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A B S T R A C T

To effectively meet the ambitious objectives set by the Paris Agreement, gaining a deeper understanding of the
relationships between the key technologies involved in mitigation activities is pivotal. This research uses
Bayesian Network (BN) methodology on a large ensemble of energy system model runs, aiming to shed light on
the complex interdependencies, and related uncertainties, among the various technologies within the pathways.
We specifically focus on tracking the evolution and interconnectedness of technology portfolios over time,
enabling dynamic assessments of the impacts linked to specific deployment strategies. The results suggest that
prioritizing early-stage transitions within the building sector is imperative and the consistent deployment of
district heating emerges as a pivotal element in the long-term plans for decarbonisation. In the power sector, the
rising trends in electrification and the substantial growth in low-carbon power plants and wind energy
deployment, underscore the urgency for adaptable strategies within the power sector. Notably, the integration of
bioenergy with carbon capture and storage (BECCS) also emerges as a crucial technology, offering a means to
counterbalance emissions from carbon-intensive industries. The BN-based approach provides decision makers a
powerful tool for comprehensive, informed, and systematic planning as they navigate towards a carbon-neutral
future, but it is also crucial to acknowledge the reliance of our analysis on assumptions inherent in energy system
models. Studies using different assumptions and model structures are needed to confirm the generalizability of
our findings.

1. Introduction

To achieve the goals of the Paris Agreement, global energy systems
should be deeply decarbonised in the coming decades to reach net-zero
CO2 emissions by 2050 (Masson-Delmotte, 2018). Global energy sys-
tems thus need to be dramatically restructured with low-carbon tech-
nologies to reduce low-carbon emissions from all energy supply and use
sectors. The development pathways for energy system development,
however, have always been subject to various types of economic, tech-
nological, political, behavioural, and other uncertainties (Hughes et al.,
2013), complicating the planning of actions of the different stakeholders
from citizens to investors and policymakers.

The perhaps most common way of considering that uncertainty in
long-term energy system analysis is through scenarios (Guivarch et al.,
2022), often quantified using energy system optimization models, such
as TIMES (Loulou et al., 2005) and OSeMOSYS (Howells et al., 2011),
that suggest, under the specified assumptions, the most cost-effective

pathways to transform the existing energy system and reach the set
long-term decarbonisation targets. Using a set of scenarios with varying
assumptions (Riahi et al., 2017) illustrates a range of different energy
system outcomes and configurations, ideally demonstrating the strate-
gies that are robust across the different scenarios. Such scenarios alone,
however, tell us little about the specific relationships between the
technologies that succeed – or fail – in the scenarios. For example, do
certain technologies require other technologies to succeed and thus
co-evolve with them? Do others compete and therefore crowd each other
out? In other words, what kind of lock-in, or lock-out, relationships
might exist in the scenarios (Unruh, 2000). And how do these re-
lationships function across time, i.e. do we need to deploy certain
technologies first, to deploy -or lock out - others later? Our study aims to
address this gap and use Bayesian Networks to investigate how tech-
nologies and technology portfolios evolve and link in time.
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1.1. Literature review

Various families of methodologies have been proposed to evaluate
the uncertainties in the energy system models. Sensitivity analysis was
used by Moksnes et al. (2019) to capture the influences of uncertain
developments of electricity infrastructure for South America in 324
scenarios. This approach was also adopted by Fais et al. (2016) to create
32 scenarios to explore the technology uncertainty of the decarbon-
isation of the UK energy system.

Narrative-informed approach is another method to analyse various
uncertainties. For instance, Moallemi et al. (2017) developed scenario
categories, considering the influences of government or market forces
and societal needs. For each category, 2500 transition pathways were
created with the Exploratory Modelling Workbench (Kwakkel, 2017) for
India’s electricity sector.

Pye et al. (2015), in turn, used Monte Carlo sampling to evaluate the
impacts of uncertainties on the decarbonisation pathways for 80%
reduction in GHG emissions by 2050. In total, 500 pathways were
generated to better represent the statistical characteristics of uncertain
inputs. The same approaches have also been applied to generate 1800
uncertain pathways for three major scenarios, considering the impacts of
climate ambition and the availability of CCS (Pye et al., 2019).

Moreover, Li and Trutnevyte (2017) linked a whole energy system
model (UK TIMES model) to a power sector pathway generator model
(D-EXPANSE) to generate 800 pathways for the UK power sector using a
combined approach of Monte Carlo sampling and
Modelling-to-Generate-Alternatives. The combined approach can reflect
both the parametric uncertainties (e.g. technology performance and
costs) and structural uncertainties in energy system modelling. For a
more comprehensive review of uncertainty assessment with energy
system models, please refer to Yue et al. (2018).

A wide range of statistical approaches have been applied in previous
studies to reveal consistent patterns across uncertain pathways (i.e.
scenario discovery) for robust decision-making. In the past, descriptive
statistics and visualisation have been widely applied to gain insights
from a large ensemble of uncertain decarbonisation pathways. For
instance, Li and Trutnevyte (2017) drew out the installed capacity of
individual power technologies over time across 800 pathways to show
the impacts of uncertainties on the required capacity of power plants for
achieving low-carbon targets. Likewise, Price and Keppo (2017) gener-
ated a series of plots, such as line charts, bar charts, and error-bar charts,
to visualise the variations (e.g. energy production and consumption)
across 16 near cost optimal scenarios for robust policy-making to
decarbonise the global energy system. Pizarro-Alonso et al. (2019) used
cobweb plots to depict the impacts of the six most influential parameters
on the electricity price and installed wind capacity for the Danish
electricity system in 2050 across 100 simulations, considering un-
certainties of 22 input parameters. Multivariate linear regression models
have also been applied by Pye et al. (2015) to determine the impacts of
uncertain inputs on two key output metrics, total system costs and GHG
emissions, based on standardised regression coefficients.

The most well-known scenario discovery approaches are the Patient
Rule Induction Method (PRIM) (Friedman and Fisher, 1999) algorithm
and the Classification and Regression Tree (CART) (Gordon et al., 1984).
These can reveal drivers for a few target metrics, such as GHG emissions
and total energy system costs. PRIM algorithm searches for combina-
tions of input variables that can best explain the group within which
data points have similar output characteristics. The meaningful input
variables are chosen through statistical data-mining searches, consid-
ering a trade-off between interpretability (i.e. density) and coverage of
different combinations of determinants. Moksnes et al. (2019) applied
the PRIM algorithm to identify the most influential input assumptions to
the key outcomes, such as total investment costs and GHG emissions, for
possible future developments of electricity infrastructure in South
America, considering the uncertainties of electricity demand, fossil fuel
price, learning curve, discount rate, CO2-emission cap, and hydropower.

PRIM was also utilized by Li et al. (2023) to determine which important
indicators and their combinations have the most impact on achieving
climate objectives of below 2 ◦C or below 1.5 ◦C. CART, on the other
hand, can be used to discover combinations of key drivers leading to
specific scenario outcomes (Guivarch et al., 2016). For instance, Herran
et al. (2019) used CART to identify the three most influential policy
measures to distinguish the performance of decarbonisation policies in
terms of carbon emissions and energy consumption per household.
Nevertheless, PRIM and CART are only able to reveal the linear re-
lationships between input variables and output variables of interest.
Non-linear interactions between model parameters thus failed to be
captured by these methods (Quinn et al., 2017).

Clustering algorithms have been frequently adopted to group path-
ways based on a limited number of key output metrics prior to scenario
discovery analysis, such as PRIM. For instance, Moksnes et al. (2019)
divided 324 scenarios into three or four clusters based on certain key
characteristics of interest, such as total system costs or total GHG
emissions, using the Gaussian Mixture Model (GMM).

Csereklyei et al. (2017) grouped energy mixes in 28 EU member
states in the past 40 years into 7 types using a model-based clustering
algorithm (i.e. GMM) to investigate the drivers for the transition from
the dominant carbon-intensive fuels to low-carbon fuels.

Pye et al. (2019) applied a hierarchical clustering algorithm to
identify interdependency among key technological metrics in 2050
based on the correlations between metrics across uncertain pathways. Li
et al. (2020) further verified that the k-means algorithm is the most
robust approach to characterising a large ensemble of uncertain decar-
bonisation pathways (600 in total), and applied the algorithm to identify
five distinctive pathways with various decarbonisation strategies, such
as focusing on low-carbon power, CCS, or green hydrogen production.

The development of technologies can, however, also be co-
evolutionary or substitutional over time. The deployment of technol-
ogy at the earlier stage might influence the flexibility or suitability of
deployment of co-evolutionary or substitutional technologies. For
example, it has been shown that the evolution of heating infrastructures
can be seen as a series of path-dependent processes with rising returns to
adoption as fuel sources, infrastructures, and end-use technologies
coevolve to improve system performance (Gross and Hanna, 2019). It is
thus essential to understand the temporal evolution of technology
portfolios so that policymakers can know how to deploy and substitute
technologies over time to achieve a specific kind of low-carbon future. In
the previous studies, the temporal evolution of technologies was mostly
based on a few scenarios and has not been thoroughly investigated using
systematic approaches to date.

Bayesian networks (BNs) are regarded as a valuable tool to investi-
gate uncertain complex systems due to the following four advantages:
(1) probabilistic relationship between explanatory variables can be
explicitly revealed; (2) prior expert knowledge can be easily incorpo-
rated into the model; (3) overfitting of data can be avoided; (4) capa-
bility of handling incomplete input datasets as dependencies between
variables are embedded in the model (Bassamzadeh and Ghanem,
2017). Therefore, in recent years, BN models have been applied widely
to energy-related issues, such as prediction of electricity demand with
various temporal resolutions (e.g. 15 min and hourly intervals) (Bas-
samzadeh and Ghanem, 2017), selection of sustainable charging sites for
electric vehicles (Hosseini and Sarder, 2019), estimation of long-term
wind power output (Carta et al., 2011), and detection of faults of air
conditioning systems (Hu et al., 2018).

Moreover, BNs have been successfully applied to understand con-
sumers’ energy-related behaviours, such as user behaviour of cooking-
oven usage to predict hourly energy consumption in a household
(Basu et al., 2013; Hawarah et al., 2010), potential reduction of elec-
tricity consumption in peak load periods (Morris et al., 2015), window
opening/closing behaviour of occupants in residential buildings (Bar-
thelmes et al., 2017). BNs have also been used to explore consumers’
travel choices. For example, Xie and Waller (2010) applied BNs to
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investigate the deterministic variables for travel mode choice of work
trips, including drive alone, shared ride, public transit, and bicycle and
walk, in San Francisco, US. Similarly, Ma et al. (2017) investigated
commuting mode choices, such as car and public transport, for the
cross-border workers of Luxembourg using BNs, considering
socio-demographic, spatial, and commuting trip variables.

Furthermore, BNs have been applied to investigate energy-related
risk assessment applications. Cui et al. (2024) analysed the failure
probability of hydrogen pipelines to reduce the risk of damage. Chang
et al. (2019) conducted a risk analysis using dynamic BN to evaluate the
potential uncertainty and risk associated with the hydrogen production
unit leakage. In another recent study, a dynamic object-oriented BN was
adopted to analyse the safety of hydrogen pipelines (Dao et al., 2024).
Additionally, BN has been used for risk analysis for energy projects, such
as oil refineries, nuclear power plants, and biodiesel plants (Machado, de
Oliveira Ribeiro, and do Nascimento, 2023).

Lately, BNs have been applied to generate scenarios for energy and
climate assessments. For example, Small et al. (2019) used expert
judgments and surveys to construct BNs to generate scenarios for the
adoption of CCS, considering the influences of technological and so-
cioeconomic factors. Düspohl and Döll (2016) used two participatory
modelling approaches to build BNs to evaluate the strategies, such as
loans and feed-in-tariffs, for promoting renewable electricity generation
(e.g. PV) in Germany.

However, to date, BNs have not been applied to explore technolog-
ical relationships in uncertain decarbonisation pathways for robust
decision-making. This study is hence the first using BNs to identify key
technologies over strategies for long-term decarbonisation, based on
model-generated uncertain pathways.

This study intends to use BNs to reveal the temporal evolution of
technologies to further inform policymakers of how to transform the
UK’s energy systems over time to achieve different low-carbon futures
with various technological landscapes. Hierarchical clustering algo-
rithm is also used to compare its results with the ones obtained from the
BN-based method. In addition, k-means clustering algorithm is applied
to determine representative scenarios in terms of technology portfolios
in 2050 and gain insights into the influential technologies in the energy
transition.

The rest of the paper is organized as follows: Section 2 presents the
methodology of the study and the analysed ensemble of scenarios.
Section 3 provides the results and discusses various aspects of the tem-
poral evolution of technologies. Finally, section 4 provides insights into
the energy transition pathways for policymakers and suggests directions
for future research works.

2. Methodology

An ensemble of decarbonisation pathways for the UK to reach 80%
reduction in GHG emissions by 2050 was adopted in this study. Only
technological metrics in 2030, 2040, and 2050 were taken into account
for simplification. BNs were then built to reveal the probabilistic re-
lationships between technologies in two periods, between 2030 and
2040 and 2040 and 2050, based on the dataset. A weighted importance
analysis procedure identified the influential technologies in different
periods based on the built BNs. The BNs were further applied to inves-
tigate technological transition over two periods for five representative
low-carbon scenarios with various technological combinations in 2050,
identified by clustering analysis. The methodologies applied are
explained in the following sections.

2.1. Bayesian networks

A BN is a directed acyclic graphical (DAG) (i.e. without directed
cycles) model, representing the joint probability distribution of a set of
random variables by making conditional independent (CI) assumptions
(Bassamzadeh and Ghanem, 2017; Murphy, 2012). In the DAG, nodes

represent random variables and directed links denote conditional
probability distributions between random variables (nodes), linking
parent nodes (on which the distribution is conditioned) to child nodes.
The links can be interpreted as probabilistic relationships. For instance,
in a DAG representing p(c|a,b), there will be two links from nodes a and b
to c (Murphy, 2012).

In the most general term, a joint probability distribution over n
variables can be presented using the product rule of probability as
follows.

p(x1, …, xn) = p(x1)p(x2|x1)p(x3|x1, x2)…p(xn|x1, …, xn−1) (1)

This implies that each random variable has relationship with all the
other variables. For a large set of variables, the joint probability becomes
too complicated to be evaluated efficiently. Therefore, assumptions
about conditional independence between variables can be made to
simplify the formulation. Topological ordering can then be constructed
from any DAG, ordering parent nodes to come before child nodes. Or-
dered Markov Property further assumes that a node only depends on its
immediate parents, not on all predecessors in the ordering. A DAG can
then be presented in a factorised expression.

p(x1, …, xn) =
∏n

i=1
p(xi|pa(xi)) (2)

where p(xi|pa(xi)) is a conditional probability distribution (CPD); pa(xi)
is the collection of parent nodes to node xi. Equation (2) only holds if the
conditional independence (CI) assumptions encoded in the associated
DAG are correct. With the CI assumptions, a DAG model can have much
fewer parameters than those required by a model without CI assump-
tions (Bishop and Nasrabadi, 2006; Murphy, 2012).

2.2. Structure learning

Potentially, there is unmanageable number of possible structures of
BNs. It is an almost impossible task to find the global optimal structure of
BNs to represent the joint probability distribution over a large set of
random variables. Learning BN structure is thus regarded as NP-hard (i.
e. extremely difficult to solve) (Chickering et al., 2004). Heuristic al-
gorithms are frequently applied to search for the best factorisation of the
joint distribution based on a goodness-of-fit score, such as Bayesian In-
formation Criterion (BIC) (Murphy, 2012). BIC, a popular log-likelihood
function that can be used for model selection, is adopted to evaluate how
the considered structures fit to the decarbonisation pathway dataset. BIC
can be expressed as follows (Barthelmes et al., 2017).

BIC =
∑n

i=1
log p

(
xi

⃒
⃒
⃒
∏
xi

)
−
d
2

log n (3)

where d is the number of variables included in the model; n is the sample
size. The first term is the log-likelihood the fitness to the target joint
probability distribution based on the samples, given a network structure
under consideration. The latter term penalises overfitting to avoid
including too many irrelevant variables just to have a better fit to the
samples.

Hill-climbing algorithm, a heuristic searching algorithm, is then
applied to greedily search for a better network structure to factorise the
joint probability distribution by altering the structures in each iteration.
The algorithm starts with an empty or randomly generated network. A
directed link is then added, deleted, or reversed as long as the action
would not lead to a cyclic network and the BIC score of the new network
increases. The restructuring of the network continues until the algorithm
reaches a network with the maximum BIC score and cannot further
improve the score. The final network is regarded as an ideal choice of
network structure for the presentation of the joint probability distribu-
tion of the samples. It is worth noting that the global optimal structure is
not guaranteed to be found with the greedy algorithm as the search
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procedure is likely to stop at a local optimum network structure (Mur-
phy, 2012; Scutari, 2009).

To avoid the searching of the BN structure being trapped in a poor
local optimum, the search procedure was restarted 400 times with
random initial structures, on each of which 5 attempts were made to
randomly insert/remove/reverse a link to learn BN structures in this
study (Scutari, 2009).

Moreover, only links from technologies in the previous year to those
in the next year are considered in candidate structures to represent the
influences of deployment of technologies in the earlier period on that in
the later period.

2.3. Parameter learning

With a known structure of BN, the parameters of the BN can be
learned from samples using Bayesian posterior estimation (Murphy,
2012). In this study, all technological metrics are discretized and
transformed into discrete variables with five levels, representing the
levels of deployments, for simplification. Therefore, the parameters of
nodes are conditional probability tables (CPTs) which tabulate
p(xi|pa(xi)). Each row in the table corresponds to a configuration of the
parent variables, which has a specific probability distribution. Each
entry in the table can be denoted by θijk = p(Xi = k|pa(Xi) = j), repre-
senting the probability that node i is in state k, given that its parent
nodes are in state j. To simplify the parameter estimation, parameters
associated with each node in the BN can be computed independently (i.
e. global independence). Moreover, each row of the CPT table for each
node can be determined independent of other rows (i.e. local indepen-
dence). The probability distribution of each row can be represented by
Dirichlet prior. Then we can compute the posterior distribution, which is
also a Dirichlet distribution, by adding the pseudo counts to the
empirical counts to estimate the parameters given the observed samples.
Eventually, the mean of the distribution can be estimated as follows.

θijk =
Nijk + αijk

∑
k
(
Nijk + αijk

) (4)

where αijk is the prior Dirichlet hyperparameter, known as the pseudo
counts. The pseudo count represents an analyst’s assumed number of
occurrences within an imaginary sample, depicting the case where node
i, set at state k, and its parent nodes at state j exist within the prior
distribution. With the pseudo counts, the zero-count problem caused by
the maximum likelihood estimation can be avoided (Bassamzadeh and
Ghanem, 2017; Murphy, 2012).

2.4. Weighted importance analysis

Mutual information between technology metrics was then evaluated
to determine the importance of individual technology metrics in terms of
the influences on the deployment of other technology metrics in the
same year or future years. The influences can be either positive or
negative. In information theory, mutual information is a measure that
shows the reduction in uncertainty of a variable Q after observing the
other variable F (Murphy, 2012). Unlike correlation coefficients, mutual
information can reflect both linear and non-linear relationships between
variables. It is thus a more general measure than correlation coefficients
to represent relationships between technology metrics. The uncertainty
of a variable Q can be represented by entropy, defined as follows.

H(Q) = −
∑

q
P(q)log2 P(q) (5)

where P(q) is the probability of variable Q in the state of q. The mutual
information (i.e. entropy reduction, MI) is calculated as the expected
reduction in mutual information of Q, a target variable, from a finding
for variable F, calculated as follows (Marcot, 2012).

MI = H(Q) − H(Q|F) =
∑

q

∑

f

P(q, f)log2[P(q, f)]

P(q)P(f) (6)

where H(Q) is the entropy of Q before any new findings, H(Q|F) is the
entropy of Q after new findings from variable F, and Q is measured in
information bits; q is the state of variable Q; f is the state of variable F
(Marcot, 2012; Marcot et al., 2006).

The weighted importance of a technology metric i, in turn, is defined
as the average of weighted mutual information between a technology
metric and other technology metrics in year t.

Ii,t =

∑
jVarj ×MIi,j

N
(7)

where Ii,t is the importance of a technology metric i in year t, which can
be the same year as the year the metric is in or a future year; j is a
technology metric in year t; N is the total number of technology metrics
in year t;MIi,j is the reduction in uncertainty of technology metric j after
technology metric i is observed; Varj is the variance of technology metric
j across pathways. As some technology metrics vary more widely across
pathways than the other technology metrics, policymakers should pay
more attention to those more uncertain metrics. Metrics’ variances are
thus incorporated in the determination of metric importance.

In this study, we used a R package bnlearn (Scutari, 2009) to
construct BNs to reflect probabilistic relationships between technologies
from decarbonisation pathway ensembles. The same package was also
applied to determine parameters of the Bayesian networks. Another R
package gRain (Højsgaard, 2012) was then adopted to evaluate the
importance of individual technologies in a single year and across years.
These two packages have been widely adopted in the past studies using
Bayesian networks (Barthelmes et al., 2017; Bassamzadeh and Ghanem,
2017; Song, Semakula, and Fullana-i-Palmer, 2018).

2.5. Ensemble of uncertain decarbonisation pathways

An ensemble of 600 decarbonisation pathways, achieving 80%
reduction in GHG emissions relative to 1990 levels by 2050, were taken
from a previous study (Pye et al., 2019) for demonstrating our approach.
The Energy System Modelling Environment model (ESME) (Heaton,
2014), a technology-rich whole energy systems model for the UK, was
used to generate these pathways using Monte Carlo sampling of uncer-
tain techno-economic parameters (Pye et al., 2015). ESME determines
the optimal portfolios of technologies in all sectors of the UK energy
system to provide sufficient services to meet the demands, with mini-
mum cumulative discounted total energy system costs until 2050, using
linear programming. All pathways satisfy the targets of 53% reduction in
GHG emissions by 2030 and 80% by 2050. In the Monte Carlo sampling,
not only the uncertainties of technology costs and resource costs were
taken into account, but also the uncertainties related to technology build
rates and resource availability, such as the maximum potential of
biomass produced sustainably in the UK or via import from the inter-
national market. Low variances of parameters were set for mature
technologies, while high variances of parameters were applied to
emerging technologies, as uncertainties for those technologies are
greater. Probability functions were constructed to represent the uncer-
tainty of the considered parameters using triangular distributions (Pye
et al., 2019). For each simulation, values were sampled for 2050 and
determined for the intermediate years (prior to 2050) based on inter-
polation back to the base year (2010) value, following a linear trajectory
between 2010 and 2050. Distributions were mostly assumed to be in-
dependent, but correlations were considered for some that can clearly be
assumed to move together (e.g. a light-duty electric vehicle and an
electric car). For more details regarding pathway generation under
techno-economic uncertainties, please refer to Pye et al. (2019),
including its appendix A1 for the parametrization.
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Consequently, some of the relationships seen in the results are likely
to be emphasised by the correlations that have been assumed. This is
also the case for the deployment of a given technology across time, as
our sampling approach means that there is an inbuilt technology specific
path-dependency. As the parameter values for 2030 and 2040 depend
directly on the values of 2050, results for a given technology across time
are more likely to correlate than they would without this assumption.
This sampling assumption has less impact on cross-technology com-
parison connections, however. Nonetheless, in reality, technology costs
are likely to be more interlinked than what our correlations capture due
to shared components (e.g. (Moglianesi et al., 2023)), similar engi-
neering tasks, and general technological developments.

3. Results and discussion

3.1. Bayesian networks

The constructed BNs are shown in Appendix C, fi gures C.1 and C.2.
As the networks are complex and include much probabilistic informa-
tion, we have extracted data from the BNs to highlight the strong

relationships between the metrics and construct a topology for the two
networks. These “Technology transition networks” for the two periods
(i.e. 2030-2040 and 2040–2050) are illustrated in Figs. 1 and 2,
respectively, showing also the variance of, and correlations between, the
metrics. The definition of technological metrics can be found in Ap-
pendix A. The variance and average values of technology metrics in
2030 and 2050 and the distribution of metric levels for each technology
in the two BNs can be found in Appendix B and Appendix C respectively.
In both figures, a small group of transport technologies is separated from
the rest of the network as no strong correlations between two technology
groups can be found without decreasing the likelihood of the network to
the pathway ensemble. A Technology Transition Network considering
all technology metrics in all three years, 2030, 2040, and 2050, is not
presented here since only a very limited number of probabilistic re-
lationships exist in the BN, as the relationships wane dramatically across
years.

As shown in Figs. 1 and 2, technology metrics in 2050 seem to have
stronger connections with those in 2040 than the connections between
metrics in 2040 and 2030, as there are more thick links between 2040
and 2050 than between 2030 and 2040. In other words, the deployment

Fig. 1. Technological transition network for the transition between 2030 and 2040. Red arrows indicate a positive correlation between technologies; blue arrows
indicate a negative correlation between technologies. Thicker links mean the correlations are stronger; the greyscale of nodes represents the scale of variances of
technology metrics, with darker colour indicating a higher variance. The node text colours reflect different sectors. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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of technologies in 2050 is more likely to be influenced by technology
combinations in 2040. However, technology combinations in 2030
might have lower influences on the deployment of technologies in 2040.
This might imply that technological transition could be more uncertain
and inconsistent across pathways in the period between 2030 and 2040,
when there are still many overall strategies available for the mitigation,
before 2050 decarbonisation targets and the impact of the common
starting point for the optimization also features in the results. During the
period between 2040 and 2050 results reflect more strongly the optimal
trajectory with the given parameter set, with the flexibility for different,
feasible technology portfolios further restricted by the stringency of the
decarbonisation targets. This leads to the technology interdependency
and substitution becoming more evident, and the correlations between
technologies, in turn, are amplified.

3.1.1. Associations with correlations
The constructed BNs majorly represent strong positive and negative

correlations between technology metrics that can maintain a high like-
lihood to the original pathway ensemble based on BIC. As shown in
Figure D. 1 in Appendix D, strong positive correlations can usually be
found between the same metrics in nearby two years. For instance,
nuclear powers (ELC-NUC), district heating (BLD-DH), and oil vehicles
(TCAR-OIL) fall in this category (see F igure D.1). Different metrics in
the same year might still have strong correlations due to technology
interdependency or substitution. For example, in 2030, hydrogen stor-
age (STR-H2) increases as nuclear power (ELC-NUC) increases. The
same positive correlation is also found between electricity consumption
in the building sector (BLD-ELC) and energy storage in the same sector
(STR-BLD) in 2040. In contrast, electricity consumption (BLD-ELC) and
gas consumption (BLD-GAS) in the building sector have a strong nega-
tive correlation in 2030. The strong positive correlation between energy
storage for district heating in two years has also been reflected with a
route from 2030_STR-DH to 2040_STR-DH through 2030_BLD-DH and
2040_BLD-DH. These correlations are also represented as directed links
in the Technology Transition Network for metrics in 2030 and 2040 in
Fig. 1.

3.1.2. Comparisons with a clustering analysis-based approach
As BNs can represent both positive and negative correlations be-

tween metrics, the BN-based approach is hence superior to a clustering
algorithm-based approach in terms of revealing the hidden technolog-
ical correlations in uncertain pathways. According to a previous study

(Pye et al., 2019), the hierarchical clustering algorithm can group
positively correlated technology metrics together based on correlation
coefficients between metrics. The same approach was applied to group
technology metrics for two periods (between 2030 and 2040 and be-
tween 2040 and 2050) for comparisons. Unlike the previous study,
technology metrics in multiple years were considered together for
groupings. The results are illustrated in Figure E. 1 and Figure E. 2 in
Appendix E. The dissimilarity indicates the correlation between metrics
and is defined as one minus correlation coefficient between metrics.
Lower dissimilarity means there is a stronger positive correlation be-
tween metrics. Similar to the built BNs, those with strong positive cor-
relations, such as electric vehicles (TCAR-ELC) in 2040 and 2050 and oil
vehicles (TCAR-OIL) in 2040 and 2050, as shown in Figure E. 2. How-
ever, the negative correlations between TCAR-ELC and TCAR-OIL are
explicitly represented only in the BN, as shown in Fig. 2, but not in the
dendrogram created by the clustering algorithm, as illustrated in
Figure E. 2. Thus, the results suggest that, unlike clustering, BNs can
effectively represent both positive and negative correlations between
metrics in a visual way that shows the dynamics of technology transition
across years, hidden in the extremely complicated pathway dataset.

3.1.3. Transport sector
Technology metrics in the transport sectors are more likely to be

independent of the rest of the systems as those metrics are separated
from the rest of the networks. This might imply that the correlations
between the transport metrics and those in the other sectors might not
be strong enough or are not consistent across interconnected transport
metrics. As a result, those correlations are discarded from the BNs.

In the first period (2030–2040), the deployment of electric vehicles,
including passenger (TCAR-ELC) and light good vehicles (TLGV-ELC),
can be considered independently as the electricity consumption might
remain limited, compared to electricity consumption in the other sec-
tors. Moreover, GHG budgets are still substantial enough to allow the
introduction of new oil-powered vehicles. The substitutional relation-
ship between electric and oil vehicles, however, is evident. The higher
market share of electric vehicles (2030_TCAR-ELC and 2030_TLGV-ELC)
in 2030 will lead to a higher uptake of electric vehicles (2040_TCAR-ELC
and 2040_TLGV-ELC) and a lower share of oil vehicles (2040_TCAR-OIL
and 2040_TLGV-OIL) in 2040, as shown in Fig. 1.

As for the second period (2040–2050), with stringent GHG budgets,
the increase in new oil vehicles (e.g. TCAR-OIL) can only be possible if
bioenergy with CCS (BECCS) metrics (H2-BCCS) ramp up, as shown in

Fig. 2. Technological transition network for the transition between 2040 and 2050. Red arrows indicate a positive correlation between technologies; blue arrows
indicate a negative correlation between technologies. Thicker links mean the correlations are stronger. The greyscale of nodes represents the scale of variances of
technology metrics, with darker colour indicating a higher variance. The node text colours reflect different sectors. (For interpretation of the references to colour in
this figure legend, the reader is referred to the Web version of this article.)
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Fig. 2. The correlations between transport metrics and the other metrics
become stronger, which means that the technology portfolios in the
transport sector should be considered along with technologies in the
other sectors. The technological transition dynamic of these metrics over
time is basically the same as that in the previous period. On the other
hand, the development of hydrogen vehicles (e.g. TCAR-H2) has less
correlation with the other sectors and is majorly determined by the
adoption of hydrogen production by gas (SMR) with CCS (H2-GCCS).

3.1.4. Building sector
Building metrics (e.g. BLD-ELC and BLD-GAS) show obvious substi-

tutional relationships between one another in the same years, but only
the technological transition of district heating (BLD-DH) is clear over
time in both periods.

For instance, as shown in Fig. 1, bioenergy consumption (2030_BLD-
BIO) has a strong negative correlation with gas consumption (2030_BLD-
GAS) in the building sector in 2030. However, there is no strong direct
link between 2030_BLD-GAS and 2040_BLD-GAS, which implies that the
technological transition of these metrics over time is not obvious. The
development of these technologies should be based on the technology
portfolios in the other sectors in the same year. Similar dynamics for the
building metrics have also been found in the second period, as shown in
Fig. 2. District heating (BLD-DH) and electrification (BLD-ELC) can be
applied to replace gas consumption (BLD-GAS) in the building sector in
2040, while, in 2050, the substitutional relationship can be found be-
tween BLD-ELC and BLD-DH. District heating shows a clear technolog-
ical transition over time in the second period again, as 2040_BLD-DH
and 2050_BLD-DH are directly connected.

The strong technological transition of district heating over time in
both periods means that the development of district heating should be
persistent to scale up once it is adopted to decarbonise the building
sector. Otherwise, the investments in the infrastructure could dramati-
cally increase the total energy system costs as the economy of scale
might not be achieved for the heating sector and the district heating
system might not be able to be operated cost-effectively.

3.1.5. Power sector
The strong technological transition over two periods can also be

observed in the power sector. A high deployment of nuclear power (ELC-
NUC) in 2030 likely leads to high shares of nuclear power in both 2040
and 2050, as suggested by the red links between the same technologies
in two years. The positive correlation is stronger in the later period
(2040–2050) than in the earlier period (2030–2040). This might imply
that nuclear power should keep ramping up to decarbonise the power
sector as nuclear power is relatively cost-effective in the model. The
constant deployment of nuclear power can even further bring down the
capital costs of nuclear power due to the accumulation of experienced
manpower and the establishment of supply chains.

However, the substitutional relationship is not evident in the power
sector. The only exception is the negative correlation between nuclear
power (ELC-NUC) and electricity generation with CCS (ELC-CCS) in
2050. As both technologies are capital-intensive, this might suggest that
these two low-carbon power technologies compete for limited resources
to scale up.

Finally, the power sector also shows strong interactions with other
sectors. For instance, in 2040, as the electrification level in the building
sector (BLD-ELC) increases, renewable energy metrics (i.e. ELC-WND
and ELC-ORD) are also more likely to increase to provide additional
electricity to meet the increased demand, as shown in Fig. 1. There are
two negative links connecting 2040_BLD-ELC and 2040_ELC-ORD,
meaning the two metrics have a positive correlation. Similar relation-
ships can also be found in the later period, as shown in Fig. 2.

Furthermore, the demand profile in the building sector (BLD-ELC)
might be similar to the supply curve of wind power (ELC-WND). The
need for storage technologies (STR-ELC), in turn, decreases as BLD-ELC
increases. Moreover, the BNs also suggest that energy storage in the

building sector (STR-BLD) could be a more cost-effective measure to
balance electricity supply and demand than STR-ELC does, as indicated
by the blue link between STR-BLD and STR-ELC in both figures.

3.2. Representative scenarios in 2050

Representative scenarios in terms of technology portfolios in 2050
are identified with the k-means clustering algorithm to demonstrate how
the built BNs can facilitate policymakers to determine transition stra-
tegies to implement ambitious technology mixes which will be discussed
in Section 3.4.

The k-means clustering algorithm has been found to perform well in
determining representative decarbonisation scenarios from a pathway
ensemble (Li et al., 2020). This is because long-term decarbonisation
pathways are likely to be closely distributed around certain areas in a
high-dimensional feature space. The k-means algorithm is thus a suit-
able procedure to group similar pathways into clusters based on
dissimilarity between pathways. The average pathways of the identified
clusters can then be regarded as representative ones. More details of the
approach can be found in the previous study (Li et al., 2020). The same
approach was adopted to discover five representative scenarios in 2050
from the pathway ensemble. These scenarios are shown in Table 1. The
plus sign indicates a higher level of the corresponding metric than the
average deployment level. The minus sign represents the opposite. A
higher number of signs means a stronger deviation of the metric from the
mean level. The choice of a proper number of clusters and the deviations
of metrics for five identified scenarios can be found in Appendix F. The
characteristics of the five scenarios are briefly introduced as follows.

The first scenario (high BECCS) produces more hydrogen by BECCS
technologies which create net negative emissions that allow the
deployment of more oil vehicles by 2050. In this scenario, the building
sector is decarbonised with more district heating. As CCS technologies
might be cost-effective, more electricity is generated by power plants
with CCS to replace some wind power generation.

The second scenario (high electrification) deeply electrifies the en-
ergy system to reduce total GHG emissions, especially in the building
and transport sectors. More electric appliances are used to replace fossil-
fuel powered appliances to decarbonise the building sector. Further-
more, abundant oil vehicles are replaced with electric vehicles to avoid
GHG emissions from oil vehicles. The increased electricity consumption
is then met with more low-carbon electricity generated by wind power
and power plants with CCS.

As for the third scenario (CCS-central), CCS-fitted technologies are
adopted more widely across sectors probably due to the low costs of CCS
in this scenario. A high share of electricity is supplied by CCS-fitted
power plants, which replace other kinds of plants, such as nuclear and
wind power. Furthermore, more hydrogen is produced by BECCS as it
could be cheaper in this case. In turn, more oil vehicles remain in the
market by 2050.

In the fourth scenario (high hydrogen and electrification), abundant
hydrogen is produced with a wide range of production technologies. The
higher production of hydrogen enables hydrogen-fuelled technologies in
different sectors. More hydrogen is not only used to power more
hydrogen vehicles in the transport sector, but also is used in the widely
adopted district heating. More low-carbon electricity is generated to
meet the increased demand from a higher share of electric vehicles.
Specifically, more nuclear power is adopted while less CCS-fitted power
plants are in operation.

Finally, the fifth scenario (low CCS) might assume higher costs of
CCS so that lower CCS-fitted technologies are adopted. In the power
sector, much less electricity is generated by CCS-fitted power plants;
other low-carbon power plants are thus adopted to produce more elec-
tricity. More light good vehicles can then be powered by the surplus low-
carbon electricity in this scenario.
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3.3. Uncertain technological transitions

The BNs then estimated the probability distribution of metrics in the
prior years (2030 and 2040) based on the probabilistic relationships
between metrics established in the networks, given the identified tech-
nological portfolios in the five scenarios. The uncertain metrics in 2040
were firstly evaluated with the BN for the later period (2040–2050), as
shown in Fig. 2 and Figure C2. The BN for the first period (2030–2040)
(Fig. 1 and Figure C1), in turn, determined the probability distribution of
metric levels in 2030 using those estimated uncertain metrics in 2040. A
BN library, pyAgrum (AGrUM/pyAgrum Team, 2023), was adopted to
conduct the inference for 2030 metrics based on the estimated proba-
bilistic evidence of 2040 metrics. For the sake of visualisation, only the
most probable metric levels in previous years (2030 and 2040) for five
scenarios are presented in Figs. 3–7. The number of stacked circles
shows the level of a metric. As all metrics are transformed into discrete
variables with five levels based on the distribution of original metric
values (see Section 2.3), metric levels are not comparable across metrics.
Empty cells in the figures are for those metrics with no clear probabi-
listic relationships with other metrics in the BNs. The colour scale of
circles represents the certainty of the presented metric levels. A darker

colour suggests the corresponding metric level has a higher certainty,
with a narrower probability distribution of metric levels, i.e. the vari-
ance of the determined probabilistic distribution, given known tech-
nology choices, is used to represent the uncertainty of the adoption of a
specific technology in individual pathway prototypes. Metrics in 2050
are given and hence marked in the darkest colour.

Clearly, metric levels in 2050 are influenced by the status of other
metrics in the same year, as suggested by the probabilistic relationships
between metrics in Fig. 2. For instance, nuclear power (ELC-NUC) is
much lower as CCS-fitted power plants (ELC-CCS) generate more elec-
tricity, as shown in Fig. 5. The opposite can be found in scenario four
(Fig. 6). Similar substitutional relationships between electric and oil
vehicles in the transport sector and between district heating and elec-
trification in the building sector can be observed across all five
scenarios.

The BNs further reveal intertemporal transitions, following the cross-
year probabilistic relationships represented in Figs. 1 and 2. There are
two types of transitions: (1) temporally persistent transition and (2)
temporally versatile transition. The former includes technologies that
have long lifetimes and require heavy investments in facilitating infra-
structure, such as nuclear power plants (ELC-NUC) and district heating

Table 1
Deviation level of metrics in 2050 for five representative scenarios from the corresponding mean metrics in 2050 of all scenarios. DH: district heating; ELC: electricity;
GAS: gas; NUC: nuclear; ORE: other renewable energy; WND: wind; H2: hydrogen; BCCS: bioenergy + CCS; CCCS: coal + CCS; GCCS: gas + CCS; AV: aviation; CAR:
passenger car; HGV: heavy-good vehicle; LGV: light-good vehicle; +/−: positive/negative variation less than 5 TWh; ++/−: positive/negative variation about 10 TWh;
+++/−: positive/negative variation about or more than 15 TWh.

Sector Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5

Building DH ++ – +++ –
ELC + + –

Electricity CCS ++ ++ +++ – –
NUC – – +++ ++

ORE – + +

WND – + – ++ ++

Hydrogen BCCS + – + –
CCCS – + – ++ +

GCCS ++

Transport AV GAS
OIL –

CAR ELC – ++ – +

H2 – ++ +

OIL ++ – ++ –

HGV GAS
OIL

LGV ELC + +

H2 +

OIL + – –

Fig. 3. Uncertain technological transition for scenario 1 (high BECCS). The number of stacked circles shows the discretized level of deployment (1–5). Darker colours
represent higher certainty (lower variance). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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(BLD-DH). Levels of these technological metrics are usually consistent
over time, which means that early actions are essential to reach high
market shares for these technologies. For instance, in Fig. 6, nuclear
power is constantly at a higher level across all three milestone years,
compared with those in other scenarios. Similarly, a high deployment of
district heating at an early stage is essential for a high share of district
heating in the residential heating sector by 2050, as shown in Fig. 6. The
temporal persistency of these technologies is due to the direct

probabilistic relationships of the same technologies between different
years in the BNs (Figs. 1 and 2).

On the other hand, when a technology has a shorter lifetime without
strict deployment requirements, it is more probable to ramp up the
technology deployment to replace carbon-intensive alternatives in a
relatively short period of time. Consequently, metric levels of these
technologies are more versatile across three milestone years, which
means a high share of a technology in 2050 does not suggest the

Fig. 4. Uncertain technological transition for scenario 2 (high electrification). The number of stacked circles shows the discretized level of deployment (1–5). Darker
colours represent higher certainty (lower variance). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 5. Uncertain technological transition for scenario 3 (CCS-central). The number of stacked circles shows the discretized level of deployment (1–5). Darker colours
represent higher certainty (lower variance). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)

Fig. 6. Uncertain technological transition for scenario 4 (high hydrogen and electrification). The number of stacked circles shows the discretized level of deployment
(1–5). Darker colours represent higher certainty (lower variance). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web
version of this article.)
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technology should also be deployed at a high level in the prior years.
There are many technologies falling into this category, such as wind
power (ELC-WND) and building electrification (BLD-ELC). Cross-year
connections are weak or even absent for these technologies in the BNs
(Figs. 1 and 2). Hence, no clear level of the metrics is presented in 2030
in Figs. 3–7, suggesting that early actions are not essential for these
technologies.

Furthermore, the strengthening of GHG emission targets also drives
the energy system transitions in terms of technology replacements
during the two decades before 2050. This is particularly evident in the
transport sector. Low-carbon vehicles (e.g. electric and hydrogen vehi-
cles, denoted as TCAR-ELC, TCAR-H2, TLGV-ELC, and TLGV-H2) are
scaling-up over time while oil vehicles (e.g. TCAR-OIL) are phasing out.
Positive correlations of these technologies across years in the BNs
explicitly represent these trajectories. It is noteworthy that the cross-
year correlation for hydrogen vehicles only exist in the BN for the
later period (2040–2050) since those vehicles are unlikely to be adopted
at scale at the early stage due to their relatively high prices. However,
when oil vehicles remain at a high level in 2050, it is not sufficient to
offset the GHG emissions by simply deploying more low-carbon vehicles,
as shown in Figs. 3 and 5. Introducing more BECCS technologies
(hydrogen production by BECCS, denoted as H2-BCCS) from the prior
year (2040) becomes critical, indicated by higher metric levels in both
2040 and 2050. This intertemporal relationship can be found in Fig. 2.
Oil vehicles in 2050 (2050_TCAR-OIL) has a positive correlation with
hydrogen production by BECCS in 2040 (2040_H2-BCCS), which in turn
directly influences the deployment of hydrogen production by BECCS in
2050 (2050_H2-BCCS).

Finally, across all five scenarios, fossil fuel power plants with CCS
(ELC-CCS) and hydrogen production with coal gasification with CCS
(H2-CCCS) in 2030 all remain at a high level, with a relatively high
certainty, marked in a dark colour. This implies that these CCS-fitted
technologies are likely to be essential measures to reduce GHG emis-
sions at the early stage while other low-carbon technologies are still too
costly to deploy at scale or their facilitating infrastructure is not in place
yet. Interestingly, metric levels of these technologies are lower in the
later years due to the strengthened reduction targets since operating
these technologies still emits GHGs.

Nonetheless, technological transitions remain highly uncertain,
given many metrics marked in a light colour in Figs. 3–7. This is because
the uncertainty of metric levels is amplified while propagating towards
the prior years in the BNs. The high uncertainty of technological tran-
sition might be due to two reasons. Firstly, there are multiple strategies
to substitute carbon-intensive technologies over time. As a result, the
transition of low-carbon technologies is not always in one single direc-
tion. This is in line with the fact that metrics can be influenced by other
metrics both in the same year and those in different years. Secondly, the

installation rate of low-carbon technologies might be high enough to
ramp up the deployment of specific technologies in a relatively short
period of time. The influences of metric levels are therefore not persis-
tent across years.

3.4. Influential technologies in energy system transitions

Uncertainty of technological transitions can be reduced once policy
targets of individual technologies are set. In other words, a specific
decarbonisation scenario becomes more feasible in order to reach deep
decarbonisation targets, given known deployment levels of individual
technologies. However, due to the probabilistic relationships between
technologies, individual technology metrics have various system-wide
influences on the technology mixes. Policymakers should, hence, pay
more attention to highly influential technologies so that they can have a
clear idea about how to transform the system.

In this study, we used weighted importance (defined in Section 2.4)
to determine the system-wide influences of individual technologies, as
shown in Figs. 8 and 9. Basically, a technology metric has high system-
wide influences if it is highly uncertain and has strong probabilistic
relationships with other metrics with high uncertainties across path-
ways. Overall, technology metrics are majorly influenced by other
metrics in the same year. Even though in fewer cases, evident influences
from the prior years can still be found.

In the period between 2030 and 2040 (Fig. 8), technology metrics in
the building and the power sectors have stronger impacts on the system
transitions than the other sectors. The extremely high importance of the
building sector is majorly due to two reasons: (1) multiple heating
measures are still feasible, with relatively relaxed carbon limitations
imposed, and hence the deployment of heating technologies is highly
uncertain; (2) cross-sectoral technologies should be substituted in
response to heating technologies adopted in the building sector. As
suggested in Fig. 1 and Figure G. 1 in Appendix G, the increase in
electricity demand in the building sector (2040_BLD-ELC) forces the
significant adoption of wind power and lowers demands for hydrogen
and gas in the building sector.

On the other hand, district heating and nuclear power are regarded
as important due to their inter-temporal influences on the transitions, as
shown in Fig. 1 and Figure G. 2. The higher adoption of district heating
can reduce electricity demand; in turn, the demand profile becomes
more stable, and hence nuclear power can ramp up for electricity pro-
vision. Moreover, strong inter-temporal relationships further expand
these technologies’ influences because of their long construction period
and lifetime.

Unlike the previous period, in the later period between 2040 and
2050 (Fig. 9), the power sector is more influential to the system tran-
sitions. This is due to a sharp increase in electricity demand for high

Fig. 7. Uncertain technological transition for scenario 5 (low CCS). The number of stacked circles shows the discretized level of deployment (1–5). Darker colours
represent higher certainty (lower variance). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of
this article.)
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electrification levels across all sectors approaching 2050, along with
substitutional technologies for low-carbon electricity provision, such as
CCS-fitted, nuclear, and wind power plants.

In the building sector, only district heating remains highly influential
as its long lifetime further propagates the uncertainty of district heating

from the prior period to the later period. Eventually, its strong proba-
bilistic relationships with technologies in other sectors (Figure G. 4) lead
to significant impacts on the system transitions.

Finally, the importance of oil and electric vehicles (TCAR-OIL and
TCAR-ELC) is more observable than in the previous period. Higher

Fig. 8. Weighted importance of metrics in 2030 and 2040 in terms of the reduction in weighted uncertainty of metrics in 2040. The colours of bars represent different
sectors. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

Fig. 9. Weighted importance of metrics in 2040 and 2050 in terms of the reduction in weighted uncertainty of metrics in 2050. The colours of bars represent different
sectors. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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transport demand in the later period increases the influences of vehicle
technology choices on other sectors, as illustrated in Fig. 2. Additionally,
the replacement of oil vehicles remains highly uncertain since residual
emissions from the transport sector can be offset by negative emissions
technologies, such as hydrogen production by BECCS (H2-BCCS),
whenever necessary. These two technology metrics hence also require
more attention. For more detailed explanations on the importance of
technology metrics, please refer to Appendix G.

4. Conclusion and policy implications

The proposed BN-based approach has been shown to be able to
reflect strong correlation relationships between technologies hidden in
uncertain pathway ensembles. Those relationships are represented in
graphical networks that visualise complicated technology entangle-
ments across sectors and years intuitively. Unlike other approaches,
such as clustering algorithms, not only is technology interdependency
(positive correlation) captured, but also technology substitution (nega-
tive correlation) can be represented in a single statistical structure.
Moreover, technology deployments in different years can be taken into
account within the same framework, without distorting major technol-
ogy correlations in an energy system. This approach is thus, to our
knowledge, the first framework that can successfully reveal temporal
technology transitions under uncertain decarbonisation pathways. With
the embedded joint probability distributions at metric points, the con-
structed BNs can be further applied to estimate probable impacts of
specific technological deployment strategies dynamically. Especially,
highly influential technologies to the technology portfolios can be
determined based on the expected reduction in mutual information
between metrics using the statistical information in BNs. This analysis
approach hence provides a systematic way to investigate dynamic re-
lationships between technologies in uncertain pathways, to facilitate
energy system planning and related policymaking.

Nonetheless, the BN-based approach does not replace other
advanced data analytics measures, such as clustering-based approaches,
in assessing a large ensemble of scenarios. Instead, multiple approaches
can be applied in parallel to have a more comprehensive view on the
technological dynamics across the complex uncertainty space in which
the pathways exist. For instance, as shown in this study, the k-means
algorithm can identify a limited number of representative technological
scenarios from a larger scenario ensemble, to enhance the understanding
of the technology correlations.

Beyond the methodology, several insights relevant to the UK policy
have also been found from this study. First, attention should be paid to
the technology transition in the building sector at an early stage as the
majority of the building stock is still fitted with carbon-intensive facil-
ities. Compared with other sectors, it is more cost-effective to decar-
bonise the building sector, and thus consumers’ participation plays a
particularly critical role in the transition (Li et al., 2018). Moreover, the
increase in electrification of the building sector could lead to major
adjustments across sectors, such as an increase in wind power produc-
tion and a reduction in hydrogen production via BECCS. Finally, the
decarbonisation of the buildings sector relies heavily on replacing gas
with district heating and electricity, but as the former is slow to diffuse,
the lack of early district heat diffusion would suggest that it may be
better to focus on directly electrifying the sector instead.

Second, close attention should also be paid to the power sector and
related electrification of end-use demands, as the power sector was, next
to the buildings sector, identified as particularly influential for defining
the transition. It appears likely, based on our analysis, that low-carbon
power plant capacity should, towards mid-century, be dramatically
ramped up to meet the sharp increase in electricity consumption
following the high level of electrification across sectors. However, the
decarbonisation strategy for the power sector is to be determined, as
nuclear power and CCS-fitted power plants can crowd each other out
and fluctuate widely across pathways. Based on the analysis,

policymakers may want to consider focusing R&D and other support
activities to one of the two, but not necessarily both. With that said,
there is more room for the “let all flowers bloom” approach in the power
sector than in some other sectors, according to our analysis, at least for
cases in which electrification of the full system is extensive. Conversely,
policymakers can facilitate electrification of the building sector with
higher deployment of wind power, as the supply profile of wind power
may be similar to the demand profile of the building sector. For energy
storage, there is a substitutional relationship between building-level
energy storage for heat and that of stand-alone electricity storage
technologies, such as lithium-ion batteries. In our analysis the former
tends to be the better option, at least in the cases in which the buildings
sector is heavily electrified. This suggests that cost-effective storage
solutions may be closely linked to choices made for buildings’ heating
systems and policymakers should thus closely monitor the developments
there and coordinate their support efforts to exploit the synergies and
focus on the technologies that support each other.

Third, once policymakers decide, or not, on the deployment of dis-
trict heating to be a major measure to decarbonise the building sector,
the decision should be persistent over time. This is not only because its
deployment rate is relatively slow, but also because of its high impacts
across sectors. Furthermore, the scale-up of district heating can also
benefit from economies of scale, and bring down the costs of district
heating in the long run.

Finally, BECCS technology (hydrogen production by BECCS) has also
been found critical to offset GHG emissions from fossil-fuel powered
technologies, such as vehicles using oil products and gas consumption in
the building sector. Therefore, in the situation that the more carbon-
intensive technologies cannot be phased out quickly, policymakers
should opt for promoting BECCS technologies. Conversely, if the tech-
nology makes a breakthrough, this greatly reduces the pressure from
other mitigation measures, such as the speed with which cars need to be
electrified. The flexibility BECCS could offer to the system suggests that
the attention the technology has received so far is well deserved and the
R&D efforts should continue to be pursued.

The BN-based approach can, however, only reveal the technology
correlations embedded in pathway ensembles, which in turn are
generated by energy system models. The revealed technological re-
lationships are thus predetermined by the assumptions adopted in the
energy system models used. For instance, the temporal evolution of
technology deployment may be affected by the maximum installation
rates assumed in the model for the low-carbon technologies. Lower
deployment rates could lead to stronger temporal correlations since
reaching a specific level of technology deployment in the future would
require an earlier start for the transition. Moreover, this study adopted
the decarbonisation pathways using 80% reduction targets. In pathways
with net-zero emissions targets, technological transitions could be
further accelerated and the role of certain low-carbon technologies, such
as BECCS, might be strengthened. Consequently, the technology dy-
namics in those pathways could well be different from what we found in
this study, with less flexibility in choosing alternative mitigation stra-
tegies (Keppo and van der Zwaan, 2012). In the future, the same
approach should be applied to analyse uncertain pathways with
different climate targets, including net-zero emissions targets, to further
verify the findings of this study. Also, replicating the study using results
from a different energy system model would be important, to better
understand the implications of specific model structures for the
conclusions.

The developed BN-based approach can analyse any decarbonisation
pathway datasets generated by energy system models at multiple scales
(from subnational to global). The complicated interactions between
technologies hidden in the datasets are revealed and visualised with BNs
intuitively. Policymakers can then have a better understanding of the
influences of technology deployments across sectors and over time. Our
results from this initial implementation suggest that policymakers
should pay particular attention to the building sector (especially district
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heating and electrification), deployment of different power generation
technologies, and diffusion of electric vehicles to transform the system.
Systematic planning for low-carbon transitions can be incorporated into
the policy-making process more easily to avoid unexpected impacts from
promoting specific technologies.
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Appendix A. Definitions of technology metrics

Metric Definition Units

ELC-WND Wind generation level TWh
ELC-NUC Nuclear generation level TWh
ELC-CCS CCS generation level TWh
ELC-ORE Other renewable generation level TWh
ELC-FOS Fossil generation level TWh
BLD-BIO Building bioenergy consumption TWh
BLD-ELC Building electricity consumption TWh
BLD-GAS Building gas consumption TWh
BLD-OIL Building oil consumption TWh
BLD-DH Building district heating consumption TWh
BLD-SOL Building solar energy consumption TWh
H2-BCCS H2 production by biomass gasification with CCS TWh
H2-CCCS H2 production by coal gasification with CCS TWh
H2-ELC H2 production by electrolysis TWh
H2-GCCS H2 production by gas (SMR) with CCS TWh
H2-GAS H2 production by gas (SMR) TWh
IND-BIO Industry bioenergy consumption TWh
IND-COA Industry coal consumption TWh
IND-ELC Industry electricity consumption TWh
IND-GAS Industry gas consumption TWh
IND-H2 Industry hydrogen consumption TWh
IND-OIL Industry oil consumption TWh
TAS-GAS Aviation & shipping - gas TWh
TAS-OIL Aviation & shipping - oil TWh
TAS-BFL Aviation & shipping - biofuel TWh
TCAR-ELC Cars - electricity TWh
TCAR-GAS Cars - gas TWh
TCAR-H2 Cars - H2 TWh
TCAR-OIL Cars - oil TWh
TCAR-BFL Cars - biofuels TWh
THGV-ELC Heavy goods vehicles - electricity TWh
THGV-GAS Heavy goods vehicles - gas TWh
THGV-H2 Heavy goods vehicles - H2 TWh
THGV-OIL Heavy goods vehicles – oil TWh
THGV-BFL Heavy goods vehicles - biofuels TWh
TLGV-ELC Light goods vehicles - electricity TWh
TLGV-H2 Light goods vehicles - H2 TWh
TLGV-OIL Light goods vehicles - oil TWh
TLGV-BFL Light goods vehicles - biofuels TWh

Note: Technology metrics in a specific year are marked by the year in the front of the metric names.
For instance, 2050_ELC_WND means wind generation level in 2050.
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Appendix B. Variance and average values of technology metrics in 2030 and 2050

Appendix C. Bayesian networks with distribution of metric levels
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Fig. C. 1. Bayesian network for technology metrics in 2030 and 2040

Fig. C. 2. Bayesian network for technology metrics in 2040 and 2050
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Appendix D. Correlation matrix for technology metrics in different years

Fig. D. 1. Correlation between technology metrics in 2030 and 2040

Fig. D. 2. Correlation between technology metrics in 2040 and 2050

Appendix E. Technology interdependency across pathways identified by Hierarchical Clustering
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Fig. E. 1. Co-evolution of technologies in 2030 and 2040

Fig. E. 2. Co-evolution of technologies in 2040 and 2050
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Appendix F. Identification of representative scenarios in 2050 with K-means clustering algorithm

Fig. F. 1. Determination of a proper number of clusters with the elbow measure

Fig. F. 2. Deviations from the average metrics for five representative technology portfolios in 2050

Appendix G. Influential technologies in energy system transition

The built BNs not only visualise the correlations between technological metrics, but also provide a framework to quantitatively determine the
influences of individual metrics and to estimate possible distribution of metric states, given certain metrics being observed.

The proposed weighted importance analysis was applied to determine the importance of individual metrics in both periods (2030–2040 and
2040–2050) in terms of the reduction in weighted uncertainty of metrics as the corresponding metrics are given. A metric’s weighted uncertainty is
represented by its variance. The rankings of metrics by weighted importance index in both periods are illustrated in Figs. 8 and 9.

The results in Figs. 8 and 9 show that technology portfolios are majorly influenced by technology metrics in the same year, but significant impacts
of some technologies from a previous year can also be found. As shown in Fig. 8, in 2040, metrics in the building sector are more influential than those
in the other metrics, including electricity consumption (BLD-ELC), gas consumption (BLD-GAS), district heating (BLD-DH), and energy storage (STR-
BLD) in the building sector. The deployment of district heating (2030_BLD-DH) in 2030 also has a considerable impact on technology portfolios in
2040. These influential metrics majorly have high correlations with other highly uncertain metrics, as shown in Figure G. 1 and Figure G. 2. The
greyscale of nodes represents the reduction in weighted uncertainty of those nodes, given the observed metrics that are marked by red boundary.

As illustrated in Figure G. 1, influential technology metrics (e.g. BLD-ELC, BLD-GAS, and STR-BLD) are strongly interconnected in 2040; those
metrics are usually highly uncertain across decarbonisation pathways. Likewise, the deployment of wind power (ELC-WND) is obviously influenced by
the development of those technologies. On the other hand, as shown in Figure G. 2, the development of district heating in 2030 (2030_BLD-DH) can
directly affect the deployment of districting heating infrastructure in 2040 (e.g. 2040_BLD-DH and 2040_STR-DH), which are highly uncertain. A
higher share of district heating (2030_BLD-DH) might further imply that the demand profile of electricity is more stable so that low-carbon base-load
power technologies, such as nuclear power (2030_ELC-NUC and 2040_ELC-NUC), can be deployed to provide more electricity.

Therefore, at the early stage, policymakers should pay more attention to determining how to decarbonise the building sector since those metrics are
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more influential and uncertain across decarbonisation pathways. As the scale of district heating remains limited at this stage, the substitutional re-
lationships between district heating and other building metrics are thus not obvious. Nonetheless, the decarbonisation of the building sector can
already have evident influences on the power sector.

Fig. G. 1. Electrification of the building sector in 2040 (2040_BLD-ELC) is influential to many highly uncertain metrics in the same year (greyscale of nodes indicates
the reduction in uncertainty of individual metrics once 2040_BLD-ELC is known)

Fig. G. 2. District heating in 2030 (2030_BLD-DH) is influential to the uncertainty of some metrics in 2040 (greyscale of nodes indicates the reduction in uncertainty
of individual metrics once 2030_BLD-DH is known)

Even though building metrics are still more influential than the most of other metrics to technology portfolios in 2050, there are some clear
differences in the later period (2040–2050). Unlike the previous period, some power metrics (i.e. ELC-CCS and ELC-NUC) become the most influential
in the whole system. In addition, more metrics (e.g. BLD-GAS) in the previous year (2040) have higher influences on the technology developments in
2050.

The high influence of two power metrics (ELC-CCS and ELC-NUC) is due to their high variance across pathways, as shown in Fig. 2. Therefore, even
though the influences of these two metrics on other metrics are limited, as illustrated in Figure G. 3, the overall impacts of these two metrics are still
significant. Especially, these two metrics have a strong substitutional relationship. Wind power (ELC-WND) in 2050 also has significant impacts due to
its high variance and strong correlations with metrics in the previous year (2040). In turn, the changes to wind power in 2050 can thus also affect the
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deployment of other power technologies, such as 2050_ELC-ORE.
As for the significant influences of building technologies, those are due to their intrinsic high variances and strong cross-year correlations with

building metrics in the previous year, as shown in Figure G. 4. The observation of the district heating metric in 2050 (2050_BLD-DH) can not only
determine the state of the highly uncertain metric but can also further reduce the uncertainty of other metrics in 2050 via the strong correlations with
district heating (2040_BLD-DH) and gas consumption (2040_BLD-GAS) in the building sector in 2040. Consequently, the reduction in uncertainty of
the power sector (e.g. ELC-NUC and ELC-WND), transport sector (e.g. TCAR-ELC), and hydrogen production (e.g. H2-BCCS) can be observed, as
indicated in Figure G. 4.

Moreover, metrics in the previous year have also been found influential, such as district heating (2040_BLD-DH) and gas consumption (2040_BLD-
GAS) in the building sector. The influences of these metrics propagate through a similar route as the one just discussed above. Since the 2040_BLD-DH
has more direct impacts on the district heating in 2050, the importance of 2040_BLD-DH is thus higher than 2040_BLD-GAS.

Finally, transport metrics (e.g. 2050_TCAR-ELC) become more influential in this period than in the previous period. This is majorly due to the high
variance of vehicle-related metrics, including electric vehicles (TCAR-ELC) and oil vehicles (TCAR-OIL), and the strong correlations between them in
this period. The stringent GHG budgets force the transport sector should be deeply decarbonised by either one of two decarbonisation strategies (i.e.
electrification and oil vehicles with BECCS). The substitutional relationship has thus been significantly amplified.

Fig. G. 3. Power metrics in 2050 are extremely influential as they have the highest uncertainties across decarbonisation pathways (greyscale of nodes indicates the
reduction in uncertainty of individual metrics once 205_ELC-CCS is known)

Fig. G. 4. District heating in 2050 is influential to the 2050 technology portfolios via its significant correlations with technology metrics in 2040 (greyscale of nodes
indicates the reduction in uncertainty of individual metrics once 205_BLD-DH is known)

Hence, at the later stage, the developments of different technologies are more intertwined across sectors and years. More attention should be paid
to the deployment of different power technologies due to the limited budgets available to the power sector. Moreover, decarbonisation measures in the
building sector also have significant influences on technology portfolios in the transport sector. For instance, higher district heating might lead to less
BECCS for hydrogen production. In turn, higher electrification level of passenger cars should be achieved to reduce GHG emissions from the transport
sector by 2050. Furthermore, the increase in the electrification of the building sector requires more wind power to be deployed to balance the
electricity supply and demand.

Overall, BNs can explicitly indicate the most influential technologies to technology portfolios across decarbonisation pathways. The correlations
between deployments of technological metrics can be further revealed with the topology of BNs that can give policymakers clear ideas about which
technologies should be paid more attention to and how to substitute and supplement technologies.
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