
in feature map A:

wein=3 3 (%5) .
i ij

where P(C) and 0 represent the prediction probability of
class C and prediction gradient, respectively. Note that A is
the output of the final convolutional layer, as illustrated in
FIGURE 4. The importance scores @(C, i, j) are then used to

ey
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FIGURE 8. Training and validation accuracy across epochs for InceptionV3
architecture, trained on Rock360 and DTD datasets. InceptionV3
converged faster for DTD than Rock360 as revealed by differences in
epoch count.

generate the Grad-CAM heatmap, calculated as follows:
Grad-CAM(C)(i, j) = ReLU(a(C, i, j) - Ay), )

in which ReLU is the Rectified Linear Unit function (which
sets negative values to zero), and A;; is the feature map value
at position i, j. Finally, we overlay the Grad-CAM heatmap
on the original image to visualize which parts of the image
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the network paid attention to when making its decision for
class C. Grad-CAM heatmap is then superimposed onto the
original image, to visualize which image regions were given
significant attention during its classification for class C.

IV. RESULTS AND DISCUSSION

In this section, we present the results derived from our transfer
learning experiments on 38 pre-trained models across four
datasets, i.e., Rock360, DTD, STex, and Rock12.

A. PHASE I: TRANSFER LEARNING

The results in FIGURE 5 highlight how well different models
performed on the Rock360 dataset, with MobileNet showing
comparatively better performance. As depicted, none of
the pre-trained models performed satisfactorily. In fact, for
certain architectures, accuracy was notably lower. Several
factors could account for this, e.g., data characteristics.
The efficacy of transfer learning on pre-trained models
is another factor which may be affected by, e.g., model
complexity (depth, width, or layer types). Furthermore, even
in cases where accuracy appears higher, there is a substantial
gap between training and validation accuracy across nearly
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all models. For example, consider the learning curve of
MobileNet shown in FIGURE 6. With an increase in the
number of epochs, the difference between training and
validation accuracy widens. This trend strongly suggests that
the given model lacks generalizability or that the model was
overfitted.

The performance of the same 38 pre-trained models on
the DTD dataset is summarized in FIGURE 7. Similar
to the observations made for Rock360, several models
consistently showed poor accuracy on DTD dataset, e.g.,
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EfficientNet. However, despite the overall lower accuracy
compared to when Rock360 dataset was used, we observed
an improvement in the generalizability of these models. This
highlights the unique challenges posed by DTD for transfer
learning. For example, InceptionV3 exhibited relatively
better performance compared to other models, demonstrating
its potential for transfer learning specifically on this dataset.
This was evidenced by an increase in accuracy immediately
at the start of the epoch compared to when the Rock360
dataset was used, see FIGURE 8. Then, there is a reduced
gap between the training and validation accuracy in the DTD
dataset, see the shaded area in the figure. Moreover, the
validation accuracy is relatively more stable and achieved
by a fewer number of epochs. The higher number of classes
and larger number of images per class in DTD may have
contributed to this improvement, possibly enhancing the
regularization capabilities of the models.

FIGURE 10 shows the performance of 38 pre-trained
models on STex dataset. In general, most of the models
exhibited better accuracy compared to the previous two
datasets, i.e., Rock360 and DTD. However, similar to the
observations made for previously, certain models consistently
displayed poor accuracy on STex dataset, e.g., EfficientNet.
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FIGURE 13. Validation accuracy of various CNN models across different
datasets, with DenseNet and Xception showing the relatively highest
accuracy on all four datasets.

An outstanding performance is shown by the Xception model,
with 92.88% and 94.88% accuracy in the validation and
training sets, respectively. Compared to its performance on
Rock360 and DTD, Xception demonstrates closely aligned
validation and training loss curves in FIGURE 9, indicating
its improved generalizability and reduced overfitting tenden-
cies when using STex dataset. Additionally, the gap between
the training and validation accuracy is also significantly
reduced.

Finally, the performance of the same set of pre-trained
models was also assessed on the Rock12 dataset. As shown in
FIGURE 11, DenseNet201 emerged as a standout performer
with 87.84% and 85.27% accuracy in training and validation,
respectively. Similar to the results for STex in FIGURE 10,
the gaps between training and validation accuracy are low
for most models. However, the overall accuracy for training
and validation across all models was also lower. FIGURE 12
illustrates the learning curve for DenseNet201 for Rock12,
showing a trend similar to the STex dataset with lower overall
accuracy. Notably, in this case, the validation accuracy curve
fluctuates slightly more, which could be attributed to the
lower number of images in the dataset.

Given that CNN models are often considered black boxes
and providing exact reasons for their performance can be
challenging, we have offered a probable explanation based on
factors such as model depths, architectures, complexities, and
dataset properties. FIGURE 13 shows the overall comparison
based on the validation accuracy of various base models
evaluated in this study across four datasets. We averaged the
validation accuracy for each family across different variants
(e.g., EfficientNet-BO to B7, ResNet-50 to ResNet-152) to
obtain a generalized performance measure for each architec-
ture. As shown in FIGURE 13, the performance across four
datasets reveals distinct trends in how different models handle
rock image data. Models like ResNet, DenseNet, Inception,
and Xception have more versatile and robust architectures for
capturing complex and varied features.

These models include elements such as residual connec-
tions (ResNet), dense connectivity (DenseNet), multi-scale
feature extraction (Inception), and depthwise separable con-
volutions (Xception) that help in learning intricate patterns
and details present in specialized datasets like rock and
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texture images. The ability to capture and process features at
multiple scales (Inception), ensure gradient flow and feature
reuse (DenseNet), and leverage deep residual connections
(ResNet) allows these models to better adapt to and learn from
specialized datasets. Similarly, Xception’s use of depthwise
separable convolutions also enhances its ability to separate
spatial and cross-channel features, which is crucial for texture
analysis.

The poor performance of EfficientNet models can be
attributed to several factors, including the model’s architec-
ture and the specific characteristics of the datasets used in this
study. EfficientNet models are often pretrained on large-scale
datasets like ImageNet, which consists primarily of object-
centric images. Consequently, the learned features from
such datasets are more geared towards object recognition
rather than texture analysis, which often requires capturing
fine details and subtle pattern variations. Although transfer
learning was applied by modifying the output layers to fit
the new datasets, the inherent feature extraction and repre-
sentation capabilities of EfficientNet may be less effective
for these custom datasets. Furthermore, EfficientNet employs
compound scaling to balance depth, width, and resolution,
and this scaling might be less effective for textures that
require very high resolution and detailed feature extraction.
Texture recognition tasks often benefit from high-resolution
input images and detailed feature maps, which EfficientNet’s
scaling strategy might not fully utilize. Additionally, the
training and optimization of EfficientNet are geared towards
achieving a balance between accuracy and computational
efficiency. This focus might compromise learning highly
detailed features specific to texture datasets.

B. PHASE II: TRANSFER LEARNING WITH FINE-TUNING
To further improve the performance of the pre-trained
models, we conducted fine-tuning by training the weights
of the last convolutional layer with the Rockl2 dataset.
Although a higher validation accuracy of 85% was previously
achieved with DenseNet201, we chose to fine-tune VGG16
instead, see FIGURE 3. With only a slightly lower accuracy
of 81.23% compared to DenseNet201, VGG16 has simpler
architecture and lower computational demands. We consider
this a worthy trade-off. After fine-tuning the model, a sig-
nificant improvement in performance was observed with
accuracy of 91%. As illustrated in FIGURE 14, the training
and validation accuracy is closely aligned across epochs,
indicating a robust performance. This alignment suggests
effective generalization, demonstrating consistent accuracy
on both seen and unseen data. Although there is some
fluctuation in the validation curve, it is likely attributed to
the use of a dataset containing a relatively small number of
images.

C. FIRST RESULTS FROM GRAD-CAM VISUALISATION

To delve deeper into the model’s performance at the class
level, gain insights into the accuracy of individual classes,
and identify instances of misclassification among classes to
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FIGURE 14. Learning curve illustrating the training and validation loss
and accuracy progression across the number of epochs for VGG16
architecture with fine-tuning on the Rock12 dataset.
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FIGURE 15. Confusion matrix illustrating the classification results of
12 different rock types using the VGG16 architecture with transfer
learning and fine-tuning; the matrix’s main diagonal represents the
percentage of correctly classified images, while the other elements
indicate the percentage of images in one category that are incorrectly
classified into other categories.

pinpoint areas for improvement, we computed the confusion
matrix in FIGURE 15 for the fine-tuned VGG16 architecture.
We observe that for most classes, accuracy is relatively
high, with some reaching 100%. In this figure, we can
also observe the common misclassifications, e.g., gneiss
being misclassified as granitegrey. Similarly, we also note
instances of conglomerate being misclassified as sandstone
and diabase as granitegey. Other details of misclassified
images are listed in TABLE 5 in the appendix. To further
analyze and understand the results, we employed Grad-CAM
for interpretability. Using Grad-CAM, we pinpointed image
regions that contributed to the misclassification, thus gaining
initial insights into the behaviour of VGG16.

Examples of heatmap images obtained by Grad-CAM
are shown in FIGURE 16, both for correctly classified and
misclassified basalt rocks. These heatmaps were generated by
overlaying the original image with false color mask ranging
from blue, green, yellow, to red. Pixel regions overlaid
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Original image Grad-CAM heatmaps

(a) Correctly classified Basalt

Misclassification: Obsidian

(b) Misclassified Basalt

FIGURE 16. Correctly classified and misclassified basalt rock images, with
their respective Grad-CAM generated visualisations. Image regions
overlaid by red are considered as having important features for classifying
the image to its respective class, while the blue regions were ignored.

FIGURE 17. Heatmap image from Grad-Cam with boxes indicating the
patches from low-weighted (A to C) and high-weighted (D to H) regions;
each patch is 20 x 20 pixels.

with color towards red receive an increasing emphasis in
importance for the classification. This means that important
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basalt-related features were found in the red pixels region
in FIGURE 16a, while the blue pixels region were ignored.
On the other hand, obsidian features were found in a basalt
image in FIGURE 16b, a clear misclassification case.

As it is, the Grad-CAM heatmap analyses do not offer
sufficient detail to justify or understand both the correct and
incorrect classifications. To provide further understanding,
we employed a quantitative approach to explore these
heatmaps using GLCM texture features. Eight patches were
selected from high-weighted (maximum attention) and low-
weighted (zero or minimal attention) regions from the
heatmap, as shown in FIGURE 17, and their GLCM texture
features computed. GLCM is a method for analyzing an the
texture of an image by examining the relationships between
neighboring pixels. It captures the spatial arrangement of
textures and considers factors such as the distance between
pixels, the angle of pixel pairs, and the discrete intensity
levels present in the image. Derived from the GLCM, various
statistics describing texture can be obtained, e.g., contrast,
dissimilarity, and homogeneity. Further details on these
statistical texture, refer to Ref. [24].
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The distribution of GLCM features of the eight patches
are visualized using scatter plots to detect any distinct
clustering patterns between patches from high-attention and
low-attention regions. This statistical analysis can determine
whether the areas identified by Grad-CAM also exhibit
unique texture characteristics that could explain the focus
and decision-making process of the network. A clear
distinction between patches from high-attention and low-
attention regions can be observed in FIGURE 18, indicating
that the CNN models rely on specific texture features in
the high-attention regions to make classification decisions.
This separation suggests that the neural network relies
on specific texture features in the high-attention regions
to make classification decisions. Additionally, it is also
important to remember that what the model determines as
features does not necessarily correspond to features used
by human experts to perform rock identification. Therefore,
further research is necessary to analyze both statistical
properties and expert-derived features in rock images, and
to examine such features using methods like Grad-CAM to
visualize whether the model consistently focuses on the same
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TABLE 5. List of misclassified images with their true and predicted class names.

Image filename True class Predicted class
Basalt/patch_167_Basalt3b.png Basalt Obsidian
Basalt/patch_98_Basalt3c.png Basalt Sandstone
Conglomerate/patch_540_Conglomerate_samplel1 (3).png  Conglomerate ~ Rhyolite
Conglomerate/patch_676_Conglomerate_sample05 (4).png  Conglomerate  Sandstone
Conglomerate/patch_851_Conglomerate_sample05 (4).png  Conglomerate ~ Sandstone
Conglomerate/patch_854_Conglomerate_sample09 (4).png  Conglomerate =~ Sandstone
Conglomerate/patch_936_Conglomerate_sample03 (3).png  Conglomerate ~ Sandstone
Conglomerate/patch_946_Conglomerate_sample09 (4).png  Conglomerate ~ Sandstone
Conglomerate/patch_982_Conglomerate_sample03 (3).png  Conglomerate  Sandstone
Diabase/patch_593_Diabase_sample09 (4).png Diabase Granite_grey
Diabase/patch_632_Diabase_sample05 (3).png Diabase Granite_grey
Diabase/patch_718_Diabase_samplel1 (4).png Diabase Granite_grey
Diabase/patch_765_Diabase_sample05 (3).png Diabase Granite_grey
Diabase/patch_863_Diabase_samplel0 (3).png Diabase Granite_grey
Diabase/patch_906_Diabase_sample10 (3).png Diabase Granite_grey
Gneiss/patch_596_Gneiss_sample05 (3).png Gneiss Granite_grey
Gneiss/patch_637_Gneiss_sample10 (4).png Gneiss Granite_grey
Gneiss/patch_677_Gneiss_sample07 (3).png Gneiss Granite_grey
Gneiss/patch_680_Gneiss_sample10 (4).png Gneiss Granite_grey
Gneiss/patch_732_Gneiss_sample07 (3).png Gneiss Granite_grey
Gneiss/patch_776_Gneiss_sample05 (3).png Gneiss Granite_grey
Gneiss/patch_819_Gneiss_sample07 (3).png Gneiss Marble
Gneiss/patch_989_Gneiss_sample05 (3).png Gneiss Granite_grey
Gneiss/patch_992_Gneiss_sample05 (3).png Gneiss Dunite
Granite_grey/patch_1034_Granite_grey_sample04_04.png  Granite_grey Diabase
Granite_grey/patch_508_Granite_grey_sample09_04.png Granite_grey Gneiss
Granite_grey/patch_555_Granite_grey_sample09_04.png Granite_grey Gneiss
Granite_grey/patch_765_Granite_grey_sample04_04.png Granite_grey Marble
Rapakivi/patch_500_Rapakivi-granite_sample01 (2).png Rapakivi Marble
Rapakivi/patch_501_Rapakivi-granite_sample05 (4).png Rapakivi Rhyolite
Rapakivi/patch_507_Rapakivi-granite_sample01 (2).png Rapakivi Gabbro
Rapakivi/patch_545_Rapakivi-granite_sample05 (4).png Rapakivi Rhyolite
Rapakivi/patch_814_Rapakivi-granite_sample12 (4).png Rapakivi Sandstone
Rapakivi/patch_850_Rapakivi-granite_sampleO1 (2).png Rapakivi Gneiss
Rhyolite/patch_459_Rhyolite_sample12 (4).png Rhyolite Sandstone
Rhyolite/patch_679_Rhyolite_sample12 (4).png Rhyolite Sandstone
Rhyolite/patch_720_Rhyolite_sample10 (1).png Rhyolite Conglomerate
Rhyolite/patch_775_Rhyolite_sample12 (4).png Rhyolite Conglomerate
Obsidian/patch_166_Obsidian3a.png Obsidian Conglomerate
Obsidian/patch_179_Obsidian3a.png Obsidian Conglomerate
Obsidian/patch_182_Obsidian3a.png Obsidian Conglomerate
Obsidian/patch_193_Obsidian3a.png Obsidian Conglomerate
Obsidian/patch_211_Obsidian3a.png Obsidian Sandstone

features during classification. This additional consideration
will help to improve the interpretability of the model and
to find a correlation with geological features by human
experts.

V. CONCLUSION

We have conducted an in-depth investigation of transfer
learning using 38 ImageNet pre-trained CNN models for
texture analysis across four distinct texture datasets, i.e.,
Rock360, DTD, STex and Rockl2. The study highlights
the efficacy of transfer learning in texture classification
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tasks and offers valuable perspectives on the performance of
different CNN architectures on different datasets. Although
certain models demonstrated promising performance on
specific datasets, e.g., MobileNet on Rock360 and Xception
on STex dataset, others generally struggled to achieve
satisfactory accuracy. This indicates the influence of model
complexity and dataset characteristics on transfer learning
efficacy.

In this study, we have also found that the different
models performed better across different datasets when
there were more images for each category. Fine-tuning
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TABLE 6. Summary of strengths and limitations of various CNN architectures.

CNN Architectures

Year

Strengths

Limitations

AlexNet [72]

2012

Historical significance: achieved state-of-the-art
recognition accuracy, surpassing traditional ML
and computer vision methods.

Simplicity: relatively simple architecture, mak-
ing it easier to understand and implement.

Outdated: modern architectures significantly
outperform AlexNet in terms of accuracy and
efficiency.

Size: larger and more computationally intensive
compared to recent models.

VGG [13]

2014

Simplicity: simple architecture.
Depth: increased depth (16,19) allows for learn-
ing complex features.

Computationally intensive: a large number of
parameters leads to high computational and
memory requirements.

Overfitting: prone to overfitting on smaller
datasets.

Inceptions [73]

2015

Efficiency: captures multi-scale features through
parallel convolution.

Performance: balanced depth and computational
cost effectively.

Complexity: architecture and hyperparameters
are complex, making it challenging to modify and
tune.

Implementation: more challenging to imple-
ment compared to simpler models.

ResNet [14]

2016

Residual connections: these connections help to
mitigate the vanishing gradient problem, thereby
allowing for very deep networks.

Performance: high performance on various im-
age classification tasks.

Training time: increased depth can lead to in-
creased training time.
Complexity: implementing residual connections.

DenseNet [74]

2017

Features reuse: dense connections promotes fea-
ture reuse, improving efficiency.

Parameter efficiency: lower parameters count
compared to traditional architecture with similar
depth.

Performance: strong performance in terms of
both accuracy and speed.

Memory use: dense connectivity can lead to
memory issues during training.

Complexity: complex due to the interconnected
layers.

MobileNet [75]

2018

Efficiency: designed for mobile and embedded
vision applications, uses depth-wise separable
convolutions to reduce complexity and size.
Lightweight: fewer parameters and lower com-
putational cost compared to traditional CNNs.
Performance: a good balance between accuracy
and speed especially in resource-constrained en-
vironments.

Accuracy: slightly lower accuracy compared to
larger, more complex models.

Capacity: may struggle with very large or com-
plex datasets due to its lightweight architectures.

EfficientNet [76]

2019

Scalability: uses a compound scaling method to
balance network depth, width, and resolution,
providing better performance with fewer param-
eters.

Performance: high accuracy on Image-Net with
significantly fewer parameters.

Efficiency: optimized for both speed and ac-
curacy, making it suitable for a wide range of
applications.

Complexity: more complex architectures due to
compound scaling.

training time: can require longer training time
due to sophisticated scaling strategy.

the model significantly improved classification accuracy,
as shown by the accuracy achieved by VGG16 architecture
on the Rockl2 dataset. Despite several misclassifications,
particularly among similar rock classes, the fine-tuned model
exhibited consistent accuracy and demonstrated potential for
practical applications in rock classification. In conclusion,
our study contributes to advancing the understanding of trans-
fer learning in texture classification and provides valuable
information for researchers and practitioners in fields such
as geology, computer vision, and image processing. Future
research directions may involve exploring hybrid approaches
that integrate domain-specific knowledge with deep learning
techniques to effectively address the complexities of texture
analysis and classification.
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APPENDIX A

CLASSIFICATION RESULTS FOR VGG16 WITH
FINE-TUNING

See Table 5.

APPENDIX B

SUMMARY OF SELECTED CNN ARCHITECTURES

With AlexNet in 2012, CNN architectures have been
continuously modified and upgraded; most upgrades were
performed on network layers or depth, and several parameter
optimization strategies were implemented. These CNN
models use a multi-layered architecture, with initial layers
extracting low-level features and final layers extracting
high-level features. Some CNN architectures discussed in
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the related work section are summarized in Table 6, and
their key parameters are plotted in Figure 19. For a more
comprehensive understanding of the topic, we recommend
exploring the research conducted by Alzubaidi et al. [71]
along with the cited papers on the models.
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