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A B S T R A C T

We consider an educational building heated by a combination of district heating (DH) and a local air source heat
pump. We have developed an integrated demand response method for multiple rooms, consisting of an opti-
mization layer and a control layer, to maintain thermal comfort and save energy and costs. For the optimization
layer, we apply fuzzy logic to adjust indoor temperature setpoints to respond to dynamic heat prices and propose
an optimal heat supply method to find optimal heat supply schemes. For the control layer, a multi-objective
model predictive control (MPC) has been developed to manage indoor thermal conditions across multiple
rooms. To test and verify the integrated demand response method, we build a multi-room simulation model using
the CARNOT Toolbox. The results show that adopting different indoor temperature setpoints during working and
nonworking hours, combined with the MPC method, has an energy-saving potential of 9.1 % compared to
maintaining a constant indoor temperature using DH alone. Adjusting temperature setpoints using fuzzy logic
utilizes the building’s heat storage capacity to increase energy flexibility, reaching 16.0 % savings in energy and
reducing 12.6 % heating costs.

Nomenclature

Abbreviation
EU European Union
DSM Demand-side management
DH District heating
DR Demand response
ASHP Air source heat pump
COP Coefficient of performance
HVAC Heating, ventilation, and air conditioning
MPC Model predictive control
PID Proportional-integral-derivative
CARNOT Conventional And Renewable eNergy systems OpTimization

Blockset
RMSE Root mean squared error
NB; NS; ZE; PS;
PB

Fuzzy subsets: Negative Big; Negative Small; Zero; Positive Small;
Positive Big

Symbols
J Cost function
Q Heat demand/load/consumption, W/kW/MWh

(continued on next column)

(continued )

V The volume of room, m3

T Air temperature, ◦C
A State transition matrix
B Input matrix
C Output matrix
E Disturbance matrix; Fuzzy inputs of the system
P Control accuracy, percentage, %
ΔE Fuzzy deviation of deviation between dynamic and average heat

prices, (€/MWh)
U Fuzzy output of the system
t time period
ρ Density, kg/m3

c Heat price, (€/MWh); Specific heat capacity, J/(kg•◦C)
x Supplied heat, W; State space vector
y Output vector
u Input vector of state space representation; Real output of system
Δu The change rate of the controlled variables
d Disturbance vector
Δd The change rate of the disturbance vector

(continued on next page)

* Corresponding author.
** Corresponding author. Department of Mathematics and Systems Analysis, Aalto University, School of Science, P.O. BOX 11100, Espoo, Finland.

E-mail addresses: pengmin.hua@aalto.fi (P. Hua), wanghaichao2002@163.com, haichao.wang@aalto.fi (H. Wang), xiezichan@outlook.com (Z. Xie), risto.
lahdelma@aalto.fi (R. Lahdelma).

Contents lists available at ScienceDirect

Energy

journal homepage: www.elsevier.com/locate/energy

https://doi.org/10.1016/j.energy.2024.132577
Received 13 April 2024; Received in revised form 12 July 2024; Accepted 23 July 2024

mailto:pengmin.hua@aalto.fi
mailto:wanghaichao2002@163.com
mailto:haichao.wang@aalto.fi
mailto:xiezichan@outlook.com
mailto:risto.lahdelma@aalto.fi
mailto:risto.lahdelma@aalto.fi
www.sciencedirect.com/science/journal/03605442
https://www.elsevier.com/locate/energy
https://doi.org/10.1016/j.energy.2024.132577
https://doi.org/10.1016/j.energy.2024.132577
https://doi.org/10.1016/j.energy.2024.132577
http://creativecommons.org/licenses/by/4.0/


Energy 307 (2024) 132577

2

(continued )

h The correction rate
Np; Nc; Nin Discrete prediction horizon; Discrete control horizon; The

number of rooms
τ Continuous time moment
k Discrete time moment
e Error, ◦C; Real deviation between dynamic and average heat

prices, (€/MWh)
Δe Real deviation of heat prices between current and next moments,

(€/MWh)
μ Membership function
q,r,w Weights for components of cost function
Super/Subscript
t Time step
d discrete
in indoor
out outdoor
adj adjacent
min minimum
max maximum
rad radiator
mass indoor components (people, lights, equipment)
ven ventilation
win window
gro/flo ground/floor
roof/cei roof/ceiling
cor correction
set setpoints
p/Np prediction horizon (continuous/discrete)
c/Nc control horizon (continuous/discrete)
i, j index

1. Introduction

1.1. Background

Buildings consume a share percentage of energy, for example, one-
third world-wide and 40 % in the European Union (EU) [1,2]. Across
most EU countries, the annual heat demand in buildings exceeds that of
electricity and cooling demands [3]. Energy saving in building heating is
urgent considering the need of global energy conservation and emission
reduction. Demand-side management (DSM) [4] has found success in
the power systems of buildings [5], and many scholars have dedicated
themselves to using DSM in building heating systems [6–8]. Several
main strategies of DSM can be implemented in buildings to increase the
flexibility of district heating (DH), such as demand response (DR), which
relies on consumers’ behavior during peak hours to reduce energy use
[9].

1.2. Related research and research gaps

The aim of applying DSM in DH is to modify the portion of the
building’s thermal demand (for space heating and/or domestic hot
water) that is supplied by DH to change the overall DH network thermal
load. This allows for changing the characteristics of the overall load
profile to make it compliant with the production side (i.e., combined
heat and power plants, heat-only boilers, geothermal and solar plants,
heat recovery systems) [10].

Heating load forecasting, dynamic heat prices, and optimization
methods or control strategies are the three main parts of applying DSM
to a building’s heating systems for flexible energy usage. Regarding
heating load forecasting, our previous study has provided a clear
description of load forecasting technologies for buildings and districts/
cities [11].

Dynamic heat price is closely related to the type of heating source.
DH is a typical way to supply heat to buildings and is widely used in
many countries. A significant challenge for applying DR to the buildings
connected to DH is that the DH price is fixed, and the determination of
the DH price is confidential and not open to customers [12]. The

customers will not participate in the DSM on the building side without
incentives. Due to this reason, more and more researchers suggest using
dynamic DH prices and developing some models to calculate the dy-
namic DH prices [13–15]. Energy companies also try to use some simple
dynamic heat pricing schemes. For example, Helen Company in Finland
[16] introduces seasonal dynamic DH prices, which correspondingly
adopt four different DH prices for four seasons in a year. Typically, the
DH price in winter tends to be high, considering the high cost of
generating space heating and domestic hot water in cold weather. For-
tum Company determines the DH prices based on the outdoor temper-
atures in the Stockholm area of Sweden [12,17]. Typically, the lower the
outdoor temperature, the higher the DH prices. In addition, the DH price
is also tied to the maximum heat demand of the building [12]. Thus, the
customer can reduce their DH costs both by reducing overall DH con-
sumption and by lower their peak demand. Although the dynamic DH
pricing model and calculation methods need to be improved, current
attempts have also allowed customers to participate in DSM.

With the development of dynamic electricity prices and the diversity
of heating systems on the building side [18], many systems that use
electricity to heat buildings have become more popular, such as heat
pumps [19]. Air source heat pump (ASHP) is a popular way used in
buildings due to its advantages of low operational cost, energy saving,
and flexible energy usage. ASHP utilizes electricity to transfer heat from
outdoor air to heat the indoor air of the building. The cost of heat
generated by ASHP has a tight relationship with the electricity prices,
increasing the flexible usage of energy for buildings [20]. In addition,
the performance of ASHP also affects the cost of producing heat by
ASHP. For example, ASHP has low efficiency in the summer and is prone
to frosting in the winter [21,22]. The coefficient of performance (COP) is
a crucial factor that characterizes the performance of an ASHP. It is
influenced by various factors, including outdoor temperatures, humidity
levels, and the capacity of the ASHP [23,24]. The bigger the COP, the
higher the efficiency of ASHP. ASHP is no longer a sustainable option
when the COP is low enough.

Optimization methods or control strategies for applying DR on the
building side have been studied. The realization of DR control is based
on efficient control methods, broadly divided into direct and indirect
control methods. Among these, price-based control and incentive-based
control are the two main indirect control methods, and most studies
focus on them. Many control technologies can support the realization of
DR control, such as proportional-integral-derivative control (PID) [25,
26], rule-based control, fuzzy control [27], optimal control [28], ma-
chine learning, deep learning methods [29], and combinations of these
control algorithms [30,31]. A summary of control methods in DR can be
found in Ref. [44]. The building has significant heating flexibility due to
its thermal mass [32]. A good way to cut the heating peaks and the shift
time of heat usage is to utilize the thermal storage capacity of buildings
by adjusting indoor temperature setpoints to respond to the price
changes of energy [33]. Thus, this study focuses on literature review on
control method on indoor temperature setpoints. For instance, Hu et al.
developed multiple models that integrate electricity price signals and
smart algorithms to determine optimal indoor air temperature setpoint
schedules for air conditioners. These models aim to achieve the desired
trade-offs among electricity costs, thermal comfort, and peak power
reductions [34,35]. Salo et al. proposed a control method based on the
weather parameters and price signals to adjust the setpoint of electronic
thermostat valves in multiple rooms in a building connected to DH [36].
Foteinaki et al. utilized heat load and dynamic heat production cost as
signals to control an apartment building’s heating system to shift heat
load peaks and reduce cost [33]. Romanchenko et al. researched the
flexible operation of DH systems on the building side by allowing indoor
air temperature setpoint deviations and applying thermal energy storage
[37]. Yuan et al. proposed a rule-based DR algorithm that utilized dy-
namic DH price to achieve the DR control of temperatures for swimming
pools and space air in a swimming hall in Finland [38]. Du et al.
established a multi-regional dynamic setpoint temperature model to
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adjust temperature setpoints in different regions dynamically based on
demand levels. They applied this method in conjunction with other
optimization techniques to the heating, ventilation, and air conditioning
(HVAC) system of a building, demonstrating a reduction in load demand
by 6.16 % [39]. Xiong et al. proposed an enhanced transactive control
method that integrates the real-time electricity price and the user’s
bidding electricity price to determine temperature setpoints for
air-conditioning systems [40]. Li et al. proposed a DR strategy based on
reinforcement learning-based temperature setpoint control and active
energy storage for an HVAC system to improve energy saving and
decrease peak operation [41]. Li et al. proposed a method based on heat
balance equations combined with a thermal comfort model to dynami-
cally adjust room temperature setpoints, aiming to tap the energy-saving
potential of air-conditioning systems [42].

Previous work has proven that the DR control for indoor air tem-
perature setpoints can cut demand peaks and shift load, increasing
flexibility of heat usage and saving cost. However, some aspects require
further investigation.

(1) Most previous work focuses on HVAC systems based on dynamic
electricity prices, such as [34,35,38–42], and few works focus on
the buildings connected to DH. The main reason is that the dy-
namic pricing of DH is currently not widely applied. Considering
the global energy crisis and environmental problems, applying
dynamic heat prices, and encouraging customers to participate in
the DSM is a future trend.

(2) Previous work on determining indoor temperature setpoints of
buildings connected to DH commonly focuses on the building
level, such as [33,37]. Considering different spaces in a building
have requirement for thermal comfort and therefore different
heat demand, it is necessary to apply DR control on the room level
in a building.

(3) Previous work’s dynamic indoor temperature setpoints method is
mainly a rule-based control method, such as [33,36–38]. Nor-
mally, a single rule was adopted in previous research. More smart
methods need to be applied to determine suitable indoor tem-
perature setpoints to increase the flexible usage of heat for
buildings.

(4) ASHP is a typical system used to generate heat for buildings using
electricity. The cost of ASHP for generating heat is dynamic
because of the dynamic electricity prices and the performance of
ASHP. Thus, optimal heat supply schemes need to be further
studied when ASHP and DH heat the buildings at the same time.
The combination of DH and ASHP also allows studying DR of a
district-heated building with currently constant DH price.

1.3. Research gaps and novelty

This study aims to address the identified gaps, and therefore, the
research novelties are as follows:

(1) We have developed a novel integrated DR method for multiple
rooms with different requirements for thermal comfort, consist-
ing of an optimization layer and a control layer to maintain
thermal comfort and save energy and costs.

(2) The control layer applies a novel multi-objective predictive con-
trol (MPC) with a simple physical room model, and multi-
objective optimization is proposed to control the indoor tem-
perature for multiple rooms with different thermal comfort re-
quirements with reasonable control accuracy in a building.

(3) Our work is the first attempt to apply fuzzy logic to adjust the
dynamic indoor temperature setpoints based on the dynamic heat
prices with various heat sources to increase the flexibility of en-
ergy usage.

(4) An optimal heat supply scheme with minimum operation cost has
been found considering many factors, such as the performance of

ASHP, etc., to supply heat to the rooms in a building heated by
ASHP and DH.

The remainder of this paper is organized as follows: Section 2 in-
troduces the case study and the model of rooms incorporated into the
Conventional And Renewable eNergy systems OpTimization Blockset
(CARNOT Toolbox). Section 3 introduces a methodology that contains
optimization and control layers and evaluation indicators. Section 4
presents the simulation schemes and application scenarios. Section 5
analyzes the results of all scenarios. Finally, Section 6 concludes the
paper.

2. CARNOT model development for multiple heating rooms

This section presents the details of the multiple rooms studied in this
case and the CARNOT model constructed to simulate indoor
temperatures.

2.1. Case introduction

The case model is developed for multiple rooms on the top floor of an
educational building in Espoo, Finland. The rooms are used for teaching,
teamwork, and self-study. The floor plan of target rooms is shown in
Fig. 1.

There are three kinds of spaces in the building. Rooms 1 to 3 face an
exterior wall with windows, and their indoor temperature is susceptible
to weather and may change rapidly. Rooms 4 and 5 are rooms without
exterior walls, and their indoor temperature varies more smoothly.
Usually, their indoor temperature can be maintained in a suitable range
with very little heating compared to the first kind of space. The third
kind of space is corridors where people only stay for a short period. The
corridor is divided into Room 6 and Room 7 because Room 6 has an
exterior wall, while Room 7 does not. To save energy, the temperature
setpoints of corridors can be a little lower than that for office rooms.
These three kinds of spaces are typical for many buildings. Considering
them in our study aims to make our research results more universal and
applicable to other cases. The details of these rooms are shown in
Table 1.

2.2. Multiple rooms model in CARNOT toolbox

Fig. 2 shows the CARNOTmodel for the multiple rooms. The top part
in Fig. 2 shows the whole multiple rooms model. To make it clear, we
only show the inputs and outputs of this model. The inputs include
weather parameters, supply water temperature, and water flow for the
radiators in each room. The outputs are the simulated indoor tempera-
ture of each room. The middle part of Fig. 2 provides more details of this
multiple rooms model. It contains seven single-room models and in-
teractions between different single-room models, illustrated by con-
necting lines. The details of Simulink modules of all rooms are shown in
Appendix A. In addition to the inputs shown in the top part, the inputs
also include inner heat gain of indoor components, mainly heat gain of
people, lights, and equipment. The inner heat gains of indoor compo-
nents vary across different rooms. Take Room 1 for an example, the
bottom part of Fig. 2 illustrates the model structure for Room 1. Each
roommodel contains various components, such as walls, windows, floor,
ceiling, and radiator. Parameters, such as density, thickness, heat ca-
pacity, and heat transfer coefficient, are defined in the component
models.

To verify the accuracy of the multiple rooms model in the CARNOT
Toolbox, we conducted several experiments in the actual rooms. First,
we switched off the radiators of target rooms for two weeks, from 5th to
December 18, 2022, and recorded the indoor temperatures. During this
period, the target rooms’ temperature is mainly affected by weather
parameters and heat exchange between different rooms. The measured
indoor temperatures during these two weeks are used to verify the

P. Hua et al.



Energy 307 (2024) 132577

4

accuracy of the CARNOT Toolbox in modeling the structures of target
rooms and adjacent rooms. Then we turned on the radiators of target
rooms during the following two weeks, from December 19, 2022 to
January 1, 2023, and recorded the indoor temperatures. During this
period, in addition to weather parameters and heat exchange between
different rooms, the target rooms’ temperature is mainly affected by
heat provided by radiators. The measured indoor temperature during
these two weeks is used to verify the accuracy of the CARNOT Toolbox in
modeling heating systems in target rooms.

The measured and simulated indoor temperatures of target rooms for
four weeks in winter are shown in Fig. 3. Both during non-heating and
heating periods, the simulated temperatures can cover the measured
temperatures well and the root mean squared error (RMSE) for Rooms 1
to 5 is 0.52, 0.36, 0.30, 0.29, and 0.39 ◦C, respectively, indicating that
the CARNOT model accurately simulates the room temperature.

In addition, based on the measured data, the indoor temperatures of
all rooms tend to be lower than 20 ◦C during the non-heating period,
especially for the rooms that have exterior walls and windows. The in-
door temperatures of all rooms can be maintained within a reasonable
range, 20 ◦C–24 ◦C, during the heating period. The indoor temperatures

during nonworking hours tend to be higher than anticipated, which
leads to a waste of energy because the rooms are mostly empty during
nonworking hours, e.g., on weekends. Thus, an optimal control strategy
for indoor temperatures is necessary.

3. Methodology

This section introduces the integrated DR method for the heating
system of the building, shown in Fig. 4. This integrated DR method
contains an optimization layer and a control layer. The optimization
layer optimizes the hourly heat acquisition and applies fuzzy logic for
DR. Heat acquisition costs are minimized considering different available
heat sources and dynamic price. Fuzzy logic is used adjust indoor tem-
perature setpoints considering the thermal storage capacity of the
building and changes in energy price, aiming to reduce heating peaks
and shift the time of heat usage. The indoor temperature setpoints are
inputs to the MPC method in the control layer. In the control layer, the
multi-objective MPC method is adapted to find the optimal supply water
flow for each room and calculate the total heat demand of the system.
The calculated optimal supply water flows are inputs to the multiple

Fig. 1. The plan of multiple rooms.

Table 1
Properties and parameters of target multiple rooms.

Room number Structure name of room:
Number/Parameters (area (m2)/heat transfer coefficient (W/(m2⋅K)) or power (W))

Exterior walls Interior walls Roofs Floors Internal heat gains Radiators

1 Wall:1/4.11/0.18
Window: 1/4.44/0.94

1/8.12/1.49
1/8.12/2.97
1/8.55/1.50

1/8.55/0.09 1/8.55/1.49 Maximum occupancy: 4
Light: 2/28
Screen: 1/220

1

2 Wall:1/7.02/0.18
Window: 1/6.66/0.94

1/11.54/2.97
1/11.54/1.49
1/13.68/1.50

1/19.44/0.09 1/19.44/1.49 Maximum occupancy: 6
Light: 5/28
Screen: 1/220

2

3 Wall:1/11.48/0.18
Window: 1/9.90/0.94

1/20.95/1.49
1/20.95/1.49
1/21.38/1.49

1/55.13/0.09 1/55.13/1.49 Maximum occupancy: 20
Light: 9/28
Screen: 1/220

3

4 – 1/6.84/1.49
1/6.84/2.97
1/10.26/1.05

1/8.64/0.09 1/8.64/1.49 Maximum occupancy: 4
Light: 2/28
Screen: 1/220

–

5 – 1/9.41/1.05
1/9.41/1.49
1/13.68/2.97

1/15.84/0.09 1/15.84/1.49 Maximum occupancy: 6
Light: 6/28
Screen: 1/220

–

6 Wall:1/2.64/0.18
Window: 1/2.06/0.94

1/16.67/2.97
1/20.95/2.97

1/12.13/0.09 1/12.13/1.49 Light: 4/28 1

7 – 1/4.95/1.49
1/50.02/1.49
1/50.02/1.49

1/36.31/0.09 1/36.31/1.49 Light: 11/28 1
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Fig. 2. Multiple rooms model in CARNOT Toolbox.
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rooms model and the calculated total heat demand is the input for the
optimal heat supply method.

3.1. Optimization layer

The optimization layer contains the optimal heat supply method and
fuzzy logic to choose an optimal heat supply scheme and adjust dynamic
indoor temperature setpoints based on dynamic heat prices.

3.1.1. Optimal heat supply method
We assume that DH and ASHP can provide heat for the building

separately or together. Minimizing the heating costs in each time step
can be formulated as a linear optimization model in Equations (1a) &
(1b). More complicated heating systems can be defined easily.

Jt =min
(
cASHPt xASHPt + cDHt xDHt

)
(1a)

0 ≤ xASHPt ≤ xASHPcapacity

Subject to : 0 ≤ xDHt ≤ xDHcapacity
xASHPt + xDHt = Qdemand

t

(1b)

Here, cASHPt and cDHt (€/MWh) are heat price of ASHP and DH, xASHPt

and xDHt (MWh) are heat supplied by ASHP and DH, and Qdemand
t (MWh) is

the combined heat demand of all rooms at time step t. xASHPcapacity and xDHcapacity
(MWh) are the maximum capacity of ASHP and DH. The optimal solu-
tion is to use primarily the cheaper energy source and supplement that
with the more expensive source only when demand exceeds the capacity
of the cheaper source. The marginal price of heat is the price of the most

Fig. 3. Measured and simulated indoor temperatures of rooms from December 5, 2022 to January 1, 2023.

Fig. 4. Algorithm framework.
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expensive heat source used at time step t.

3.1.2. Fuzzy logic for dynamic indoor temperature setpoints
In real projects, it is difficult to find a crisp mathematics model for

them when the relationship between two variables is complex. Fuzzy
logic offers several advantages, particularly in systems and applications
where precision and certainty are challenging to achieve. For example,
fuzzy logic is adept at managing uncertainty and imprecise information,
making it useful in real-world scenarios where data might be incom-
plete, noisy, or vague. Fuzzy logic allows the use of linguistic variables
(e.g., “high,” “medium,” “low” instead of numerical ones, making sys-
tem design more intuitive and closer to human reasoning.

In our case, based on the experts’ experience, we want the indoor
temperature setpoints can be a little higher when the heat price is low to
store more heat in the building mass and lower when the heat price is
high. However, “higher” and “lower” are two fuzzy concepts, and it is
hard to describe them using precise models. Fuzzy logic can express an
expert’s experience in fuzzy rules, suitable for adjusting indoor tem-
perature setpoints based on dynamic heat prices. It involves three steps:

Fuzzifications: Exact (crisp) inputs are converted into fuzzy inputs.
Reasoning process: Fuzzy “IF-THEN” type rules are applied to the

fuzzy inputs to reach fuzzy outputs.
Defuzzification: The fuzzy outputs are converted into crisp outputs.
Here, we apply Mamdani-type fuzzy “min-max” rules, where the

firing strength of each rule is determined by taking the minimum of the
membership values associated with the inputs, and rules are aggregated
by the maximum of their individual firing strength [43].

3.2. Control layer

In previous research [44], we introduced a multi-objective MPC
method coupled with a straightforward internal predictive model for a
single room, demonstrating its applicability. In this study, we extended
the application of this method to the indoor thermal comfort control of
multiple rooms.

3.2.1. Internal predictive model and state space representation for multiple
rooms

The physical model for a single room is constructed based on the
principles of energy conservation, as shown below.

ρincinVin
dTin

dτ =Qrad +Qmass +Qsolar +Qven −Qwin −Qgro/flo −Qroof/cei −Qwall

(2)

Here, Qrad, Qmass, Qsolar, and Qven represent the heat gained from ra-
diators, indoor components (people, lights, and equipment), solar ra-
diation through windows, and heat provided by the ventilation system,
W. Additionally, Qwin, Qgro.flo, Qroof/cei, and Qwall represent heat exchange
through windows, ground/floor, roof/ceiling, and walls (including
interior and exterior walls), W. The proposed internal predictive model
can meet the MPC control requirements. For details on the calculation of
each term in equation (2) and analysis of the proposed internal predic-
tive model, refer to our previous research [44]. We rewrite the multiple
rooms model into the state space representation and discretize it, as
shown in (3).

x(k + 1) = Adx(k) + Bdu(k) + Edd(k)

y(k + 1) = Cdx(k + 1)
(3)

x is the state space vector representing the multiple rooms’ indoor
temperatures. y, u, and d are the output, control, and disturbance vec-
tors. Ad, Bd, Cd, and Ed are the state transition matrix, the input matrix,
the output matrix, and the matrix describing disturbances, respectively.
The current moment is denoted by k, and the subsequent moment is
denoted by k+1. The predicted indoor temperatures at different mo-
ments within the prediction horizon can be expressed as (4). We define
equations (5) and (6) to represent u and d in terms of incremental

changes Δu and Δd.

x(k+1|k) =Adx(k) +Bdu(k) + Edd(k)x(k+2|k) =A2
dx(k) +AdBdu(k)

+Bdu(k+1|k) +AdEdd(k) + Edd(k+1|k)x(k+3|k)

=A3
dx(k) +A2

dBdu(k) +AdBdu(k+1|k) +Bdu(k+2|k)

+A2
dEdd(k) +AdEdd(k+1|k) +Edd(k+2|k)⋮x

(
k+Np

⃒
⃒k

)

=ANp
d x(k) +ANp−1

d Bdu(k) +ANp−2
d Bdu(k+1|k)

+ ⋯ +Bdu
(
k+Np−1|k

)
+ANp−1

d Edd(k) +ANp−2
d Edd(k+1|k)

+ ⋯ + Edd
(
k+Np−1|k

)

(4)

u(k) = Δu(k) + u(k − 1)

u(k+1|k) = Δu(k+1|k) + Δu(k) + u(k − 1)

u(k+2|k) = Δu(k+2|k) + Δu(k+1|k) + Δu(k) + u(k − 1)

⋮
u

(
k + Np−1|k

)
= Δu

(
k + Np−1|k

)
+ ⋯ + Δu(k+1|k) + Δu(k) + u(k − 1)

(5)

d(k) = Δd(k) + d(k − 1)

d(k+1|k) = Δd(k+1|k) + Δd(k) + d(k − 1)

d(k+2|k) = Δd(k+2|k) + Δd(k+1|k) + Δd(k) + d(k − 1)

⋮
d

(
k + Np−1|k

)
= Δd

(
k + Np−1|k

)
+ ⋯ + Δd(k+1|k) + Δd(k) + d(k − 1)

(6)

We acquire the predicted indoor temperatures of multiple rooms for
the prediction horizon, as shown in (7). The complete expression of (7) is
shown in Appendix B.

Y(k) = ΩX(k) = ΩΦx(k) + ΩGyΔU(k) + ΩΓu(k − 1) + ΩNΔD(k)

+ ΩMd(k − 1) (7)

3.2.2. Receding horizon optimization
We define the cost function as the weighted sum of three components

[44]: tracking error between corrected predictive and indoor tempera-
ture setpoints, the change rate of controlled variables, and the energy
use for the system, as shown in (8).

J=min

(
∑Np

j=1

∑Nin

i=1
qij

((
ycor,i(k + j|k) − yset,i(k + j|k)

))2
+

∑Nc

j=1

×
∑Nin

i=1
rijΔui(k + j|k)

2
+

∑Nc

j=1

∑Nin

i=1
wijui(k+ j|k)

)

(8a)

Subjectto :

umin,i ≤ui(k+ j|k)≤umax,i,

Δumin,i ≤Δui(k+ j|k)≤Δumax,i,

Δui(k+ j|k)=ui(k+ j|k)−ui(k+ j−1|k),j=1,...,Nc,i=1,...,Nin

(8b)

[umin,i, umax,i] is the controlled variable for the multiple rooms.
[Δumin,i, Δumax,i] restricts the change in water flow within a reasonable
range to maintain a stable hydraulic system. The parameters qij, rij, and
wij serve as weights for the three components of the objective function.
Nin denotes the number of rooms.

3.2.3. Feedback and correction
e(k) represents the error between the actual indoor temperature y(k)

and the predicted indoor temperature at the last moment, as shown in
(9). We utilize a parameter h, ranging between 0 and 1, to adjust how
much e(k) corrects the temperature. Instead of using predictive indoor
temperature y(k + j|k), we incorporate the corrected predictive indoor
temperature ycor(k + j|k), as shown in (10), into the cost function, as
shown in (8). Finally, the corrected output of the system is shown in
(11).

e(k) = y(k) − y(k|k − 1) (9)

P. Hua et al.
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ycor(k+ j|k) = y(k+ j|k) + he(k) j = 1,2, …,Np (10)

Ycor(k) = ΩΦx(k) + ΩGyΔU(k) + ΩΓu(k − 1) + ΩNΔD(k) + ΩMd(k − 1)

+ HE(k)

(11)

Here,

H=

⎡

⎢
⎢
⎣

h 0 ⋯ 0
0 h ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ h

⎤

⎥
⎥
⎦; E(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

e(k)

e(k)

⋮
e(k)

e(k)

⋮
e(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

3.3. Evaluation indicators

We use three indicators to measure the control accuracy, energy
consumption, and cost.

(1) Control accuracy: We regard that the control accuracy is satisfied
if the errors between controlled indoor temperatures and set-
points are in the range [-1 ◦C, 1 ◦C]. Thus, we define satisfaction
percentage, shown in equation (12), to evaluate control accuracy.
tsatisfied is the period when the errors are within the range
[-1 ◦C, 1 ◦C], and ttotal is the total simulation period.

Psatisfied =
tsatisfied
ttotal

⋅100% (12)

(2) Heat consumption: Simulated supplied heat from radiators in
CARNOT Toolbox.

(3) Cost: Calculated total operation cost during the whole simulation
period.

4. Simulation schemes and application scenarios

This section outlines the application of the methodology in multiple
rooms and the schemes that require analysis.

4.1. The application of optimal heat supply method

We obtain the dynamic electricity prices in Nord Pool [45] and the
simulation period is from 5th to December 18, 2022. The electricity
price from Nord Pool is special because it is much higher than that
during the same period in a typical year due to energy problems. Thus,
we corrected the electricity prices based on the data in typical years.
Considering the ASHP is located on the building side, in addition to the
electricity prices, we also need to consider transmission fee, retailer
margin, and electricity tax, which are 40.67 (€/MWh), 2.98 (€/MWh),
22.53 (€/MWh), respectively, and value added tax rate is 24 % [46].
Finally, we use these corrected electricity prices to calculate the

dynamic heat prices of ASHP. ASHP utilizes electricity to generate heat,
and the efficiency of the heat pump is determined by the COP factor,
which represents the ratio between produced heat and consumed elec-
tricity. The COP factor of an ASHP depends on outdoor temperature and
we compute the COP factor based on [23]. Then, we combine the cor-
rected dynamic electricity prices and COP to calculate the dynamic heat
prices from 5th to December 18, 2022, shown in Fig. 5, marked red. The
black line is the DH prices of Helen Company [16] in Finland. The
seasonal prices of DH in a short period are fixed. Sometimes, the heat
prices of the ASHP are higher than that of DH, while other times, they
are the opposite. To minimize the heating cost, at each moment in time
the cheaper source of heat is used first, and the more expensive heat
source is used as a supplement only when the cheaper source does not
have sufficient capacity. In this study, we assume that the capacity of the
ASHP does not depend on outdoor temperature. The ASHP capacity is set
to 70 % of maximal heating demand, and we consider also 60 % and 80
% dimensioning as sensitivity analysis.

4.2. The application of fuzzy logic to determine temperature setpoints

Based on the dynamic heat prices shown in Fig. 5, we calculate the
dynamic indoor temperature setpoints using fuzzy logic. The steps are as
follows.

Step 1 Normally, we know the hourly dynamic heat prices one day in
advance. We first calculate the average heat price.

Step 2 We determine two real inputs and one output, represented as et,
Δet, and ut. Input et (= ct - caverage,24) is the deviation between the
dynamic and the average heat prices at time t. Input Δet (= et -
et+1) is how much the current et differs from the next time et+1.
Output ut is the dynamic indoor temperature setpoint at moment
t. We can calculate the real domain of inputs, [emin emax] and
[Δemin Δemax], when we obtain et and Δet. The fuzzy domain of
two inputs and one output, [Emin Emax], [ΔEmin ΔEmax], and [Umin
Umax], is determined as [-2, 2]. Taking Et as an example, we
obtained the fuzzy inputs using equation (13).

Et =
(et − emin)(Emax − Emin)

emax − emin
+ Emin (13)

Fig. 5. Dynamic heat prices of ASHP and seasonal heat price of energy company from 5th to December 18, 2022.

Fig. 6. Triangular membership function.
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Step 3 Determine the triangular membership function, shown in Fig. 6.

The fuzzy subsets of two fuzzy inputs and one fuzzy output are

determined as NB, NS, ZE, PS, and PB, representing Negative Big,
Negative Small, Zero, Positive Small, and Positive Big, respectively. We
determine Mamdani-type fuzzy rule in Table 2 based on two
experiences:

(1) Compare the dynamic heat price with the average heat price.
Increase the indoor temperature setpoint when the dynamic heat
price is low and decrease the indoor temperature setpoint when
the dynamic heat price is high.

(2) Raise the indoor temperature setpoint when the current mo-
ment’s heat price is lower than that of the next moment to
accumulate more heat. Lower the indoor temperature setpoint
when the current moment’s heat price is higher than that of the
next moment to conserve energy.

Then, the fuzzy output Ut can be calculated from the fuzzy inputs,
membership function, and Mamdani-type fuzzy rule [43].

Step 4 : Calculate the dynamic room temperature setpoints based on
equation (14). This study determines the real domain of output,
[umin umax], as [16.5 ◦C 17.5 ◦C] during nonworking hours and
[20.5 ◦C 21.5 ◦C] during working hours.

ut =
(Ut − Umin)(umax − umin)

Umax − Umin
+ umin (14)

4.3. Control platform for multiple rooms using MPC in simulink

The internal predictive model for multiple rooms in this study is
shown in Appendix. We determine the state space vector x = [Tin,1 Tin,2
Tin,3 Tin,4 Tin,5 Tin,6 Tin,7]T, the control vector u = [Qrad,1Qrad,2Qrad,3Qrad,4
Qrad,5 Qrad,6 Qrad,7]T, and the disturbance vector d = [Tout Isolar Tin,adj1 Tin,
adj2 Tin,adj3 Tin,adj4 Tin,adj5 Tin,adj6]T. Tin,i represents the indoor temperature
of each room, from 1 to 7. Qrad,i represents the supplied heat to each
room, from 1 to 7. Tout and Isolar are the outdoor temperatures and solar
radiation. Tin,adj,j are the indoor temperatures of adjacent rooms, from 1
to 6. The discrete state space representation for the multiple rooms is
shown in (15).

The MPC platform for the multiple rooms in Simulink is shown in
Fig. 7. For the MPC controller, the inputs include dynamic indoor tem-
perature setpoints, calculated based on fuzzy logic, and simulated in-
door temperatures from the CARNOT room model. The outputs are
water flow for the radiators, which is the optimization results of the
controller. The outputs of the MPC controller are also the inputs of the
CARNOT room model. For the CARNOT room model, the weather pa-
rameters are obtained from a weather station, and the supply water
temperature, which correlates linearly with outdoor temperature in
Finland, is acquired from the operation scheme. The prediction horizon,
control horizon, and control step are set to 90 min, 45 min, and 15 min,
respectively. The weights matrix of the cost function, qij, rij, wij shown in
equation (8), are shown as follows. Our previous research [44] in-
troduces how to determine these parameters.

qij = I7; rij = 3000

⎡

⎣
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

⎤

⎦

3×7

;wij =

⎡

⎣
1 ⋯ 1
⋮ ⋱ ⋮
1 ⋯ 1

⎤

⎦

3×7

.

4.4. Scenarios

The simulation period is two weeks, from the 5 to the December 18,
2022. We designed five scenarios with applications of different combi-
nations of proposed optimization methods in this study, as shown in
Table 3.

Table 2
Mamdani-type fuzzy rule of dynamic indoor temperature setpoints.

Et NB NS ZE PS PB

ΔEt Ut

NB PB PB PS PS ZE
NS PB PS PS ZE NS
ZE PS PS ZE NS NS
PS PS ZE NS NS NB
PB ZE NS NS NB NB

Ad =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

9.98e-1 0 0 2.99e-4 0 -1.65e-3 0

0 9.98e-1 2.50e-4 0 2.99e-4 2.50e-4 0

0 8.83e-5 1.00 0 7.20e-5 0 1.64e-4

5.04e-4 0 0 9.98e-1 0 6.65e-4 3.53e-4

0 3.67e-4 2.50e-4 0 9.98e-1 1.76e-4 7.26e-4

6.96e-4 8.17e-4 0 4.84e-4 2.35e-4 9.97e-1 2.69e-6

0 0 2.92e-4 9.88e-5 3.73e-4 1.03e-6 9.99e-1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

Bd = diag(0.815 0.613 0.215 0 0 1.000 0.385 );

Ed =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1.44e-4 2.59e-5 2.84e-4 0 0 0 3.59e-4 0

1.64e-4 2.91e-5 0 0 0 0 0 4.22e-4

1.09e-4 1.53e-5 0 0 0 1.60e-4 0 4.22e-4

2.55e-5 0 3.34e-4 0 0 0 4.22e-4 0

2.55e-5 0 0 0 0 0 0 4.22e-4

1.09e-4 1.47e-5 0 0 0 0 4.31e-4 0

3.00e-5 0 9.62e-5 5.72e-4 1.55e-6 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)
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(1) Scenario 1: Current operating mode with constant heat price of
DH.

(2) Scenario 2: Use constant heat price for DH and apply MPC.
Considering that the office rooms are normally empty during
nonworking hours, it is possible to lower the temperature set-
points. For special rooms, such as corridors and storage rooms, it
is also unnecessary to maintain the temperature setpoint at a high
level, such as 21 ◦C, because people only spend a little time in
these rooms. Thus, it is necessary to apply independent indoor
thermal control for rooms with different functions in a building.

Thus, for office rooms, the temperature setpoints are 21 ◦C for
working hours and 17 ◦C for nonworking hours. The working
hours are set from 7:00 to 21:00 from Monday to Friday, from
9:00 to 14:00 on Saturday, and from 9:00 to 12:00 on Sunday.
Regarding the corridor, the temperature setpoint is maintained at
17 ◦C throughout the day.

(3) Scenario 3: Based on Scenario 2, assume that ASHP is installed
and can work together with DH. The COP of ASHP is high enough.
Priority should be given to using ASHP for heating, and DH
should be used only when ASHP reaches its maximum capacity.

(4) Scenario 4: Based on Scenario 2, assume that ASHP is installed
and can work together with DH. The COP of ASHP becomes low
when the outdoor temperature is low enough. Use constant heat
price for DH and dynamic heat price for ASHP and apply MPC.
Optimize the heat supply based on dynamic heat price to mini-
mize the cost in each time step.

(5) Scenario 5: Based on Scenario 4, use fuzzy logic to adjust tem-
perature setpoints based on dynamic heat prices. Depending on
the operating situation, that can be the dynamic price of ASHP or
the constant price of DH. At the same time, apply the optimal heat
supply method.

5. Results

Table 4 shows the simulation results of each scenario.

5.1. Control accuracy of MPC controller for multiple rooms

In our previous study [44], we researched the control results of the
proposed MPC and PID control in terms of control accuracy, energy
consumption, and hydraulic stability. In this subsection, we only discuss
the control accuracy. We take Scenarios 1 and 2 as examples to analyze
the control accuracy of the MPC controller for multiple rooms. Based on
Table 4, the energy consumption of rooms without and with MPC

Fig. 7. MPC control platform for multiple rooms in Simulink.

Table 3
Details of scenarios.

Scenarios Multi-objective MPC Constant heat price of DH Dynamic heat price of ASHP Indoor temperature setpoints Optimal heat supply

Fixed Dynamic

1 ✓
2 ✓ ✓ ✓
3 ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓ ✓

Table 4
Evaluation indictors of each scenario.

Scenarios Psatisfied (%) Heat consumption (kWh) Total cost (€)

1 – 212.01 22.78
2 91.7 192.72 20.71
3 91.7 192.72 16.50
4 91.7 192.72 16.38
5 88.3 161.91 14.31

Table 5
Average indoor temperature for multiple rooms.

Room
number

Average indoor temperature (◦C)

Scenario 1 Scenario 2

Working
hours

Nonworking
hours

Working
hours

Nonworking
hours

1 21.25 20.71 20.90 18.66
2 21.40 20.67 20.93 18.88
3 21.25 20.78 20.63 19.44
4 20.85 20.33 20.54 19.97
5 21.08 20.35 20.69 19.92
6 19.44 19.43 19.00 18.92
7 19.46 19.44 19.23 19.17

P. Hua et al.



Energy 307 (2024) 132577

11

controllers is 212.01 kWh and 192.72 kWh, respectively. Applying MPC
and lower temperature setpoints for rooms during nonworking hours
can save 9.1 % of heating energy for two reasons. Most significantly,
lower temperature setpoints for the office rooms during nonworking
hours reduce heat demand directly. Secondly, the MPC can achieve good
control accuracy, for example, reducing overshoots, causing additional
reduction in heating consumption. The details of the average indoor
temperature of each room are shown in Table 5.

Fig. 8 shows the controlled one-week indoor temperature of three
office rooms where MPC has been applied in Scenario 2. Fig. 9 shows the
simulated indoor temperature of the other four rooms for one week,
including two office rooms without radiators and two corridor spaces
with radiators. The sampling time is 1 min.

The control effect of the MPC controller for Rooms 1 to 3 is good,
with average accuracy (Psatisfied) of 91.7 % during working hours, as
shown in Table 4. This means the temperature can be maintained within
±1 ◦C of setpoints most of the time. The temperatures during
nonworking hours are above 17 ◦C all the time. The first reason for this is
that weather was not extremely cold during the simulation period. The
second reason is that heat transfer from the remaining part of the
building maintains the temperature of the office rooms at a higher level
than the setpoints during nonworking hours, as heating cannot be
switched off for the whole building. The temperature peaks were caused
by indoor thermal gains, such as people, lights, and equipment. The
temperature of Rooms 4 and 5 is maintained at a satisfactory range
during working hours. Temperatures in Rooms 6 and 7 are maintained
above 17 ◦C all day. In conclusion, the MPC with an internal predictive

model, as designed in this study, demonstrates applicability to temper-
ature control in multiple rooms with good control accuracy.

5.2. Analysis of optimal heat supply schemes

We consider Scenario 4 to analyze the cost savings when applying the
optimal heat supply method to the demand side with various energy
types. In our case, there are two types of energy: heat generated from
ASHP and DH. Based on Table 4, applying the optimal heat supply
method in Scenario 4 can save 20.9 % in costs compared to Scenario 2,
using DH only. The cost-saving potential is large, especially when
applying the method to the entire building.

There are two factors affecting the optimal heat supply schemes:
dynamic heat price and the capacity of ASHP. Table 6 shows the per-
centage of supplied heat of ASHP and DH when choosing the different
capacities of ASHP.

When we increase the capacity of ASHP, the percentage of heat
provided by ASHP increases because the heat price of ASHP is lower
than the heat price of DH most of the time. At this time, using more heat
generated from ASHP is more cost-effective. However, as the COP factor
of ASHP decreases in colder temperatures, a combination of high elec-
tricity price and cold outdoor temperature makes ASHP heating more
expensive than DH. Fig. 10 shows one-day provided heat by ASHP and
DH when the capacity of ASHP is 70 % of the maximum demand. The
sampling time is 15 min.

The capacity of ASHP is 1546 W, marked with a grey dashed line in
Fig. 10. The heat supplied by the ASHP, marked with a blue dotted line
reaches full capacity only for a fraction of the time when demand is high
and the ASHP heat price is lower than the DH price, such as the period
from 7:15 to 8:00. During these hours, the ASHP must be supplemented
by DH. A combination of low COP factors (due to cold weather) and high
electricity prices makes the ASHP heat price higher than the DH price,
such as the time from 14:00 to 20:00. During these hours, DH is used as
the primary heat source supplemented by the ASHP only when the
maximal DH capacity is reduced.

The heat supply problem will become more complex with various
heat sources, such as the ground source heat pump, solar heat and
power, electric boiler, and heat storage. With any configuration, opti-
mization can minimize the heating costs for each time step considering

Fig. 8. Controlled indoor temperatures of Rooms 1 to 3 from 12th to December 18, 2022.

Fig. 9. Simulated indoor temperatures of Rooms 4 to 7 from 12 to December 18, 2022. Rooms 6 and 7 are corridors spaces.

Table 6
The total cost of Scenario 4 with different capacities of ASHP.

The capacity of ASHP (Percentage of maximum
demand)

Heat consumption (kWh)
and proportion (%)

ASHP DH

60 % 159.6/83.1
%

32.5/16.9
%

70 % 170.0/88.5
%

22.0/11.5
%

80 % 178.9/93.1
%

13.2/6.9 %
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all variable price factors and production constraints simultaneously
[47].

5.3. Analysis of dynamic indoor temperature setpoints

We consider Scenario 5 to analyze dynamic indoor temperature
setpoints based on dynamic heat prices using fuzzy logic. Fig. 11 shows
one-day dynamic indoor temperature setpoints of the office rooms and
corridor spaces on December 15, 2022. The sampling time is 15 min.

Typically, the dynamic heat price tends to be cheap during
nonworking hours and expensive during working hours. Thus, the
average heat price is lower than the actual dynamic heat price during
working hours and higher than during nonworking hours. We can find a
general rule from Fig. 11: the indoor temperature setpoints tend to in-
crease to store more heat when the dynamic heat price is low and
decrease when the dynamic heat price is high. But this rule does not
always work because the increase or decrease of indoor temperature in

the current moment also depends on the change between heat price in
the next and present moments, already introduced in Subsection 4.2.

Based on Fig. 11, for office rooms, the indoor temperature setpoints
vary from 20.6 ◦C to 21.2 ◦C during working hours and 16.6 ◦C–17.2 ◦C
during nonworking hours. The indoor temperature setpoints for the
corridor spaces vary from 16.6 ◦C to 17.2 ◦C. The flexible indoor tem-
perature setpoints can shave heat demand peaks by utilizing the heat
storage characteristics of the building and the dynamic heat prices,
reducing heating demand and costs. For example, based on Table 4,
compared to fixed temperature setpoints adopted in Scenario 4, intro-
ducing dynamic indoor temperature setpoints based on fuzzy logic can
save 16.0 % of heat energy and 12.6 % of total cost.

6. Conclusions

In this study, an integrated DR method was developed to maintain
thermal comfort and save heating energy and cost for the demand side.

Fig. 10. Supplied heat on December 13, 2022.

Fig. 11. Heat prices and indoor temperature setpoints on December 15, 2022.

P. Hua et al.



Energy 307 (2024) 132577

13

In the optimization layer, fuzzy logic was proposed to adjust indoor
temperature setpoints based on dynamic heat prices and the optimal
heat supply method was used when multiple heat sources were applied.
In the control layer, a multi-objective MPC approach, incorporating a
simple internal predictive model for forecasting indoor temperatures,
was employed to regulate the indoor temperature of multiple rooms. We
built a multiple rooms model in CARNOT Toolbox and used this model
to verify the feasibility of the proposed method. The conclusions are
summarized below:

(1) The CARNOT Toolbox can be used to build models for multiple
rooms to simulate the indoor temperature with sufficient accu-
racy. CARNOT Toolbox is a good and flexible tool for building
models to simulate parameters or analyze the properties of the
demand side, including a single room, multiple rooms, or even a
whole building.

(2) The supplied heat for rooms without and with the MPC controller
were 212.01 kWh and 192.72 kWh, respectively. Applying MPC
to the rooms can save 9.1% heating energy, meaning intermittent
heating combined with suitable control technology has signifi-
cant energy-saving potential, especially for commercial buildings
with working and nonworking hours.

(3) The multi-objective MPC can demonstrate good control accuracy
for indoor temperature control in multiple rooms, whether the
indoor temperature setpoints are fixed or dynamic, with a satis-
faction percentage of 91.7 % and 88.3 % during working hours.

(4) Fuzzy logic can be successfully applied to adjust indoor temper-
ature setpoints based on dynamic heat prices to increase the
flexibility of energy usage by utilizing the building’s heat storage
capacity, with 16.0 % energy saving and 12.6 % cost saving.

(5) Applying the optimal heat supply method for multiple rooms
heated by ASHP and DH can fully utilize the different energy-
supplied systems considering the dynamic electricity and heat
prices to achieve minimum cost, with a cost-saving percentage of
20.9 %.

In this study, the optimization of heat supply considered only two
heat sources. However, the model can be extended to include more

complex configurations for heat supply. For example, ground source
heat, solar heat and power, electric boilers, and heat storage can be
included. Studying performance in such more complex configurations to
balance both heat and electricity supply and demand is a topic for
further studies. In addition, this study is a preliminary exploration of
using fuzzy logic to determine indoor temperature setpoints. Further
research is needed, such as investigating different fuzzy methods and
membership functions to find the best combination.
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Appendix B

Y(k) = ΩX(k) = ΩΦx(k) + ΩGyΔU(k) + ΩΓu(k − 1) + ΩNΔD(k) + ΩMd(k − 1). (7)

Here,

Y(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y(k+1|k)

y(k+2|k)

⋮
y(k + Nc|k)

y(k + Nc+1|k)

⋮
y
(
k + Np

⃒
⃒k

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;X(k) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x(k+1|k)

x(k+2|k)

⋮
x(k + Nc|k)

x(k + Nc+1|k)

⋮
x

(
k + Np

⃒
⃒k

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; ΔU(k) =

⎡

⎢
⎢
⎣

Δu(k|k)

Δu(k+1|k)

⋮
Δu(k + Nc−1|k)

⎤

⎥
⎥
⎦; ΔD(k) =

⎡

⎢
⎢
⎣

Δd(k|k)

Δd(k+1|k)

⋮
Δd

(
k + Np−1|k

)

⎤

⎥
⎥
⎦;
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Ω =

⎡

⎢
⎢
⎢
⎢
⎣

Cd 0 ... 0

0 Cd ... 0

0 0 ⋱ 0

0 0 ... Cd

⎤

⎥
⎥
⎥
⎥
⎦

; Φ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ad

A2
d

⋮

ANc
d

ANc+1
d

⋮

ANp
d

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

; Γ =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Bd

AdBd + Bd

⋮

∑Nc−1

i=0
Ai

dBd

∑Nc

i=0
Ai

dBd

⋮

∑Np−1

i=0
Ai

dBd

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;Gy =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Bd 0 ⋯ 0

(Ad + I)Bd Bd ⋯ 0

⋮ ⋮ ⋮ ⋮

∑Nc−1

i=0
Ai

dBd ⋯ ⋯ Bd

∑Nc

i=0
Ai

dBd ⋯ ⋯ (Ad + I)Bd

⋮ ⋮ ⋮ ⋮

∑Np−1

i=0
Ai

dBd ⋯ ⋯
∑Np−Nc

i=0
Ai

dBd

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ed

AdEd

⋮

∑Nc−1

i=0
Ai

dEd

∑Nc

i=0
Ai

dEd

⋮

∑Np−1

i=0
Ai

dEd

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

;N =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ed ⋯ ⋯ ⋯ 0

(Ad + I)Ed Ed ⋯ ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

∑Nc−1

i=0
Ai

dEd ⋯ Ed ⋯ 0

∑Nc

i=0
Ai

dEd ⋯ ⋯ Ed 0

⋮ ⋮ ⋮ ⋮ ⋮

∑Np−1

i=0
Ai

dEd ⋯ ⋯ ⋯ Ed

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Appendix C

The internal predictive model for multiple rooms in this study is shown as follows.
Room1:

dTin,1

dτ = −
Uwin,1Awin,1 + Uroof ,ext,wall,1Aroof ,ext,wall,1 + Uint,wall,1,6Aint,wall,1,6 + Uint,wall,1,4Aint,wall,1,4 + Uint,wall,1,adj1Aint,wall,1,adj1 + Uint,wall,1,adj5Aint,wall,1,adj5

ρin,1cin,1Vin,1
Tin,1

+
Uint,wall,1,4Aint,wall,1,4

ρin,1cin,1Vin,1
Tin,4 +

Uint,wall,1,6Aint,wall,1,6

ρin,1cin,1Vin,1
Tin,6 +

1
ρin,1cin,1Vin,1

Qrad,1 +
Uwin,1Awin,1 + Uroof ,ext,wall,1Aroof ,ext,wall,1

ρin,1cin,1Vin,1
Tout +

α1Awin,1

ρin,1cin,1Vin,1
Isolar

+
Uint,wall,1,adj1Aint,wall,1,adj1

ρin,1cin,1Vin,1
Tin,adj1 +

Uint,wall,1,adj5Aint,wall,1,adj5

ρin,1cin,1Vin,1
Tin,adj5

Room2

dTin,2

dτ = −
Uwin,2Awin,2 + Uroof ,ext,wall,2Aroof ,ext,wall,2 + Uint,wall,2,6Aint,wall,2,6 + Uint,wall,2,5Aint,wall,2,5 + Uint,wall,2,3Aint,wall,2,3 + Uint,wall,2,adj6Aint,wall,2,adj6

ρin,2cin,2Vin,2
Tin,2

+
Uint,wall,2,3Aint,wall,2,3

ρin,2cin,2Vin,2
Tin,3 +

Uint,wall,2,5Aint,wall,2,5

ρin,2cin,2Vin,2
Tin,5 +

Uint,wall,2,6Aint,wall,2,6

ρin,2cin,2Vin,2
Tin,6 +

1
ρin,2cin,2Vin,2

Qrad,2 +
Uwin,2Awin,2 + Uroof ,ext,wall,2Aroof ,ext,wall,2

ρin,2cin,2Vin,2
Tout

+
α2Awin,2

ρin,2cin,2Vin,2
Isolar +

Uint,wall,2,adj6Aint,wall,2,adj6

ρin,2cin,2Vin,2
Tin,adj6

Room3
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dTin,3

dτ =

−
Uwin,3Awin,3+Uroof ,ext,wall,3Aroof ,ext,wall,3+Uint,wall,2,3Aint,wall,2,3+Uint,wall,3,5Aint,wall,3,5+Uint,wall,3,7Aint,wall,3,7+Uint,wall,3,adj4Aint,wall,3,adj4+Uint,wall,3,adj6Aint,wall,3,adj6

ρin,3cin,3Vin,3
Tin,3

+
Uint,wall,2,3Aint,wall,2,3

ρin,3cin,3Vin,3
Tin,2+

Uint,wall,3,5Aint,wall,3,5

ρin,3cin,3Vin,3
Tin,5+

Uint,wall,3,7Aint,wall,3,7

ρin,3cin,3Vin,3
Tin,7+

1
ρin,3cin,3Vin,3

Qrad,3+
Uwin,3Awin,3+Uroof ,ext,wall,3Aroof ,ext,wall,3

ρin,3cin,3Vin,3
Tout +

α3Awin,3

ρin,3cin,3Vin,3
Isolar

+
Uint,wall,3,adj4Aint,wall,3,adj4

ρin,3cin,3Vin,3
Tin,adj4+

Uint,wall,3,adj6Aint,wall,3,adj6

ρin,3cin,3Vin,3
Tin,adj6

Room4

dTin,4

dτ = −
Uroof ,4Aroof ,4 + Uint,wall,1,4Aint,wall,1,4 + Uint,wall,4,6Aint,wall,4,6 + Uint,wall,4,7Aint,wall,4,7 + Uint,wall,4,adj1Aint,wall,4,adj1 + Uint,wall,4,adj5Aint,wall,4,adj5

ρin,4cin,4Vin,4
Tin,4

+
Uint,wall,1,4Aint,wall,1,4

ρin,4cin,4Vin,4
Tin,1 +

Uint,wall,4,6Aint,wall,4,6

ρin,4cin,4Vin,4
Tin,6 +

Uint,wall,4,7Aint,wall,4,7

ρin,4cin,4Vin,4
Tin,7 +

Uroof ,4Aroof ,4

ρin,4cin,4Vin,4
Tout +

Uint,wall,4,adj1Aint,wall,4,adj1

ρin,4cin,4Vin,4
Tin,adj1

+
Uint,wall,4,adj5Aint,wall,4,adj5

ρin,4cin,4Vin,4
Tin,adj5

Room5

dTin,5

dτ = −
Uroof ,5Aroof ,5 + Uint,wall,2,5Aint,wall,2,5 + Uint,wall,5,6Aint,wall,5,6 + Uint,wall,5,7Aint,wall,5,7 + Uint,wall,3,5Aint,wall,3,5 + Uint,wall,5,adj6Aint,wall,5,adj6

ρin,5cin,5Vin,5
Tin,5

+
Uint,wall,2,5Aint,wall,2,5

ρin,5cin,5Vin,5
Tin,2 +

Uint,wall,3,5Aint,wall,3,5

ρin,5cin,5Vin,5
Tin,3 +

Uint,wall,5,6Aint,wall,5,6

ρin,5cin,5Vin,5
Tin,6 +

Uint,wall,5,7Aint,wall,5,7

ρin,5cin,5Vin,5
Tin,7 +

Uroof ,5Aroof ,5

ρin,5cin,5Vin,5
Tout +

Uint,wall,5,adj6Aint,wall,5,adj6

ρin,5cin,5Vin,5
Tin,adj6

Room6:

dTin,6

dτ = −
Uwin,6Awin,6+Uroof ,ext,wall,6Aroof ,ext,wall,6+Uint,wall,1,6Aint,wall,1,6+Uint,wall,2,6Aint,wall,2,6+Uint,wall,4,6Aint,wall,4,6+Uint,wall,5,6Aint,wall,5,6+Uint,wall,6,7Aint,wall,6,7+Uint,wall,6,adj5Aint,wall,6,adj5

ρin,6cin,6Vin,6
Tin,6+

Uint,wall,1,6Aint,wall,1,6
ρin,6cin,6Vin,6

Tin,1

+
Uint,wall,2,6Aint,wall,2,6

ρin,6cin,6Vin,6
Tin,2+

Uint,wall,4,6Aint,wall,4,6
ρin,6cin,6Vin,6

Tin,4+
Uint,wall,5,6Aint,wall,5,6

ρin,6 cin,6Vin,6
Tin,5+

Uint,wall,6,7Aint,wall,6,7
ρin,6cin,6Vin,6

Tin,7+ 1
ρin,6cin,6Vin,6

Qrad,6+
Uwin,6Awin,6+Uroof ,ext,wall,6Aroof ,ext,wall,6

ρin,6cin,6Vin,6
Tout+

α6Awin,6
ρin,6 cin,6Vin,6

Isolar+
Uint,wall,6,adj5Aint,wall,6,adj5

ρin,6 cin,6Vin,6
Tin,adj5

Room7

dTin,7

dτ = −
Uroof ,7Aroof ,7+Uint,wall,3,7Aint,wall,3,7+Uint,wall,5,7Aint,wall,5,7+Uint,wall,6,7Aint,wall,6,7+Uint,wall,4,7Aint,wall,4,7+Uint,wall,7,adj1Aint,wall,7,adj1+Uint,wall,7,adj2Aint,wall,7,adj2+Uint,wall,7,adj3Aint,wall,7,adj3

ρin,7cin,7Vin,7
Tin,7+

Uint,wall,3,7Aint,wall,3,7
ρin,7cin,7Vin,7

Tin,3

+
Uint,wall,4,7Aint,wall,4,7

ρin,7cin,7Vin,7
Tin,4+

Uint,wall,5,7Aint,wall,5,7
ρin,7cin,7Vin,7

Tin,5+
Uint,wall,6,7Aint,wall,6,7

ρin,7 cin,7Vin,7
Tin,6+ 1

ρin,7cin,7Vin,7
Qrad,7+

Uroof ,7Aroof ,7
ρin,7cin,7Vin,7

Tout+
Uint,wall,7,adj1Aint,wall,7,adj1

ρin,7cin,7Vin,7
Tin,adj1+

Uint,wall,7,adj2Aint,wall,7,adj2
ρin,7 cin,7Vin,7

Tin,adj2+
Uint,wall,7,adj3Aint,wall,7,adj3

ρin,7cin,7Vin,7
Tin,adj3

The matrix A, B, C, E of the state space representation for the multiple room are show as follows.

Arow1 =

⎡

⎢
⎢
⎢
⎢
⎣

−

Uwin,1Awin,1 + Uroof ,ext,wall,1Aroof ,ext,wall,1+

Uint,wall,1,6Aint,wall,1,6 + Uint,wall,1,4Aint,wall,1,4+

Uint,wall,1,adj1Aint,wall,1,adj1 + Uint,wall,1,adj5Aint,wall,1,adj5

ρin,1cin,1Vin,1
0 0

Uint,wall,1,4Aint,wall,1,4

ρin,1cin,1Vin,1
0

Uint,wall,1,6Aint,wall,1,6

ρin,1cin,1Vin,1
0

⎤

⎥
⎥
⎥
⎥
⎦

Arow2 =

⎡

⎢
⎢
⎢
⎢
⎣
0 −

Uwin,2Awin,2 + Uroof ,ext,wall,2Aroof ,ext,wall,2+

Uint,wall,2,6Aint,wall,2,6 + Uint,wall,2,5Aint,wall,2,5+

Uint,wal,2,3Aint,wall,2,3 + Uint,wall,2,adj6Aint,wall,2,adj6

ρin,2cin,2Vin,2

Uint,wall,2,3Aint,wall,2,3

ρin,2cin,2Vin,2
0

Uint,wall,2,5Aint,wall,2,5

ρin,2cin,2Vin,2

Uint,wall,2,6Aint,wall,2,6

ρin,2cin,2Vin,2
0

⎤

⎥
⎥
⎥
⎥
⎦

Arow3 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
0

Uint,wall,2,3Aint,wall,2,3

ρin,3cin,3Vin,3
−

Uwin,3Awin,3 + Uroof ,ext,wall,3Aroof ,ext,wall,3+

Uint,wall,2,3Aint,wall,2,3 + Uint,wall,3,5Aint,wall,3,5+

Uint,wall,3,7Aint,wall,3,7 + Uint,wall,3,adj4Aint,wall,3,adj4+

Uint,wall,3,adj6Aint,wall,3,adj6

ρin,3cin,3Vin,3
0

Uint,wall,3,5Aint,wall,3,5

ρin,3cin,3Vin,3
0

Uint,wall,3,7Aint,wall,3,7

ρin,3cin,3Vin,3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Arow4 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣Uint,wall,1,4Aint,wall,1,4

ρin,4cin,4Vin,4
0 0 −

Uroof ,ext,wall,4Aroof ,ext,wall,4+

Uint,wall,1,4Aint,wall,1,4 + Uint,wall,4,6Aint,wall,4,6+

Uint,wall,4,7Aint,wall,4,7 + Uint,wall,4,adj1Aint,wall,4,adj1+

Uint,wall,4,adj5Aint,wall,4,adj5

ρin,4cin,4Vin,4
0

Uint,wall,4,6Aint,wall,4,6

ρin,4cin,4Vin,4

Uint,wall,4,7Aint,wall,4,7

ρin,4cin,4Vin,4

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Arow5 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
0

Uint,wall,2,5Aint,wall,2,5

ρin,5cin,5Vin,5

Uint,wall,3,5Aint,wall,3,5

ρin,5cin,5Vin,5
0 −

Uroof ,ext,wall,5Aroof ,ext,wall,5+

Uint,wall,2,5Aint,wall,2,5 + Uint,wall,5,6Aint,wall,5,6+

Uint,wall,5,7Aint,wall,5,7 + Uint,wall,3,5Aint,wall,3,5+

Uint,wall,5,adj6Aint,wall,5,adj6

ρin,5cin,5Vin,5

Uint,wall,5,6Aint,wall,5,6

ρin,5cin,5Vin,5

Uint,wall,5,7Aint,wall,5,7

ρin,5cin,5Vin,5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Arow6=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣Uint,wall,1,6Aint,wall,1,6

ρin,6cin,6Vin,6

Uint,wall,2,6Aint,wall,2,6

ρin,6cin,6Vin,6
0
Uint,wall,4,6Aint,wall,4,6

ρin,6cin,6Vin,6

Uint,wall,5,6Aint,wall,5,6

ρin,6cin,6Vin,6
−

Uwin,6Awin,6+Uroof ,ext,wall,6Aroof ,ext,wall,6+

Uint,wall,1,6Aint,wall,1,6+Uint,wall,2,6Aint,wall,2,6+

Uint,wall,4,6Aint,wall,4,6+Uint,wall,5,6Aint,wall,5,6+

Uint,wall,6,7Aint,wall,6,7+Uint,wall,6,adj5Aint,wall,6,adj5

ρin,6cin,6Vin,6

Uint,wall,6,7Aint,wall,6,7

ρin,6cin,6Vin,6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Arow7 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣
0 0

Uint,wall,3,7Aint,wall,3,7

ρin,7cin,7Vin,7

Uint,wall,4,7Aint,wall,4,7

ρin,7cin,7Vin,7

Uint,wall,5,7Aint,wall,5,7

ρin,7cin,7Vin,7

Uint,wall,6,7Aint,wall,6,7

ρin,7cin,7Vin,7
−

Uroof ,7Aroof ,7 + Uint,wall,3,7Aint,wall,3,7+

Uint,wall,5,7Aint,wall,5,7 + Uint,wall,6,7Aint,wall,6,7+

Uint,wall,4,7Aint,wall,4,7 + Uint,wall,7,adj1Aint,wall,7,adj1+

Uint,wall,7,adj2Aint,wall,7,adj2 + Uint,wall,7,adj3Aint,wall,7,adj3

ρin,7cin,7Vin,7

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

B= cw ⋅ (ts − tr)⋅diag
( 1

ρin,1cin,1Vin,1

1
ρin,2cin,2Vin,2

1
ρin,3cin,3Vin,3

0 0
1

ρin,6cin,6Vin,6

1
ρin,7cin,7Vin,7

)

C= I7

Erow1 =

[Uwin,1Awin,1 + Uroof ,ext,wall,1Aroof ,ext,wall,1

ρin,1cin,1Vin,1

α1Awin,1

ρin,1cin,1Vin,1

Uint,wall,1,adj1Aint,wall,1,adj1

ρin,1cin,1Vin,1
0 0 0

Uint,wall,1,adj5Aint,wall,1,adj5

ρin,1cin,1Vin,1
0

]

Erow2 =

[Uwin,2Awin,2 + Uroof ,ext,wall,2Aroof ,ext,wall,2

ρin,2cin,2Vin,2

α2Awin,2

ρin,2cin,2Vin,2
0 0 0 0 0

Uint,wall,2,adj6Aint,wall,2,adj6

ρin,2cin,2Vin,2

]

Erow3 =

[Uwin,3Awin,3 + Uroof ,ext,wall,3Aroof ,ext,wall,3

ρin,3cin,3Vin,3

α3Awin,3

ρin,3cin,3Vin,3
0 0 0

Uint,wall,3,adj4Aint,wall,3,adj4

ρin,3cin,3Vin,3
0

Uint,wall,3,adj6Aint,wall,3,adj6

ρin,3cin,3Vin,3

]

Erow4 =

[Uroof ,ext,wall,4Aroof ,ext,wall,4

ρin,4cin,4Vin,4
0

Uint,wall,4,adj1Aint,wall,4,adj1

ρin,4cin,4Vin,4
0 0 0

Uint,wall,4,adj5Aint,wall,4,adj5

ρin,4cin,4Vin,4
0

]

Erow5 =

[Uroof ,ext,wall,5Aroof ,ext,wall,5

ρin,5cin,5Vin,5
0 0 0 0 0 0

Uint,wall,5,adj6Aint,wall,5,adj6

ρin,5cin,5Vin,5

]

Erow6 =

[Uwin,6Awin,6 + Uroof ,ext,wall,6Aroof ,ext,wall,6

ρin,6cin,6Vin,6

α6Awin,6

ρin,6cin,6Vin,6
0 0 0 0

Uint,wall,6,adj5Aint,wall,6,adj5

ρin,6cin,6Vin,6
0

]

Erow7 =

[Uroof ,7Aroof ,7

ρin,7cin,7Vin,7
0

Uint,wall,7,adj1Aint,wall,7,adj1

ρin,7cin,7Vin,7

Uint,wall,7,adj2Aint,wall,7,adj2

ρin,7cin,7Vin,7

Uint,wall,7,adj3Aint,wall,7,adj3

ρin,7cin,7Vin,7
0 0 0

]
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