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A B S T R A C T

A graphic equalizer (GEQ) is a standard tool in audio production and effect design. Adjustable gain control
frequencies are fixed along the logarithmic frequency axis, and an automatic design method matches the
magnitude response to them whenever target gains are changed. Most commonly, the GEQ comprises a set of
peak filters centered an octave apart, possibly with a shelving filter at the bottom and top of the frequency
range. While accurate designs were proposed, the dynamic range is typically limited to 24 dB. In this paper,
we propose two innovations. First, we introduce a GEQ based on shelving filters only, which can cover an
extensive dynamic range of over 60 dB. Secondly, we introduce an order-switching technique that combines
shelf filters of different order. We demonstrate the performance and advantages of the proposed filter with
design examples. The proposed shelf-filter-based GEQ offers a wider dynamic range and a smoother magnitude
response than traditional peak-filter-based GEQ designs.

1. Introduction

Graphic equalizers (GEQ) have a long history in audio technol-
ogy [1,3]. The first GEQs, which were based on analog electronics,
were developed for cinemas in the 1950s to improve the intelligibility
of the dialog [3]. The GEQ has become a standard tool in music studios,
in public address systems for concerts, and in selected audio systems,
such as in exclusive car radios and home stereo systems [4]. For a
long time, the band filters of GEQs have been second-order analog
bandpass filters, with their center frequencies locked at the control
frequencies, such as the octaves or one-third octaves. Digital GEQs were
developed since the late 1970s, mainly by converting analog designs to
digital filters [5–8]. This naturally led to a set of digital biquad filters
connected in parallel or in cascade [1]. This paper proposes a novel
GEQ design based on cascading digital shelf filters.

Early digital GEQs had limited accuracy in approximating the mag-
nitude response drawn by the target gains1 [9,10], but major advances
have been made in this millennium. In 2004, Abel and Berners showed
that dB magnitude responses of digital second-order peak filters were
highly self-similar when the gain was varied, but the center frequency
was kept constant [11]. This allowed least-squares optimization of the
filter gains, which led to accurate cascade GEQ designs using one
second-order peak filter per band [10,12–14]. Also, accurate parallel
GEQs may now be designed by first designing a cascade filter system
and then converting it to the parallel form [15], which is advantageous
for parallel computing [16]. Recent work showed that the number of

∗ Corresponding author.
E-mail address: vesa.valimaki@aalto.fi (V. Välimäki).

1 Target gains are occasionally called command gains in literature [1,2].

active band filters can be minimized prior to designing the GEQ, thus
offering the possibility to eliminate some filters, which leads to com-
putational savings [17,18]. Furthermore, linear-phase GEQs have been
proposed, also very recently, but they require the use of frequency-
domain filtering [19,20] or high-order finite impulse response fil-
ters [21,22], causing more latency than biquad-filter-based GEQs and
are not discussed further here.

This paper proposes to cascade first-, second-, or higher-order shelf
filters at prescribed center frequencies to form the magnitude response
of a GEQ. In practice, each shelving filter transitions the magnitude
response from one center frequency to the next. Fig. 1 shows an
illustrating example where a target magnitude response is approxi-
mated with a state-of-the-art conventional GEQ and with the proposed
multi-shelf GEQ, which uses second-order shelving filters. The approx-
imations have slight differences, mainly in the ripple of the magnitude
response between the control points. Both designs lead to a minimum-
phase system. Formerly, shelving filters have been used in audio mainly
as bass and treble tone controls and for loudness compensation [1,
4,23,24]. The low- and high-frequency shelving filters are also well
suited to be used as the lowest and highest bands in a GEQ [1]. Abel
and Berners [11] also proposed to use second-order shelving filters as
building blocks of a cascade GEQ, but it remained to be shown whether
this offered any advantage with respect to peak filters.

Some previous works have studied the use of shelving filters as
building blocks for audio equalization. In 2006, Holters and Zölzer
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Fig. 1. Magnitude responses of GEQs based on (a) symmetric peaking biquad fil-
ters [13] and (b) the proposed second-order shelving filters. The colored lines show
the individual band filters, the black line is the overall response, and the red circles
are the target gains.

[25,26] introduced a closed-form design of shelving and band-shelving
filters of arbitrary order, based on analog prototypes, and showed that
they can be cascaded to implement a GEQ. Rämö and Välimäki studied
the use of high-order Holters-Zölzer band-shelving filters in a GEQ.
However, to obtain a 2-dB accuracy for a ±20-dB dynamic range the
band filter orders became quite large, such as 20 or larger [27]. Fourth-
order Holters-Zölzer band-shelf filters were also tested in a GEQ –
without optimizing the filter gains – and were found to be less accurate
than optimized second-order filters [9].

Jot [28] showed that a pair of second-order shelving filters could
approximate a three-band equalizer. Also, a wideband approximation of
a magnitude response with a constant slope, such as that corresponding
to pink noise, could be accomplished [28]. Schultz et al. [29] used
several second-order shelving filters to approximate various magnitude
responses, such as a constant 3-dB slope. They showed that a cascade of
shelving filters can be more suitable for this task than peak filters [29].

Our work takes the concept of shelf-filter-based GEQ further, de-
scribing a design method for a multi-shelf octave GEQ and comparing it
with a state-of-the-art peak-filter-based GEQ. The results show that the
proposed multi-shelf GEQ has a better dynamic range than what is pos-
sible to obtain with peak filters. Additionally, a better approximation
accuracy can be obtained for many common settings using second-order
shelf than peak filters, especially when the target response contains flat
regions or smooth slopes doing up or down, namely because it is hard
for the peak filters to form a flat response.

The rest of this paper is organized as follows. Section 2 reviews the
design of cascade GEQs, the idea of self-similarity of filters, and reca-
pitulates a state-of-the-art baseline design method. Section 3 introduces
the proposed design. Section 4 compares the proposed method with the
baseline and analyzes the results. Section 5 concludes this paper. The
Matlab code to reproduce all figures is provided online.2

2. Background

This section describes the principles of cascaded GEQ design based
on self-similar filters. The self-similarity turns the filter design into
a least-squares optimization problem, which is suitable for real-time
adjustments. The self-similarity also leads to simple designs of loop
filters in recursive delay filters, which are proportional to the delay
lengths [28,30,31].

2 https://github.com/SebastianJiroSchlecht/MultiShelfGEQ.

Fig. 2. Block diagram of cascade GEQ for 𝑀 band filters. The multiplying coefficient
𝐺0 represents the broadband gain.

2.1. Cascade GEQs

Given a target magnitude response 𝑇 (𝜔𝑗 ) defined at a set of control
frequencies 𝜔𝑗 ∈ [0, 𝜋] on the frequency axis, we want to determine a
digital filter 𝐻(𝑧) closely following the magnitude response, i.e.,

min
𝐻

∑

𝑗
(|
|

𝐻(𝑒𝚤𝜔𝑗 )|
|

− 𝑇 (𝜔𝑗 ))2, (1)

where 𝚤2 = −1. A cascade GEQ 𝐻 comprises 𝑀 band filters 𝐻𝑖(𝑧) in a
serial connection, as shown in Fig. 2, and has the transfer function of
the form

𝐻(𝑧) = 𝐺0

𝑀
∏

𝑖=1
𝐻𝑖(𝑧). (2)

where 𝐺0 ∈ R⩾0 is a broadband gain factor.
Solving (1) directly leads to a nonlinear problem. A common design

trick is to convert the problem to the logarithmic scale [10–12], i.e.,

min
𝐻

∑

𝑗
(log10 ||𝐻(𝑒𝚤𝜔𝑗 )|

|

− log10 𝑇 (𝜔𝑗 ))2, (3)

with

log10 |𝐻(𝑧)| =
𝑁
∑

𝑖=1
log10 ||𝐻𝑖(𝑧)||. (4)

The design error in (3) is also minimized on the logarithmic scale,
which leads to better auditory similarity [1]. We now choose a special
class of low-order filters 𝐻𝑖, which are approximately self-similar, i.e.,

log10 ||𝐻𝑖(𝑒𝚤𝜔; 𝑔𝑖)|| ≈
𝑔𝑖
𝑝
log10 ||𝐻𝑖(𝑒𝚤𝜔; 𝑝)||, (5)

where 𝐻(𝑧; 𝑝) is a prototype filter with prototype gain 𝑝, as suggested
by Oliver and Jot [10], and 𝑔𝑖 ∈ R is the filter gain in decibel (dB).

The filter coefficients of 𝐻(𝑧; 𝑝) depend on the filter gain 𝑔. The
accuracy of the self-similarity depends on the filter design, prototype
gain, and filter gain. Usually, the self-similarity degrades the more
different the prototype gain and the filter gain are. Therefore, the filter
gain is limited between ±𝑔max. Using such self-similar filters, the GEQ
design (3) can be cast to a constrained linear least-squares problem,
i.e.,

min
𝒈∈R𝑀×1

‖𝑯𝒈 − 𝒕‖2, s.t. |
|

𝑔𝑖|| ⩽ 𝑔max ∀𝑖 = 1,… ,𝑀, (6)

where ‖⋅‖2 is the l2-norm and the matrix elements of 𝑯 and 𝒕 are

𝐻𝑗𝑖 =
1
𝑝
log10 ||𝐻𝑖(𝑒

𝚤𝜔𝑗 ; 𝑝)|
|

𝑡𝑗 = log10 𝑇 (𝜔𝑗 ).
(7)

The matrix elements 𝐻𝑗𝑖 are the magnitude response of the 𝑖th pro-
totype filter at the 𝑗th control frequency, and 𝑡𝑗 is the target gain at
that frequency. The vector 𝒈 = [𝑔1,… , 𝑔𝑀 ] comprises the filter gains
in (5). The optimization problem (6) can be efficiently solved, and the
pseudo-inverse of the interaction matrix 𝑯 can be pre-computed as it
typically does not change during operation [12].

2.2. Self-similar filters

We review several self-similar low-order filters. The simplest is the
broadband gain, i.e.,

𝐻broadband(𝑧; 𝑔0) = 10𝑔0∕20 = 𝐺0, (8)

https://github.com/SebastianJiroSchlecht/MultiShelfGEQ
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which is perfectly self-similar for any gain 𝑔0. The broadband gain is
used as the first stage in the cascaded GEQ; see Fig. 2.

The most common self-similar filter is the second-order peak-notch
filter, often called a parametric equalizer [1,4,10], i.e.,

𝐻PN(𝑧) =

√

𝐺 + 𝛼𝐺 −
[

2
√

𝐺 cos
(

𝜔c
)

]

𝑧−1 + [
√

𝐺 − 𝛼𝐺]𝑧−2

√

𝐺 + 𝛼 −
[

2
√

𝐺 cos
(

𝜔c
)

]

𝑧−1 + [
√

𝐺 − 𝛼]𝑧−2
, (9)

where 𝛼 = tan (𝐵∕2), 𝐵 denotes the bandwidth, 𝐺 is the (linear)
filter gain, and 𝜔c defines the center frequency of the peak or notch
in radians. There are several variations to the exact parametrization
of this filter, leading to improved self-similarity at higher gains and
extremal frequency bands. Typical bell-shaped magnitude responses
and a comparison of normalized magnitude responses to reveal their
similarity have been shown by Abel and Berners [11].

In this work, we propose to use self-similar shelving filters to
cascade a GEQ. The first- and second-order shelving filters are popular
equalizer designs [1]. A generalized form proposed by Holters and
Zölzer [25] can be used to compute the first-, second-, and higher-order
shelving filters. For the 𝐾th-order low-shelving filter, the equation is
given by

𝐻LS,𝐾 (𝑧) =
𝐾
∏

𝑘=1

𝑅𝛾𝑒𝚤𝛼𝑘 + 1 + (𝑅𝛾𝑒𝚤𝛼𝑘 − 1) 𝑧−1

𝑅 1
𝛾 𝑒

𝚤𝛼𝑘 + 1 +
(

𝑅 1
𝛾 𝑒

𝚤𝛼𝑘 − 1
)

𝑧−1
, (10)

where 𝛾 = 2𝐾
√

𝐺, 𝛼𝑘 = 𝜋 (0.5 − (2𝑘 − 1)∕2𝐾), 𝑅 = tan
(

𝜋𝑓b∕𝑓s
)

, 𝐺 is
the linear filter gain, and 𝑓b is called the break frequency, i.e., the
frequency where the transfer function has half the gain 𝐺∕2. The design
is always stable since it is based on a stable s-domain formulation,
and a subsequent bilinear transform preserves the stability [25]. The
𝐾th-order high-shelf filter can be obtained by setting

𝐻HS,𝐾 (𝑧) = 𝐻LS,𝐾 (−𝑧), (11)

and by shifting the break frequency by 𝜋(1−2𝑓b∕𝑓s). The self-similarity
of shelving filters is studied further in Section 3.

2.3. Baseline design: Symmetric graphic equalizer

As a baseline method against which the proposed method is com-
pared, we have chosen the GEQ design by Liski et al. [13], representing
the state-of-the-art among octave GEQ designs based on peak-notch
filters. In this paper, we call this baseline the symmetric graphic equal-
izer, or SGE, because of the shape of its band filters [13]. As band filters,
SGE uses peak-notch filters having approximately symmetric magnitude
response across the whole frequency range [13]. This peak-notch filter
design is based on an original method proposed by Orfanidis [32],
which allows adjusting the filter gain not only at the center frequency
but also at its band edges, at dc, and at the Nyquist limit, or at five
distinct frequencies. In the baseline SGE method, the dc gain of all band
filters is set to 1.0 [13]. However, at both band edges and at the Nyquist
limit, the gain of each band filter is carefully adjusted based on the peak
gain value to maintain self-similarity [13].

The transfer function of peak-notch filter used in SGE [13] can be
written as

𝐻S(𝑧) =

𝐺N+𝑊 2+𝐴2
1+𝑊 2+𝐴1

− 2 𝐺N−𝑊 2

1+𝑊 2+𝐴1
𝑧−1 + 𝐺N+𝑊 2−𝐴2

1+𝑊 2+𝐴1
𝑧−2

1 − 2 1−𝑊 2

1+𝑊 2+𝐴1
𝑧−1 + 1+𝑊 2−𝐴1

1+𝑊 2+𝐴1
𝑧−2

, (12)

where

𝑊 2 =

√

|𝐺2
𝑚 − 𝐺2

N|

|𝐺2 − 1|
tan

(𝜔c
2

)2
,

𝐴1 =
√

𝐶 +𝐷
|𝐺2 − 𝐺2

B|
, 𝐴2 =

√

√

√

√

𝐺2𝐶 + 𝐺2
B𝐷

|𝐺2 − 𝐺2
B|

,

𝐶 = |𝐺2
B − 𝐺2

N|𝛥𝛺
2 − 2𝑊 2

(

|𝐺2
B − 𝐺N| −

√

|𝐺2
B − 1||𝐺2

𝑚 − 𝐺2
N|
)

,

𝐷 = 2𝑊 2
(

|𝐺2 − 𝐺N| −
√

|𝐺2 − 1||𝐺2 − 𝐺2
N|
)

,

𝛥𝛺 =
(

1 +

√

√

√

√

|𝐺2
B − 1|

|𝐺2
B − 𝐺2

N|
𝑊 2

)

𝛼, (13)

and 𝐺B and 𝐺N are the linear gains at the edges of the bandwidth
𝐵 and at the Nyquist limit, respectively, and 𝐺𝑚 is the linear gain
of the 𝑚th filter. The bandwidth of the first six filters – those at the
six lowest center frequencies – has been set to 𝐵 = 1.5𝜔c whereas
the next four filters have their bandwidth adjusted smaller to obtain
a symmetric behavior, and are 99.7%, 98.5%, 92.9%, and 43.3% of
1.5𝜔c, respectively, when the sample rate is 𝑓s = 44.1 kHz [13].

The baseline SGE design uses directly the dB target gains at the
ten octave bands as input parameters and returns the optimized filter
gains 𝑔𝑘 in dB [13]. A prototype shape is selected for each band filter
by using a prescribed prototype gain. To obtain a 1-dB accuracy for
filter gains up to 𝑔max = 12dB, the prototype dB-gains are 13.8, 14.5,
14.5, 14.6, 14.5, 14.5, 14.6, 14.6, 14.5, and 13.6 for the bands from
the lowest to the highest octave [13]. The magnitude response samples
of each prototype filter are divided by the prototype dB-gain to obtain
basis functions with a peak gain of 1 dB. Another trick used in the SGE
method to improve the design accuracy is to optimize the magnitude
response not only at the octave center frequencies but also at their
nine midpoints, which are obtained as geometric means of the adjacent
octave centers [13]. The target magnitude at each intermediate point
is the average of the neighboring target gains. A weighted least-squares
design is used that has a weight 1.0 at the octave centers and a weight
0.5 at the nine midpoint frequencies [13].

After optimized peak dB-gains 𝒈 are obtained, the SGE method
sets the dB-gain at the bandwidth edges at 𝒈B = 0.29𝒈 for all band
filters [13]. Liski et al. also optimized the Nyquist gain 𝐺N of each
band filter to obtain a symmetric bell-shaped magnitude response at
the high end of the frequency range, and the actual value is obtained
by evaluating a second-order polynomial of the peak dB-gain [13].
Finally, the band filter coefficients for the baseline SGE are obtained
by converting the gain parameters from dB to the linear scale, 𝑮𝑚,
and using them in (12) and (13). The obtained peak-notch filters are
cascaded as in Fig. 2.

3. Proposed method

This section first discusses the self-similarity of shelving filters and
then how to combine them to form a multi-shelf GEQ. The sample rate
𝑓s used in this study is 44.1 kHz.

3.1. Self-similarity of shelving filters

We study the self-similarity of the shelving filters as this is the
crucial property to allow the log-domain least-squares design described
by (6). To the best of our knowledge, this is the first thorough self-
similarity evaluation of this filter type. We first show the self-similarity
of the second-order shelving filter (10) with 𝐾 = 2. Secondly, we show
the self-similarity across different filter orders 𝐾.

For easier comparison of the shape of the magnitude response, we
utilize the gain-normalized magnitude, i.e., 𝐻(𝑒𝚤𝜔𝑗 ; 𝑔)∕𝑔. Fig. 3 depicts
the self-similarities of the first- and second-order shelving filters with
gains 𝑔 varying from 1 to 40 dB. Overall, the second-order filters with
𝐾 = 2 are steeper than the first-order filters with 𝐾 = 1. When the
magnitudes are normalized, it can be observed that the shelving filters
with lower gains have steeper slopes than those with higher gains. This
contrasts the self-similarity of peak filters, which become steeper in the
transition region for higher gains [1].
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Fig. 3. Comparison of self-similarity of (a) first-order and (b) second-order high-shelf
filters at different filter gains 𝑔 = [1, 6, 12, 18, 24, 30, 36, 40] dB, enabled by normalizing
the filter dB magnitude responses by 𝑔. The break frequency is 𝑓b = 1414 Hz.

Fig. 4. Prototype gain 𝑝 versus filter gain 𝑔 self-similarity error (14) of (a) a first-order
and (b) a second-order shelving filter, when 𝑓b = 1414 Hz.

The self-similarity error can be quantified as the maximum devia-
tion of the magnitude response at the control frequencies, i.e.,

𝜖(𝑔, 𝑝) = max
𝑗

|

|

|

|

log10 ||𝐻(𝑒𝚤𝜔𝑗 ; 𝑔)|
|

−
𝑔
𝑝
log10 ||𝐻(𝑒𝚤𝜔𝑗 ; 𝑝)|

|

|

|

|

|

(14)

Table 1
Octave center frequencies and their geometric midpoints, which are used as break
frequencies of the shelving filters.

Octave frequency (Hz) Midpoint frequency (Hz)

31.25 44.2
62.5 88.4
125 176.8
250 353.6
500 707.1
1000 1414
2000 2828
4000 5657
8000 11 314
16 000 N/A

Fig. 5. Self-similarity error (14) of the second-order shelving filter with different break
frequencies 𝑓b and filter gains 𝑔, when the prototype gain 𝑝 is 1 dB.

Fig. 4 depicts the maximum absolute errors for each prototype and filter
gain combination. For equal prototype and filter gain, i.e., 𝑔 = 𝑝, the
error is always zero. The error increases with the difference between
𝑔 and 𝑝. The self-similarity error alone suggests that the prototype
gain should be close to the filter gain. Optimization schemes for peak
filter GEQ previously used this argument to change the prototype gain
iteratively [12,33].

For the shelving filter, as seen in Fig. 3, the higher prototype
gains lead to shallower slopes, which limits the overall gain difference
between frequency bands. We find that using a prototype gain of 𝑝 =
1 dB is a good trade-off as the self-similarity error remains below ±1
dB until the filter gain is approximately 18 dB.

We further show the band dependency of the self-similarity error.
For this, we study the self-similarity of shelving filters with different
break frequencies 𝑓b. For an octave-band GEQ, we choose the break
frequencies to be the geometric mean of the control frequencies. Both
the octave center and the midpoint frequencies are listed in Table 1.

Fig. 5 shows the self-similarity errors for different break frequencies
𝑓b of the second-order shelving filter (14) with prototype gain 𝑝 = 1 dB.
The error increases mostly independent of the filter band except for the
two highest bands, which have a slightly higher self-similarity error.
In peak-notch GEQs, the extremal bands require careful tuning; see
Section 2.3. Similar techniques may be applied to the shelving filters.
As the extra error is low, we leave this for further investigation.

From Figs. 3, 4, and 5, it is clear that the maximum filter gain
𝑔max is limited by the self-similarity error, which in turn is due to the
limited slope of the shelving filter at higher filter gains. In principle,
the slope can be steepened without changing the filter order. However,
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Fig. 6. Self-similarity error (15) across filter orders 𝐾 for a shelving filter with 𝑓b =
1414 Hz.

this comes at the cost of monotonicity of the magnitude response,
which overshoots at the edges of the slope. Alternatively, we propose
to dynamically switch the order of the shelving filter as higher-order
filters generally have steeper slopes.

Based on the second-order filter, we quantify the self-similarity error
for different orders 𝐾, i.e.,

𝜖𝐾 (𝑔, 𝑝) = max
𝑗

|

|

|

|

log10 ||𝐻𝐾 (𝑒
𝚤𝜔𝑗 ; 𝑔)|

|

−
𝑔
𝑝
log10 ||𝐻2(𝑒

𝚤𝜔𝑗 ; 𝑝)|
|

|

|

|

|

, (15)

where 𝐻𝑘(𝑒
𝚤𝜔𝑗 ; 𝑔) is the higher-order shelving filter as in (10). Fig. 6

shows the order-switching self-similarity error for 𝐾 = 1, 2,… , 5 and
prototype gain 𝑝 = 1 dB. The second-order curve (red) in Fig. 6 is
identical to the 1-dB column in the surface plot in Fig. 4. The third-
order curve (green) in Fig. 6 has a higher error for filter gains below
18 dB but is consistently lower for higher gains. Similarly, fourth-
and fifth-order filters are dissimilar to the second-order filter at low
filter gains, but there is a high-gain region for which the error is
close to 1 dB. For the first-order filter (blue), the error is only low
for gains below 3 dB but never lower than the second-order filter. A
zeroth-order filter has trivially an error equal to the filter gain. While
up-switching, i.e., increasing the filter order, can actually improve the
self-similarity error, down-switching, i.e., decreasing the filter order,
always increases the error. However, down-switching can lead instead
to better computational efficiency.

From this, we can derive an order-switching scheme, where the filter
order is changed to minimize the self-similarity error. Fig. 6 shows
the colored regions where a given filter order gives the minimal error.
Down-switching is only allowed if the error is not increased by more
than 1 dB. Table 2 shows the boundary gains for the order switching.

In principle, the slope of higher-order filters can be reduced to
match the second-order slope. By this, the error could be further
reduced, and faster switching is encouraged. Depending on the ap-
plication, self-similarity error can be traded against computational
cost.

3.2. Proposed multi-shelf GEQ

We propose a GEQ based on shelving filters instead of the more
common peak filters. The design procedure is the following:

• Set the control frequencies 𝜔𝑗

• Set the break frequencies 𝑓b of the shelving filters
• Set the prototype gain 𝑝 and max gains 𝑔max
• Solve constrained linear least-squares problem (6) for a target

magnitude response 𝑇 (𝜔𝑗 ) to obtain filter gains 𝒈

Table 2
Variable order shelving filter switching criteria based on the filter gain 𝑔 (dB).

Shelving filter order

0 1 2 3 4 5

1 ⩽1 1–7 8–16 17–31 32–42 ⩾43
2 ⩽1 1–7 8–16 17–31 32–42 ⩾43
3 ⩽1 1–7 8–16 17–31 32–42 ⩾43
4 ⩽1 1–7 8–16 17–31 32–42 ⩾43

Octave 5 ⩽1 1–7 8–16 17–31 32–42 ⩾43
band 6 ⩽1 1–7 8–16 17–31 32–42 ⩾43

7 ⩽1 1–7 8–16 17–31 32–43 ⩾44
8 ⩽1 1–7 8–16 17–31 32–43 ⩾44
9 ⩽1 1–7 8–16 17–33 34–47 ⩾48
10 ⩽1 1–7 8–16 17–36 37–52 ⩾53

Fig. 7. Magnitude responses of the prototype second-order shelving filters and the
broadband gain (solid blue line) used as basis functions in the least-squares optimiza-
tion. The shelving filters have a fixed break frequency (marked by a cross) and a
prototype gain of 1 dB. The circle markers indicate the frequency sampling points.

• (Optional) Select the shelving filter orders 𝐾𝑚 for the 𝑚th filter
• Compute filter coefficients using (10).

The design procedure offers several choices which can be customized
for the application at hand. The control frequencies determine the
resolution of the frequency axis as the least-squares approach (6)
distributes error equally across all points. Alternatively, weighted least
squares can be used to emphasize some control frequencies over others.
More control frequencies lead to a tighter control of the response and a
larger least-squares problem. Typical distribution of control frequencies
follows an octave or one-third-octave spacing. In the following, as the
control frequencies, we use the octave center frequencies shown in
Table 1 and one frequency close to the Nyquist limit.

The set of break frequency 𝑓b determines the number of shelving
filters. The number of filters 𝑀 in (2) is directly proportional to the
processing cost. Also, the break frequency should generally follow
the distribution of the control frequencies to allow fitting the target
magnitude closely. For logarithmically spaced control frequencies, we
have found that using the geometric means between those frequencies
yields a good accuracy, see Table 1.

As discussed in Section 3, the prototype gain 𝑝 impacts the self-
similarity and the slope of the prototype filter. We have found that
using a low prototype gain such as 𝑝 = 1 dB yields a good compromise.

The maximum gain 𝑔max constraints the least-squares solution and
limits the impairment of the self-similarity. In general, the filter design
has two types of errors: the least-squares fitting error 𝑯𝒈 − 𝒕 in (6)
and the self-similarity error (14). The fitting error can result from an
overdetermined problem with more control frequencies than shelving
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Fig. 8. Magnitude response and errors from three example cases for first- and second-order shelving GEQ and the baseline SGE method, which uses second-order peak filters.

filters. Further, the maximum gain constraint can lead to fitting error
as the useable gain is limited. Thus, the maximum gain 𝑔max gives
a trade-off between the two error types where larger 𝑔max reduces
the fitting error but increases the self-similarity error. The matter is
further complicated in particular cases as these two types of errors can
cancel each other, yielding unexpectedly accurate results. We propose
to design according to a target error tolerance of 1 dB. Thus, we choose
the maximum gain 𝑔max so the self-similarity error is below 1 dB. For
a GEQ comprising only second-order sections, the 𝑔max = 18 dB, see
Fig. 6. For an order-switching GEQ, the 𝑔max is according to the 1-dB
limit of the highest allowable order. For instance, with a maximum
order of 𝐾 = 5, the maximum gain 𝑔max is 50 dB.

Fig. 7 shows the resulting ten prototype shelving filters and a
broadband gain. The markers indicate the sampling of the prototype
filters at the control frequencies, which form the interaction matrix 𝑯
in (6). The filter gains 𝒈 are computed by solving the problem in (6)
and subsequently, we use to (10) to compute the filter coefficients.

4. Results

In the following, we present several design examples to evaluate the
proposed multi-shelf GEQ. We compare three types of shelving GEQ
comprising either first-order, second-order, or variable-order shelving
filters. The control frequencies are chosen as octave frequency points
and their midpoints; see Table 1. We use ten shelving filters at the break
frequencies equal to the frequency midpoints. The maximum gain 𝑔max
is 10dB for the first-order, 18dB for the second-order, and 50dB for
the variable order. The variable-order design can dynamically choose
𝐾 = 0, 1, 2, 3, 4, or 5 according to Table 2.

We compare our filter design against a state-of-the-art peak GEQ
called SGE [13] also with ten second-order filters, which is described
briefly in Section 2.3. The filter gains of SGE are determined similarly
with a log-domain least squares [13]. The filter design error is given
by the log-domain difference at the control frequencies, i.e.,

20|log10 ||𝐻(𝑒𝚤𝜔𝑗 )|
|

− log10 𝑇 (𝜔𝑗 )| , (16)

Fig. 8 demonstrates three target magnitude responses and several filter
approximations.

The first case in Fig. 8(a) demonstrates the shelving GEQ capability
to fit high-dynamic range targets. The target response decreases linearly
from 0 to −60dB. Both the first- and second-order shelving GEQ approx-
imate the target closely. Fig. 8(d) shows the corresponding filter design
error, which is below 3 dB for the first-order except at the lowest band
and below 1.5 dB for the second-order GEQ. The SGE, in comparison,
struggles with the large attenuation at the high frequencies. At such
high target gains, the peak filters in the SGE become extremely pointy
such that the response at the control frequencies is matched closely, but
the errors in between reach more than 30 dB. This illustrates a major
difference between the two GEQ designs. While the SGE attenuates
each frequency band individually, the shelving GEQ attenuation is
cumulative across frequency bands.

The second case in Fig. 8(b) is derived from a loop loss filter of
a recursive artificial reverberator [34], which applies reverberation to
a signal via delay, attenuation, and feedback operations. Frequency-
dependent attenuation of a physical space often changes gradually
across frequency. The shelving GEQs follow the target well: Fig. 8(b)
shows errors below 2.1 dB for the first-order and below 0.3 dB for the
second-order filters at the control frequencies. Also, the SGE performs
with errors below 0.6 dB. However, the deviation between the control
points is poor; for example, between 500 and 1000 Hz in Fig. 8(e), the
error is almost 1.5 dB.

The third case in Fig. 8(c) demonstrates a limitation of the shelving
GEQ as the target has a zig-zag shape, i.e., neighboring frequency
bands have oscillating attenuation values. The first-order shelving filter
fails and returns an almost completely flat response. The second-order
shelving filter does not perform much better and yields a maximum
error of almost 7 dB. In contrast, the SGE can match the zig-zag curve
with an error below 1 dB. The zig-zag curve is unsuitable for the
shelving GEQ as the filter slope is generally shallower than the peak
filters.

Fig. 9 demonstrates three target magnitude responses for the vari-
able order design. Two designs are considered using either up-only
or up-down switching using Table 2. The resulting filter orders are
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Fig. 9. Magnitude response and errors from three example cases for variable-order shelving GEQ. The filter orders of the ten shelving filters using up-down switching are (a)
𝐾𝑚 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1], (b) 𝐾𝑚 = [1, 2, 2, 1, 1, 2, 1, 1, 1, 1], and (c) 𝐾𝑚 = [3, 4, 4, 4, 4, 4, 4, 3, 3, 2]. For the up-only switching, only orders 𝐾𝑚 ⩾ 2 are used.

indicated in the figure caption. For the high-dynamic range target
Fig. 9(a), only the lowest band can potentially be down-switched, lead-
ing to slightly lower computational cost. For the artificial reverb target
Fig. 9(b), all bands can be down-switched such that the cumulative
filter order is 10 instead of 20, i.e., a 50% reduction is achieved.
The error, as indicated in Fig. 9(e), remains largely similar except
at the Nyquist limit. The zig-zag target in Fig. 9(c) is more closely
matched with the up-switching scheme at the cost of higher overall
computational cost. The cumulative filter order is 35, which is an
increase of 75% over the SGE design. Overall, one can observe that the
multi-shelf GEQ exhibits less ripple between the control points than the
SGE (cf. Fig. 8) by smoothly interpolating the target response.

5. Conclusion

In this paper, we propose the shelving GEQ as an alternative filter
design method. The proposed method uses the log-scale least-squares
optimization based on the self-similarity of the shelving filter. The
shelving filter’s slope limits the range of the self-similarity, such that
the useable gain ranges from 0 to 18 dB for a second-order filter. In
three target response examples, we demonstrated that the shelving GEQ
accurately approximates smoothly varying target responses even with
a high dynamic range. On the contrary, the shelving GEQ performs
poorly with rapidly varying responses, whereas the state-of-the-art SGE
remains superior in such cases.

For larger gain ranges, we proposed the variable-order shelving
GEQ, where the shelving-filter order is up or down-switched dynami-
cally based on the filter gain. The down-switching offers computational
savings for responses that are well-approximated by shallower filters,
and the up-switching allows fitting steeper responses without changing
the overall filter design. The least-squares optimization can be updated
with little computation, so the method is well suited for real-time audio
applications.

To the best of our knowledge, the present paper is the first to
propose a GEQ design based on shelving filters such that many fine-
tunings known for other GEQ designs can be adapted in the future.

The self-similarity of the shelving filter can be further improved, which
directly leads to higher filter design accuracy. For instance, the shelving
slope may be adjusted according to the filter gain. It is also conceiv-
able to dynamically combine shelving and peak-notch filters in the
optimization scheme for maximum flexibility.
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