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A B S T R A C T

Wire rope isolators are used in variety of applications to protect sensitive equipment from vibration. The
nonlinear hysteretic behavior of steel wires provides advantages when compared to linear vibration isolators.
This study proposes an amplitude dependent stiffness and damping model for low amplitude vibrations under
axial loading, where the parameters can be determined with an experimental procedure. Comprehensive
experimental results of forced vibration tests with varying loading, frequency and preload were considered in
the model identification. Amplitude dependent stiffness and loss energy models were determined from the test
data, and the effect of the preload and loading frequency on the model parameters were studied. It is shown,
that the effect of preload and frequency is not evidently clear, while the effect of vibration amplitude is more
significant. The mathematical model was further verified against measurements from base excitation loading.
The proposed model can be used to study the effectiveness of the selected wire rope isolator configurations in
chosen application, and to effectively perform dynamic design studies.

1. Introduction

Passive vibration isolators are used to protect sensitive equipment
from vibrations sources, such as the excitation from heavy machinery,
or from seismic loads. Previous research has shown that passive iso-
lators with nonlinear properties, the frequency band of the vibration
isolation is typically larger in comparison to linear isolators [1–5]. The
wire rope isolator (WRI) is a type of passive isolator, made by joining
two metal pieces together using steel wire as seen in Fig. 1, which acts
as a nonlinear spring with internal damping. The number and size of
wire rope loops and wire rope dimensions can vary greatly, and they all
affect the dynamics of the WRI. In addition to the wire rope parameters,
the wire rope formation such as the height, width and number of loops
and their vertical angle can be varied in application specific designs, to
sustain loads in chosen directions and frequency ranges.

The mechanical behavior of WRI is characterized by the hysteresis,
which arises from the internal friction inside and between the wire
strands [6]. With small deformations, the wires of the strand stick to
each other, but eventually start to slip, which dissipates energy [7].
When the amplitude of deformation increases, the wires at the edge of
the strands begin to slip first [8]. With larger amplitude, more wires
start to slip, causing the characteristic nonlinear damping properties of
the WRI. The slip of wires and strands decreases the bending stiffness
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of the wire rope element [9,10]. These two mechanisms contribute to
the nonlinear response of the WRI.

The WRI deforms differently with different loading directions, as
the loading direction affects the method at which the wire rope loops
resist the deformation [11]. The principal loading directions are shown
in Fig. 2. In the horizontal loading (roll and shear) the hysteresis loop
is symmetric, but in vertical loading (axial loading, 𝑦-axis in Fig. 1) the
hysteresis loop is asymmetric between tension and compression [12,
13]. In the case of vertical loading, the stiffness is higher on the tensile
side of the hysteresis loop. The amount of asymmetry of the hysteresis
loop grows with increasing amplitude [13]. The behavior of WRIs under
roll and shear directions has also been studied [13,14].

Several mathematical models have been developed to character-
ize the behavior of WRIs. The focus of recent research has been on
modeling the dynamics using models derived from the Bouc–Wen
hysteresis model [15,16], which account for the asymmetric hysteresis
loop shapes of the WRI in axial direction [13,17,18]. Another method is
utilization of experimentally measured frequency response curves [19].
Several studies have investigated the performance of WRI as a seismic
isolator [14,19–25]. In seismic isolation, the focus is on response with
low frequencies and high amplitudes. In case of vibration attenuation
of machinery, the focus is primarily on lower vibration amplitudes and
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Fig. 1. The considered wire rope isolator and schematic of its main dimensions. The wire rope diameter is 5 mm. Cross-section of the wire ropes consists of seven strands, with
nineteen wires each.

Fig. 2. Naming of the different WRI loading directions. This study focuses on the axial
direction.

higher frequencies, thus the requirements for dynamic modeling are
slightly different. These have been investigated in [6,17,26]. The use
of WRIs to dampen wind-induced vibrations in bridge stay cables has
been performed by [27]. Previous research on wire rope isolators and
mechanics has been summarized by [28] and by [29].

While accurate models have been developed to model the dynamics
of WRI, they are highly complex due to the fundamental nonlinearities
arising from the deformation and energy dissipation mechanisms. For
practical design work, less complex models which provide adequate
results are needed. These models should be simple to use and the
parameters easily identified, as the number of different WRI configu-
rations is large. Commonly, isolated equipment is placed on top of the
WRIs, and thus the effect of the supported load on the dynamics must
be considered. To efficiently select the best WRI for each application,
a large number of dimensions and configurations need to be evaluated.
With simpler models, this can be done efficiently, allowing faster
delivery times.

This study proposes a new model for the steady-state axial response
of wire rope isolators under small amplitude vibrations. The model
considers the nonlinear response of the WRI using amplitude based
linearization. Industry standard testing setup was used to determine the
model parameters. The model improves the current body of knowledge
by providing a better fit under small amplitudes of vibration compared
to models with similar complexity. In addition to the mathematical
model, comprehensive experimental results were carried out with three
different levels of preload and six loading frequencies. The proposed
model is shown to have good agreement with measured response under
base excitation.

2. Proposed mathematical model for wire rope isolators

In this study the WRI is modeled as a single degree-of-freedom
nonlinear element. The damping and stiffness of the proposed model
depend on the vibration amplitude. This means that the element stiff-
ness is linearized with respect to the vibration amplitude. Illustration
of the system is presented in Fig. 3. For linear elements, energy loss
is commonly included as viscous damping, but complex stiffness is an

Fig. 3. Mathematical model for a single degree of freedom model of the WRI.

effective alternative for damping mechanisms, which do not depend
on the rate of deformation [30]. It should be noted, that the complex
stiffness method is only applicable for steady-state problems. The equa-
tions of motion for a single-DOF model with viscous damping (1) and
complex stiffness (2) are

𝑚�̈� + 𝑐�̇� + 𝑘𝑥 = 𝑓 viscous damping (1)

𝑚�̈� + (1 + 𝑖𝜂)𝑘𝑥 = 𝑓 complex stiffness (2)

where 𝑚 is the mass supported by the spring, 𝑘 is the stiffness, 𝑐 is
the viscous damping coefficient, 𝑖 is the imaginary unit, 𝜂 is the loss
factor, 𝑥 is the displacement and 𝑓 is the external force. In these
equations, 𝑘, 𝑐 and 𝜂 depend on the vibration amplitude. Because WRI
has mostly amplitude dependent nonlinearity [6], the proposed model
is based on the complex stiffness approach, which better reflects the
nonlinear energy loss mechanism of the WRI. In steady-state analyses,
the differences between the two methods are small. The following
subsections present the nonlinear formulation for the loss factor and
stiffness.

2.1. Damping

There are two major energy dissipation mechanisms involved with
the wire rope isolators, as proposed by [26]. Coulomb friction due
to the rubbing of the wires and strands, and the material damping
due to the material bending. The hypothesis of this study is that the
frictious losses are prevalent at higher amplitudes, where more relative
motion occurs, and the material damping is prevalent in lower vibration
amplitudes with less relative motion of the strands. The relative motion
between strands also decreases the total stiffness of the WRI, as sliding
contact provides less resistance than sticking.

Damping of the WRI is assumed to originate from two sources,
coulomb friction and material damping. Energy loss from coulomb
friction during single cycle is linearly proportional to the vibration am-
plitude, while the energy loss due to material damping is proportional
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to the square of the vibration amplitude. Other way on perceiving the
material damping is the linear increase of sliding surface area inside the
wire ropes as a function of amplitude. In [26], the same two phenomena
were considered for energy loss, but they were acting simultaneously.
In this study, material damping is assumed to be initially dominant
at lower vibration amplitude, but its effect diminishes at higher am-
plitudes, when the friction losses become dominant. This can also be
viewed that at some point the increase of friction area saturates, leading
to solely linearly proportional damping. To model this phenomenon,
the energy loss needs to be defined differently for the two regions.

In the proposed modeling approach, a piecewise function is fitted to
measured loss energy of the WRI as a function of vibration amplitude.
Here, the loss energy is defined as the amount of energy dissipated
during a single cycle of steady-state vibration. Initially, the loss energy
follows a second order polynomial as a function of amplitude. The
second order term represents the material damping, while the first
order term models friction losses. The constant term represents the
initial slipping distance, before which the WRI behaves linearly, i.e., the
amplitude when the wires begin to slip. This linearity is ensured by
defining that the 𝑊𝑙𝑜𝑠𝑠 value cannot be negative. Otherwise damping
term would increase the system energy, which is obviously impossible.
After a certain amplitude threshold, the loss energy starts to increase
linearly. Coulomb damping is the dominant phenomena in this region.
The loss energy model for one oscillation cycle is defined as

𝑊𝑙𝑜𝑠𝑠(𝑥𝑎) =

{

𝑎1𝑥2𝑎 + 𝑏1𝑥𝑎 + 𝑐1, 𝑥𝑎 < 𝑥threshold
𝑏2𝑥𝑎 + 𝑐2, 𝑥𝑎 ≥ 𝑥threshold,

𝑊loss ≥ 0 (3)

where 𝑥𝑎 is the vibration amplitude of the WRI or the relative move-
ment between the WRI ends. The values for the coefficients 𝑎1, 𝑏1, 𝑐1,
𝑏2, 𝑐2, and 𝑥threshold are determined with a curve fitting procedure from
the measured loss energy. Namely, the amount of energy dissipated
at a given vibration amplitude, which is calculated from the area
of measured hysteresis loops. Because the amplitude dependent loss
energy terms are physical quantities, their values must be positive to
ensure sensible energy dissipation properties. The constant term 𝑐2 of
the linear function is selected so that the function is continuous at the
change of regime. The function is not necessarily differentiable at this
point.

2.2. Stiffness

The effective stiffness 𝑘eff of the WRI changes as a function of
vibration amplitude. Here, the effective stiffness is considered, which
is defined from the extreme values of the measured hysteresis loop.
When dynamic loading in axial direction is considered, the response
is different on the tension and compression sides of the hysteresis
loops. Neutral state between compression and tension states is at static
equilibrium. On the compression side of the hysteresis curve the stiff-
ness decreases, while on the tension side the effective stiffness initially
decreases [26]. At certain vibration amplitude, the effective stiffness
starts to increase again [26]. The proposed model assumes a symmetric
hysteresis curve. This is assumption justified by the fact that the model
is created for small amplitudes, where the hysteresis curve has almost
identical on both tension and compression sides.

In the presented model, a third order polynomial is fitted based on
the measured effective stiffness.

𝑘eff(𝑥𝑎) = 𝑎𝑥3𝑎 + 𝑏𝑥2𝑎 + 𝑐𝑥𝑎 + 𝑑 (4)

where 𝑎, 𝑏, 𝑐 and 𝑑 are parameters that are fitted to measured data.
In [26], the effective stiffness was determined using representative
amplitude from the measurements, which is also the method used in
the present study. Representative amplitude is

𝑥𝑎 =
√

𝑥𝑎C𝑥𝑎T (5)

Fig. 4. Mathematical model for a two degree of freedom base excitation setup.

where 𝑥𝑎C is the amplitude on the compression side and 𝑥𝑎T is the
amplitude on the tension side of the hysteresis curve. The same equa-
tion is used to calculate the representative force. The representative
amplitude and force are then used to calculate the effective stiffness at
each vibration amplitude.

To use the complex stiffness, the loss factor 𝜂 needs to be calculated.
This is the ratio between dissipated energy 𝑊𝑙𝑜𝑠𝑠 during one vibration
cycle and elastic energy 𝑊𝑒𝑙𝑎𝑠𝑡𝑖𝑐 at maximum amplitude:

𝜂 =
𝑊loss(𝑥𝑎)
𝑊elastic(𝑥𝑎)

(6)

For hysteretic systems, elastic energy is calculated from the vibration
amplitude and the corresponding effective stiffness

𝑊elastic(𝑥𝑎) =
1
2
𝑘eff(𝑥𝑎)𝑥2𝑎 (7)

where 𝑘eff is the effective stiffness and 𝑥𝑎 is the vibration amplitude.

2.3. System model

The proposed WRI model can be easily included in the standard
dynamic equation of motion using complex stiffness. For a single-DOF
model where a mass is supported on top of WRI (c.f. Fig. 3), the
equation of motion is

𝑚�̈� + 𝑘eff(𝑥𝑎)(1 + 𝑖𝜂(𝑥𝑎))𝑥 = 𝑓, 𝑥 = 𝑥𝑎𝑒
𝑖𝜔𝑡+𝑖𝜃 , 𝑓 = 𝑓0𝑒

𝑖𝜔𝑡 (8)

where f is the excitation force and m is the mass supported by the WRI.
The stiffness 𝑘eff and loss factor 𝜂 are functions of WRI amplitude 𝑥𝑎.
For more complex systems with two or more degrees of freedom, the
equations of motion are

𝐌�̈� + (𝐊(𝑥𝑎) +𝐊WRI(𝑥𝑎)𝑖𝜂(𝑥𝑎))𝐱 = 𝐟 (9)

where𝐌 and 𝐊 are the system mass and stiffness matrices, 𝐊WRI is part
of the system stiffness matrix related to WRI, 𝜂 is the loss factor, 𝐟 is
the force vector. In the case of a two degree of freedom model for base
excitation study, (c. f. Fig. 4) the equations of motion are
[

𝑚1 0
0 𝑚2

]

�̈� +
[

𝑘eff(𝑥𝑎)(1 + 𝑖𝜂(𝑥𝑎)) −𝑘eff(𝑥𝑎)(1 + 𝑖𝜂(𝑥𝑎))
−𝑘eff(𝑥𝑎)(1 + 𝑖𝜂(𝑥𝑎)) 𝑘eff(𝑥𝑎)(1 + 𝑖𝜂(𝑥𝑎)) + 𝑘2

]

𝐱 =
[

0
𝐹2

]

(10)

𝐱 =
[

𝑥1𝑒𝑖𝜙1
𝑥2𝑒𝑖𝜙2

]

𝑒𝑖𝜔𝑡 (11)

where 𝑚2 is the base mass and 𝑘2 is the stiffness of the springs
supporting the base. This type of system is used to verify the model
by comparison to experimental results.



Engineering Structures 318 (2024) 118721

4

S. Rytömaa et al.

Table 1
General parameters used in the validation of the mathematical model. Values have
been selected arbitrarily, and are not based on anything physical.
Parameter Value

m 0.1 kg
𝐹max 2000N
𝑥threshold 1.5m

Table 2
Coefficients for the loss energy function used in the validation of the mathematical
model. Values have been selected arbitrarily, and are not based on anything physical.
Parameter Value

𝑎1 200 J∕m3

𝑏1 1 J∕m2

𝑐1 −12.5 J∕m
𝑏2 440 J∕m2

𝑐2 2.221 J∕m

Table 3
Coefficients for the effective stiffness polynomial used in the validation of the mathe-
matical model. Values have been selected arbitrarily, and are not based on anything
physical.
Parameter Value

𝑎 4.8 N∕m4

𝑏 64.5 N∕m3

𝑐 −293.3 N∕m2

𝑑 550.9 N∕m

The WRI vibration amplitude can be calculated using the following
equation, which takes into account the phase difference between the
two masses.

𝑥𝑎 = |𝑥1𝑒
𝑖𝜙1 − 𝑥2𝑒

𝑖𝜙2
| (12)

The system equations are nonlinear, as the stiffness and loss factor
of the WRI depend on the vibration response. Iterative solution method
is used to solve the system response, where the effective stiffness 𝑘eff
and loss factor 𝜂 of the WRI depend on the amplitude 𝑥a from previous
iteration. The simplest iteration scheme is as follows:

1. Define initial value for the vibration amplitude 𝑥a.
2. Calculate the values of 𝑘eff and 𝜂 based on 𝑥a (Eqs. (4) and (6)).
3. Solve the system response (Eq. (10)).
4. Calculate the vibration amplitude (Eq. (12)).
5. Check convergence by calculating the difference between the
amplitude 𝑥a from previous and current iteration.

6. If the convergence criterion is met, the solution is finished.
Otherwise return to step 2 starting from the calculated 𝑥a value.

The convergence criterion should be set significantly smaller than the
estimated response. However, if the convergence criterion is too small,
the scheme might not converge. More sophisticated methods such as
gradient based methods can be used to avoid convergence issues. This
method is valid for only steady state response, as all of the nonlinear
parameters have been defined as a function of vibration amplitude.

The model implementation was validated using an example single
degree of freedom model. The arbitrarily selected validation model
parameters are presented in Tables 1–3. The resulting amplitude was
obtained by iteratively solving Eq. (8) until the displacement con-
verged. The process was repeated for a range of forces up to maximum
𝐹max given in Table 1. The whole process was repeated with three
different loading frequencies, to show that the stiffness and damping
are in fact frequency independent. The final converged stiffness and
loss energy values were plotted against the hand calculated reference
values.

Table 4
Main dimensions of the wire rope isolator investigated in this study.
Dimension Value

Loop width 58 mm
Loop height 32 mm
Number of wire rope loops 2
Strand lay length 34 mm
Wire rope diameter 5 mm
Wire type 7 × 19
Wire material AISI 316L
Strand diameter 1.65 mm

Table 5
Information on the used measurement equipment.
Sensor Model Sensitivity Linearity error

Accelerometers PCB602D01 10.2mV∕(m∕s2) ±1%
Force transducer 1 WIKA F2808-1000N (2.0 ± 0.2)mV∕V ±0.15%Fnom
Force transducer 2 WIKA F2812-1000N (2.0 ± 0.2)mV∕V ±0.5%Fnom

Table 6
Components used in the test setups.
Component Information

Preload mass Steel plates, m = maximum 8 kg per WRI
Excitation mass Steel plate, m = 5 kg
Frame BSB Aluminium profile 50 × 50
Stinger M5 steel rod
Exciter Electro-magnetic shaker Siocera JZK-100
Signal generator OWON AG 1011F
Decoupling springs Helical steel spring (k = 8500N∕m)

3. Experiments

To fit the parameters of the mathematical model, to verify its
performance, and to study the effect of preload and loading frequency,
experimental measurements were conducted. The study was performed
with a single WRI design. Two different measurement setups were used,
one for parameter fitting, and one for model verification. This chapter
presents the investigated WRI, followed by measurement design. Fi-
nally the measurement analysis process including the parameter fitting
process is presented.

3.1. Investigated wire rope isolator

A single WRI design was selected for the experimental part of the
study. The main dimensions of the investigated WRI unit are given in
Table 4 and their meaning is presented in Fig. 1. The WRI selected for
this study is a small one, with two wire rope loops between the bars.
There are numerous possible configurations, as the number and size
of the loops as well as the size and type of WRI can be almost freely
selected. For this study, a smaller size WRI was selected as it requires
smaller measurement setup. The selected WRI does not necessarily
provide optimal balance between stiffness and damping.

The WRIs used in this study were first worn in, as the stiffness and
damping of the WRI change as the wires and strands wear from the
internal friction. The roughness difference resulting from the wear be-
tween unused and worn wire ropes can be felt by hand. The WRIs were
worn in to better match the real operational state of the WRI. Initially
the decrease is faster, but after some time the reduction saturates.

3.2. Measurement design

To study the dynamics of the WRI, the vibration response of the WRI
was studied under two different measurement setups. These are the
forced response measurement (direct measurement), and a base excita-
tion measurement (indirect measurement). The measurement schemat-
ics are presented in Figs. 5 and 7. In these measurements, the WRIs
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Fig. 5. Illustration of the direct test setup, which was used to determine the parameters
for the proposed model. The setup has in total four WRIs. The force transducers
were used to measure the forces transmitted through each of the wire rope isolators.
Accelerometer was used to measure the movement of the preload mass. Electromagnetic
shaker was used to excite the preload mass.

were mounted to a frame with applied preload. The amount of preload
was varied between the measurements. The excitation was applied with
an electromagnetic shaker. The shaker was used to create amplitude
sweeps with constant frequency and frequency sweeps with constant
amplitude. The forces were measured using force transducers, and the
displacements were measured using accelerometers, listed in Table 5.

In both measurement setups, the tested WRIs were mounted onto
a frame made from aluminium profiles and steel plates, and a preload
mass in a form of steel plates was attached on the top to apply the
preload. Four WRIs were used simultaneously in a symmetric con-
figuration, to minimize the horizontal and rotational motion of the
preload mass. The excitation was applied on the center of the preload
mass using an electromagnetic shaker through a stinger. This was
necessary to prevent the transfer of horizontal loads to the shaker. A
displacement based control was used, and there was no feedback from
the measurement rig to the shaker. The components used in the test
setup are listed in Table 6.

In the direct test setup the excitation force was applied directly on
the preload mass on top of the WRI, and in the indirect test setup the
excitation force was applied in the form of base excitation. During the
measurements, the excitation amplitude and frequency were varied,
along with the WRI preload. The forces and accelerations were mea-
sured at a sampling rate of 10 kHz. Force transducers were placed under
each WRI and also to the stinger which loaded the WRI. Accelerometers
were placed on the preload mass as well as on the base of the test setup.
Multiple simultaneous acceleration measurement locations were used
to avoid errors arising from the local movement of the masses.

The test setup of the direct measurement is presented in Fig. 6 and
the schematic on Fig. 5. The test setup follows the test setup defined
in ISO 10846-2 [31], but is not completely according to the standard.
While the measurement was made with four WRIs in symmetric condi-
tion, which allows to create the mathematical model for only one WRI
as a 1-DOF model shown in Fig. 3. A preload mass was installed on
top of the WRIs prior to loading, and no guides were installed on the
mass. During the direct measurements, the loading frequency was kept
constant, and the loading amplitude was decreased from maximum to
zero during a 60 s time period. The test was repeated with multiple
excitation frequencies. The maximum amplitude had to be limited with
maximum preload and frequency values due to the resonance frequency
of the WRI.

The measurement setup for the indirect measurement is presented
in Fig. 8 and the schematic on Fig. 7. This setup differs from the direct
measurements by placing the WRIs on top excitation mass instead of
the frame, and the loading was applied on the excitation mass instead
of the preload mass. The test setup follows the setup defined in ISO
10846-3 [32], but is not completely according to the standard. The

Fig. 6. Test setup used in direct test, which was used to determine the parameters for
the proposed model. The test setup corresponds to a forced excitation case. The test
setup consists of a frame, four WRIs, preload mass and the electromagnetic shaker. The
electromagnetic shaker was connected to the preload mass, which was placed on top
of four WRIs. The WRIs were attached to the supporting frame, with force sensors in
between. Accelerometer was used to measure the movement of the preload mass.

preload mass was supported only by the WRIs, and was free to move
in all directions. The excitation mass is placed on top of 18 helical
springs that act as dynamical decoupling springs. The excitation mass
was a steel plate weighing 7.5 kg. During the measurement, the loading
frequency was swept from 15 Hz to 100 Hz during a 200 s period, while
the electromagnetic exciter force was kept constant through constant
input voltage. Open-loop control was used. The test is repeated with
different force amplitudes to measure the effect of vibration amplitude
to the behavior of WRI.

3.3. Measurement analysis

The mathematical model has several parameters that have to be
tuned based on experiments. These are the coefficients for the polyno-
mials of amplitude dependent stiffness and loss energy. The tuning is
performed using the results from the direct measurements. The stiffness
can be calculated directly from the force and displacement signals,
by calculating the effective amplitudes of each quantity as defined
in Section 2. The loss energy for each amplitude is calculated from
the area of the measured hysteresis loop. To fit the loss energy and
stiffness models, the measured quantities are the plotted as a function
amplitude, and the curves are fitted to the data as defined in Section 2.

The parameter fitting process was performed using the whole
dataset for a said preload level, as well as using a single loading
frequency. A gradient based optimization method was used to fit the
parameters. The least squares residual was calculated for each function
at all measured amplitudes. The residual is the sum of differences
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Fig. 7. Illustration of the indirect test setup, which was used to verify the performance
of the proposed model. The accelerations of the preload mass and excitation masses
were measured, to calculate the amplification factor under varying loading frequency.
The mass of excitation mass is 8 kg. In total 18 decoupling springs were used.

Fig. 8. Test setup used in the indirect test, which was used to verify the performance of
the proposed model. The test setup corresponds to a base excitation case. The test setup
consists of a frame, decoupling springs, excitation mass, four WRIs, preload mass and
the electromagnetic shaker. The electromagnetic shaker was connected to the excitation
mass, which was placed on top of the supporting frame using decoupling springs. The
WRIs and the preload were placed on top of the excitation mass. Accelerometers were
placed on the excitation mass and preload mass to measure the movement of the
masses. The preload mass was free to move along the loading axis.

between the measured values at certain amplitude and the values given
by the equation at the same amplitude. The residual was minimized by
optimizing the parameter values of each function (Eqs. (4), (3)). For the
loss energy function (Eq. (3)), the fitting was performed separately for
each part of the function. The optimization process was repeated with
varying values of the threshold amplitude 𝑥threshold, and the value with
smallest total residual was selected. The effect of preload and frequency
on the fitted coefficients was compared by plotting the coefficients as
a function of preload and frequency.

To verify that the mathematical model works as intended, it was
compared to measurements from the indirect measurement. The indi-
rect measurement is not used to define the parameters of the mathe-
matical model. From the measurement, the vibration amplitudes of the
excitation mass and preload mass were measured during the frequency
sweep, and amplification factor was calculated. The measured ampli-
fication factor was compared to the simulated amplification factor.
The simulated amplification factor was calculated using the equations
presented in Section 2.

4. Results

The results from the measurements and mathematical model are
presented in this section. Mathematical model validation was done to
ensure correct behavior of model implementation. The mathematical
model was fitted using the data from the direct test, and indirect test
results were used to verify the performance of the mathematical model.

4.1. Validation

The mathematical model is validated using a 1-DOF example model
with parameters given in Tables 1–3. Here, the response is calculated
with increasing force using the iterative method, and the resulting
stiffness and loss energy values are compared on to the predetermined
curve to show that the model implementation behaves as desired. The
resulting effective stiffness, loss energy are shown as the function of
WRI amplitude in Fig. 9. With three different loading frequencies,
the response of the model is similar. The loss energy and stiffness
curves show desired behavior, the response is rate independent and the
increasing amplitude results in desired shapes of the stiffness and loss
energy curves. These indicate that the implemented model works as
intended. The model verification with experimental data is shown in
following sections.

4.2. Parameter fitting

This section presents the results from the parameter fitting from the
direct measurement. The loading amplitude and frequency, as well as
preload were varied during the measurements. The effective stiffness
and loss energy values were determined from the measured hysteresis
loops. The energy was obtained from the area swept by the curve, while
the stiffness was obtained from the end points of the hysteresis loop.
Example hysteresis curve is shown in Fig. 10 with three load levels at
8 kg preload and 25 Hz loading frequency. Fig. 11 shows the hysteresis
loops with varying preload and frequency. The phase space response
for two cases with different load frequencies are shown in Fig. 12. The
effect of preload was small, and is therefore not shown in Fig. 12. The
loss energy of WRIs was obtained from the direct test, and the results
are shown in Fig. 13 with different preload levels. The loss energy was
calculated from the area of the hysteresis loop, of which an example is
shown in Fig. 10. From Fig. 13 we see that the preload and excitation
frequency have some effect on the loss energy of the WRI, but the effect
is less significant than the effect of vibration amplitude. The effect of
frequency and preload increase as the amplitude grows. A curve is fitted
onto the measured data as stated in Section 2, and the resulting fit is
shown in Fig. 14. The Fig. 14 shows that the proposed model fits well
with the measurements.

The effective stiffness was calculated from the maximum and min-
imum forces and displacements of the hysteresis curves. The mea-
sured effective stiffness values from the measurements are presented
in Fig. 15. Third order polynomial function was fitted onto the data.
The stiffness results are presented in Fig. 16, along with the effective
stiffness on the compression and tension sides of the hysteresis curves.
The Figure shows that the stiffness decreases as the vibration amplitude
increases, and that the rate of softening decreases as the amplitude
grows. The excitation frequency affects the measured effective stiffness
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Fig. 9. The effective stiffness (a) and loss energy (b) from model validation using a 1-DOF model. The stiffness curve follows the defined third order polynomial, and the loss
energy follows the piece-wise defined function. Vertical dashed line shows the amplitude at which the loss energy function changes the piece-wise defined.

Fig. 10. Hysteresis curves from the direct test, with 8 kg preload and 25 Hz excitation frequency. The increased hysteresis can be seen clearly with increasing loading. The small
panel figures show the time history data from the hysteresis loops.

Fig. 11. Hysteresis curves from the direct test. Figure on the left shows curves with varying preload (p) at 25 Hz loading frequency, while the figure on the right shows the
curves with varying loading frequency at 8 kg preload. The amplitudes of the curves are 0.1, 0.2 and 0.3 mm.

Fig. 12. The phase space diagram from the measurements at three displacement amplitudes with loading frequencies of 20 Hz and 30 Hz are shown.
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Fig. 13. Loss energy calculated from the measured hysteresis loops with different preload levels (5.3, 7.2 and 8 kg) as a function of vibration amplitude.

Fig. 14. Measured loss energy as a function of amplitude, with the proposed model fit
and a purely second order fit. The measurement data is with 25 Hz loading frequency
at 8 kg preload.

of the WRI, and its effect increases with higher excitation amplitudes.
This contradicts with the assumption that the WRI is totally rate
independent, but the effect is small when compared to the effect
of excitation amplitude. With smaller excitation amplitudes the rate
independent behavior is a reasonable assumption.

The loss factor for the system was calculated from the measured loss
energy and the effective stiffness as a function of vibration amplitude,
as shown in Fig. 17. The loss factor was also calculated using the
mathematical model with matching vibration amplitudes. Both results
are shown in Fig. 18. With very small amplitudes the loss factor is
0, as the WRI behaves elastically. The mathematical model fits better
at higher amplitudes. The error in the loss factor at lower amplitudes
comes from the large relative error in the loss energy between the
measured and calculated ones. The loss factor has an opposite trend
when compared to observations by [25,26]. With larger amplitudes the
loss factor would most likely start to decrease due to the increasing
stiffness.

The effect of loading frequency and preload on the loss energy was
studied by measuring the loss energy with different preload values and
loading frequencies, and fitting the energy loss 𝑊loss to each of the
measurements. The resulting coefficients are plotted as a function of
loading frequency in Fig. 19(a) and (b) for second order polynomial.
Fig. 19(f) shows the transition displacement, at which the energy loss
model changes from second order polynomial to first order polynomial
and Fig. 19(c) the constant coefficient for the second order polynomial.
Fig. 19(d) and (e) shows the effect on the coefficients for first order
polynomial. The figures show that there is notable variation in the
coefficient values, but no clear trend.

4.3. Verification

The indirect test measured the amplification of the WRI under base
excitation with different load amplitudes. Fig. 20 shows the measured

amplifications as a function of excitation frequency along with the
simulated ones, and the key results are summarized in Table 7. The
figure shows that maximum amplification at resonance decreases as
the base excitation level increases. The increased base excitation leads
to higher vibration amplitude which in turn leads to the increasing
damping in the WRI. The increasing amplitude also causes the effective
stiffness to decrease, which decreases the resonance frequency. Higher
loss energy widens the resonance peak.

5. Discussion

The proposed mathematical model agreed well with the measured
loss energy and stiffness data. The model parameters were determined
using industry standard tests, meaning that creating new WRI designs
and corresponding calculation models is easy and efficient. No addi-
tional tuning parameters were necessary to better align the results. The
values obtained with least squares fit were used throughout the study.

When looking at the loss energy 𝑊loss curve in Fig. 14, we see that
the new model fits similarly well as does the second order polynomial
with the constant term. The fit without the constant term is almost
as good, but slightly worse at smaller amplitudes. However, when
calculating the loss factor in Fig. 18, the difference becomes clear.
The loss factor without the constant term gives notably less accurate
results at small amplitudes. The proposed model gives the best match
to the measurement data. The loss energy measured shows similar
amplitude dependent trend that [33] observed for loss energy due
to cable bending. Under small amplitudes, the wire ropes bend more
rather than elongate, leading to similar results.

Interestingly that the loss factor seems to stabilize at some value at
certain displacement. It is most likely, that eventually the loss factor
starts to decrease again due to the increasing effective stiffness. This
decrease would match the observations in the research of [34]. Based
on the loss factor curve there is a certain amplitude range and therefore
a loading range, at which the WRI has the best damping properties. This
would provide interesting topic for future research.

From Fig. 13, we see that the overall effect of loading frequency on
the loss energy is small, while the preload has more significant impact.
Similar observation can be made from the hysteresis curves shown in
Fig. 11. The effect was further studied by fitting the model to each
test, and comparing the values. From Fig. 19(a) and (b) we see that
there is not a clear trend on how the frequency affects each coefficient.
There is a somewhat parabolic trend with 𝑏2, 𝑐2, 𝑥threshold and 𝑐1, while
the coefficients 𝑎1 and 𝑏1 do not have anything resembling a function.
The effect of preload is less clear on the parameters, especially between
7.2 kg and 8 kg preload levels. At some amplitudes the 7.2 kg preload
yields higher coefficient values, but at some 8 kg yields higher values.
In Fig. 19(a) we see that the 8 kg preload has larger coefficient 𝑎1 with
excitation frequencies 20, 25 and 50 Hz, but smaller with 30 and 40 Hz.
The difference between actual preload value in this case is very small,
7.2 kg and 8 kg, which might explain the differences.

When looking at Figs. 15 and 13, it is clear that increasing preload
causes small decrease in the loss energy and the effective stiffness.
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Fig. 15. Effective stiffness from the measurements with different preload levels (5.3, 7.2 and 8 kg) as a function of amplitude.

Table 7
The loads and results from the indirect test used for verification of the mathematical model.
Case
number

Base velocity at
resonance

Measured frequency
of max amplification

Calculated frequency of
max amplification

Measured max
amplification

Calculated max
amplification

[mm/s] [Hz] [Hz] [–] [–]

1 2.28 27 29 4.1 4.4
2 6.77 24 24 2.8 2.9
3 11.35 23 23 2.0 2.1
4 14.30 22 23 1.9 2

Fig. 16. Measured effective stiffness as a function of amplitude, with the proposed third
order fit. The measurement data is with 25 Hz loading frequency at 8 kg preload. The
tensile and compressive 𝑘eff present the effective stiffness calculated from the tensile
and compressive sides of the hysteresis curve. It becomes clear that at these vibration
amplitudes the hysteresis curve is almost symmetric as they yield similar values.

This does not show in the fitting parameters as seen in Fig. 19, most
likely due to non optimal fit of the parameters and due to fact that the
difference is very small. This is also shown in Fig. 11. The effect of
loading frequency is very small with all levels of preload.

The mathematical model was verified against the results from in-
direct measurements, and shown to give good results (Fig. 20). The
calculated results have roughly correct resonance frequencies and am-
plitudes when compared to the measurements. The WRI shows soften-
ing behavior, where the resonance frequency decreases as the vibration
amplitude increases. Similar behavior has been observed in [35]. In
addition to the resonance frequency decreasing, the amplification factor
decreases with increasing loading amplitude.

As was shown, the loss factor has a vibration amplitude range
where the damping properties are best. Since these depend on the
load magnitude, the required amount of dimensioning curves would be
huge. The relatively simple measurement setup allows to test a large
number of different WRI configurations, which could be used to better
study for example the effect of wire rope diameter on the dynamics. The
proposed model could be implemented to commercial finite-element
programs, by using the presented iterative solution method.

The proposed model has multiple limitations. The model provides
results only under small displacements, and is not applicable for tran-
sient cases. For loading cases falling under these conditions, more
accurate models are needed. Additionally, the model parameters are
defined using experimental measurements, meaning that the measure-
ments have to be repeated for each WRI design, which can be tedious
with multiple designs. For practical simulation problems using commer-
cial FE-programs, the iterative solution can be performed by adjusting
the WRI values by hand. This is tedious, but could also be implemented
with some scripting work. No new elements are necessary, as a linear
spring element will suffice with the iterative solution method. The loss
factor 𝜂 can be converted into viscous damping coefficient using text
book equations [30].

The fit of the mathematical model was the poorest with very small
amplitudes. When the amplitudes are very small, even small errors can
become significant. Additionally, the influence of measurement setup
becomes more significant. There could be some small flexibility in the
measurement setup. The model agrees relatively well even at these
ranges. Other source for error between calculation and measurement
can be traced to the curve fitting, where the proposed model does not
perfectly align with the measurement. Alternative fitting algorithms
could solve this problem.

In the future, the tests should be repeated with more tightly spaced
loading frequencies and preload values. Additionally, the maximum
loading amplitude should be increased to determine if the loss factor
indeed starts to decrease. With the present WRI design, the natural
frequency of the WRI limits the amplitudes at higher frequencies. In
addition, to study the statistical nature of the problem, multiple units
of the WRI should be used.

6. Conclusions

A new model is proposed for steady-state axial response calculation
of wire rope isolators (WRI). The nonlinear dynamics of the WRI can
be linearized with respect to small-variations in vibration amplitude.
The model is shown effective under the assumption of small-amplitude
vibrations, which represents the primary use case. The effects of exci-
tation frequency and preload on the steady-state response are found to
be minor in comparison those of the amplitude. The proposed model
is highly effective in reproducing the WRI response characteristics, and
its parameters can be defined with an industry standard testing setup.
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Fig. 17. Loss factor as a function of amplitude calculated from measured stiffness and loss energy from the measurements with different preload levels (5.3, 7.2 and 8 kg).

Fig. 18. The loss factor as a function of amplitude calculated from measured stiffness and loss energy using Eq. (6). The measurement data is with 25 Hz loading frequency at
8 kg preload. The fit is calculated using the proposed model fit and a purely second order fit with and without the constant coefficient as the functions for loss energy. The second
order polynomial without c corresponds to model proposed by [26].

Fig. 19. The effect of preload level and loading frequency on the coefficients of the proposed 𝑊loss model. The coefficients are given in Eq. (3).
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Fig. 20. Amplification factors from the measured and simulated indirect tests as a function of excitation frequency. The amplification decreases with increasing loading amplitude
due to increase in the loss factor showing softening behavior. The measured results are presented with the dashed lines, while the simulated ones are with solid lines. The difference
between each color is the loading magnitude, and the results are also summarized in Table 7. The velocity of the excitation mass at maximum amplification is given in the legend.
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