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A B S T R A C T

Snowfall can cause noise to light detection and ranging (LiDAR) data. This is a problem since it is used in
many outdoor applications, e.g., autonomous driving. We propose the task of multi-echo denoising, where
the goal is to pick the echo that represents the objects of interest and discard other echoes. Thus, the idea
is to pick points from alternative echoes unavailable in standard strongest echo point clouds. Intuitively, we
are trying to see through the snowfall. We propose a novel self-supervised deep learning method and the
characteristics similarity regularization to achieve this goal. The characteristics similarity regularization utilizes
noise characteristics to increase performance. The experiments with a real-world multi-echo snowfall dataset
prove the efficacy of multi-echo denoising and superior performance to the baseline. Moreover, based on
extensive experiments on a semi-synthetic dataset, our method achieves superior performance compared to the
state-of-the-art in self-supervised snowfall denoising. Our work enables more reliable point cloud acquisition
in snowfall. The code is available at https://github.com/alvariseppanen/SMEDen.

1. Introduction

The impact of snowfall conditions on light detection and ranging
(LiDAR) sensor data can be enormous. Airborne snowflakes [1] cause
unwanted reflections of the LIDAR signal, which causes cluttered and
missing points. Different weather conditions cause different types of
noise. This paper focuses on snowfall because it causes the most se-
vere noise. The noise is a critical issue as point clouds are typically
used for determining the accessible volume of the environment, for
instance, in obstacle detection methods. Furthermore, it affects other
downstream perception algorithms, namely object detection [2], which
is a vital component, e.g., in automated driving and driving assistance
systems. Moreover, accident rates for human drivers are notably higher
in adverse weather conditions, as reported by the European Commis-
sion [3] and the US Department of Transportation [4]. Therefore,
reliable perception data is crucial in such conditions.

Previous LiDAR snowfall and adverse weather denoising work has
mainly used single-echo point clouds, which lack information due to
noise occluding parts of the objects. This work proposes using multi-
echo point clouds, picking the echo representing the objects of interest,
and discarding the echoes representing airborne snowflakes (noise) or
irrelevant artifacts caused by refractions (Fig. 1). Using raw photon
count histograms is beneficial when denoising LiDAR data in fog [5].
However, they are unavailable in most of the shelf LiDARs. Therefore,
we use the point cloud data format.
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Our goal is to utilize information that is unavailable in single-echo
approaches. That is, airborne particles might occlude objects in single-
echo approaches, but in multi-echo approaches, they are visible as
alternative echoes and thus provide valuable information. We present
a novel self-supervised approach SMEDen (Self-supervised-Multi-Echo-
Denoising) to achieve this goal. Finally, we propose a characteristics
similarity regularization method to improve convergence and accuracy,
which utilizes typical snowfall noise characteristics, i.e., intensity and
sparsity, to increase performance.

The contributions of this paper are summarized as follows:

• We propose and formulate the task of multi-echo denoising for
LiDAR in snowfall.

• We propose a novel self-supervised approach SMEDen that learns
this task, motivated by the fact that point-wise labels are la-
borious to obtain, especially for multi-echo point clouds. The
approach uses novel neighborhood correlation and blind spot
methods.

• We propose the characteristics similarity regularization for LiDAR
snowfall denoising to boost the performance of self-supervised
algorithms.

2. Related work

There are several snowfall and adverse weather denoising methods
in the literature. Charron et al. [6] presented an algorithm called
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Fig. 1. In the concept of multi-echo denoising, multiple echoes are acquired for a single
emitted pulse, and the echo caused by the object of interest is picked. Generally, only
the strongest echo (red) is available in single-echo approaches. Thus, crucial information
about the object of interest can be lost. I and R denote intensity and range, respectively.

dynamic radius outlier removal (DROR). It removes points whose dis-
tance from the neighboring points exceeds a threshold. Park et al. [7]
discovered that snowfall-caused points typically have lower intensity
than valid points. They developed low-intensity outlier removal (LIOR),
which removes points based on the intensity value and DROR output.

Deep learning methods targeted explicitly to the adverse weather
denoising task have also been presented in the literature, and they are
typically projection-based as the projection provides a good trade-off
between accuracy and computational cost. Heinzler et al. [8] proposed
the WeatherNet architecture for denoising fog and rain. Seppänen et al.
introduced 4DenoiseNet [9], which utilizes spatiotemporal information
from consecutive point clouds. Bae et al. [10] developed SLiDE, which
can be trained self-supervised by reconstruction difficulty. SLiDE can
also be used to improve the labeling efficiency of supervised training for
de-snowing. Yu et al. [11] used the fast Fourier and the discrete wavelet
transforms to construct a loss function for training a network for snow
segmentation. Our work is inspired by the network architecture of [9]
and the self-supervised pipeline of [10] and builds the multi-echo
denoising framework on them.

Parallels can be drawn between adverse weather denoising and deep
image denoising, where camera images are restored, as these methods
modify the original pixels and try to acquire a clean image [12,13]. This
can be done in a supervised or self-supervised manner. Self-supervised
methods typically utilize blind-spot to learn the noise [14,15]. Despite
the success of deep image denoising, the methods do not directly suit
the purpose of LiDAR adverse weather denoising as the data is sparse,
and the task is to remove noise points and keep valid points unaltered.
Some works have developed dense point cloud denoising methods [16,
17], which have an equivalent goal to deep image denoising. However,
these methods are yet to be implemented on the adverse weather
denoising task.

Preliminary work has been done on airborne particle classification
using multi-echo point clouds. Stanislas et al. [18] studied supervised
deep learning methods for classifying airborne particles using the multi-
echo measurement as a feature. They predicted the class only for the
first echo and used the alternative echo merely as a feature. This
approach has the limitation of not utilizing alternative echoes to their
fuller potential, as they can be used for viable substitute points to
replace points of the strongest echo point cloud, which is the goal and
contribution of our work. We are the first to present a method that picks
substitutes from a multi-echo point cloud to replace invalid points of
the strongest echo point cloud.

3. Methods

Multi-echo input formulation. A traditional single-echo point cloud is
defined as 𝐏𝑠 ∈ R𝑁𝑝×𝑁𝑐 , where 𝑁𝑝 and 𝑁𝑐 denote the number of points
and channels, respectively. A multi-echo point cloud is defined as 𝐏𝑚 ∈
R𝑁𝑝⋅𝑁𝑒×𝑁𝑐 , where 𝑁𝑒 denotes the number of echoes per emitted laser
pulse. In this work, point clouds are processed in an ordered format. We
define multi-echo ordered format as a spherical projection of the point
cloud 𝛤 ∶ R𝑁𝑝⋅𝑁𝑒×𝑁𝑐 → R𝐻×𝑊 ×𝑁𝑒×𝑁𝑐 , where 𝐻 and 𝑊 stand for image
dimensions of the projection. As echoes from the same laser pulse have
the same azimuth and elevation angles, they are stacked on dimension
𝑁𝑒, and a vector along this dimension is also denoted as an echo group
𝐸𝑔 . Finally, the multi-echo ordered point cloud is 𝐏𝑚𝑒𝑜 ∈ R𝐻×𝑊 ×𝑁𝑒×𝑁𝑐 .
Multi-echo denoising task formulation. The intuition behind multi-
echo denoising is to see through the noise caused by snowfall by recov-
ering points that carry useful information from other echoes. Addition-
ally, misleading or irrelevant points caused by other echoes must be dis-
carded. To formulate this task, let𝑀(𝐏𝑛𝑚) = 𝐏𝑐 , where 𝐏𝑛𝑚 ∈ R𝑁𝑝⋅𝑁𝑒×𝑁𝑐
is the noisy multi-echo point cloud and 𝐏𝑐 ∈ R(𝑁𝑝⋅𝑁𝑒−𝑁𝑛−𝑁𝑟)×𝑁𝑐 is
the obtained clean point cloud. 𝑁𝑛 denotes the number of removed
noise points, and 𝑁𝑟 denotes other irrelevant points, for instance,
duplicate and artifact points caused by the refraction of the laser.
The remaining points 𝐏𝑐 include substitutes recovered from alternative
echoes. Ultimately, the goal is to obtain 𝐏𝑐 , equivalent to a standard
single-echo point cloud in clear weather. This work defines 𝑀(⋅) as a
self-supervised neural network described in the following subsections.

3.1. SMEDen

Multi-echo neighbor encoder. The multi-echo ordered point cloud
𝐏𝑚𝑒𝑜 is the input to the multi-echo neighbor encoder, which is one
of our contributions and the main difference to the work of Bae
et al. [10]. It is illustrated in Fig. 3. This module processes 𝐏𝑚𝑒𝑜 into
upper bound KNN sets using Euclidean distance to the reference point
cloud, i.e., strongest echo point cloud. It encodes these values into a
feature tensorΠ. The reference point cloud is the strongest point cloud,
given that it is the default in clear weather. Thus, it is most likely
to contain points of objects of interest. We formulate the multi-echo
neighbor encoder as a set of convolutions. For simplicity, components
of 𝐏𝑚𝑒𝑜 are denoted as: 𝐏𝑥𝑦𝑧 – Cartesian coordinates, 𝐏𝜃𝜙 – azimuth and
elevation coordinates, and 𝐏𝑟 – range coordinates.

Π = 𝐰𝑡 ∗ 𝐏𝑚𝑒𝑜
= 𝐰𝑡(𝐏𝑟[𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑝2 (𝜓(𝑝2, 𝑝3))]

⊕ (𝐏𝜃𝜙[𝑝2] − 𝐏𝜃𝜙[𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑝2 (𝜓(𝑝2, 𝑝3))])) (1)

where 𝐰𝑡 ∈ R𝑘⋅𝑁𝑒×𝑆𝑜 indicates trainable weights, 𝑝2 = (ℎ,𝑤, 0), ℎ ∈
[[0,𝐻]], and 𝑤 ∈ [[0,𝑊 ]] indicates a pixel coordinate on the strongest
echo point cloud. 𝑎𝑟𝑔𝑚𝑖𝑛𝑘𝑝2 (⋅) returns indices of 𝑘 ×𝑁𝑒 strongest echo
values which minimize Euclidian distance to multi-echo queries 𝑝3 =
(ℎ,𝑤, 𝑒), 𝑒 ∈ [[0, 𝑁𝑒]]. ⊕ is the concatenation operation, and

𝜓(𝑝2, 𝑝3) = ‖𝐏𝑥𝑦𝑧[𝑝2 + 𝛥𝑝2] − 𝐏𝑥𝑦𝑧[𝑝3]‖2
𝛥𝑝2 ∈ 𝐀𝑐 ∀𝜓(𝑝2, 𝑝3) < 𝐶𝑟 (2)

where 𝐶𝑟 is a fixed radius cutoff hyper-parameter defining the upper
bound for the neighbor search, which ensures that only local points
are considered. 𝐀𝑐 defines the elements considered in the search. 𝐏𝜃𝜙
are encoded to preserve the 3D information because the grid positions
of the neighbors 𝐏𝑚𝑒𝑜 are lost due to the nature of the KNN search.
With this, the architecture can utilize the original 3D information for
the predictions. The final output of the module is the activated features.
Some of the experiments are conducted with a traditional single-echo
dataset SnowyKITTI [9]. Therefore, SMEDen is made to be convertible
to a single-echo mode SSEDen. When the model is in the single-echo
mode, the difference is in the multi-echo neighbor encoder, where the



Pattern Recognition Letters 185 (2024) 52–58

54

A. Seppänen et al.

Fig. 2. The proposed self-supervised multi-echo denoising architecture (SMEDen). The multi-echo point cloud is first projected, and then the projected point cloud is processed
by the Multi-echo Neighbor Encoder. Next, trainable points are masked in the Exclude self – Include neighbors – module. Then, the Coordinate learner processed this masked
point cloud. Meanwhile, the Correlation learner processes the point cloud without masks. The loss is computed using the output of the networks and characteristics similarity
regularization. Finally, a threshold 𝑇𝑚 filters out the noisy points. White modules are used for training only.

neighbors are only searched for the available echo. In practice 𝑁𝑒 = 1
and 𝐰𝑡 convolves over single-echo point cloud 𝐏𝑠. Next, the coordinate
and correlation learner models process these features.

Coordinate learner. The coordinate learner predicts the coordinate of
a point 𝑝𝑖 given the neighboring points of 𝑝𝑖. To simplify the task and
enable faster convergence, the three dimensions 𝑝𝑖 ∈ R3 are reduced to
one 𝑟𝑖 = ‖𝑝𝑖‖2 ∈ R. The coordinate learner learns point coordinates by
minimizing the absolute distance error to the actual coordinates.
Correlation learner. The correlation learner predicts the predictabil-
ity of the coordinate of point 𝑝𝑖. The loss is formulated so that the
correlation learner predicts a high value for 𝑝𝑖 if its coordinate is
challenging to predict to compensate for a high coordinate prediction
error. During training, this network learns the correlation of points to
their neighbors. We assume that highly correlating points correspond
to objects of interest. During inference time, the points can be filtered
based on the predicted value of the correlation learner.

Exclude self–Include neighbors. Blind spots are added to the input of
the coordinate learner during training. Previously, blind spot methods
have been used in deep image denoising [14,15]. We combine the
multi-echo neighbor encoder with the blind-spot approach. For a 𝑝𝑖,
the input is its KNN set without the query (Fig. 3). Only its neighbors
are processed to learn the coordinate of 𝑝𝑖, and the coordinate of 𝑝𝑖
is predicted. However, to learn the correlation of 𝑝𝑖, the whole KNN
set, including the query, is processed. This ensures that the correlation
learner can utilize the valuable information of the query point. The
benefit of our method is that physically neighboring data points are
more relevant when estimating the value of the hidden point compared
to prior work where more unrelated 2D grid relations are used.

3.2. Characteristics similarity regularization

We propose the characteristics similarity regularization (CSR). CSR
accelerates the convergence and increases the accuracy. Notably, it
requires only one hyper-parameter, the size of the search 𝑘𝐶𝑆𝑅. The
CSR is built on the following assumptions about the nature of the
noise caused by snowfall. (1) An expected echo caused by an airborne
snowflake has a typical intensity [19]. (2) Snowfall causes more sparse
point clouds compared to other objects [6]. On the basis of these
assumptions, a process that guides the predictions into a distribution
similar to intensity and sparsity should increase the convergence. With
this insight, we build a regularization process to guide the predictions
to the above distribution1.

1 It is important to note here that we do not assume any specific distribution
of the characteristics of the noise points but instead encourage the model to
learn the connections between these characteristics and other features relative
to the output.

Fig. 3. In the proposed multi-echo neighbor encoder, KNN sets are computed using
multi-echo query and KNN reference. We use the strongest echo point cloud as it is
de facto in single-echo approaches. Two example queries illustrate how KNN sets look.
‘‘Exclude self – Include neighbors’’ simply discards KNN queries and keeps the values.
From this, the coordinate learner predicts the queries. The point cloud on the right
illustrates the final output of our method, where substitutes are points from alternative
echoes.

The intensity is scaled with a squared range to accommodate possi-
ble range-based bias in the intensity values

𝐈 = 𝐈𝑟𝑎𝑤 ⊙ 𝐏2
𝑟 (3)

where 𝐏𝑟 = ‖𝐏𝑥𝑦𝑧‖2. The sparsity is defined as follows,

𝐒 = 𝐸𝑑 (𝐏𝑚𝑒𝑜)⊙
1
𝐏𝑟

(4)

where 𝐸𝑑 (⋅) returns Euclidean distance to the nearest neighbor for
each point. Thus, sparsity can be obtained as a free lunch from Π.
It is normalized with the range matrix 𝐏𝑟, as sparsity 𝑠 ∝ 𝑟. Then,
we get the characteristics map as a concatenation of the components
Θ = 𝐈 ⊕ 𝐒. The similarity is computed using normal distributions of
neighbors of Θ. That is, for each element in Θ, arguments of 𝑘𝐶𝑆𝑅-
nearest-neighbors are computed using the Euclidean distance in Θ.
A regression goal for a corresponding output is the Z-score of the
distribution collected with the neighbor search. This regression goal
forms the characteristics similarity loss term using the absolute error.
The described regularization process forces those correlation learner
outputs 𝐎𝑐𝑜𝑟 with similar characteristics to have similar values, which
we expect will encourage the model to converge. Finally, we summarize
CSR as the Algorithm 1.
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Algorithm 1: Characteristics similarity regularization.
for a batch ∈ batches do

𝐈 ← Equation (3) ⊳ Intensity
𝐒 ← Equation (4) ⊳ Sparsity
𝚯 ← concat(𝐈,𝐒) ⊳ Characteristics map
𝚽 ← 𝐎𝑐𝑜𝑟[argNeigbors(𝚯, 𝑘𝐶𝑆𝑅)]
𝚵 ← |Zscore(𝐎𝑐𝑜𝑟,𝚽)| ⊳ Characteristics

similarity loss

3.3. Architecture and loss function

Architecture. Our proposed architecture is presented in Fig. 2. The
architecture consists of two encoder–decoder neural networks. The
networks are identical except for the input since the coordinate learner
processes point clouds with blind spots. The encoder–decoder closely
resembles 4DenoiseNet [9] using three residual blocks without the
temporal branch.
Loss function. The two networks are trained jointly. As stated above,
the Exclude self – Include neighbors is performed only for a randomly
selected subset of points, denoted by 𝐏𝑠. Therefore, we train only those
points. The loss function in its final form is defined as follows:

 = 1
|𝐏𝑠|

∑

𝑝𝑠∈𝐏𝑠

(

𝜆 ⋅ |𝐎𝑐𝑜𝑜
𝑝𝑠

− 𝐏𝑟𝑝𝑠 |

⌈𝐏𝑟⌉𝑝𝑠 ⊙ exp(𝐎
𝑐𝑜𝑟
𝑝𝑠

)
+𝐎𝑐𝑜𝑟

𝑝𝑠
+Ξ𝑝𝑠

)

(5)

where 𝐎𝑐𝑜𝑜 and 𝐎𝑐𝑜𝑟 are the outputs of the coordinate and correla-
tion learner, respectively. The loss function minimizes the absolute
coordinate prediction error in the numerator. The denominator forces
the output 𝐎𝑐𝑜𝑟 to a high value when the coordinate is challenging to
predict, i.e., noisy snowfall points. Exponential of 𝐎𝑐𝑜𝑟 was discovered
experimentally to improve performance. Thus, during inference, 𝐎𝑐𝑜𝑟

is used as a score to define the noisy points. A fixed hyperparameter
𝜆 scales this term relative to the other terms. A regulating term +𝐎𝑐𝑜𝑟

prevents predictions from exploding. The division by ⌈𝐏𝑟⌉ reduces the
range-induced bias of the learning process, as the correlation with
neighbors is inversely proportional to the range. ⌈𝐏𝑟⌉ is rounded to
total meters to stabilize the learning process. Ξ𝑝𝑠 is the CSR loss, which
is summed up with the rest of the loss function. The model converges
when the coordinate learner has learned meaningful high-level features
of valid points and the correlation learner learns to output a high score,
i.e., low correlation value, for invalid points.

3.4. Inference mode

During the inference mode, only the correlation learner is used. The
output 𝐎𝑐𝑜𝑟 is processed into class labels. For this purpose, we formulate
the multi-echo denoising classes in the following manner:

• valid strongest echo, (𝑆 ∧ 𝑇 ) → 𝑉 𝑆,
• potential substitute, (¬𝑆 ∧ 𝑇 ∧ 𝐵 ∧𝐷) → 𝑃𝑆 ∈ 𝐸𝑔 ,
• discarded, (¬𝑉 𝑆 ∨ ¬𝑃𝑆) → 𝐷𝐼 ,

where 𝑆, 𝑇 , 𝐵,𝐷 are boolean formulas for ‘‘the strongest echo’’, ‘‘sat-
isfies threshold 𝑇𝑛’’, ‘‘the best score’’, and ‘‘a different coordinate to
strongest’’, respectively. 𝐸𝑔 denotes the echo group, i.e., the values
along the 𝑁𝑒-dimension of 𝐎𝑐𝑜𝑟. Here, we formulate 𝐵 in general form,
but in our case, it is equal to the predicted correlation value 𝐎𝑐𝑜𝑟.
During inference time, the 𝐷𝐼 labeled points are removed (𝑇𝑚 in Fig. 2),
and the remaining point cloud is the final output of our method.

4. Experimental results

4.1. Implementation details

Datasets. The experiments are conducted with the STF dataset [20],
which includes multi-echo LiDAR point clouds from snowfall. STF
provides the strongest and last echo point clouds. If the last echo is
the same as the strongest one, it is replaced by the second strongest
one. We have labeled a 500 multi-echo point cloud snowfall sub-
set of STF [20] dataset since point-wise labels for multi-echo data
were not previously available. Moreover, a semi-synthetic single-echo
SnowyKITTI dataset [9] is used for comparison against single-echo
methods. Multi-echo results were achieved with models trained with
STF [20] dataset, and single-echo results were achieved with models
trained with SnowyKITTI [9] dataset.

Training and testing details. The hyper-parameter settings were se-
lected with a grid search as follows. The learning rate is 0.01, the
linear learning rate decay is 0.99, the fixed hyper-parameter in Eq. (5)
𝜆 = 5, and the 𝑘𝐶𝑆𝑅 = 9. We use the stochastic gradient descent
optimizer with a momentum of 0.9 and train for 30 epochs. The
train/validate/test-set split ratio is 55/10/35, where all sets have a
wide range of different snowfall conditions and are from different
sequences. A threshold 𝑇𝑛 = 0 is empirically found to yield the best
results during inference. The models are run on an RTX 3090 GPU using
Python 3.8.10 and PyTorch 1.12.1 [21]. The runtime result of LIOR [7]
is achieved with a Python implementation. Since implementations for
LIOR and SLiDE are not easily accessible, we implemented them and
shared the code in our repository2. We use the official C++ implemen-
tation of DROR [6]3. For the learned approaches, the runtime of the
neural network is reported. Our model is trained and tested with the
coordinates of the points, including intensity. We noticed that removing
the intensity did not have a significant effect on the results.

4.2. Multi-echo denoising results

We analyze the performance qualitatively on the STF [20] dataset.
The results are presented in Fig. 4, where each row indicates an
individual sample. The corrupted strongest echo is on the left-hand
side, where a detail window is denoted with fuchsia. The strongest echo
is visualized to highlight the idea of recovering substitute points from
alternative echoes. With that, we want to emphasize that the input to
the methods is the multi-echo point cloud. The baseline method is next
to the corrupted strongest echo point cloud, and our SMEDen is on the
right-hand side.

We compare our method to the baseline Multi-Echo DROR
(MEDROR). It is a simple modification to the classical DROR [6].
The neighbors are computed similarly as in SMEDen. The searched
neighbors are then thresholded as in DROR [6], but all echoes are
computed instead of processing only the strongest echo. Then, based
on the inlier–outlier classification, we classify the points according to
Section 3.4.

The substitute points are visualized in red. These are recovered
points from alternative echoes (in our case, conditional last and second
strongest). As seen in Fig. 4, SMEDen finds viable substitute points. The
results prove the concept of multi-echo denoising in snowfall. They
also demonstrate that a simple classical method such as MEDROR is
insufficient as there are only a few recovered substitute points and
many false negatives.

Classical MEDROR performs much better with low noise than with
a high noise level. Note here that the threshold of MEDROR can be
adjusted, but we noticed that it results in a great number of false
positives. On the contrary, our SMEDen performs well in all noise

2 https://github.com/alvariseppanen/SMEDen
3 https://github.com/nickcharron/lidar_snow_removal

https://github.com/alvariseppanen/SMEDen
https://github.com/nickcharron/lidar_snow_removal
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Fig. 4. Multi-echo denoising performance on real data. Each row is an individual sample. The corrupted strongest echo is on the leftmost column, the output of the baseline
method MEDROR is in the middle, and the output of our SMEDen is on the right column. Red indicates potential substitute points. MEDROR mostly fails, whereas our SMEDen
picks successfully viable substitute points.

levels, even in extreme conditions in Fig. 4(e). This shows that our
method achieves superior performance.

The quantitative multi-echo results are presented in Table 1. SME-
Den performs significantly better compared to MEDROR in both noise
removal and finding substitutes. The quantitative results confirm that a
learned approach is superior to the classical approach. As a pioneer in
multi-echo denoising, these results serve as a baseline for future studies
in multi-echo denoising in snowfall.

4.3. Single-echo denoising results

Single-echo performance on the SnowyKITTI-dataset [9] can be
seen in Table 2. Our algorithm is compared to the state-of-the-art

Table 1
Multi-echo results on the labeled snowfall subset of the STF [20] dataset.
Method MEDROR SMEDen (Ours)

Type Classical Self-supervised
Runtime ms 125 2.3
Param. ⋅106 10−5 1.13

IoU Noise 0.269 0.792
Substitute 0.953 0.981

self-supervised SLiDE [10] and with well-proven classical methods
DROR [6] and LIOR [7], and supervised methods WeatherNet [22]
and 4DenoiseNet [9]. The methods are evaluated with the widely
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Table 2
Single-echo results on the SnowyKITTI [9] dataset. SSEDen is SMEDen in single-echo mode.
Method Type IoU Runtime Param.

Light Medium Heavy ms ⋅106

DROR [6] Classical 0.453 0.451 0.440 97 10−5

LIOR [7] Classical 0.448 0.447 0.434 120 10−5

WeatherNet [8] Supervised 0.884 0.889 0.865 1.9 1.5
4DenoiseNet [9] Supervised 0.975 0.976 0.977 1.3 0.6
SLiDE [10] Self-supervised 0.778 0.745 0.743 2.0 1.73
SSEDen (Ours) Self-supervised 0.933 0.854 0.843 2.2 1.13

Self-supervised improvement 0.155 0.109 0.100

Table 3
Ablations of different modules. MH indicates multi-hypothesis prediction [10], CSR is the characteristics similarity regularization, NE is the
single-echo variant of the Multi-echo neighbor encoder, and 𝐶𝑟 is the cutoff radius. NN denotes a neural network, where 4DN is 4DenoiseNet
variant [9], and WN is WeatherNet variant [8]. SSEDen is SMEDen in single-echo mode.
Method MH CSR 𝐶𝑟 NE NN IoU

Light Medium Heavy

SLiDE [10] ✓ ✗ ✗ ✗ WN 0.778 0.745 0.743

SSEDen variants

✗ ✓ ✗ ✗ WN 0.872 0.778 0.778
✗ ✗ ✓ ✗ WN 0.776 0.757 0.816
✗ ✗ ✗ ✓ WN 0.879 0.823 0.799
✗ ✗ ✗ ✗ 4DN 0.798 0.758 0.780
✗ ✗ ✓ ✓ 4DN 0.912 0.825 0.802
✗ ✓ ✗ ✓ 4DN 0.871 0.819 0.808
✗ ✓ ✓ ✗ 4DN 0.854 0.795 0.806
✗ ✓ ✓ ✓ WN 0.885 0.819 0.792
✓ ✓ ✓ ✓ 4DN 0.922 0.855 0.851

SSEDen (Ours) ✗ ✓ ✓ ✓ 4DN 0.933 0.854 0.843

adopted Intersection over Union (IoU) metric. The results are presented
separately for the light, medium, and heavy noise levels for a more de-
tailed indication of performance. Based on the results, the performance
varies depending on the noise level. Our method achieves superior
performance to these methods in all levels of noise.

We also report the runtime and parameter count. As the results
indicate, our method has approximately the same runtime and uses
35% fewer parameters compared to SLiDE [10]. This is significant
as fewer parameters help with over-fitting, reduce memory footprint,
and enable faster convergence. A slight difference in the runtime be-
tween our method and SLiDE [10] results from the input layer, as the
neighbor encoder is slower than a standard 2D convolution. Despite
having similar architecture, our method has a slower runtime than
4DenoiseNet [9]. This is caused by a larger KNN search radius that it
has. Overall, our method achieves superior performance and thus sets
the new state-of-the-art in self-supervised snowfall denoising.

Ablation Study. An ablation study was conducted to assess the con-
tributions of the characteristics similarity regularization, cutoff radius
𝐶𝑟, the neighbor encoder, and the neural network. Table 3 presents
the IoU measurements when ablating the aforementioned modules. The
ablation of CSR indicates that performance on the test set increases
with the inclusion of the module. Excluding 𝐶𝑟 has a significant effect
on the performance as well. We suspect this is because limiting the
input neighbors with a certain threshold excludes points irrelevant
to the coordinate prediction. The neighbor encoder is replaced with
a standard 2D convolution. The performance decreases because 2D
convolution captures fails to capture spatial information. The neural
network was changed to the WeatherNet [8] variant that SLiDE [10]
uses. The network also affects self-supervised performance based on
our experiment. Thanks to the proposed modules, the multi-hypothesis
prediction [10] does not affect the performance. Therefore, it is not
used in the final model.

5. Conclusion

We proposed multi-echo denoising in snowfall. The idea is to re-
cover points that carry useful information from alternative echoes and

remove points that are caused by airborne particles, refractions, and re-
flections. This can be thought of as seeing through the snowfall-induced
noise. To achieve this goal, we also proposed the Self-supervised Multi-
Echo Denoising (SMEDen) approach, which includes novel characteris-
tics similarity regularization. Both quantitative and qualitative results
on a real-world multi-echo snowfall dataset show the superiority of our
method compared to the classical baseline MEDROR. Moreover, our
method achieved new state-of-the-art self-supervised performance on
a single-echo semi-synthetic dataset. The main limitation of this study
is that the multi-echo data included only the strongest and conditional
last echoes. Therefore, studies with a point cloud dataset that has more
echoes would be valuable. However, such a dataset is not publically
available during the time of this study. Based on the results, our work
enables safer and more reliable LiDAR point cloud data in snowfall.
Therefore, it should increase the safety of autonomous driving and
driving assistance systems, for instance.
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