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Abstract

Background: Dispersed biomedical databases limit user exploration to generate structured knowledge. Linked Data
unifies data structures and makes the dispersed data easy to search across resources, but it lacks supporting human
cognition to achieve insights. In addition, potential errors in the data are difficult to detect in their free formats.
Devising a visualization that synthesizes multiple sources in such a way that links between data sources are
transparent, and uncertainties, such as data conflicts, are salient is challenging.

Results: To investigate the requirements and challenges of uncertainty-aware visualizations of linked data, we
developed MediSyn, a system that synthesizes medical datasets to support drug treatment selection. It uses a
matrix-based layout to visually link drugs, targets (e.g., mutations), and tumor types. Data uncertainties are salient in
MediSyn; for example, (i) missing data are exposed in the matrix view of drug-target relations; (ii) inconsistencies
between datasets are shown via overlaid layers; and (iii) data credibility is conveyed through links to data provenance.

Conclusions: Through the synthesis of two manually curated datasets, cancer treatment biomarkers and drug-target
bioactivities, a use case shows how MediSyn effectively supports the discovery of drug-repurposing opportunities. A
study with six domain experts indicated that MediSyn benefited the drug selection and data inconsistency discovery.
Though linked publication sources supported user exploration for further information, the causes of inconsistencies
were not easy to find. Additionally, MediSyn could embrace more patient data to increase its informativeness. We
derive design implications from the findings.

Keywords: Interactive visualization, Uncertainty visualization, Multiple datasets

Background
In biomedicine, the fruits of numerous biological assays
and clinical studies are buried in various sources, such
as publications and clinical reports, waiting to be trans-
lated into better treatments for patients [1, 2]. To
accelerate such clinical practice and medical research,
literature mining as well as crowdsourcing-based data-
curation techniques are used to extract and collect useful
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biomedical information from the dispersed sources.
Encouragingly, many curated databases provide open
access, e.g., DrugBank [3] and clinicaltrials.gov [4], which
inevitably benefits biomedical advances [5].
However, the isolated nature of biomedical databases

still hinders the sharing and discovery of knowledge. To
answer a biomedical question, scientists need to labori-
ously explore available sources via multiple and heteroge-
neous search services and then struggle to combine the
selected information into a structured solution [6]. Due to
the tediousness of the search process and the high cost of
the cognitive load in matching sources [7], the abundant
information sources available are often underexplored [6].
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The ineffectiveness of translating datasets into useful
insights calls attention to the essential issue of data
integration.
Linked Data, as an effort to use the Semantic Web to

interrelate data, encourages people to publish uniformly
structured data, such as using the Resource Description
Framework (RDF), so as to lower the barriers to con-
nect data from different sources [8]. Some significant
linked biomedical data projects include Bio2RDF [9] and
Open PHACTS [10]. Nonetheless, the data published in
Uniform Resource Identifiers (URIs) and RDF structures
benefit the computer to interpret and correlate relevant
information, but they do not facilitate human cognition
to achieve insight. Hence, an interactive visualization tool
that effectively synthesizes multiple biomedical datasets is
required [1].
On the other hand, missing data and data errors in

mined or curated biomedical datasets are difficult to
detect in their free formats. Still, few efforts have been
devoted to visualizing such data uncertainty to help biol-
ogists better understand the data [11]. Apart from that,
the integration of multiple biomedical datasets brings
another dimension of uncertainty: data consistency. Con-
sistent information from different sources reinforces itself,
giving people more confidence in the knowledge they
acquire [12, 13], whereas conflicting data can motivate
researchers to further explore the data sources to under-
stand the causality. Visualization that conveys such uncer-
tainty information among biomedical datasets [14] allows
the user to make a more informed decision, such as
treatment selection.
The purpose of this research was to visually synthesize

multiple biomedical datasets, while exposing the uncer-
tainties of the datasets to arouse user awareness of uncer-
tain information and to facilitate drug treatment selection.
In this paper, we presentMediSyn (Fig. 1). It uses amatrix-
based layout to correlate multiple drugs, targets, and
tumor types. Target in this paper refers to mutations and
wild-type genes. Sorting functions bring more relevant
drugs to the front of the view to assist visual comparison
of drug effects on multiple targets. The transparent rep-
resentation and user exploration of drug-target relations
enable the discovery of drug-repurposing opportunities,
which is one contribution of this system.
Another contribution is that such a system visual-

izes data uncertainty to increase user awareness of data
trustworthiness. First, the holistic relation representation
among drugs, targets, and tumor types exposes missing
data. Second, depicting datasets in overlaid layers enables
the user to identify data consistency states from differ-
ent sources. Third, visual encodings of different levels of
clinical evidence expose data credibility. Data provenance,
such as publications, can be interactively retrieved to
convey the credibility of information sources.

MediSyn is implemented with two manually curated
datasets, cancer treatment biomarkers from Cancer
Genome Interpreter (CGI) and drug-target bioactivities
from Drug Target Commons (DTC). A preliminary study
with six domain experts showed that the synthesis of two
datasets can increase user satisfaction and efficiency and
lower choice difficulty in drug selection compared to user
exploration with currently unlinked datasets. Subjective
results showed positive feedback on MediSyn, such as
simplicity and ease of use. Among others, the links to data
sources, such as publications, appear to be an important
and useful feature for the user to verify or acquire addi-
tional information about the data. The study results also
indicated MediSyn effectively supported the discovery of
data inconsistencies, but the causes of inconsistencies
were not easy to find. Additionally, more patient data
sources can be integrated to increase the informativeness
of MediSyn.
Based on the results of the user study, we derive a

set of design implications of MediSyn to inform two
design problems: how to depict the correlated biomedical
datasets; how to effectively expose and visually communi-
cate data uncertainties.

Related work
To facilitate knowledge discovery from dispersed and het-
erogeneous biomedical datasets, some projects, such as
Linked TCGA (The Cancer Genome Atlas Database) [15]
and Open PHACTS [10], brought together pharmaco-
logical data resources and built data infrastructures to
allow for the integration and interoperation of biomedi-
cal data. Several visualization tools have been built on top
of the linked biomedical data platforms to support knowl-
edge exploration, e.g., GenomeSnip [16] and PharmaTrek
[17]. GenomeSnip [16], consisting of Genomic Wheel
and Genomic Tracks, integrates knowledge of the human
genome from multiple sources to support the explo-
ration and cognition of the relationships between different
genomic features. Genomic Wheel visualizes the hierar-
chical information of chromosomes, ideograms, genes,
and cancer point mutations in circular layers, whereas
Genomic Tracks visualizes gene information retrieved
from Linked TCGA in tabular panels.
PharmaTrek [17] is based on Open PHACTS but inte-

grates information on molecule-protein interactions and
ligand structures to support multitarget drug discovery.
It uses a heatmap to depict molecule and target activity
values. The user can filter related molecules by setting
the range for the activity values to each target, and he
or she can retrieve additional targets related to the dis-
played molecules. In a similar two-dimensional layout,
Campbell et al. [18] brought together biological, chem-
ical, and clinical resources and built a confidence-based
drug-target landscape along two evidence dimensions on



The Author(s) BMC Bioinformatics 2017, 18(Suppl 10):393 Page 3 of 79

Fig. 1 Overview of MediSyn. MediSyn synthesizes two biomedical datasets: cancer treatment biomarkers from Cancer Genome Interpreter (CGI) and
drug-target bioactivities from Drug Target Commons (DTC). The left list contains the controllers, such as selection and sorting, whereas the middle
view represents drug-target relations. Retrieved details of the clicked drug-target relation are shown on the right side. Here the user clicked on the
potency bar of the drug bosutinib and mutation ABL1(E255K) so that the details, including the dataset, bioactivity state, and publication source, are
shown on the right side

a scatter plot. The x-axis of the scatter plot indicates
ordered categories that provide evidence connecting pro-
teins to disease, whereas the y-axis denotes ordered cate-
gories of evidence supporting small-molecule druggability
for proteins.
These visualizations do not explicitly separate different

datasets but rather take the linked data as a whole to facil-
itate user exploration across data sources. Similarly, some
visual search platforms have been built in this manner to
aid biomedical search across resources.
TripleMap [19] allows user exploration of biomedical

entities, such as compounds, diseases, and assays [1]. It
uses a node-link diagram to automatically connect user-
selected entities based on the semantic tags retrieved from
RDF datasets. ReVeaLD [20] has a visual query builder to
help the user formulate a query in an intuitive way, and
it displays results in a faceted results browser through a
federated search.
Because trust in information requires an awareness of

its provenance [21], we argue that users should be aware
of information sources and have control of the sources,
which can be based on their confidence in the datasets.
Several research efforts visualize datasets in separate

views and then use linking and brushing techniques
or explicit links to show data relations. ConTour [22]

provides a relationship view of datasets, such as genes,
compounds, and pathways, in columns at the bottom with
a detailed view of the selected items above. The user
selection of items in one column can highlight relevant
items in other columns. Sorting and filtering functions
can be flexibly combined to drill down into the data
space. Similarly, StratomeX [23], based on VisBricks [24],
employs a column-based layout to represent datasets,
with bricks in those columns encoding potential sub-
types or stratifications (partitionings into homogeneous
subsets) of the data. Ribbons connect bricks of neigh-
boring columns, with their width encoding the amount
of data they share. Such explicit links are adopted in
Domino [25] as well, which interrelates items between
separate views of datasets using line connections. It
enables the user to freely arrange and combine the
blocks to tailor to the task at hand. For example, assem-
bling Sankey diagrams [26] to recognize the flow in the
datasets.
Different from the previous work, MediSyn uses over-

laid layers to represent datasets not only to link but also
to allow for comparison between datasets. Additionally,
a matrix-based layout is adopted due to its scalability in
visualizing data items as well as its support for the com-
parison of rows and columns. For instance, Bertifier [27]
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adopts a matrix-layout to link two data items, but cells
visually encode a single data attribute associated with the
item in that row and column. Lamy et al. proposed a
matrix-based set visualization (rainbow boxes) with drugs
in columns and their contraindications in rows to allow for
the comparison of relevant drugs [28], but no indication
of data sources is involved in the visualization.
Apart from that, MediSyn exploits the crucial but

underexplored problem in biomedical data, that is,
data uncertainty, to support a more-informed treatment
selection.

Method
MediSyn (Fig. 1) is a matrix-based interactive visualiza-
tion that supports drug treatment selection under uncer-
tainty. It consists of three parts (Fig. 1). The left list
contains the controllers, including dataset and muta-
tion selection and sorting functions. The middle part is
the matrix-based view with overlaid layers synthesizing
datasets. The right part displays the detailed descriptions
and the sources of user-clicked data.

Datasets
Twomanually curated datasets of drug-target relations are
synthesized (Fig. 2). One is cancer treatment biomarkers
from the Cancer Genome Interpreter (CGI) [29], and the
other is drug-target bioactivities from Drug Target Com-
mons (DTC) [30]. The CGI contains drug responses such
as responsiveness and resistance to various mutations in
different tumor types. Five evidence levels, i.e., pre-clinical,

case report, early trials, late trials, and guidelines, such as
Food and Drug Administration (FDA) guidelines – from
the lowest to the highest – indicate the approval status
of a drug. DTC contains bioactivities between different
drugs and targets, which can be considered pre-clinical
evidence. Due to the fact that the data from the CGI have
a generally higher evidence level than those fromDTC, we
place higher priority on the data from the CGI in visual
encodings.
Each bioactivity in DTC is described by a measurement

type, such as Kd, Ki, and IC50, and the bioactivity value.
We further categorize the bioactivity values to potency
levels to make them easier for the user to understand. An
activity value between 0 and 10 nM is classified as highly
potent; a value between 10 and 1,000 nMdenotes potency;
a value between 1000 and 10,000 nM indicates the drug is
weakly potent; and a value over 10,000 nM indicates the
drug is inactive [29]. If multiple bioactivities exist for the
drug and target pair, we take the median as the activity
value to avoid the disturbance of outliers.

Visualization design
The visualization supports a one-to-one representation
of the relations between drugs, targets, and tumor types.
It uses a matrix-based layout where each column repre-
sents a user-selected target. The rows above the targets
represent tumor types, and the rows below depict related
drugs (Fig. 3). Two overlaid layers representing the two
datasets respectively visualize the relations between drugs
and targets.

Fig. 2 Two manually curated datasets of drug-target relations. The upper part is a cancer treatment biomarker dataset from the CGI, whereas the
lower part is a bioactivity dataset from DTC. We used the two webpages as the baseline interface in the user study
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Fig. 3 The visualization design of MediSyn. The matrix-based layout
of MediSyn represents the relations among multiple drugs, targets,
and tumor types. The overlaid layers depict the data from two
datasets respectively with efficient visual encodings for prioritized
data parameters

We prioritize the data parameters, abstract them to
different data types, e.g., nominal and quantitative, and
then map them to visual variables considering Mackin-
lay’s ranking [31], a ranking of visual variables regarding
how accurately humans perform the corresponding per-
ceptual task for different types of data. As depicted in
Table 1, drugs and targets are nominal data with the high-
est priority. Thus, we encode them by position, which
helps with forming the rows and columns of the matrix.
Tumor types are nominal data and are related to targets
only. We encode them by position as well, forming the
rows at the top of the matrix (Fig. 3). If the mutation has
been described in the tumor type, a horizontal line will
appear in the corresponding table cell, which is inspired
by linear diagrams representing relations of sets [32].
As we have fixed the positions of drug-target effects

from the CGI in the corresponding cells, these nominal
data then adopt the second-best visual variable, which is

Table 1 Visual variables encoding different parameters of our
datasets based on their priority and importance in supporting
drug treatment selection

Parameters Data types Visual variables

Drug Nominal Position

Target Nominal Position

• Tumor type Nominal Position

Drug-target effect from CGI Nominal Hue

• Evidence level Ordinal Position, length,
saturation

Bioactivity potency level from DTC Ordinal Position, length

hue. Responsive effects are shown in green, whereas resis-
tant effects are displayed in red (Fig. 3). The evidence
levels of the biomarkers are ordinal data, which use a com-
bination of position, length, and saturation encodings. As
a result, the encodings of drug-target effects and their
evidence levels translate the data into colored bars, i.e.,
each column of the matrix contains a vertically aligned
bar chart. Finally, bioactivity potency levels from DTC are
ordinal data residing in the corresponding cells as well,
which constitute another layer of data on top of the CGI.
We encode them by position and length. As illustrated
in Fig. 3, the black bars on top of the colored bars with
decreased width depict the potency levels of drug-target
bioactivities, whereas slashes denote inactive bioactivities.

Interaction design
The interactions enable user exploration of the relations
between multiple drugs and targets. The sorting func-
tionalities based on different criteria support the user in
identifying effective drugs Detailed descriptions as well
as data provenance of the drug-target relations can be
retrieved on demand.

Dataset and target selection
Based on the information frommultiple sources, MediSyn
allows the user to explore the relations of interested muta-
tions to relevant drugs, tumor types, and the wild-type
gene.
The user can choose to display the data from only

interested or trusted data sources through controlling the
checkboxes on the left top of Fig. 1.
Once a mutation is selected from the left list (Fig. 1), it

is added as a new column in the matrix. All drugs related
to the selected mutation are added as rows automatically.
In addition, tumor types related to the selected mutation
are retrieved and displayed above the matrix.
The wild-type gene of the selected mutation, if it exists

in the datasets, is also added as a column. The wild type
can be used to predict possible side effects of the drug. If
the drug shows greater potency toward the wild type than
the mutated gene, then possible side effects can be antici-
pated from this drug. A cross icon attached to the header
of each column allows the user to remove the target.

Sorting
Sorting allows the user to rank the drugs based on differ-
ent criteria to explore their relations to multiple targets.
MediSyn allows the user to sort the drugs in three ways.
If the user clicks the column header of a target, all drugs
related to this target come to the top. The drugs contain-
ing data from both datasets come first; the drugs with
data only from the CGI come second, whereas the ones
described only in DTC come third, in descending order of
the potency values, as the CGI data have a higher evidence
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level than the DTC data. Using the sort control on the
left, the user can either sort the drugs by the sum of
the potency values of all selected mutations to each drug
based on DTC data or by the number of responsive muta-
tions of each drug based on the CGI data. Both methods
sort the drugs in descending order.

Highlighting
Highlighting provides visual cues to interrelate drugs,
targets, and tumor types to the current focused data. Hov-
ering over the drug name, i.e., row header, highlights all of
its related targets as well as its related tumor types. Hov-
ering over a bar highlights its mutation and drug as well
as the column of its wild-type gene, if it exists. Hovering
over the tumor name highlights all its related mutations.

Details on demand
Following Shneiderman’s information-seeking mantra
[33], details regarding the drug-target relation as well as
the data provenance are provided on demand. As the
mouse hovers over the DTC bars, the detailed bioactivity
values are shown as a tooltip. If the user clicks on any of
the CGI or DTC bars, related information is shown on the
right, including the dataset to which it belongs, a descrip-
tion of the drug-target relation, and the sources of the
curated data, such as the title, abstract, and digital object
identifier (DOI) of the publication. Clicking on the DOI of
the publication will bring the user to the publication page.

Visualizing data uncertainties
MediSyn uses a matrix-based layout coupled with overlaid
layers to relate data items and synthesize datasets. Three
types of data uncertainties are exposed in MediSyn to
increase user awareness of data trustworthiness: missing
data, data consistency, and data credibility. The matrix-
based layout interrelates drugs, targets, and tumor types
to facilitate user’s cognition ofmissing data.
A superimposed view facilitates direct comparison of

data from multiple sources and exposes data consistency
states. In our case, both datasets indicate drug-target
relations, which allows them to share the same spatial
mapping [34]. At the same time, direct comparison of
data consistency is crucial in this case. Based on these
two conditions, we adopted a superimposed view [34], i.e.,
overlaid data layers.
Overlaid layers of comparable data elements allow the

user to easily perceive data consistency between datasets.
Figure 3 contains some inconsistent drug-target rela-
tions, where for the same drug and mutation pair the
CGI value indicates resistance between them, whereas
the DTC dataset shows the drug is potent toward the
mutation, i.e., red bars overlaid with black potent bars. On
the other hand, cases exist where the two datasets pro-
vide consistent results. For example, the cells where highly

potent bars lie on top of the fully saturated green bars in
Fig. 3.

Data credibility can be assessed in two ways. First, visual
encodings of the evidence levels consisting of position,
length, and saturation inform the credibility level of the
drug-target relations from the CGI. Second, links to data
sources, such as publications, can be retrieved on demand
to expose data credibility.

Implementation
MediSyn is implemented using D3.js [35]. It contains 536
different point mutations, among which 350 come from
the CGI, 217 are from DTC, and 31 exist in both datasets
(Table 2). Sixteen wild-type genes all come from DTC.
There are in total 258 different kinds of drugs or drug
combinations, 166 of which are from CGI, 116 are from
DTC, and 24 exist in both datasets. A total of 2,405 dif-
ferent pairs of drug-target relations exist, 546 of which
are cancer treatment biomarkers. The rest are from DTC,
among which 665 pairs are wild-type drug interactions.
Forty-two drug-mutation pairs contain data from both
datasets. Finally, 52 tumor types are all retrieved from
the CGI. MediSyn is available at http://medisyn.hiit.fi. See
Additional file 1 for a video demonstration of MediSyn.

Use case
Studies have shown that even oncologists at a leading
cancer center express low confidence in their knowl-
edge of genomics [36]. MediSyn makes the knowledge of
genomically informed therapy accessible and evaluable to
clinicians. Such personalized cancer medicine involving
the patient’s molecular profile, i.e., patient mutations, can
be more advantageous than current standard therapies
across tumor types [36].
As a use case, Fig. 4 shows the T315I mutation con-

fers resistance to themajority of approvedABL1 inhibitors
[37], such as the drug bosutinib, except for ponatinib,
which has toxicity limitations. However, MediSyn exposes
that axitinib could be a promising treatment for patients
with the otherwise highly drug-resistant mutation BCR-
ABL1(T315I)-driven chronic myeloid leukemia, based on
pre-clinical evidence from both datasets (highlighted drug

Table 2 Statistics of the data from the CGI and DTC

Mutation Wild-type
gene

Drug Drug-target
relation

Tumor type

CGI 350 0 166 546 52

DTC 217 16 116 1,859 (665
wild-type
targets)

0

Both 31 0 24 42 0

Total 536 16 258 2,363 52

http://medisyn.hiit.fi
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Fig. 4 A use case. A case of the discovery of a drug-repurposing opportunity. Axitinib is promising to treat otherwise highly drug resistant mutation
ABL1(T315I)-driven chronic myeloid leukemia based on pre-clinical evidence from both datasets

in Fig. 4), which is also in agreement with the findings
of Pemovska et al. [37]. This demonstrates how compre-
hensive representation of drug-target data can lead to
unexpected and novel drug-repurposing opportunities.
In facilitating the identification of data uncertainty,

the highlighted cell in Fig. 3, for instance, shows that
according to the CGI, ABL1(E255K) is resistant to nilo-
tinib, whereas DTC data show the drug is potent for
this mutation. The user can find the same informa-
tion from the original CGI and DTC webpages in
Fig. 2, but such data conflicts are difficult to detect
when the datasets are unlinked. In the user study, we
inquired of a number of bioinformaticians about the
possible cause of such inconsistencies. They provided
some hypotheses but did not have an explicit answer
(see the next section).

User study
To investigate the benefits of MediSyn as well as other
possible insights and future design challenges resulting
from data integration and uncertainty visualization, we
did a within-participant study with six domain experts. To
concretize the investigation, we raised the following two
research questions. In addition, we assessed the user expe-
rience with the synthesized interface to select effective
drugs.

• RQ1: What features of MediSyn are useful? What
features need to be further developed?

• RQ2: Can MediSyn convey data inconsistencies to
the user? How will user awareness of inconsistencies
among datasets affect user trust in the curated data
and in MediSyn?

We conducted the evaluation in a lab setting using the
Chrome browser on a 13.3-inch MacBook Pro with a 2.8-
GHz Intel Core i5 processor, 16 GB of RAM, and a built-in
trackpad and keyboard. The display resolution was 2,560
* 1,600 pixels.

Baseline
We used the original CGI and DTC webpages as the
baseline system (Fig. 2) to assess the impact of MediSyn
as a synthesized interface. The CGI cancer treatment
biomarker page describes the mutations, drugs, evidence
levels, data sources, and tumor types of the biomarkers in
a table, as shown in the upper part of Fig. 2. The user can
reorder the rows by clicking on the header of the column
and can filter the rows using the filtering box at the top of
each column. The DTC Web application allows the user
to search bioactivities by a point mutation. It displays the
relations of mutations, drugs, activity types, and values in
a table as well. Similar to the CGI, the user can sort and
filter the bioactivities using the control, as shown in the
lower part of Fig. 2. For both datasets, clicking on the data
source will open a newwindow that shows the source page
of the curated data, such as a publication page.

Participants
Among the six participants (three females; age mean: 28.6,
SD: 5.32, N: 6), five were bioinformaticians, and one was
a computer scientist. Participants were asked to com-
plete a pre-questionnaire using a seven-point Likert scale
so that their background and prior knowledge could be
established (Table 3). Among the six participants, one par-
ticipant claimed to use DTC occasionally but had never
used the CGI. This participant was not quite familiar
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Table 3 Statistics on the prior knowledge of participants on a
seven-point Likert scale

Mean SD

Familiarity with

Cancer treatment biomarkers 3.33 1.51

Drug-target bioactivities 2.83 1.83

Cancer drivers 2.83 1.94

Different kinds of anti-cancer drugs 3.17 1.72

Tabular visualization 4.83 2.14

Knowing the provenance of the displayed data is
important.

6.33 1.03

with the features of DTC (five on a seven-point Likert
scale). Another participant stated that he had used the
CGI before but not DTC and was not quite familiar with
the features of the CGI (four on a seven-point Likert
scale). The remaining four participants had never used
either of the systems. The participants had little familiar-
ity with cancer biomarkers (mean: 3.33, SD: 1.51, N: 6),
drug-target bioactivities (mean: 2.83, SD: 1.83, N: 6), can-
cer drivers (mean: 2.83, SD: 1.94, N: 6), and anti-cancer
drugs (mean: 3.17, SD: 1.72, N: 6). Also, they had no par-
ticular familiarity with tabular visualizations (mean: 4.83,
SD: 2.14, N: 6). The participants thought that knowing the
provenance of the displayed data was important (mean:
6.33, SD: 1.03, N: 6).

Tasks
Task 1 (T1) - Drug selection
Each participant used both the baseline system (Fig. 2)
and MediSyn (Fig. 1) to find the most effective drug for
a pair of mutations. The order was counter-balanced.
For each system, the participants used a different pair of
mutations. We assigned two pairs of mutations. All four
mutations had data in both datasets and had similar drug
responsiveness data in the two datasets.

Task 2 (T2) - Inconsistency discovery
Each participant used MediSyn to find the inconsistency
in the data between two datasets for a pair of mutations.
We assigned a pair of mutations that contained inconsis-
tency information from the datasets for both mutations.

Procedure
Before T1 with each system, the participants were first
trained on how to use the system. Training was active,
as participants were asked to complete some basic tasks
using the system through a printed introductory docu-
ment. The experimenter ensured the participants under-
stood how to complete these tasks before the actual
experiment commenced. The whole training session took
around 10 to 15 min for each system. During the actual

tasks, participants were allowed to use pen and paper.
The participants then completed a questionnaire for each
system in T1. The questionnaire adopted the design of
ResQue [38] and Knijnenburg et al. [39]. For T2, partici-
pants were encouraged to think aloud while exploring the
datasets. Afterward, the participants completed another
questionnaire on the trustworthiness of the system as well
as the curated data. Finally, we asked some interview ques-
tions to gather general feedback. The whole experiment
took around an hour for each participant. Each participant
was given a movie ticket as compensation. For each task,
the screen was recorded and used for subsequent analysis.

Overview of results
Task performance
Figure 5 shows the time spent with each system for T1
and the time spend on T2. For T1, using the baseline, the
longest time spent was 12m20s (participant 5), and the
shortest was 03m30s (participant 4). With MediSyn, the
longest time was 03m50s (participant 5), and the short-
est time was 01m10s (participant 6). On average, the six
participants spent 6m22s with the baseline system (SD:
03m09s), and 1m57s when using MediSyn (SD: 01m00s).
The participants required more than three times the time
with the baseline than with MediSyn.
All participants eventually got the right answer for both

systems during T1. The right answer was the drug that
was responsive to both mutations based on CGI evidence
and that had the lowest bioactivity value in DTC. Due to
the small intersections of the two datasets, we could not
set up a more complex task, such as drug selection for a
group of four mutations.
For T2, the longest time spent was 05m30s (participant 2),

whereas the shortest time was 02m15s (participant 5). On
average, the participants spent 03m29s (SD: 01m14s). All
participants found all the correct answers.

Questionnaire results
Figure 6 shows user experience feedback for both systems.
Participants were more satisfied with the selected drug
using MediSyn (median: 5.5, N: 6) than with the baseline
(median: 4, N: 6). They experienced less choice difficulty
(MediSyn median: 2, baseline median: 3, N: 6). They also
perceived MediSyn as easier to use (MediSyn median: 7,
baseline median: 6, N: 6), which could also be observed in
the improved task efficiency with MediSyn, and as requiring
less effort (MediSyn median: 2, baseline median: 3, N: 6).
These results can also be explained by the observation
that the participants only needed the draft paper when
working with the baseline. Participants tended to be more
satisfied with and trusting in MediSyn (median: 6, N: 6)
compared with the baseline (median: 5.5, N: 6). Similarly,
they tended to use MediSyn again for drug selection tasks
(MediSyn median: 6.5, baseline median: 6, N: 6). They
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Fig. 5 The time participants spent on drug selection and inconsistency discovery tasks. The x-axis indicates different participants and the
aggregated mean, and the y-axis denotes the time in the format of mm:ss

tended to think that information provided in MediSyn
(median: 5.5, N: 6) was more sufficient than the baseline
(median: 5, N: 6).
The results for interface adequacy (median: 6, N: 6) and

choice confidence (median: 5, N: 6) were the same for
both systems, whereasMediSyn (median: 5, N: 6) was per-
ceived as less useful compared with the baseline (median:
5.5, N: 6). A possible explanation could be that MediSyn
extracted only some important data columns from DTC
to display. Therefore, the users could find more abundant
data properties for the bioactivities using the original DTC
webpage.
Figure 7 shows user trust feedback on MediSyn as well

as on curated data. In general, the participants tended
to think that manual data curation was error prone (the
left most boxplot of Fig. 7, median: 3, N: 6). How-
ever, for these two manually curated datasets, they were
unsure about the reliability of the data no matter whether
they realized there existed inconsistencies in the datasets
(median: 4, N: 6). On the other hand, before user per-
ception of data inconsistency, i.e., during T1, the partic-
ipants believed MediSyn was reliable (median: 6, N: 6).
However, user trust in MediSyn tended to drop after par-
ticipants found inconsistencies in the datasets during T2
(median: 5, N: 6).

Discussion and design implications
We discuss the results of the user study and derive a
set of design implications to inform the design of future
uncertainty-aware visual synthesizers for biomedical data.

The synthesis of datasets can increase choice satisfaction,
lower choice difficulty, and improve task efficiency
Compared to unlinked datasets, the results of T1 showed
the synthesized interface could improve efficiency and
choice satisfaction and lower choice difficulty in drug
selection. Two participants stated that MediSyn was sim-
ple and user friendly. Three participants suggested the
visualization should have a better layout design; specif-
ically, two participants said the information on the left
was too dense, and one participant suggested stretching
the bars because sometimes she could not tell if she was
clicking on the CGI or DTC values. Two participants had
difficulty matching the evidence levels to the legend. One
participant could not understand the usage of different
sorting functions.

Thematrix view supports drug comparison and exposes
missing data
The matrix-based view provides a scalable layout [40, 41]
to support the perception of drug effects on multiple

Fig. 6 Results of the user experience with MediSyn and the baseline
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Fig. 7 The results of general user trust in data curation as well as the
user trust in the system and the curated data before / after the
perception of data inconsistencies

targets and tumor types, which enables the user to com-
pare and select promising drugs for certain targets. Such
a holistic view of drug-target relations also facilitates user
cognition ofmissing data.

Depiction of datasets in overlaid layers facilitates direct
comparison of data frommultiple sources and effectively
supports user perception of data consistency states
For T2, all participants found all conflicts for the desig-
nated mutations in a reasonable time frame. One partici-
pant expressed it was useful to have two datasets together,
particularly for the second task. Otherwise, she could not
realize there were inconsistencies in the datasets.

Exposed data inconsistencies tend to lower user trust in
MediSyn but do not have observable effects of user trust in
curated data
Most participants used the two datasets for the first time
during the evaluation. They were unsure about the reli-
ability of the datasets throughout the study. However,
their trust in MediSyn tended to drop along with the
cognitive transition from unawareness of the existence of
data inconsistencies during T1 to the realization of their
existence in T2.

No explicit answer was acquired on the rationale for conflicts
in drug effects
Three participants stated that the inconsistency could be
caused by patient complexity. For example, the patient
could have acquired resistance due to a history of drug

treatments. One participant declared the inconsistency
could be due to the different measurements in experi-
ments. For instance, in one case, the data from the CGI
used the IC50 measurement type, whereas the DTC data
used the Kd value. The rationale behind the data conflicts
remains an open question, inviting the user to further
investigate.

User accessibility to data sources of the curated data is an
important and useful feature
Three participants expressed it was useful to have the link
to publications easily accessible, which is in accordance
with the pre-questionnaire result that shows knowing the
provenance of the displayed data is important to the user.
Two participants stated they would still need to read the
paper before making the decision in T1. The tight cou-
pling of data and the provenance allows the user to verify
the credibility of the information and acquire additional
information about the data.

More patient data need to be embraced to expand user
knowledge
For T1, one participant asserted he would not decide on
the treatment based only on patientmutations and needed
to look for other information. Two participants claimed
that patient data such as age and treatment history were
also important to consider. One participant suggested tak-
ing a patient cell sample to experiment with the selected
drug. How to embrace more information sources in an
intuitive manner to further broaden the user’s knowl-
edge of decision-making while avoiding the information
overload problem remains a future research challenge.

Overview and details on demand support the scalability of
the number of datasets
MediSyn displays datasets in overlaid layers. Based on
the user study, such a superimposed view can effectively
convey the states of data consistency. However, it can
also cause visual clutter with the increase of the num-
ber of datasets [34]. In practice, if we have more than
two datasets, we propose using MediSyn to provide an
overview of the data from available sources. For instance,
each data cell in MediSyn can depict the possibility of
resistance between the drug and target as well as that of
responsiveness based on the calculation across all sources.
The user can have control over the weight of the data
sources in the calculation.With this informative overview,
the user can then further explore the details of the
data cells.

Conclusions
In this paper, we presented MediSyn, an uncertainty-
aware interactive visualization that synthesizes biomed-
ical datasets to support drug treatment selection. The
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matrix view coupled with overlaid layers presents a com-
prehensive relation among drugs, targets, and tumor
types from multiple sources, supporting the compar-
ison of drug effects on multiple targets. A use case
with the implementation of MediSyn synthesizing two
datasets, cancer treatment biomarkers from the CGI and
drug-target bioactivities from DTC, showed its effective-
ness in supporting the discovery of drug-repurposing
opportunities.
From a visualization research perspective, MediSyn

visualizes the uncertainty of the datasets to support
more informed decision making. The matrix-based layout
exposes missing data. Overlaid layers ease the perception
of data consistency. Visual encodings of evidence levels as
well as links to data provenance convey data credibility.
A preliminary study with six domain experts showed

that such a synthesized interface can increase choice
satisfaction and efficiency and lower choice difficulty
compared to currently unlinked datasets in supporting
drug selection. Subjective results showed generally pos-
itive feedback. User accessibility to data sources, among
other factors, appears to be a crucial and useful feature.
Additionally, MediSyn facilitates user perception of data
inconsistencies, but the cause of conflicts remains an open
question.
MediSyn is still in its early stage and has great poten-

tial to be improved. First, the layout and readability of
the visual design can be improved to ease the percep-
tion of the links between the datasets and data properties.
Second, the drugs can be linked to diseases to further
benefit the discovery of drug-repurposing opportunities.
Third, enabling the user to sort the columns based on the
activities of mutations can further refine the user selec-
tion of drug treatment. Because not all driver genes are
equally important in the course of tumorigenesis [42].
Tumors may be more addicted to mutations in certain
drivers, which provide basic capabilities to cancer cells
[42]. Fourth, we plan to incorporate more information
sources, one of which is the clinicaltrials.gov dataset con-
taining basic patient information of drug clinical tests,
to further enhance user knowledge. Fifth, design implica-
tions of MediSyn can be generalized to serve other types
of data collections.

Additional file

Additional file 1: Video demonstration of MediSyn. A video
demonstrating the different components of MediSyn together with a
walkthrough and the use case discussed in the paper. (MP4 28,467 kb)
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