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*joel.lamberg@aalto.fi

Abstract: The angular spectrum method is an efficient approach for synthesizing electromagnetic
beams from planar electric field distributions. The electric field definition is restricted to a plane,
which can introduce inaccuracy when applying the synthesized beam to curved surface features.
The angular spectrum method can also be interpreted as a pure source method defining the field
symmetrically with respect to the creation plane. Recently, we generalized that symmetric field
method to arbitrary source distributions, which are valid at any point on compact, regular surface
Ω in R3. We call this approach the Curved Boundary Integral method. The electromagnetic
fields synthesized with this method satisfy the Helmholtz equation and are adjusted via amplitude
and phase at the desired surface. The fields are obtained as a relatively simple integral. However,
restrictions on where in space the synthesized field is valid were included in the mathematical
proof length to avoid obscuring the main points. These restrictions can be significant depending
on the shape and degree of curvature of surface Ω. In this article, we remove these restrictions so
that the integral representation of the electromagnetic beam becomes valid at all points r ∈ R3 \Ω,
with a minor restriction. Its modification can work even on Ω. We demonstrate the importance of
this extended legality with a source field parametrized into the torus surface. The electromagnetic
radiation of this structure would not be valid at any point in space without this extension. Finally,
we show that by changing the order of integration, the field singularity at each source point is
eliminated.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

The Angular Spectrum Method (ASM) is a rigorous method to synthesize near and far-field
electromagnetic (EM) and acoustic fields from known planar field distribution. ASM provides a
robust framework for examining wave propagation in various scenarios by decomposing the fields
into constituent plane waves [1–10]. In previously published work, we expanded planar symmetric
ASM theory to the curved boundary integral method (CBIM), to synthesize electromagnetic fields
from arbitrary surface electric field distributions positioned inside/outside of the computational
domain or even on the sub-region of a scatterer’s surface [11]. CBIM allows for greater flexibility
in beam design as it enables sources to be freely placed within the computational domain. It also
allows for analyzing electromagnetic forward/backward propagation between optical elements
using a single method. In separate articles, we also derive a 3D angular spectrum method from
CBIM to obtain beam shape coefficients for the spherical harmonics presentation used to compute
Mie scattering from homogeneous and layered spherical targets. [12,13].

In previous work [11], we presented a mathematical proof for the CBIM summarized in
Eq. (1–4) in this article, with a limitation: the electromagnetic field radiated from each source
point on the surface distribution is not defined on a source point’s tangential plane on the surface.
This condition is presented in Eq. (5).

This article clarifies that the total electromagnetic field synthesized by the CBIM is a coherent
superposition of fields emanating from individual source points. Our addresses a key insight: if
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the field from even a single source point is undefined, it compromises the validity of the entire
synthesized field. By removing the restriction outlined in Eq. (5), we demonstrate that the fields
remain well-defined at each source point and its corresponding plane, ensuring the integrity of
the overall electromagnetic field representation. Further, a change in the integration order of the
field presentation eliminates singularities exactly at the source point.

2. Restrictions mathematical definition

Source point’s restriction on its tangential plane is presented mathematically as follows. Let
Ψ = {(p, q)} be a compact set in R2 and let o : Ψ→ R3 be a continuously differentiable function.
The mapping o defines a compact, regular surface Ω = {o(p, q)|(p, q) ∈ Ψ} in R3 and a tangent
plane and normal to each of its points o(p, q). Keeping each o as a local origin, unit vectors
(e1, e2, e3) define a base for the local orthonormal coordinates, where e1 and e2 lie in the tangent
plane, and e3 is along the surface normal, see Fig. 1.

Fig. 1. Relation between global and local coordinate systems of a source point at o ∈ Ω.
Also, local base vectors e1 and e2 span a tangential plane, where radiated electric and
magnetic fields are not valid without the proofs of this article.

Let E0 be a continuous electric field defined on the surface Ω. At the limit, using the analysis
in [11], we end up with the fact that each electric field at a point o on the surface Ω creates
propagating electric and magnetic field densities. Without loss of generality, the electric field is
chosen to be polarized at the local (e1, e3)−plane as

E(r; o) = E0(E1e1 + E3e3),
H(r; o) = E0(H1e1 + H2e2 + H3e3),

(1)

where r is the position vector of observation point P in the global coordinate system, see Fig. 1,
and the magnetic field is obtained as a curl of the electric field. The local field E1 is cylindrically
symmetric and oriented along the source point’s tangential plane. The local field E3 is normal to
the source point’s tangential plane and cylindrically asymmetrical due to the term kx/kz. These
fields are obtained as

E1 =
1

4π2

∬ ∞

−∞

ei(kxx+kyy)f (r; |z|)dkxdky =
1

4π2

∫ ∞

0
f (r; |z|)J0(sr)rdr,

E3 = −
sign(z)

4π2

∬ ∞

−∞

ei(kxx+kyy) kx√︂
k2 − k2

x − k2
y

f (r; |z|)dkxdky,
(2)
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where k is a constant, x, y and z are local coordinates of r − o, that is, they present the position of
P in the local coordinate system related to o [11–13], r2 = k2

x + k2
y , s2 = x2 + y2, and J0 is the

zero-order Bessel function and

f (kx, ky; |z|) = f (r; |z|) = ei |z |
√

k2−k2
x−k2

y . (3)

The Fourier transform for a cylindrically symmetric function is obtained via the zero-order
Bessel function. Here, we use it in the presentation of E1 and later in Eq. (8) [14]. This
observation is crucial in estimating the difference E1 − D, where D will be defined in Eq. (8).
The total electric and magnetic fields are obtained as surface integrals

E(r) =
∬
Ω

E0(o)
[︂
E1(r; o)e1(o) + E3(r; o)e3(o)

]︂
dΩ,

H(r) =
∬
Ω

E0(o)
[︂
H1(r; o)e1(o) + H2(r; o)e2(o) + H3(r; o)e3(o)

]︂
dΩ,

(4)

where dΩ = ∥ ∂o
∂p × ∂o

∂q ∥dpdq. We proved in [11] that expressions in Eq. (4) are valid at the point
r, where z ≠ 0 in every local coordinate system, which can be written more precisely

Ω0(r) =
{︂
o ∈ Ω

|︁|︁ z(r; o) = (r − o)·
(︂ ∂o
∂p

×
∂o
∂q

)︂
= 0

}︂
= ∅. (5)

This assumption we designate as AS(r). When z = 0, the integrals in Eq. (2) do not exist in the
usual sense. This article eliminates the presented limitation Eq. (5), in which the effect strongly
depends on the shape of the surface Ω. For example, a surface can be easily found where the
assumption in Eq. (5) is not satisfied for any r ∈ R3, then Eq. (4) would not be defined at any
point r, see Fig. 2.

Fig. 2. Limitation for E(r) and H(r) fields when assumption AS(r) is not valid. a) A single
source point spans a tangential plane where AS(r) is not valid. b) A surface line of source
points spans a space of tangential planes where AS(r) is not valid. c) The whole torus is
discretized to source points, whose tangential planes span the whole R3 space where AS(r)
is not valid.

It was proved in [11] that once z ≠ 0, the corresponding E(r; o) and H(r; o) exist. Next in this
article, we will show that limz→0+ E(r; o) and limz→0− E(r; o), as well as, limz→0+ H(r; o) and
limz→0− H(r; o) always exist, when r ∈ R3 \Ω. This helps us to define the fields E(r) and H(r)
at every point r ∈ R3 \Ω.

3. Validity of curved boundary integral method

In this section, we show that the electric and magnetic field presentation is valid at points r,
where assumption AS(r), illustrated in Fig. 2, is not. The main results are the E-field proof in
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Theorem 3.3 and its H-field analogue in Theorem 3.5. First, we prove the existence of limits
for E3 and E1 components when the local coordinate z → 0, followed by the magnetic field
components H1, H2, and H3.

3.1. Electric field E3 component

Let’s define for r ∈ R3 \Ω

Ω+(r) =
{︂
o ∈ Ω

|︁|︁ (r − o)·
(︂ ∂o
∂p

×
∂o
∂q

)︂
≥ 0

}︂
,

Ω−(r) =
{︂
o ∈ Ω

|︁|︁ (r − o)·
(︂ ∂o
∂p

×
∂o
∂q

)︂
≤ 0

}︂
.

(6)

Note that Ω0(r) = Ω+(r) ∩Ω−(r).
Lemma 3.1. Let Ω be a regular, compact surface in R3, especially ∂o

∂p × ∂o
∂q ≠ 0 for all

o ∈ Ω. There exist limz→0+ E3 and limz→0− E3 = − limz→0+ E3 at (r, o) ∈ (R3 \ Ω) × Ω0(r).
The function E3 extended by the former limit depends continuously on (r, o) in the product set
(R3 \ Ω) × Ω+(r). Correspondingly, E3 extended by the latter limit depends continuously on
(r, o) in the (R3 \Ω) ×Ω−(r).

Proof. Denote
g(kx, ky; |z|) = g(r; |z|) = e−|z |

√
k2

x+k2
y = e−|z |r. (7)

We compare the integrals in Eq. (2) with the integral obtained when f in E1 is replaced by
g. The reason is that the plane’s Fourier transform of g is known when the constant z ≠ 0 [15].
Thus we obtain

D = F−1 {︁g(kx, ky; |z|)
}︁
(x, y) =

1
4π2

∬ ∞

−∞

ei(xkx+yky)g(kx, ky; |z|)dkxdky

=
1

4π2

∫ ∞

0
g(r; |z|)J0(sr)rdr =

C2 |z|
(|z|2 + s2)3/2

,
(8)

where C2 is a constant. When z ≠ 0, according to Eq. (2) and Eq. (3) we obtain a source-free
electric field, equivalent to ∇ · E = 0, as

∂E3
∂z
=

−i
4π2

∬ ∞

−∞

ei(xkx+yky)kxf (r; |z|)dkxdky = −
∂E1
∂x

. (9)

Assume r ∈ R3 \Ω and its z-coordinate is zero in a local coordinate system related to o ∈ Ω.
Then definitely s =

√︁
x2 + y2 ≠ 0 in this local system, which we fix. We approach r along the line{︁

(x, y, z) | z ≠ 0
}︁

retaining these x and y, and letting z go to zero. Equations Eq. (2) and Eq. (3)
are valid at this kind of point. See Figure (3).

We will show that Eq. (9) goes to zero when z does it; in that case, the standard analysis shows
that there exist one-side limits limz→0+ E3 and limz→0− E3, for which it would be sufficient that
the derivative ∂E3

∂z remains bounded.
Consider the representation E1 = E1 −D+D and its derivative ∂

∂x . Based on Eq. (8), we obtain

∂D
∂x
= −

3C2 |z|x
(|z|2 + s2)5/2

→ 0, when z → 0, (10)

even uniformly in a compact set where s ≠ 0. When r ≥ k, it follows

f (r; |z|) = ei |z |
√

r2−k2
≥ g(r; |z|). (11)
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Fig. 3. Illustration of source point’s tangential plane, where we will prove the legality of
E(r; o) and H(r; o) when s ≠ 0.

Let’s fix r0>k. Then we obtain

E1 − D =
1

4π2

∫ r0

0

[︂
f (r; |z|) − g(r; |z|)

]︂
J0(sr)rdr

+
1

4π2

∫ ∞

r0

[︂
f (r; |z|) − g(r; |z|)

]︂
J0(sr)rdr,

(12)

where the derivative ∂
∂x of the first integral, 1

4π2

∫ r0
0 [f (r; |z|) − g(r; |z|)]J0(sr)rdr, clearly goes to

zero as z → 0, since (f − g) → 0 uniformly.
It is sufficient to consider only the derivative of the latter integral. When k<ro ≤ r, based on

Taylor series

f (r; |z|) − g(r; |z|) = e−|z |r
[︂
e |z |(r−

√
r2−k2) − 1

]︂
= e−|z |r

[︄
e

|z|k2

r+
√

r2−k2 − 1

]︄
= e−|z |r

{︄
|z|k2

r +
√

r2 − k2

[︄
1 +

1
2!

|z|k2

r +
√

r2 − k2
+

1
3!

(︃
|z|k2

r +
√

r2 − k2

)︃2

+ · · ·

]︄}︄
.

(13)
This follows[︂

f (r; |z|) − g(r; |z|)
]︂
r = |z|k2e−|z |r

{︃
r

r +
√

r2 − k2

[︃
1 +

1
2!

|z|k2

r +
√

r2 − k2
+ · · ·

]︃}︃
=: |z|k2e−|z |rh(r; |z|).

(14)

It is straightforward to show that the functions h(r; |z|) and
[︁
∂
∂r h(r; |z|)

]︁
r are bounded functions

in the set r ∈ [r0,∞[, |z|<1; the derivation in the series in Eq. (13) and Eq. (14) can be done term
by term using the power series derivation rule. Thus, we find the constants K1, K2>0 such that|︁|︁|︁h(r; |z|)|︁|︁|︁ ≤ K1 and

|︁|︁|︁|︁ ∂∂r [h(r; |z|)r]
|︁|︁|︁|︁ ≤ K2, with all r ∈ [r0,∞[ and |z|<1. (15)
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By partial integration and from Eq. (14) we obtain

∂

∂x

{︃
1

4π2

∫ ∞

r0

[︂
f (r; |z|) − g(r; |z|)

]︂
J0(sr)rdr

}︃
=

|z|k2x
4π2s

∫ ∞

r0

e−|z |rh(r; |z|)rJ
′

0(sr)dr =
|z|k2x
4π2s2

{︃|︁|︁|︁|︁∞
ro

e−|z |rh(r; |z|)rJ0(sr)

+ |z|
∫ ∞

r0

e−|z |rh(r; |z|)rJ0(sr)dr −
∫ ∞

r0

e−|z |r
∂

∂r
[h(r; |z|)r] J0(sr)dr

}︃
=

|z|k2x
4π2s2

{︃
−e−|z |rh(r0; |z|)r0J0(sr0) + |z|

∫ ∞

r0

· · · −

∫ ∞

r0

· · ·

}︃
.

(16)

Next, we use an asymptotic estimate that holds for the Bessel function as [16]

J0(ν) =

√︃
2
πν

cos (ν −
π

4
) + O(|ν |−1). (17)

As a result, for some a>0 it holds

|J0(ν)| ≤ a|ν |−1/2 with all ν. (18)

Based on this and Eq. (15), we obtain from Eq. (16)|︁|︁|︁|︁ ∂∂x {︃
1

4π2

∫ ∞

r0

[︂
f (r; |z|) − g(r; |z|)

]︂
J0(sr)rdr

}︃|︁|︁|︁|︁
≤

|x| |z|k2

4π2s2

{︃
e−|z |r0K1r0as−1/2r−1/2

0 + |z|
∫ ∞

r0

e−|z |rrK1as−1/2r−1/2dr

+

∫ ∞

r0

e−|z |rK2as−1/2r−1/2dr
}︃
.

(19)

Let us substitute the variables t = |z|r → r = t/|z| and dr = dt/|z| in the Eq. (19) and show
that it goes to zero as

A|z|
s2

{︃
e−|z |r0r1/2

0 s−1/2K1 +
|z|K1

s1/2

∫ ∞

|z |r0

e−t
(︂ t
|z|

)︂1/2 dt
|z|
+

K2

s1/2

∫ ∞

|z |r0

e−t
(︂
|z|
t

)︂1/2 dt
|z|

}︃
≤

A|z|1/2

s5/2

{︃
e−|z |r0 |z|1/2r1/2

0 K1 + K1

∫ ∞

0
e−tt1/2dt + K2

∫ ∞

0
e−tt−1/2dt

}︃
≤

A|z|1/2

s5/2

{︃
e−|z |r0 |z|1/2r1/2

0 K1 + (K1 + 2K2)

∫ ∞

0
e−tt1/2dt

}︃
→ 0, when z → 0,

(20)

where A = ak2 |x |
4π2 . Thus, by Eq. (9), Eq. (10) and Eq. (20) we obtain

−
∂E3
∂z
=
∂E1
∂x
=
∂

∂x
(E1 − D) +

∂D
∂x

→ 0, when z → 0, (21)

even uniformly in a closed set of s where s ≠ 0. Examining the standard Cauchy sequences using
the mean value theorem shows that there exists limz→0+ E3 and limz→0− E3 when (r, o) ∈ (R3\Ω)×
Ω0(r). Additionally, E3 changes its sign concomitantly with z. Thus limz→0− E3 = − limz→0+ E3.

Let’s denote E+3 (r, o) and E−
3 (r, o) as extensions of E3(r, o) by limz→0+ E3 and limz→0− E3

onto the set (R3 \Ω) ×Ω+(r) and (R3 \Ω) ×Ω−(r), respectively. Their continuity follows from
uniform convergence.
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3.2. Electric field E1 component

Lemma 3.2. Let Ω be a regular, compact surface in R3, especially ∂o
∂p × ∂o

∂q ≠ 0 for all o ∈ Ω.
There exist E1(x, y, z) → 0 uniformly in set s =

√︁
x2 + y2 ∈ [ν,∞[ with all ν>0 when z → 0.

Proof. Let us examine the representation E1 = E1 − D + D again. Based on Eq. (8), D → 0
uniformly in relation to constant s in the set [ν,∞[, when z → 0. Let us fix r0>k. Again, in the
difference E1 − D = 1

4π2

∫ ∞

0 [f (r; |z|) − g(r; |z|)] Jo(sr)rdr it is sufficient to examine the integral

I =
1

4π2

∫ ∞

r0

[︂
f (r; |z|) − g(r; |z|)

]︂
Jo(sr)rdr, (22)

where by Eq. (14) we obtain [f (r; |z|) − g(r; |z|)] r = |z|k2e−|z |rh(r; |z|). Based on Eq. (15) and
Eq. (19), we obtain as in Eq. (20)

|I | ≤
|z|k2

4π2

∫ ∞

r0

e−|z |r |h(r; |z|)| |Jo(sr)|dr ≤ · · ·

≤ |z|1/2
ak2K1

2π2s1/2

∫ ∞

0
e−tt1/2dt → 0, when z → 0,

(23)

even uniformly in the set s ∈ [ν,∞[, ν>0.
NOTE. When considering Eq. (12), because of Eq. (8) and |J0(sr)| ≤ as−1/2r−1/2, it is also

shown that for all z ≠ 0 holds E1(x, y, |z|) → 0 at least at a rate s−1/2 when s → ∞.

3.3. Theorem for the electric field

Theorem 3.3. Let Ω be a regular, compact surface in R3, especially ∂o
∂p × ∂o

∂q ≠ 0 for all o ∈ Ω.
The electric field E0 on the surface Ω creates a radiating field E(r) with the representation in
Eq. (4) at the point r ∈ R3 \Ω, where the set Ω0(r) is of measure zero in dΩ. Moreover, E(r) is
a continuous function of r at those points.

Proof. Let r ∈ R3 \Ω. When z = 0, let us define E1(x, y, 0) = limz→0 E1. Then the functions

E+(r; o) = E0[E1(r; o)e1 + E+3 (r; o)e3],
E−(r; o) = E0[E1(r; o)e1 + E−

3 (r; o)e3]
(24)

are continuous in (R3 \ Ω) × Ω+(r) and (R3 \ Ω) × Ω−(r), respectively. In what follows in the
proof, let r ∈ R3 \ Ω be such that the corresponding Ω0(r) is of measure zero in dΩ. Then
integral in Eq. (4) exists as

E(r) =
∬
Ω+(r)

E+(r; o)dΩ +
∬
Ω−(r)

E−(r; o)dΩ. (25)

By continuity, we can expect that Ω0(r) ≠ ∅. Let us define ε, ν>0 and Ων(r) =
{︁
o ∈

Ω | d
(︁
o,Ω0(r)

)︁
<ν)

}︁
. It follows from continuity in a compact set that there exists some δν>0

such that
Ω0(s) ⊂ Ων(r) for all s ∈ B(r, δν), (26)

where B(r, δν) is an open ball. Also, by continuity the jump ∥E±(r; o) − E±(s; o)∥ in a compact
set B̄(r, δν) × Ω̄ν(r) is bounded by some M>0. Then for all s ∈ B(r, δν) it holds that∬

Ω̄ν (r)

∥︁∥︁∥︁E±(r; o) − E±(s; o)dΩ
∥︁∥︁∥︁<M

∬
Ω̄ν (r)

dΩ. (27)

But ∩ν>0Ω̄ν(r) = Ω0(r), and hence∬
Ω̄ν (r)

dΩ→

∬
Ω0(r)

dΩ = 0 when ν → 0. (28)
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For all s ∈ B(r, δν) we can find ν>0 satisfying Eq. (26) such that the value of the integral in
Eq. (27) is less than ε/2. Let |Ω| be a measure of Ω. Moreover, because of continuity, we can
reduce δν such that

∥E(r; o) − E(s; o)∥< ε
2|Ω|

for all (s, o) ∈ B(r, δν) ×Ω \Ων(r). (29)

As a consequence, we get that

∥E(r) − E(s)∥ ≤

∬
Ω̄ν (r)

∥︁∥︁E±(r; o) − E±(s; o)
∥︁∥︁dΩ

+

∬
Ω\Ω̄ν (r)

∥︁∥︁E(r; o) − E(s; o)
∥︁∥︁dΩ

<
ε

2
+
ε

2
= ε for all s ∈ B(r, δν),

(30)

which proves continuity.

3.4. Magnetic field components

Let’s fix o ∈ Ω and consider a point r with a non-zero local coordinate z. Then we can take a
curl of E(r; o) = E0(E1e1 + E3e3) at r. As well known, a magnetic field at r is

H(r; o) = i
ωµ

[︂
∇ × E(r; o)

]︂
=

i
ωµ

E0

|︁|︁|︁|︁|︁|︁|︁|︁|︁
e1 e2 e3

∂
∂x

∂
∂y

∂
∂z

E1 0 E3

|︁|︁|︁|︁|︁|︁|︁|︁|︁ = E0(H1e1 + H1e2 + H3e3), (31)

and
H1 =

i
ωµ

∂E3
∂y

, H2 =
i
ωµ

(︂
−∂E3
∂x
+
∂E1
∂z

)︂
and H3 = −

i
ωµ

∂E1
∂y

. (32)

If AS(r) is valid, we obtain a total magnetic field at r as

H(r) =
∬
Ω

E0(o)
[︂
H1(r; o)e1(o) + H2(r; o)e2(o)

+ H3(r; o)e3(o)
]︂
dΩ.

(33)

Lemma 3.4. Let Ω be a regular, compact surface in R3, especially ∂o
∂p × ∂o

∂q ≠ 0 for all o ∈ Ω.
There exist limz→0+ H(r; o) and limz→0− H(r; o) = − limz→0+ H(r; o) at (r, o) ∈ (R3 \Ω) ×Ω0(r).
The function H(r; 0) extended by the former limit depends continuously on (r, o) in the set
(R3 \Ω) ×Ω+(r). Correspondingly, H(r; 0) extended by the latter limit depends continuously on
(r, o) in (R3 \Ω) ×Ω−(r).

Proof. We can follow the steps in Lemma 3.1 with a few adaptations. It is briefly seen, that
∂m+n

∂xm∂yn D → 0 for all m + n = 1, 2, 3, .., when z → 0 and s =
√︁

x2 + y2 ≠ 0. It is straightforward
to show that the function

[︁
∂n

∂rn h(r; |z|)
]︁
rn is a bounded on r ∈ [k,∞[ for n = 1, 2. Actually, that

holds for all n = 1, 2, 3, . . .
As a consequence, we obtain as in Lemma 3.1

∂m+n

∂ym∂xn E1 → 0 for m + n = 1, 2, when z → 0. (34)

Thus ∂
∂zH1 = a ∂

∂y
∂
∂zE3 = −a ∂

∂y
(︁
ikxE1

)︁
= −a ∂2

∂y∂x E1 → 0, when z → 0. Hence, similar to
Lemma 3.1, we can conclude that there exists limz→0+ H1 and limz→0− H1 = − limz→0+ H1.
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Denote F = − ∂
∂x E3 and G = ∂

∂zE1. Then ∂F
∂z =

∂2

∂x2 E1 → 0, when z → 0. Hence there exist
limz→0+ F and limz→0− F = − limz→0+ F. The function E1 satisfies the Helmholtz equation, so
we get ∂G

∂z =
∂2

∂z2 E1 = −
(︁
∂2

∂x2 +
∂2

∂y2 + k2)︁E1 → 0, when z → 0. Hence there exists limz→0+ G
and limz→0− G = − limz→0+ G. As a consequence we conclude that there exists limz→0+ H2 and
limz→0− H2 = − limz→0+ H2.

Moreover, H3 = −a ∂
∂y E1 → 0, when z → 0, which is consistent with Lemmas 3.1 and 3.2 and

the fact that H · E = 0.

3.5. Theorem for the magnetic field

Theorem 3.5. Let Ω be a regular, compact surface in R3, especially ∂o
∂p × ∂o

∂q ≠ 0 for all o ∈ Ω.
The electric field E0 on Ω creates a magnetic field H(r) at the point r ∈ R3 \ Ω, where the set
Ω0(r) is of measure zero in dΩ. Moreover, H(r) is a continuous function of r at those points.

Proof. We follow the proof in 3.3, where E(r) is replaced with h(r).

3.6. Note for the total field

From a physical point of view, in the article [11–13], the fields E(r) and H(r) are limits obtained
by using polyhedral and the planar theory on their faces

E(r) = lim
|Ωt |→0

∑︂
t

Et(r) and H(r) = lim
|Ωt |→0

∑︂
t

Ht(r), (35)

which are used in the torus surface field example in section 4.

4. Fields at the source surface

Some applications require computing radiated fields very near or on the source surface Ω, which,
in its current form, is singular. This singularity problem can be avoided with two approaches.
The first option is to restrict the integration limit of source points to finite values. Simulations
have shown that integrating within a limit 1.2k gives accurate results without losing information
or encountering singularities. The second option is to change the integration order, which allows
the integration of the source points over infinite space. The change in integration order offers an
approach to analyzing electromagnetic beams near and at the source surfaces. As an example,
the E would be computed as

E(r) =
∬
Ω

E0(o)
[︂
E1(r; o)e1(o) + E3(r; o)e3(o)

]︂
dΩ,

=

∬
R2

dkxdky

∬
Ω

ei
[︁
kx x̄(r;o)+ky ȳ(r;o)+kz |z̄ |(r;o)

]︁
∗ E0(o)[e1(o) −

kx

kz
e3(o)]dΩ

(36)

where r = xex + yey + zez, o = oxex + oyey + ozez, [x̄(r; o) ȳ(r; o) z̄(r; o)]T = ΘT (r − o) and
Θ = [e1(o) e2(o) e3(o)] is a transformation matrix introduced in [11]. This procedure is also
valid for the magnetic field.

5. Beam synthesis from torus surface field

This section presents the simulation results for a large torus surface field, in which electromagnetic
radiation would not be valid at any point in r ∈ R3 \ Ω without the proofs of Section 3. The
geometry of the torus surface is presented in Fig. 4 and MATLAB code for parametrization can
be obtained from [17].
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Fig. 4. a) Torus parameters. b) The torus surface is discretized to the source points, whose
local base vectors (e1, e2, e3) are marked as red, green, and blue arrows, respectively.

The torus dimensions were selected to be significant compared to the wavelength λ, with a
circumference of 30 λ. This leads to a torus radius of R = 30λ/2π, and the torus thickness was
selected r = 0.05λ. The torus surface was discretized with 1800 source points, which gives
well below λ/6 spacing. In this simulation example, we synthesized an electromagnetic beam
from an electric field on a torus surface, which will radiate only towards free space. Due to this,
we restrict to the set Ω+(r), that is, source points having local z ≥ 0 related to o. Also, it is
important to note that in the following CBIM simulations, each source point radiating from the
torus surface to Ω+(r) direction doesn’t interact with the torus structure.

5.1. Near-field radiation

The electromagnetic near-field radiation is synthesized from a torus surface field E0 = 1 V/m,
which is distributed as

jeθ = σE0e−ikθReθ , (37)

where surface current is j = 1 A/m2, conductivity is σ = 1 S/m and k = 2π/λ is the wavenumber.
Both electric and magnetic fields are illustrated on an evaluation (x, z)−plane of a size of 4R× 4R,
see Figs. 5 and 6. The fields are computed from 1800 source points to 500 × 500 evaluation
points, taking approximately 4 hours to simulate on a modern laptop. As seen from the figures,
the propagating electric field has destructive interference at (x, y) = (0, 0) line, whereas the
magnetic field has constructive interference. This near-field radiation is well aligned with the
vector field geometry.

5.2. Far-field radiation

The beam synthesis from a source field positioned on the torus surface can also be interpreted as
a very large loop antenna radiation with a diameter of D ≈ 9.5λ [18]. The radiation patterns
of this large loop antenna cannot be computed with closed-form equations [18,19]. For this
reason, we have compared the far-field radiation calculated with the CBIM to that obtained from
the CST Studio Suite simulations. As the loop antenna needs a feed port(s), the surface current
distribution will differ from the ideal one presented in Eq. (37). Due to this, the simulation is
first done with CST Studio to obtain the far-field pattern as well as the actual surface current
distribution on the torus surface, see Fig. 7.

We used four voltage ports to create a similar current distribution as in Eq. (37). Thus, we
prefer to call this a torus far-field simulation rather than a loop antenna simulation. Then, the
far-field radiation is simulated with CBIM using CST mesh and surface current data. Each center
position on the CST mesh is replaced by a source point, in which the complex amplitude is
obtained from the CST surface current data kCST as

E0(o) = e1(o) · RE
{︁
[kCST

x kCST
y kCST

z ](o)
}︁
+ ie1(o) · IM

{︁
[kCST

x kCST
y kCST

z ](o)
}︁

. (38)
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Fig. 5. The radiated electric field from a torus surface field evaluated at (x, z)−plane.

Fig. 6. The radiated magnetic field from a torus surface field evaluated at (x, z)−plane.
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Fig. 7. a) Simulation model of the torus in CST with 4 ports and PEC material and b) an
illustration of the surface current distribution.

The CBIM simulations are evaluated at a distance of 200R from the origin of the torus, which
is well beyond the far-field distance 2D2/λ. The fields are computed from 11564 source points to
500 evaluation points, taking approximately 30 minutes to simulate on a modern laptop. The
far-field electric and magnetic field cuts at (x, z)−plane simulated with CBIM and CST Studio
are presented in Fig. 8. As seen from the simulation comparison, the far-field patterns are well
matched for θ ≤ | ± 55◦ |. The mismatch with larger angles θ ≥ | ± 55◦ | is due to the CBIM
simulations not taking into account shadowing and scattering by the torus PEC structure as the
CST electromagnetic solver did. This becomes evident when the radiation angle is large enough
to intersect with the torus structure.

Fig. 8. The electric and magnetic far-field radiation patterns comparison to CST Studio
Suite simulations. Fields are simulated on a hemisphere intersecting (x, z)−plane, where
global spherical coordinates ϕ = 0 and θ = [−π/2, π/2].
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Also, the shape of electric and magnetic far-field patterns are nearly identical as the reactive
near-field radiation fades away. This serves as a good example of how CBIM can simulate both
near- and far-field with high accuracy.

6. Conclusions

This article addresses the limitations in the original integral presentation of the CBIM [11] for
electromagnetic beams synthesized from arbitrary surface field distributions on compact surfaces
Ω in R3 space. Previously, the representation was restricted to points r ∈ R3 satisfying the
assumption AS(r) in Eq. (5). This limitation can lead to significant restriction for E(r) and H(r)
synthesis due to the shape of the surface Ω. By removing this restriction, we have extended
the validity of the integral representation to all points in R3 \ Ω, where Ω0(r) is of measure
zero in dΩ. For example, for torus surfaces Ω presented in Figs. 2 and 4, that is the case for all
r ∈ R3 \Ω, since Ω0(r) is certainly such a set. Further, we showed that by changing the order of
integrations, the integral presentation is valid on the surface Ω without singularities.

The fact that E(r; o) and H(r; o) are defined as limit values at some point o in the generalized
solution, does not play any role in the practical solution. This is because E(r; o) and H(r; o) are
density functions in the integrals in Eq. (4) and Eq. (33), that are bounded and continuous in
pieces.

We provide near-field simulation examples and prove the accuracy of the far-field radiation
patterns by comparing CBIM and CST Studio Suite simulations. The far-field patterns between
CBIM and CST studio simulations have a high agreement when the shadowing and scattering
from torus PEC structure don’t play a significant role, as the CBIM doesn’t take this into account.

Our results have significant implications for electromagnetic wave theory and its practical
applications, such as synthesizing and analyzing electromagnetic beams from and between shaped
objects. The extended integral representation provides a more comprehensive and accurate
description of beam synthesis by removing the restriction from the radiated electromagnetic beams.
This flexibility allows for more precise and versatile beam design, which can be particularly
useful in various electromagnetic applications.
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