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Abstract— Autonomous positioning of small objects to create 

heterogeneous structures has great potential to advance the 

current micromanipulation procedures. To achieve autonomous 

micromanipulation, it is required to recognize the manipulation 

events. In this work, different classification algorithms including 

five common supervised learning methods are assessed for 

identifying states of manipulation. The classifiers are trained with 

data that consists of 3056 video frames and validated on 2545 

videos frames. The best machine learning classifiers classified the 

events with 92.9 % accuracy, higher than the result of logic-based 

classification (88.9 %).  

Keywords — event classification; micromanipulation; machine 

vision; supervised learning. 

I.  INTRODUCTION 
Microhandling represents a set of operations such as 

positioning, dissection, injection, aspiration and assembly to 
name a few, for manipulating microscopic objects [1]. These 
methods have been applied in handling of single fibers [2]–[4], 
construction of complex micromechanical structures [5], 
automatic inspection of microelectronic components [6], 
manipulation of single microscopic biological organisms [7], 
etc. In the micromanipulation environment, the objects are often 
fragile and can be deformed easily. Autonomous intelligent 
micromanipulation is foreseen as one promising solution. To 
achieve autonomous intelligent manipulation, abstract 
representation of the state of the manipulation is critical.  

However, there exists no research that exploits machine 
learning (ML) classification methods to infer abstract 
representation of the state of the robot or manipulated object in 
micromanipulation. In this work, a comparison of five different 
supervised learning algorithms for event classification in robotic 
microhandling of objects (SU-8 chips in this case) is presented. 
The hardware configuration of the microrobotic system (Fig. 1) 
and the software integration for the vision-based detection of the 
chips are elaborated in our previous work [8]. The event 
classification describes whether a manipulated chip has been 
correctly handled or not. The correct handling refers to 
successful release of the chip, while the incorrect handling refers 
to chip adherence to one of the gripping tips. Initially, relevant 
data is extracted from videos with image processing techniques. 
Then, the data is abstracted into features that are significant for 
the learning. Finally, different supervised classification learning 
algorithms are assessed with the features and labels 
(grasped/adhered event). The classifiers, therefore, can predict 
the outcome of the event within the novel data. The scope of this 

work is limited to perception; the microrobot is not controlled 
based on the classification results. 

The rest of the paper is organized in the following way: 
Section 2 gives a brief overview of the utilized learning 
algorithms; the designation of events, the data acquisition and 
feature engineering are presented in Section 3; Section 4 
explains how each classification algorithm has been 
implemented; Section 5 presents the obtained results along with 
discussion; and Section 6 concludes the paper.  

II. BACKGROUND  
The utilized learning classifiers are naive Bayes [9], tree 

learning [10], support vector machine [11], artificial neural 
networks (ANN) [12] and boosting ensemble classifier [13]. In 
Naive Bayes classifiers the most likely class is assigned to a 
given example described by its feature vector. Three learning 
classifiers use decision splits to create a model that predicts the 
value of a target variable. Support Vector Machine is non-
probabilistic binary linear classifier that generates separating 
hyperlines (with maximized width) between two or more 
separate classes. ANN is a classifier consisting of collection of 
neural units (artificial neurons) interconnected in layered 
architecture. Boosting ensemble classifier is a set of weak 
(computationally efficient) classifiers which classifies new data 
by weighting the predictions of each individual weak classifier. 

There are no commonly accepted rules on how to select a 
specific learning classifier for a given task before applying the 
methods to the actual data. Ali and Smith generated guidelines 
for the selection task based on some features of the data [14]. 
However, the learning algorithms are selected by trial-and-error 
based on the prediction accuracy for the data in question [15]. 

 

Fig. 1.  Microrobotic system for manipulating SU-8 chips. (a) Hardware 
configuration: top and side view microscopes, a gripper and SU-8 chips 
residing onto the sample holder. (b) Top-view image. (c) Side-view image. 
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Before their evaluation, the classifiers in this work are optimized 
in order to find the most suitable one for the examined event.  

III. EVENTS, DATA AND FEATURES  

A. Events for classification 

The detection of proper grasp is a relevant and common task 
in the control of pick-and-place based robotics, especially in the 
micrometer scale where the adherence of objects is less 
predictable compared to macro-scale. Fig. 2 illustrates the two 
example events (labels in the feature matrix) which were 
selected for evaluating the different classification methods: (1) 
an event where the chip is being grasped (grasped-event) and (2) 
an event where a chip is adhered to a gripper tip (adhered-event) 
during its release. 

Description of grasped-event: 

 In top view, the distance between the two gripping tips, 
(gripper opening) must be similar to the size of the chip.  

 In top view, the distances between the gripper tips and the 
sides of the chip must be small. 

 In side view, the y-positions of gripper tips and the chip must 
be similar. 

 In side view, the y-velocities of the chip and the gripper must 
be similar (to ensure that the chip is not slipping). 

Description of adhered-event: 

 In side view, the y-positions of gripper tips and chip must be 
similar. 

 In top view, the gripper opening must not be similar to the 
size of the chip. 

 In top view, the distance between the chip and one of the tips 
must be small. 

In top view, the magnitude of the y-velocities of the chip and 
the gripper tips must be similar and pointing to a proper 
direction. The proper direction depends on which tip the chip is 
being adhered to: if the chip is adhered to the upper gripper tip, 
then the direction of velocities of both the tip and the chip must 
be upwards. 

B. Data 

The data for training and validation consists of 44 videos 
with a total of 5601 frames. The videos include occurrences of 
both of the events. The videos were recorded during 
micromanipulation of a dummy SU-8 chip with dimensions of 
250×250×30 μm3. The videos were split to separate training and 
validation sets containing 23 videos (3056 frames) and 21 videos 
(2545 frames), respectively. The division was done in such a 

way that both sets contain approximately equal amount of 
instances of both events. In addition, both sets contain all the 
variations of the events that have occurred during the collection 
of the data.  

 Trajectories of the objects of interest (gripper tips and 
manipulated chip) are obtained with the detection algorithms 
that are described in [8]. The gripper tips were tracked with two 
vision detectors in the top view and one detector from the side 
view. The manipulated chip was tracked with one vision detector 
from each view. The gripper trackers were returning (x, y) image 
pixel coordinates. The chip tracker was returning the position 
and the yaw angle of the chip (rotation around the optical axis of 
the top view). The data also contained the time of each pose from 
the beginning of the videos. The data was skewed, especially 
with the adhered-event.  

In the training data of the adhered-event, for each positive 
sample (the event is happening), there were approximately 11 
negative samples. In the validation data, however, the ratio was 
approximately 1:4. Some classifiers, especially probabilistic 
ones such as naïve Bayes, are prone to skewed data. Therefore, 
the training data was balanced with direct oversampling that 
creates duplicates of the minor class until the data is balanced. 
The validation data was not resampled because the used 
performance metric for the classifiers is robust against skewed 
data. From the many existing resampling methods, direct 
oversampling was selected because it does not dispose data, 
unlike e.g. random under sampling.  

C. Features 

The classifiers were trained with features that describe the 
relations of the objects. The processed image/video frame data 
(coordinates of objects) was used for defining the features. 
Before the features were calculated, the data was smoothed with 
a moving average filter with a window size of 5 data points. The 
smoothing was performed because it reduces the amount of 
noise in the trajectories, which is important especially when 
calculating the derivatives of the trajectories, i.e. the velocities 
of objects. Additionally, the trajectories were converted from 
pixel to meter units by using the pixels-per-μm ratio obtained 
from the camera calibration procedure.  

Features 1 & 2: the minimum distances between the 
gripper tips and the chip in the top view. Features 1 and 2 are 
the minimum distances between the manipulated chip and the tip 
of the upper gripper and the tip of the lower gripper, 
respectively, Fig. 3a. They are measured from the data that is 
extracted from the top view camera. The motivation for using 
these two features arises from the descriptions of the events: if 
the grasped-situation occurs, both of the gripper tips are in 
contact with the chip (𝑑 is small for both tips); if the adhered-
situation occurs, at least one of the tips is in contact with the chip 
(𝑑 is small for one of the tips and large for the other one). 

Feature 3: gripper opening in top view. The third feature 
is the distance between the gripper tips in the top view. First, the 
distance in μm is calculated with Euclidean norm. Then, the 
distance was normalized with respect to the manipulated chip 
size. The normalization was performed in such way that when 
the distance is equal to the chip size then the value of this feature 
is 1.When the gripper is fully closed, the value is 0. This feature 
was used in adhered-event identification because the event 
cannot be observed unless the gripper has been opened more 
than the size of the chip. 

 

Fig. 2. Illustration of events for classification. (a) Grasped-event while chip 
is being manipulated above the platform. (b) Adhered-event while chip is 
being adhered to one of the gripping tips during release. 

(a)

(b)



Feature 4: gripper-chip alignment in side view. The fourth 
feature is the vertical distance 𝑑 from the gripper tips to the chip 
in the side view, Fig. 3b. The distance is obtained by comparing 
the position of the gripper tips to the edges of the chip. The top 
and bottom edges of the chip are calculated by adding and 
subtracting, respectively, the half of the known chip height to the 
y-value of the detected center-coordinate.  

The sign and value of 𝑑 is determined by the three regions 
illustrated in Fig. 3b. If the gripper is above the chip, the sign of 
𝑑 is positive, and if the gripper is below the chip, the  
sign is negative. If the gripper tips are in between the top and 
bottom edges of the chip, 𝑑  is zero. This feature is useful in 
determining whether the grippers are in contact with the chip.  
The contact cannot be inferred from the top view alone, even if 
the values of the features 1, 2, and 3 suggest a contact, because 
the gripper might be at a wrong height. 

Feature 5-11: velocities of objects of interest. Velocities of 
objects of interest are required in the detection of slipping of the 
chip when is being grasped. Additionally, they are required in 
the adhered-event classification. For instance, the two events 
appear to be occurring in Fig. 4, where a-b depict the grasped-
event and c-d the adhered-event. However, it cannot be inferred 
from the static position in the figure that the chip is not grasped, 
meaning the chip is slipping from a gripper tip while being lifted. 
In order to infer slipping, it is required to measure the velocity 
of the chip with respect to the gripper. Furthermore, from the 
static position images c-d, it cannot be observed whether the chip 
is adhered to the gripper. Although it is possible to observe that 
there is a contact between them, the velocities need to be 
examined in order to infer that they are adhered. Hence, images 
from at least two instances of time are required to infer a proper 
grip. Therefore, seven velocities presented in Table I were 
considered as features. 

The velocities 𝑣 were calculated with backward difference 

 𝑣(𝑖) =
𝑃(𝑖) − 𝑃(𝑖 − 1)

𝑡(𝑖) − 𝑡(𝑖 − 1)
, 𝑖 = 1, . . , 𝑛 (1)  

where n is the length of the data and 𝑃(𝑖) is the position (𝑥, 𝑦 or 
θ) at the time 𝑡(𝑖). The time of each instance of position data is 
retrieved from the data file. The initial velocity 𝑣(0) is assumed 
to be zero.  
 Feature matrix. After all the features were generated, they 
were normalized. The normalization consisted of two phases: 
mean removal and scaling. The features were normalized 
because some learning algorithms are prone to fail with non-
normalized data. For example, SVM finds the optimal 

hyperplane in the feature space that consists of all of the features. 
Hence, if some of the features have values that are significantly 
larger than the values of other features, they have more weight 
during the optimization. (Nevertheless, some algorithms, e.g. 
tree learning, do not require normalization because they do not 
combine the features into a single space, but rather, they 
examine the features separately). The mean was removed by first 
calculating the arithmetic mean 𝜇(𝑓𝑖), 𝑖 = 1, . . ,11  of all the 
elements of a feature vector 𝑓𝑖, and then subtracting the mean 
from all the elements. The scaling is calculated by dividing all 
of the elements of the zero-mean feature vector with the standard 
deviation 𝜎(𝑓𝑖). Hence the normalized feature vector 𝑓𝑖

′ is given 
by: 

 𝑓𝑖
′ =

𝑓𝑖 − 𝜇(𝑓𝑖)

𝜎(𝑓𝑖)
, 𝑖 = 1, . . ,11 (2)  

The normalization parameters μ(𝑓𝑖)  and 𝜎(𝑓𝑖)  were retrieved 
from the training data and stored to normalize novel data. The 
parameters could not be obtained from the novel data because 
they are observed one instance at a time. The features were 
combined into a matrix where each column corresponds to a 
feature vector and each row corresponds to an instance of the 
values of the features in a video frame. Additionally, the 
corresponding labels (event states: grasped, adhered, none) are 
added as a column to the end of the matrix. Thus, the form of the 
matrix is a follows 

 

(

 
 

𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝟏 𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝟐 … 𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝟏𝟏 𝒍𝒂𝒃𝒆𝒍𝒔
𝑣𝑎𝑙𝑢𝑒 1.1 𝑣𝑎𝑙𝑢𝑒 1.2 … 𝑣𝑎𝑙𝑢𝑒 1.11 𝑙𝑎𝑏𝑒𝑙 1
𝑣𝑎𝑙𝑢𝑒 2.1 𝑣𝑎𝑙𝑢𝑒 2.2 … 𝑣𝑎𝑙𝑢𝑒 2.11 𝑙𝑎𝑏𝑒𝑙 2

⋮ ⋮ ⋱ ⋮ ⋮
𝑣𝑎𝑙𝑢𝑒 𝑛. 1 𝑣𝑎𝑙𝑢𝑒 𝑛. 2 … 𝑣𝑎𝑙𝑢𝑒 𝑛. 1 𝑙𝑎𝑏𝑒𝑙 𝑛)

 
 
   (3)  

TABLE I.  THE SEVEN VELOCITY-FEATURES 

Feature 
number 

Feature description 

#5 x-velocity of the manipulated chip in top view 

#6 y-velocity of the manipulated chip in top view 

#7 Angular velocity of the manipulated chip in top view 

#8 y-velocity of the tip of the upper gripper in top view 

#9 y-velocity of the tip of the lower gripper in top view 

#10 y-velocity of the chip in side view 

#11 y-velocity of the tips of the gripper in side view 

 

 

Fig. 3. Features 1 to 4. (a) The minimum distances 𝒅𝒖𝒑𝒑𝒆𝒓  and 𝒅𝐥𝐨𝐰𝐞𝐫 
between the upper gripper and the lower gripper tips to the manipulated 
object, respectively; 𝒅𝒐𝒑𝒆𝒏𝒊𝒏𝒈 denotes gripper opening in top view. (b) The 

different regions that determine the sign and value of the distance d in feature 
4; d is positive for the illustrated alignment. 
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Fig. 4. (a) Grasped-event in top view. (b) Grasped-event in side view. (c) 
Adhered-event in top view. (d) Adhered-event in side view. 



where 𝑛  is the number of training examples. Two separate 
feature matrices were created for training and validation. 

IV. IMPLEMENTATION  

A. Logic based classification 

 Before applying machine learning algorithms to the 
classification problems, logic based algorithm has been 
assessed. Considering the descriptions of the events and the 
extracted features, it was feasible to write rules that classify the  
events. The pseudo-codes for the grasped-event and the adhered-
event are given in Fig. 5 and 6, respectively. Both algorithms 
were implemented in Matlab. The parameters were optimized in 
three different ways: hand-picked only, hand-picked and then 
optimized, and randomly optimized parameters. The 
optimization was performed with patternsearch algorithm from 
the Global Optimization Toolbox in Matlab. This algorithm 
finds the minimum of a cost function with linear and non-linear 
inequalities around initial parameter setting. Classification 
errors were calculated by comparing the predictions with the 
labels. These errors were the outputs of the cost functions. The 
classification errors of the logic-based classification algorithms 
are presented in Table II. The lowest cumulative classification 
error was obtained for the randomly optimized parameters. The 
misclassification for the grasped-event and the adherent-event 
were 14.2% and 7.84%, respectively. 

B. Naïve Bayes 

 The implementation of the Naïve Bayes algorithm 
performed by using the fitcnb function in Matlab. The features 
were normalized before using them within the function. The 
error was 9.44 % for the grasped-event, and for the adhered 
event 15.9 %.  

C.  Tree learning 

The complexity of a tree was controlled by restricting the 
number of decision splits in the tree. To find the optimal 
complexity of the tree, different number of maximum splits were 
used for training. The optimal number of splits was selected by 
choosing the one that resulted in minimum error. The Matlab 
function fitctree was used for implementation and evaluation. 
The upper bound for maximum number of splits for optimization 
was set to a point where the trees do not grow further. Fig. 7a 
shows the classification errors of validation data of both events 
with respect to the maximum number of splits. In both events, 
the learner reached the minimum error with rather few splits, 
after which it started to overfit. The minimum error for grasped 
classifier is 8.17 % with 2 splits. The minimum error for adhered 
classifier is 6.74 % with 4 splits.  

D. Ensemble learning 

Different ensemble methods were evaluated with varying 
number of weak learners to find the most suitable configuration 
for the two events. The function fitensemble in Matlab was used 
for the assessment. The classifiers for both of the events were 
trained with the following ensemble learning methods: 
subspace, boosting and bagging. Fig. 7b shows the classification 
errors of the grasped-event with different ensemble and weak 
learning methods. The error is obtained by varying the number 
of the weak learners in the ensemble classifier that effectively 
changed its complexity. The best ensemble configuration to 

classify grasped-event was boosting with trees with 500 weak 
learners and with an error of 7.74 %. The error was 
approximately constant after 500 weak learners. Therefore, 500 
weak learners was considered optimal for the grasped-event 
ensemble. Fig. 7c shows the classification error for adhered-
event with different hyper-parameters of the ensemble classifier. 
In this case, the optimal number of weak learners was between 

Input An instance of features 
Output Prediction 
Check if gripper and chip are at similar height in side view. 
1: if feature 4 < parameter 1 then 
Check that gripper opening is not equal to chip size. 

2: if feature 3 < parameter 2 or feature 3 > parameter 3 then 
Check adhesion between the upper gripper and the chip. 

3: if feature 1 < parameter 4 then 
Check that gripper and chip are moving upwards 

4: if feature 6 < parameter 5 then 
Check gripper position in side view. 

5: if feature 8 < parameter 6 then 
6: return adhered-event is occurring 

7: end if 
8: end if 

Check adhesion between the lower gripper and the chip. 
9: else if feature 2 < parameter 7 then 

Check that gripper and chip are moving downwards. 
10: if feature 6 > parameter 8 then 

Check gripper position in side view. 
11: if feature 8 > parameter 9 then 

12: return adhered-event is occurring 
13: end if 

14: end if 
15: end if 

16: end if 
17: end if 
Some of the features did not have an adequate value. 
18: return Adhered-event is not occurring 

Fig. 6. Logic based algorithm 2: Adhered-event detector. 

TABLE II. CLASSIFICATION ERROR FOR LOGIC BASED 
CLASSIFICATION WITH THREE DIFFERENT WAYS TO OBTAIN 
THE PARAMETERS OF THE CLASSIFIER. 

 
Hand-picked 

Optimized 
hand picked 

Randomly 
optimized 

Grasped-event 19.1 11.4 14.2 
Adhered-event 14.4 14.3 7.84 

 

Input An instance of features 
Output Prediction 
Check if gripper tips are close to the chip in top view. 
1: if feature 1 < parameter 1 then 
2: if feature 2 < parameter 2 then 

Check if the gripper opening is similar to the chip size. 
3: if feature 3 < parameter 3 then 

4: if feature 3 > parameter 4 then 
Check gripper position in side view. 

5: if feature 4 ≤ parameter 5 then 
Check slipping by comparing velocities. 

6: if |feature 10 − feature 9| < parameter 6 then 
7: return grasped-event is occurring 

8: end if 
9: end if 

10: end if 
11: end if 

12: end if 
13: end if 
Some of the features did not have an adequate value. 
14: return grasped-event is not occurring 

Fig. 5. Logic based algorithm 1: Grasped-event detector 



10 and 100 trees with boosting, with smallest error being 7.10 % 
achieved with 10 weak learners.  

After obtaining the optimal hyper-parameter configurations 
of the ensemble methods, the learning rate was optimized. 
Learning rate is a parameter related to the step size in the 
optimization of the ensemble methods. The smaller it is, the 
more accurate classifiers are usually obtained. However, the 
smaller learning rate also means more computational time spent 
for learning process and more prone to get trapped in local 
minima. Table III summarizes the optimal hyper-parameters 
obtained for the boosting ensemble method.  

E. Support Vector Machine (SVM) 

Support vector machine (SVM) classification algorithm was 
implemented and evaluated by using the Matlab function 
fitcsvm. Three hyper-parameters: kernel function, kernel scale 
and box constraint were tuned to achieve the smallest 
classification error. First, two different kernel functions were 
used for the evaluation: linear and Gaussian. The classification 
errors for the linear kernel were 8.81 % and 18.9 %; and for the 
Gaussian kernel 8.14 % and 23.6 % for the grasped-event and 
the adhered-event, respectively. The kernels with the smallest 
errors were selected for each case. After the selection of the 
kernel function, the kernel scale and box constraint were 
optimized. Box constraint controls the penalty that is related to 
soft margins. Because kernel scale and box constraint are 
continuous hyper-parameters, they are optimized with the 
patternsearch algorithm. The initial box constraint was obtained 
by testing the performance of the initial model with the upper 
and lower boundaries. The parameters and results of the 
optimization are presented in Table IV. The lowest classification 
error for grasped and adhered situations were 6.11 % and 18.5 
%, respectively. 

F. Neural Networks 

The last supervised ML classification algorithm to evaluate 
was artificial neural network (ANN). Different network 
topologies were assessed, i.e. ANNs with variable number of 
neurons and variable number of hidden layers. The Neural 
Network toolbox in Matlab was used for implementation and 
evaluation. The training data was split into training and 
validation sets with 70 % and 30 % portions, respectively. Fig. 
7d shows the classification errors for ANNs with different 
topologies. The size of the hidden layers affects the 
classification error, especially for adhered-event. The number of 
hidden layers has only a small effect on the error. Nevertheless, 
the smallest error of 8.12 ± 0.87 % (confidence interval: 68 %) 
for the grasped-event is achieved with a network consisting of 
two layers and approximately 200 neurons per layer. The 
optimal network topology for adhered-event is obtained with a 
single hidden layer of 5 neurons yielding 10.2 ± 2.8 % error 
(confidence interval: 68 %). 

V. RESULTS AND DISCUSSION 
Table V summarizes the results of the evaluation of different 

classification methods. The most suitable classifiers for grasped- 
and adhered-events are SVM with an error of 6.11 % and tree 
learner with an error of 6.74 %, respectively. However, the best 
cumulative error for both events together was obtained for the 
ensemble learning classifier. Table V also shows that the 
classification errors of the grasped-event are significantly 
smaller for all of the learning based methods compared to the 
purely logic based classification. This is true also for 3 out of 5 
ML-based methods in the adhered-event classification. Some 
classifiers seem not to be suitable for some events, such as SVM 
for adhered-event. Although the choice of the classifier affects 
the error, tuning the hyper-parameters has certain significance as 
well. For example, the error varies vastly when the number of 
splits in a tree changes or the number of weak learners in an 
ensemble varies. Fig. 7e-f show the errors of the different ML 
classifiers with respect to the number of training samples. From 
the figure, one can see that the error decreases when the number 
of training data samples increases. The error continues to 
decrease until the upper bound of the number of data is reached, 
which indicates that the accuracies can be increased with more 
data. Naive Bayes classifier is left out from the analysis because 
it cannot be trained with partial training datasets due to the fact 
that some features have zero variance in the subsampled 
datasets.  

VI. SUMMARY 
To achieve autonomous micromanipulation, higher level of 

intelligence is required to identify events in the manipulation 
scene. In this work, machine learning algorithms are assessed for 
classification of the state of SU-8 chips while being 
manipulated. The work consists of feature definition; application 
and evaluation of machine learning classification algorithms. 
Definition of features was applied to generate simplified data 
representation which is efficient for machine learning. As no 
commonly accepted guidelines exist for the selection of a 
supervised machine learning classifier, five of the most common 
supervised machine learning classifiers were assessed. The 
results of the classifier evaluation suggest that the selection of a 

TABLE III. OPTIMAL HYPER-PARAMETERS FOR THE 
IMPLEMENTED ENSEMBLE-CLASSIFIERS 

 Grasped-event Adhered-event 

Ensemble method AdaBoost AdaBoost 

Weak lerner Tree (1 split) Tree (1 split) 

Number of weak lerners 500 10 

Learning rate 0.1 1 

Error [%] 7.06 7.10 

 

TABLE IV. OPTIMIZED HYPER-PARAMETERS FOR THE 
IMPLEMENTED SVM  

Hyper-parameters Grasped-event Adhered-event 

Kernel function Gaussian Linear 

Initial KernelScale 10.0 1.92 

Search range for KernelScale [1, 100] [1, 10] 

Optimal KernerScale 86.0 1.42 

Initial BoxConstraint 1.77 0.01 

Search range for BoxConstraint [1, 10] [0.001, 0.1] 

Optimal BoxConstraint 4.77 0.00707 

Error with optimal parameters [%] 6.11 18.5 

 

TABLE V. MINIMUM CLASSIFICATION ERRORS [%] OF EACH 
TUNED CLASSIFIER.  

Classifier Grasped Adhered 
Cumulative 

Error 

Optimized logic-based 14.20 7.84 11.02 

naive Bayes 9.44 15.9 12.67 

Tree 8.17 6.74 7.45 

Ensemble 7.06 7.10 7.08 

SVM 6.11 18.50 12.30 

Neural Networks 8.80 10.00 9.4 

 



certain classifier is not enough. Deliberate tuning of its hyper-
parameters have as much effect on the classification accuracy. 
Two example events were used in the evaluation task and the 
best cumulative (mean) ML classifier yielded 92.9 % accuracy. 
This cumulative accuracy is higher than the one of the logic-
based classification (88.9 %). The accuracy of the ML classifiers 
can be further improved by introducing more data. Therefore, 
the machine learning based classification approach presented in 
this work is an adequate method to identify events during 
micromanipulation. 
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Fig. 7. Classification error rate as a function of different tuning parameters in the studied classifiers or amount of data. (a) Classification errors for tree learning 
with different maximum number of splits. Classification error rate as a function of number of weak learners for different ensemble configurations for the (b) 
grasped-event and (c) adhered-event classifiers. (d) Classification errors of the events with ANNs with different topologies. The learning rate of grasped-event (e) 
and adhered-event (f) with different ML classifiers with respect to the amount of training data. 


