
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Karakasidis, Georgios; Kurimo, Mikko; Bell, Peter; Grósz, Tamás
Comparison and analysis of new curriculum criteria for end-to-end ASR

Published in:
Speech Communication

DOI:
10.1016/j.specom.2024.103113

Published: 01/09/2024

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Karakasidis, G., Kurimo, M., Bell, P., & Grósz, T. (2024). Comparison and analysis of new curriculum criteria for
end-to-end ASR. Speech Communication, 163, Article 103113. https://doi.org/10.1016/j.specom.2024.103113

https://doi.org/10.1016/j.specom.2024.103113
https://doi.org/10.1016/j.specom.2024.103113

Speech Communication 163 (2024) 103113

Available online 31 July 2024
0167-6393/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Contents lists available at ScienceDirect

Speech Communication

journal homepage: www.elsevier.com/locate/specom

Comparison and analysis of new curriculum criteria for end-to-end ASR
Georgios Karakasidis a,b,∗, Mikko Kurimo a, Peter Bell b, Tamás Grósz a

a Aalto University, Otakaari 1, 02150, Espoo, Finland
b The University of Edinburgh, 10 Crichton St, EH8 9AB, Edinburgh, United Kingdom

A R T I C L E I N F O

Keywords:
Curriculum learning
Speech recognition
ASR
End to end
Deep learning

A B S T R A C T

Traditionally, teaching a human and a Machine Learning (ML) model is quite different, but organized and
structured learning has the ability to enable faster and better understanding of the underlying concepts. For
example, when humans learn to speak, they first learn how to utter basic phones and then slowly move towards
more complex structures such as words and sentences. Motivated by this observation, researchers have started
to adapt this approach for training ML models. Since the main concept, the gradual increase in difficulty,
resembles the notion of the curriculum in education, the methodology became known as Curriculum Learning
(CL). In this work, we design and test new CL approaches to train Automatic Speech Recognition systems,
specifically focusing on the so-called end-to-end models. These models consist of a single, large-scale neural
network that performs the recognition task, in contrast to the traditional way of having several specialized
components focusing on different subtasks (e.g., acoustic and language modeling). We demonstrate that end-
to-end models can achieve better performances if they are provided with an organized training set consisting
of examples that exhibit an increasing level of difficulty. To impose structure on the training set and to define
the notion of an easy example, we explored multiple solutions that use either external, static scoring methods
or incorporate feedback from the model itself. In addition, we examined the effect of pacing functions that
control how much data is presented to the network during each training epoch. Our proposed curriculum
learning strategies were tested on the task of speech recognition on two data sets, one containing spontaneous
Finnish speech where volunteers were asked to speak about a given topic, and one containing planned English
speech. Empirical results showed that a good curriculum strategy can yield performance improvements and
speed-up convergence. After a given number of epochs, our best strategy achieved a 5.6% and 3.4% decrease
in terms of test set word error rate for the Finnish and English data sets, respectively.

1. Introduction

Automatic Speech Recognition (ASR) refers to the task of mapping
an audio signal to a sequence of words. This has traditionally been
challenging due to the high dimensionality of the input features (audio
signal) and the outputs (word sequences). In addition, there is also a
time dependency among the inputs, making the problem even more
complex. The importance of good ASR systems has become more promi-
nent as people gradually adopt the use of commercial applications
such as voice assistants. Furthermore, these systems have been proven
beneficial to people with disabilities that need to communicate with a
machine (Terbeh et al., 2013; Guo et al., 2020).

The recent advances in Deep Learning (DL) have significantly af-
fected the field of ASR. In the past, the sequential structure of speech
and text, and the domain difference between the two, made it chal-
lenging to use deep neural networks (DNNs) for this task. As more

∗ Corresponding author at: The University of Edinburgh, 10 Crichton St, EH8 9AB, Edinburgh, United Kingdom.
E-mail addresses: g.karakasidis@sms.ed.ac.uk (G. Karakasidis), mikko.kurimo@aalto.fi (M. Kurimo), peter.bell@ed.ac.uk (P. Bell), tamas.grosz@aalto.fi

(T. Grósz).

research was devoted to this topic, and as computational resources
became more abundant, both the academic and industry sectors started
using end-to-end (E2E) ASR architectures that rely on a single DNN
for the whole speech-to-text pipeline (for example, the Recurrent Neu-
ral Network (RNN) Transducer (Graves, 2012; Graves et al., 2013)
and the attention-based encoder–decoder (Chan et al., 2016) architec-
tures) . Prior to that, Hidden Markov Model (HMM)-based architectures
(and most notably DNN-HMMs) were used to train ASR systems. Even
though these models are powerful (and can still outperform end-to-end
DNNs in several tasks Rouhe et al., 2021), their modeling assumptions,
along with the fact that they consist of separate models that need
to be separately optimized, make them harder to implement effec-
tively (Wang et al., 2019). On the other hand, end-to-end systems
have a more straightforward architecture, but they typically require
much more data and computational resources to work effectively, while

https://doi.org/10.1016/j.specom.2024.103113
Received 2 May 2023; Received in revised form 15 March 2024; Accepted 27 July 2024

https://www.elsevier.com/locate/specom
https://www.elsevier.com/locate/specom
mailto:g.karakasidis@sms.ed.ac.uk
mailto:mikko.kurimo@aalto.fi
mailto:peter.bell@ed.ac.uk
mailto:tamas.grosz@aalto.fi
https://doi.org/10.1016/j.specom.2024.103113
https://doi.org/10.1016/j.specom.2024.103113
http://crossmark.crossref.org/dialog/?doi=10.1016/j.specom.2024.103113&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Speech Communication 163 (2024) 103113

2

G. Karakasidis et al.

they are also slower to train. To increase the convergence speed of
DNNs and improve their performance, researchers have come up with
a multitude of different techniques, one of which is Curriculum Learning
(CL) (Bengio et al., 2009).

Empirical evidence has shown that humans are more likely to learn
a new task effectively when provided with a clear curriculum (Newport,
1990; Turkewitz and Kenny, 1982). This has been shown to aid the
learning process by providing the learners with a planned sequence of
instructions that lead to structured learning and the building upon al-
ready acquired knowledge. A good example of that are school curricula
where each class has been designed so that the taught material is based
on what the students already know. The teachers are assigned the task
of arranging the material in a way so that it reflects the increasing
level of difficulty, while, on top of that, they also decide the pace by
which the material is presented to the students. Both the pace and
the notion of difficulty are typically adjusted to match the capabilities
of the students (e.g., a high-school class consisting of child prodigies
would be expected to cover their learning material faster than any other
class). Teachers typically learn to create such a curriculum through
a combination of experience and observations.1 The benefits of this
approach have also been tested in the field of machine learning (ML)
and is the main intuition behind CL.

CL is already a proven technique used in many ML sub-fields (Wang
et al., 2021; Kuznetsova et al., 2022; Penha and Hauff, 2019). Even
though it shares many similarities with other ML concepts, such as
transfer learning (Bengio et al., 2009) and active learning (Wang et al.,
2021), it differs in that it aims to accelerate convergence and im-
prove the performance of a model without necessarily trying to utilize
external knowledge or learn from fewer labeled data (Wang et al.,
2021). In simple terms, given a fixed set of training data, the goal
of CL is to find an optimal ordering of it, which will either remain
static during training or will dynamically adapt to the strength of the
model. In this work, we will propose multiple ways to calculate the
difficulty of a training sample and analyze how a good ordering and
pacing can influence the performance and convergence speed of E2E
systems. We will primarily focus on the applications of CL for ASR, but
our core methodology can be easily extended to other tasks, too. Our
experiments are performed on two corpora: one of spontaneous Finnish
speech and one of planned English speech. The results render CL as an
extremely beneficial technique for ASR that, when applied correctly,
can increase a network’s accuracy and speed-up convergence.

A subset of these experiments was performed in our previous
work (Karakasidis et al., 2022), which empirically proved the effec-
tiveness of certain CL strategies in training Finnish ASR systems. In this
work, we follow the same principles and introduce new training strate-
gies that modify the pace by which models are trained. Additionally,
we show how textual information can be included in the calculation
of an utterance’s difficulty. These additions aim to prove the flexibility
of curriculum learning. The motivation of this work is to establish CL
as an efficient way to improve the performance of ASR systems and
(potentially) speed up their convergence. Lastly, this work contains a
more thorough analysis of how CL managed to improve the underlying
ASR models.

The remainder of this paper is organized as follows. First, Section 2
provides a literature review and analyzes related works. Next, Section 3
formally defines CL as a combination of scoring and pacing functions,
and proposes a variety of different training strategies. After that, Sec-
tion 4 contains the experiments conducted in this work, starting with
an overview of the data sets used, followed by the neural network
architecture and the final results. Next, Section 6 discusses the obtained
results while Section 7 concludes the main points of this work.

1 This teacher-student analogy should not be confused with the teacher-
student transfer learning technique that is commonly used in deep
learning.

2. Related works

The fact that organized and structured learning leads to better
and faster accumulation of knowledge was observed a long time ago.
The famous Pavlov’s dogs experiment, conducted during the early 20th
century, can be considered one of the oldest scientific applications
of curriculum learning. In this paradigm, the Russian physiologist
Ivan Pavlov studied the learning process of dogs by measuring their
salivation levels given different stimuli (Pavlov, 2010). Among other
findings, he concluded that the dogs learned to associate the ringing
of a bell with the serving of their meal after several repetitions of the
same feeding process. This implies that the dogs were able to gradually
identify a pattern (which is similar to what ML systems are expected to
achieve) by following a curriculum.

The idea of CL gained popularity after the publication of Elman
(1993), which introduced the notion of starting small through a study
that laid on the intersection of cognitive sciences and machine learning.
The main idea is to first start teaching easier aspects of the task in
question (or easier sub-tasks) and then gradually increase the difficulty
level. Early approaches focused on static solutions that used prior
knowledge to define a fixed ordering of the data before training (Bengio
et al., 2009). Such strategies depended heavily on the quality of prior
knowledge, which made them prone to generalization issues (Jiang
et al., 2015). More recent works have pointed out the importance of
adaptive curriculum learning where the ranking of the training samples
depends on the competence of the student at a given time (Jiang et al.,
2015; Zhou and Bilmes, 2018; Hacohen and Weinshall, 2019; Zhou
et al., 2020; Kuznetsova et al., 2022).

Regardless of the underlying methodology, the positive effects of
CL have been emphasized in a range of works. In particular, Bengio
et al. (2009) concluded that CL can speed up convergence and increase
the quality of the local minima obtained. The same paper also points
out that pre-training with a curriculum strategy shares many similar-
ities with unsupervised pre-training regarding the positive effects of
these methods on initializing and updating the trainable parameters. In
particular, the results of this work indicated that the right CL strategy
can:

1. speed up convergence, since the learner spends less time be-
ing trained on difficult or noisy inputs (by being gradually
introduced to them), and

2. help find a better optimum in cases where the learner is stuck
in a low-performing local optimum.

In Graves et al. (2017) and Platanios et al. (2019), the authors
observed significant training time improvements when a curriculum
was followed, while Zhou et al. (2020) and Zhu et al. (2022) noticed
that training with certain CL strategies was less computationally ex-
pensive compared to traditional optimization. Regarding the second
point, it is important to mention that CL does not change a model’s
global optimum (Hacohen and Weinshall, 2019), but rather assists
optimization into converging to better solutions. This finding was also
observed in Zaremba and Sutskever (2015), where CL was applied in
the task of program evaluation. The results demonstrated that the right
curriculum strategy can improve performance in tasks that cannot be
optimized with standard Stochastic Gradient Descent (SGD).

In the task of information retrieval (IR), the authors of Penha and
Hauff (2019) and Zhu et al. (2022) noticed that curriculum learning
helped guide their models towards better local optima, leading to an
increase in retrieval effectiveness. More specifically, the former work
noticed significant improvements in the performance of neural ranking
models by simply reordering the instances in the training set. In a
similar manner, the latter work employed a dual CL approach that first
ranked positive examples from easy to hard, and then oppositely ranked
the negative examples. By doing this, their IR models managed to more
effectively separate the positive examples from the negative ones.

Speech Communication 163 (2024) 103113

3

G. Karakasidis et al.

In Shi et al. (2015), the authors used CL to get a better-performing
RNN language model (RNN-LM). In particular, they experimented with
CL strategies that first focus on generic textual data and then gradually
move towards task-specific data. Each strategy is progressively increas-
ing the influence of more complex examples during training. The results
of this publication pointed out that besides improving performance, CL
can be used to tweak an RNN-LM to emphasize certain domain-specific
patterns (e.g., words typically present in a particular domain/topic).
In addition, it was observed that curriculum learning consistently im-
proved the baseline performance, even when the architecture of the
RNN-LM was changed. Since language modeling is a task related to ASR
(primarily due to its sequential nature), these results give promising
prospects for the application of CL in ASR. Other works in natural
language processing (Platanios et al., 2019; Tay et al., 2019) have
pointed out similar benefits as a result of applying CL.

These findings are also validated in a number of computer vision
experiments, such as Jiang et al. (2014), Guo et al. (2018), Hacohen
and Weinshall (2019) and Zhang et al. (2019). In particular, Haco-
hen and Weinshall (2019) concluded that models trained with a CL
strategy are more robust, and the majority of them tended to improve
the learning accuracy when compared to a baseline. The same paper
also contains an extensive analysis of how curriculum learning can
be formally defined, regardless of a specific task. They do that by
decomposing CL into scoring and pacing functions which they define as
two different mechanisms for assigning difficulty scores to utterances
and controlling the pace by which new data are presented to the model
under training. Due to the straightforwardness of this definition, the
approach of Hacohen and Weinshall (2019) was chosen as the basis of
our work.

Even though the above works showcased the importance of CL in
many DL tasks, they still do not cover how it has so far been applied in
speech processing. One could say that CL has a strong representation
in this field since most speech-processing frameworks tend to sort
audio utterances based on their duration before starting the training
process (Povey et al., 2011; Ravanelli et al., 2021; Watanabe et al.,
2018). Although, this is mainly treated as a pre-processing step and is
not commonly referred to as a CL technique. The main reasons behind
choosing this duration-based sorting are:

1. Padding is minimized: By using duration-level sorting, each
batch will contain utterances with similar lengths, meaning that
they will not need to be excessively padded to match the length
of the longest utterance. This results in a decrease in the amount
of required memory while it also speeds up matrix computations.

2. Faster Gaussian Mixture Model (GMM) training: In the tradi-
tional HMM-based systems, the initial (monophone) GMMs need
to learn very simple initial distributions for the phones (Gales
and Young, 2008; Novoa et al., 2018). In addition, the speech-to-
text alignment procedure is typically quite expensive for longer
utterances. For these reasons, it is customary to use a subset
of the initial training data that contains only the shortest utter-
ances (Povey et al., 2011). As the models become more and more
complex, the amount of training data increases.

Even though the benefits of this duration-based curriculum strategy
are important in ASR (Ravanelli et al., 2021), this method has not
been shown to bring any performance improvements (see Karakasidis
et al. (2022)). That is mainly because the duration of an audio file is
not necessarily a good indicator of its difficulty. To address that, the
authors of Braun et al. (2017) came up with a novel CL technique
named accordion annealing (ACCAN). It uses the Signal-to-Noise Ratio
(SNR) values of each training example to measure the difficulty level of
each utterance. The corresponding ASR system is first trained on clean
data (e.g., SNRs above 30db) and is gradually introduced to noisier
data with lower SNRs. The authors based their experiments on the
expectation that neural networks tend to perform better on the SNR
they are trained on Yin et al. (2015). Using the proposed SNR-based

CL strategy, the ASR system can first learn to optimize the clean audio
and then use that knowledge to improve its performance on the noisy
data. The experiments showed that the noise robustness of the ASR
system is increased without having to rely on complex pre-processing
frameworks to remove noise.

A similar SNR-based approach was followed in Ng et al. (2022)
and Higuchi et al. (2021), which used CL for small footprint and noise-
robust keyword spotting (KWS). The results pointed out that CL can
help improve the performance of KWS models. Ng et al. (2022) also
trained a more complex and resource-heavy transformer model without
utilizing CL and found out that its accuracy was on par with the
lightweight model even though the latter was much smaller in size.

It is clear that CL has the potential to bring benefits to a variety
of ML tasks. Another advantage is that it is very flexible in how it
can be applied. This means it can easily be combined with other
techniques, such as reinforcement learning (RL). For example, in the
works of Kuznetsova et al. (2021) and Kala and Shinozaki (2018),
the authors utilized the one-armed bandit and policy-based algorithms
(both are RL methods) to maximize the reward that certain candidate
curricula had to offer. In both experiments, the combination of CL
and RL brought improvements in terms of Word Error Rate (WER),
while Kuznetsova et al. (2021) also noticed a decrease in training times.

In conclusion, CL is a robust method that has been shown to bring
improvements in many ML tasks (Bengio et al., 2009; Wang et al.,
2019; Hacohen and Weinshall, 2019) while also being easy to integrate
into existing training pipelines. In this work, we will analyze different
strategies to create efficient curricula for E2E ASR and discuss their
advantages and disadvantages.

Compared to the previously discussed research, the main contri-
butions of this work are in that we formalize CL as a combination
of scoring and pacing functions, and we define new CL strategies for
ASR. We show that both audio and textual information can be used
in the calculation of each utterance’s difficulty score, and we analyze
the efficiency and performance of each strategy under different training
conditions. Our experiments prove that CL has the potential to reduce
error rates for ASR models, while certain strategies have the ability to
increase convergence speed.

3. Methods

This section will present and formally define all relevant CL ap-
proaches used in this work. As already mentioned, CL lacks a widely
accepted definition and its applications are typically limited to only
certain aspects of it. Here, we follow the proposition of Hacohen and
Weinshall (2019), where CL is characterized by the combination of two
functions: a scoring and a pacing function. The role of these two is
to depict what constitutes a difficult training example and to define
the rate by which the examples will be presented to the model under
training. The final strategy that a CL algorithm uses depends on what
combination of those two functions was utilized.

Revisiting the teacher-student analogy presented in Section 2, one
could connect scoring functions (SFs) with the experience of teachers
that allows them to create a curriculum of increasing difficulty. For
example, experienced teachers have a better understanding of what
differentiates a difficult subject from an easy one. This way they are
more aware of the parts that they should emphasize and focus on whilst
teaching. Transferring this to the ML world, a good CL strategy should
have an efficient methodology to assign scores to the training examples,
which is the purpose of scoring functions. Creating such functions is not
a straightforward task, especially for speech recognition, where both
inputs and outputs consist of high-dimensional, complex features.

Besides the order of the presented material, teachers are also respon-
sible for deciding the pace by which the students will be introduced to
new material. This should be done in a way so that they first learn the
easy subjects and only after feeling comfortable, move towards more
complex ones. Our implementation of pacing functions (PFs) slightly

Speech Communication 163 (2024) 103113

4

G. Karakasidis et al.

differs from the one described in Hacohen and Weinshall (2019), but
the main idea behind both approaches is that the training set is split
into several subsets through the use of some heuristics, and a different
subset is presented to the network at each epoch.

Before going into further details about how these two types of
functions operate, it would be helpful to formally define CL as follows:

Definition 1 (Curriculum Learning (CL)). Curriculum learning aims to
improve the performance and convergence speed of ML models, by
using a combination of scoring and pacing functions. These functions
control the order and pace, respectively, by which the training data are
provided to a model.

So far, we have primarily discussed CL methods that sort the train-
ing data sets in ascending order (i.e., from the easiest to the hardest
example). Even though this is the main focus of this work, we will
also present the effect of reversing the order and starting training
a model with difficult examples before moving to easier ones. This
method was referred to as Anti CL in Ranjan and Hansen (2018)
where the performance of the corresponding models were found to be
very similar to the ones of the models trained with ascending order.
Through empirical results (see Section 5), this finding does not seem to
apply to E2E ASR models since, when trained with a reverse ordering,
they consistently underperform compared to the baseline and their
ascending counterparts. From now on we will refer to this method as
reverse curriculum.

3.1. Curriculum creation strategies

We can think of CL as a way to provide guidance to a ML model.
To create an efficient CL algorithm, it is required to efficiently estimate
the difficulty of each training example. The most common approaches
for doing so can be grouped into the following three classes:

1. The metadata-based approach estimates the difficulty scores
based on some meta-information (e.g., the duration of an audio
sample or its SNR) at the beginning of the training process. This
is a static solution, meaning that the curriculum is established
before training, and the order is kept fixed throughout training.

2. The transfer learning approach2 relies on an external, already
trained teacher model that is used to infer the training data
before the first epoch. The assumption is that the external model
should recognize the easy training examples with fewer errors
than the difficult ones. This method utilizes the outputs of the
teacher to sort the utterances at the beginning of the train-
ing process. This makes the transfer learning approach a static
approach, as well.

3. The adaptive approach proposes to sort the examples adap-
tively using feedback from the student neural network under
training. This approach addresses the fact that the difficulty
of the examples (as perceived by the model) could change as
the training progresses and was first proposed in Kumar et al.
(2010). One can view this approach as dynamically adjusting the
curriculum to the current capabilities of the model.

To continue the analogy of CL with human learning, the transfer
learning approach is equivalent to a teacher network trying to help a
student, while in the adaptive approach the student is an autodidact
trying to adapt to the learning difficulty. Finally, the metadata approach
consists of a non-adaptive teacher that simply follows guidelines and
there is no knowledge transmission.

2 Even though the transfer learning CL approaches are not the same as the
most commonly known transfer learning technique in DL, these two methods
still share some similarities. In particular, in both cases, the initial tasks are
used to guide the learner (Bengio et al., 2009).

The aforementioned categorization of CL strategies and the distinc-
tion between scoring and pacing functions can be used regardless of the
underlying ML task. This terminology provides a good basis to further
develop CL for the task of ASR. Next, we will provide the mathematical
formulation behind scoring functions and we will proceed by defining
certain ASR-specific SFs and PFs, that can be easily adjusted to work
with other ML tasks, too.

3.2. Scoring functions

Let be the set of all training examples of the form = (𝑥𝑖, 𝑦𝑖)𝑁𝑖=1
where 𝑥𝑖, 𝑦𝑖 are the features and labels, respectively, and 𝑁 is the
total number of training examples. In addition, the target classifier is
assumed to be trained on mini-batches of size 𝑏. The set of all mini-
batches that comprise can then be denoted as

[

B1,… ,BD
]

= where
each mini-batch B𝑖 is a subset of of length 𝑏, and D denotes the total
number of mini-batches.

Commonly, neural networks that use a variant of SGD to update
their weights, sample data points (𝑥𝑗 , 𝑦𝑗)𝑏𝑗=1 uniformly from in order
to form mini-batches. When applying CL, though, the data points are
not randomly sampled from , but rather ordered. At each training
epoch, the model is expected to receive an ordered set of mini-batches
whose size will be ≤ D (the exact number depends on whether a pacing
function was used or not (see Section 3.3). If we denote our scoring
function with 𝑓 ∶ → R, then the ordering of the examples will happen
in such a way so that for a pair of utterances 𝑢𝑖, 𝑢𝑗 , the 𝑖th utterance
has order less than the 𝑗th one (𝑢𝑖 < 𝑢𝑗) if 𝑓 (𝑢𝑖) < 𝑓 (𝑢𝑗). Choosing a
good scoring function is the primary task that CL tries to solve since 𝑓
has to meaningfully encode information about the input data (Hacohen
and Weinshall, 2019).

There is no limitation on when a scoring function may be applied.
As mentioned in Section 2 most of the early works focused on static
approaches where the function is applied before the first epoch and
the training proceeds on the arranged data set. More recent research
overcomes the limitations of this approach by re-ordering the training
set at frequent epoch intervals, based on, for example, self-feedback
(i.e. taken from the same student model). By doing this, it is clear
that the training times could be affected unfavorably since such scores
need to be calculated and stored in memory at frequent time intervals
(e.g., at each epoch). Although, it shall be highlighted that this work
does not focus on the time improvements that other CL approaches
seem to offer, but its goal is to examine whether the final performance
and/or convergence speed is improved. We refer to convergence speed as
the number of hours of audio that a network needs to train on, before
reaching a certain level of performance.

3.2.1. Types of scoring functions for ASR
Duration-based SFs are the most commonly used scoring functions

since they are easy to implement and they minimize padding, resulting
in fast training times. In particular, this is a metadata curriculum
learning method where the training examples are sorted with respect to
their durations. The ordering occurs before the first epoch and remains
the same till the end.

A disadvantage of this approach is that an audio’s duration is not a
good indicator of its difficulty. A short but noisy speech segment can
be much harder to decode than a longer, clean one. For this reason,
in cases where the training examples resemble real-life environments
(which are typically noisy), no performance improvements should be
expected from this method. Overall, this is a good curriculum creation
approach from a computational point of view, but it cannot guarantee
any performance improvement.

Frequency-based SFs compose yet another metadata curriculum
learning approach which, in this case, focuses on the text domain. In
particular, given an utterance 𝑢𝑖 with transcript 𝑦𝑖, a score 𝑓 (𝑢𝑖) is
assigned as the negative of the mean of the frequencies of each token in
𝑦𝑖. The assumption is that examples with frequent tokens will be easier

Speech Communication 163 (2024) 103113

5

G. Karakasidis et al.

to decode since the model is more likely to learn those frequent tokens.
A similar approach was followed on Platanios et al. (2019), where
the authors used a set of text-level scoring approaches to measure
the difficulty of sentences. On the contrary, rare tokens will make the
model less confident in its predictions, and hence the corresponding
utterances can be considered difficult. Through empirical results, it
was observed that taking the average of these values is a good way
to aggregate them.

This approach has three different flavors, based on how the textual
frequencies are extracted:

1. Word-level frequencies: The tokens are considered to be words.
Transcripts that contain many frequent words (e.g., the, in, e.t.c.)
are considered easier.

2. Character-level frequencies: The tokens are considered to be char-
acters.

3. Subword-level frequencies: The tokens are considered to be sub-
word units (see 4.2). This is also referred to as the token-level
approach.

An obvious disadvantage of this approach is that it does not take
into account the audio signal, which is where most of the complexity
lies (e.g., noisy environments, stuttering speakers). Of course, utter-
ances that contain difficult or rare words can be difficult to transcribe,
too, and frequency-based SFs can help counter such issues. In addition,
these kinds of SFs are easy and fast to implement, and due to their
similarity to the duration-based SFs, they also lead to close-to-optimal
padding since in many cases there is a one-to-one correspondence
between duration and sentence length.

Adaptive SFs correspond to an adaptive curriculum learning ap-
proach where the training set is re-organized in frequent time intervals
based on feedback from the model under training. The basic idea is
to adapt the utterances’ scores depending on how the model performs
on them at any given moment. The intuition behind this is that as a
weak model improves through training, it will learn to distinguish new
patterns that will help it decode examples that were previously deemed
difficult. Adaptive SFs are divided into the following two categories:

1. Loss-based: While training, the negative log likelihood (or se-
quence) loss values of each utterance are stored in memory.
These are then used as an indicator of the difficulty of each
training example. In particular, it is assumed that low loss values
correspond to easy examples, while higher values imply greater
difficulty.

2. Metric-based: A metric value (WER or CER) of each utterance is
used as its difficulty score. Lower WER or CER values mean that
the corresponding examples are easy, while higher values imply
otherwise. Even though this is an intuitive method, it requires
a decoding step before backpropagation and the updating of the
parameters. A direct effect of this is that it increases the total
training time of the ASR model.

Before the first epoch, the model’s weights are randomly initialized,
which means that we cannot use it to calculate the utterances scores.
Consequently, in our experiments, we chose to employ each utterance’s
duration as its score for the first epoch, and switch to adaptive SFs for
subsequent epochs.

3.2.2. Uniform mixing
During our experiments, we noticed that the metric-based SFs

tended to produce models that overfitted to the data (see Section 5).
We hypothesize that this occurred due to excessive guidance, which
is inspired by the real world where teachers sometimes over-indulge
their students by easily providing answers and allowing memorization
without learning. In the ML world, a similar issue was approached
in Zaremba and Sutskever (2015) by introducing some randomness to
the ordering of the training set as a post-processing step. In this work,

we refer to this technique as uniform mixing (UM), which corresponds
to infiltrating some hard examples among the easy ones, with the aim
of improving the model’s generalization capabilities.

The idea is to ensure that the student has to put some effort into
understanding each example. To achieve that in our case, we proposed
a modification of the method described in Zaremba and Sutskever
(2015), where we split the training examples into three difficulty sets
consisting of easy, medium and hard examples. This is done by first
applying a SF on the training set so that each example is assigned a
difficulty score. We then proceed by ordering the training set based
on these scores and splitting it into three parts of equal size. The set
that consists of examples with the lowest scores is the easy set. The
next set consists of utterances considered as medium-level in terms of
difficulty, while the last set (the one with the highest difficulty scores)
is considered the hard set. Note that UM does not filter the training
data, but rather performs a controlled shuffling.This means that the
output of the UM function has exactly the same size as the input set
of utterances.

The idea of UM is that the set of easy examples will be augmented
with some hard and medium-level ones. In particular, a hyperparameter
is used to tune the percentage of ‘‘noise’’ which will be added to the
easy set. For example, if this value is 20%, then a fifth of the easy
examples will be replaced with a mixture of hard and medium-level
examples. To increase the impact of this noise, 60% of these added
examples will be hard, and the remaining 40% will be medium-level.
These values were tuned during our preliminary experiments and, as a
result, were used in all of our UM-based trials.

By following the above procedure the model is exposed to different
kinds of data during each training stage, increasing its generalization
capabilities. Uniform mixing can be combined with all kinds of SFs,
and in our case, we have tested it with both frequency-based and
adaptive SFs. In the majority of cases, the resulting models significantly
outperformed the ‘‘vanilla’’ application of SFs (i.e., the generalization
capabilities of models trained with UM were better compared to when
UM was not used) (see 5). From now on, the SFs that use UM to order
a training set will be referred to with the abbreviation UM-SFs.

3.2.3. Transfer learning-based SFs
As already mentioned, the transfer learning CL approach creates a

constant ordering of the training set. This is done by applying a scoring
function 𝑓 (,) ∈ R that accepts a training set and an already-
trained model , and uses to calculate its scores on based on an
adaptive SF. For example, 𝑓 can use the utterance-level losses that
outputs for each data point in . This method can also be combined
with uniform mixing to inject some randomness into the ordering of
the training set.

The pre-trained model is also known as the teacher, and the
assumption is that it will recognize the easy examples with fewer errors
than the difficult ones. An advantage of this approach is that the scoring
function needs only to be applied once, resulting in reduced training
times compared to models optimized with the adaptive CL approach. A
disadvantage is that it heavily relies on an external model, which may
not be a good teacher. Weak teachers yield close-to-random orderings,
which minimize the effect of curriculum learning. On the other hand,
it was observed that using very good teachers can confuse the model
and lead to overfitting, especially during the first few epochs.

3.2.4. Score post-processing
As mentioned previously, a duration-based sorting of the training

set has the advantage of minimizing padding which results in more
efficient computations and faster training times compared to all other
methods. Another advantage of this approach is that the duration of
an audio file is still a (weak) indicator of what level of difficulty
may be expected. For example, if a SF assigns the same score on two
utterances, the duration is a good way to settle which utterance should
be considered easier.

Speech Communication 163 (2024) 103113

6

G. Karakasidis et al.

To incorporate this in our score calculation, all scores (for the
non-duration-based SFs) are normalized by taking into account the
utterances’ durations. For example, if 𝑠(𝑢) is the original score of
utterance 𝑢 and 𝑑𝑢 is its duration, then 𝑠′(𝑢) = 𝑠(𝑢)

𝑑𝑢
is the normalized

score. The intuition is that if 𝑢 has the same score as another utterance
𝑢′, but has a longer duration, then it must be easier since despite the
theoretically increased complexity of 𝑢′ (due to its length), the score
was the same as 𝑢.

Another useful piece of information that can be integrated into
an utterance’s score is the confidence that an ASR system has in
its prediction (here denoted by 𝑐𝑢). For example, if a model is only
50% confident about a transcription then this is a good indicator that
the corresponding utterance was hard to decode. Since acquiring the
confidences requires a decoding step, they are only incorporated in
post-processing when a metric-based adaptive SF is used. Instead of
confidence scores, our normalizers use uncertainty values which are
defined as the negative of the confidences and are denoted as 𝑛𝑢 = −𝑐𝑢.

In the case of this work, we combine the duration and uncertainty
information, by first normalizing the latter based on the corresponding
durations, then applying min–max normalization, and, finally, combin-
ing the information as follows:

𝑛𝑢 ←
𝑛𝑢
𝑑𝑢

(3.1)

𝑛𝑢 ←
𝑛𝑢 − 𝑚𝑖𝑛(𝑛𝑢)

𝑚𝑎𝑥(𝑛𝑢) − 𝑚𝑖𝑛(𝑛𝑢)
(3.2)

𝑠(𝑢) ←
𝑠(𝑢) − 𝑚𝑖𝑛(𝑠(𝑢))

𝑚𝑎𝑥(𝑠(𝑢)) − 𝑚𝑖𝑛(𝑠(𝑢))
(3.3)

𝑓 (𝑢) ← (𝑠(𝑢) + 𝜖) ∗ 𝑛𝑢 (3.4)

where 𝑠(𝑢) now denotes the WER or CER score of utterance 𝑢, while 𝜖
is a threshold value to prevent zeros from appearing in the scores, and
𝑓 (𝑢) is the final score assigned to 𝑢. This sequence of steps results in a
score that is always between 0 and 1 (for sufficiently small 𝜖) and also
takes into account both the duration and confidence values.

3.3. Pacing functions

Pacing functions control the pace by which data are presented to
a ML model. Their goal is to allow incremental training by trying to
first teach the easy examples before moving to harder ones. PFs usually
work by providing a model with easy examples during the first few
epochs, and then gradually introducing more difficult examples. For
instance, in Kim et al. (2018) the ASR model initially tries to solve a
simplified classification problem where it is tasked to recognize only
four symbols. After this task is learned, the complete training set is
restored and the training proceeds. The following is a formal definition
of how PFs are used in this work:

Definition 2 (Pacing Function (PF)). A function 𝑔 is called a pacing
function if it transforms a training set to a sequence of training
subsets

[

1,… ,𝐸
]

where 𝐸 is the total number of epochs for which
the model will be trained. At each epoch, 𝑒 = 1,… , 𝐸, the model will
use the 𝑒 subset instead of the whole training set.

The most straightforward way to acquire these subsets is to first
apply a SF on and then split the ordered training set into 𝐾 subsets,
in a similar manner as done with uniform mixing. The number 𝐾 is a
hyperparameter that controls the frequency by which each training set
is used and it shall always be less than or equal to 𝐸. For example,
if 𝐾 = 𝐸

2 , then the first subset (containing the easiest examples)
will define the difficulty for the first 2 epochs, the second subset
for the next 2 epochs, and so on. Instead of using a single subset
at each stage, we concatenate it with the subset from the previous
stage (i.e. 𝑆(𝑖) ← 𝑆(𝑖−1) + 𝑆(𝑖) for 𝑖 = 2,… , 𝐾). From now on, these
functions will be referred to as Vanilla PFs (VPFs). Such PFs can be

theoretically combined with any kind of scoring function. Here, only
the combination of VPFs and transfer learning CL approaches will be
tested, since they provide static scores that can be calculated before
the initialization of the model. In addition, VPFs can also work with
UM-SFs, by assuming that the noise injection occurs on the level of the
{

 (𝑖)}𝐸
𝑖=1 subsets and not the whole training set.

Another way to apply pacing functions to a curriculum is by ran-
domly selecting a set of examples from the training set. In contrast to
VPFs, this approach does not focus on incrementally increasing the av-
erage difficulty of each training subset, but rather on the effect of solely
increasing the number of training examples provided at each epoch.
This category of pacing functions will be referred to as Subsampling PFs
(SPFs). This strategy works by first randomly sampling a subset of the
training data, and then sorting it by applying the scoring function to it.
This process is repeated at frequent time intervals (e.g. at each epoch),
with the sole modification being a gradual increase in the size of each
subset as training progresses.

Note that the models trained with this strategy are guaranteed to be
trained on the whole data set for at least one epoch. In addition, since
SPFs work with random sampling, a subset 𝑆(𝑖) (for 𝑖 > 1) may contain
examples that do not exist in 𝑆(𝑖−1), even though |𝑆(𝑖)

| > |𝑆(𝑖−1)
|. Such

pacing functions share many similarities with uniform mixing since,
in both cases, the training does not necessarily start from the easiest
possible examples in . The injection of randomness in both of these
approaches has proved to be extremely beneficial and corresponding
models were shown to be less prone to overfitting and underfitting (see
Section 5). This goes against how VPFs work, where each subsequent
subset 𝑆(𝑖) is always a superset of 𝑆(𝑖−1) (i.e. it contains all elements of
𝑆(𝑖) plus some additional ones).

Regardless of the underlying approach, the scope of pacing func-
tions is to accommodate incremental learning by gradually introducing
new examples of higher difficulty. One way to do that is by discarding
the easy examples and using only the harder ones whenever the PF
is applied (i.e. each subset (𝑖) for 𝑖 = 1,… , 𝐾 will have the same
length, | (𝑖)

| = | (𝑖−1)
|, 𝑖 = 2,… , 𝐾 with (𝑖) containing harder

examples than its predecessor). However, by doing so, the model is
more prone to ‘‘catastrophic forgeting’’, meaning that it is more likely
to lose general knowledge as training proceeds (Parisi et al., 2019).
Due to that, the default behavior in this work is to re-use the easy
examples, which results to gradually increasing the length of each
subsequent subset (i.e., | (𝑖)

| > | (𝑖−1)
|, 𝑒 = 2,… , 𝐾). Both approaches

have been implemented in this work and the choice is controlled by a
hyperparameter.

4. Experiments

This section contains a range of different experiments on the ap-
plication of curriculum learning for ASR. In particular, we will pro-
vide results for several CL strategies tested on two data sets: Lahjoita
puhetta (in Finnish) (Moisio et al., 2022), and Common Voice (in En-
glish) (Ardila et al., 2019). In both cases, the speech recognition models
are trained using the Speechbrain toolkit (Ravanelli et al., 2021), which
provides a straightforward way to train DNNs for ASR in Python, while
it already includes a duration-based ordering of the training data. All
experiments were executed on an Nvidia Tesla A100 GPU card, that
allows 6912 CUDA cores and has 80 GB of memory.

For reasons discussed in Section 2, the duration-based ordering
will be considered as our baseline strategy along with random sorting,
which is commonly used for stochastic gradient descent optimization.
This is because duration-based ordering is already widely used in ASR
and is the default in popular toolkits such as Speechbrain and Kaldi.
For each experimental setup, the main baseline will be the one with
the lowest word error rate on the test set.

Speech Communication 163 (2024) 103113

7

G. Karakasidis et al.

4.1. Data

4.1.1. Lahjoita Puhetta
The Lahjoita puhetta (Donate speech) corpus is a collection of

colloquial Finnish speech, gathered through the Donate Speech cam-
paign (Moisio et al., 2022). In total, it contains over 3600 h of speech,
more than half of which has been transcribed to date. The corpus
(which we will refer to as LP) includes over twenty thousand speak-
ers spread across all regions of Finland. This way speakers of many
different dialects found within the country are well represented in the
corpus.

The data set comes with official splits for training, validation, and
test sets. These have been created so that all of them have a similar
distribution on the topics covered by the speakers. In addition, the test
set has been created so that the gender ratio of the speakers is balanced.
Specifically, the training set consists of almost 70% female speakers,
with the rest being either male (20%) or unknown (10%). In contrast,
the test set is comprised of ∼ 42% male speakers and ∼ 51% female
speakers, with the rest being unknown (∼ 7%). This was done to ensure
that the test data are closer to the real-world distribution of speakers.
More information on the creation of the corpus and its attributes can
be found in the original paper (Moisio et al., 2022).

During the campaign, volunteers were asked to explore a topic (out
of a predefined list of topics) for as long as they wanted. This has led
to utterances of many different durations with a median duration of
∼ 41 s and a mean duration of ∼ 54 s. Unfortunately, it is known that
E2E models are more prone to bad performance when the input (and
output) sequences are very long (Chang et al., 2017). In such cases,
we can expect memory errors and long training times due to the small
batch size that is required to fit such sequences. To counter this issue
and make LP suitable for E2E models, we have segmented all long
utterances into chunks of at most 10 s, by using the best Finnish ASR
system described in Moisio et al. (2022). This is a hybrid HMM-DNN
system trained with the Kaldi toolkit (Povey et al., 2011). The latter
provides a set of useful scripts to assist with audio segmentation. In
our case, the chunks were gathered by detecting silences that appear
close to 10 s after the end of the previous chunk and splitting into the
corresponding segments.

By performing the aforementioned segmentation, we ended up with
a training set of 1377.2 h with a median of 8 s and a mean of 6.9 s.
Similarly, the validation and test sets were 8.3 and 8.9 h, respectively,
with median/mean durations of 4.7∕5 and 4.6∕4.9 s each. This adds
up to 1377.2 + 8.3 + 8.9 = 1394.4 h of speech which is almost 14%
less than the original amount of data (1620 h). This decrease is due
to the removal of silences that occurred throughout the segmentation
process. It is also worth mentioning that the segmentation provided by
the ASR system could potentially contain mistakes, but according to our
observations the chunking worked as expected and mistakes were rare.
This approach is common practice when segmenting big audio datasets
and a similar approach was also used for the creation of the TED-LIUM
corpus (Rousseau et al., 2012).

In addition, to test the effect of our curriculum learning strategies
on different sizes of data, we also experimented with subsets of the
LP training set. In particular, we have tested three different subsets of
different lengths: (a) 𝐋𝐏138 of 138 h (10% of the data), (b) 𝐋𝐏414 414
h (30% of the data), and (c) 𝐋𝐏1377 hours (the whole set). Results for
these splits are presented in Table 4 and are provided only for a subset
of our curriculum strategies.

4.1.2. Common Voice (version 8.0)
Common Voice (CV) is a popular data-gathering project, created by

Mozilla (Ardila et al., 2019). Its goal is to crowd-source ready-made
audio and transcription pairs, by providing volunteering speakers with
an intuitive user interface that first shows them an utterance and then
asks them to pronounce it. The project is currently available in more
than 90 languages from all over the world, while the collected data are

available under a public domain license that allows researchers and
developers of all kinds to use it for creating speech-to-text software.

In this work, we will focus on the eighth version of the English
common voice corpus (from now on denoted as CV8). Earlier versions
of the data set were known to contain many near-duplicates among the
training, validation, and test sets (mostly because the same transcrip-
tion could be presented to the volunteers on multiple occasions).3 This
tainted the ability to evaluate the generalization capabilities of a model
since the test set did not represent the variety of speech found in the
real world and it rewarded memorization.

Overall, the data set consists 1375 h of training speech, while ∼ 28
and ∼ 27 h are present on the validation and test sets, respectively. The
duration of the initial utterances are already small (median duration of
5.62 s) and so there was no need for extra segmentation.

4.2. Architecture

For both data sets, the top-level DNN architecture is the same,
consisting of an encoder and an autoregressive decoder similar to Chan
et al. (2016). The encoder is a Convolutional Neural Network (CNN),
followed by a RNN and a Deep (linear) Neural Network (often abbre-
viated as CRDNN altogether). The decoder is a RNN with attention
that accepts the output of the encoder along with the output of an em-
bedding layer that provides a dense representation of the transcripted
text. The chosen hyperparameters for this architecture are available
on the Github repository (Georgios, 2022). Audio signals of both sets
were sampled at 16 kHz, with 400 samples used in each short-time
Fourier transform (STFT) and 40 Mel filters (the dimensionality of each
final frame). We also performaed mean and variance normalization to
the input signals. Fig. 1 depicts a top-level representation of how the
training pipeline looks like.

The models are trained using the Adam optimizer (Kingma and Ba,
2014) which attempts to accelerate the gradient descent by taking into
consideration the momentum of the gradients. Over the past decade,
Adam has become one of the most widely used optimization techniques,
and its implementation is featured in most DL toolkits. On top of that,
we incorporated the use of gradient accumulation which aggregates
the gradients and proceeds to update the parameters after a certain
number of minibatches. This is helpful since audio features tend to be
complex and high dimensional, making them hard to fit to memory
when using big batch sizes, and the use of gradient accumulation helps
overcome this issue. In our case, and after performing hyperparameter
tuning, we chose to accumulate 4 gradients before each update.

The loss function that is minimized in this work is the negative log
likelihood, which is also referred to as sequence to sequence loss or just
sequence loss. In addition, the Connectionist Temporal Classification
(CTC) (Graves et al., 2006) loss is minimized on the output of the
encoder for the first few epochs, depending on the data set and the
number of hours in it. Since the CTC loss has to be aggregated with
the sequence loss, a new hyperparameter needs to be introduced which
defines the importance of each loss. In our case, when the CTC loss
is used, it has a weight of 0.5, i.e., the final loss value is the average
of the CTC and sequence losses. Table 1 summarizes the information
about the number of epochs and the batch sizes that were used across
different data sets. In the case of both datasets, the initial learning rate
was 1𝑒−3 and we used the Newbob scheduler implementation provided
by speechbrain (Ravanelli et al., 2021) (i.e. reducing the learning
rate once the improvement on a validation set falls below a certain
threshold). All such hyperparameters were tuned and chosen before
applying our CL methods, so as to guarantee a fair setup. Interested
readers are encouraged to consult our Github repository (Georgios,
2022) which includes the whole set of hyperparameters and the model
architecture for the CV8 experiments. The same model architecture and

Speech Communication 163 (2024) 103113

8

G. Karakasidis et al.

Fig. 1. Top-level architecture of the E2E ASR pipeline. The raw audio waveform is first processed to get the MFCC features, which are then re-represented by the encoder and
embedding layer, and the output of these proceeds to the decoder.

Table 1
Top-level information that varies across the different training set configurations.

LP LP138 LP414 CV8

Train-set hours 1377 138 414 1375
Epochsa 15 75 60 30
CTC epochs 10 15 15 10
Batch size 32 32 32 64
Subwords 1750 1750 1750 500

a When using VPFs, the total number of epochs is 27 on LP, and 63 for CV8.

hyperparameters were used for the LP experiments, but due to license
limitations at the time of this work, they were not made public.

The only top-level (non-CL-related) difference between the models
trained on the two data sets, is the total number of output tokens.
Here, we used Byte Pair Encoding (BPE) (Gage, 1994) to tokenize
each word to what is known as subword units. This algorithm works by
iteratively replacing the most frequent pair of characters with a single
token (i.e., merging them) until the total number of desired tokens is
reached. By applying this transformation to all textual data, the final
tokens are thought to contain useful semantic information about the
parts of each word (e.g., the word abnormal could be segmented as ab,
norm, al, where the first token negates what follows). The number of
chosen tokens is a hyperparameter that needs to be tuned carefully.
Languages with low morphological variety (for example English) tend
to require fewer tokens than languages that are morphologically richer,
such as Finnish. Here, we will use 1750 tokens for the Lahjoita puhetta
data set, since that was the number used in the preliminary experiments
of Moisio et al. (2022). For Common Voice, we will follow the official
Speechbrain recipe for the English dataset which uses 500 BPE tokens
for their basic sequence-loss model.

4.3. Training strategies

In Section 3, we introduced and formalized the notion of curriculum
learning along with certain strategies that can be formed by combining
different scoring and pacing functions. Now, we will analyze the effect
of a total of 23 CL strategies for the LP data set and 23 for the CV8
data set. In the case of LP138 and LP414, a total of 6 strategies will be
examined.

4.3.1. Strategy abbreviations
To avoid long names, we will refer to each strategy with an abbre-

viation. These are created by adding a suffix or a prefix to the abbrevi-
ation of a scoring function. Table 2 summarizes the main abbreviations
that correspond to SFs.

Each strategy abbreviation is created by combining the SF abbrevi-
ation with a prefix to denote the use of a pacing function or transfer
learning CL and a suffix to denote whether uniform mixing was used

3 This issue was brought to the attention of the public after the creation of
this GitHub issue https://github.com/kaldi-asr/kaldi/issues/2141.

Table 2
Scoring function abbreviations and categorization.

SF Abbr. CL family Description

DUR

Metadata

Duration-based SF
CHR Character-based frequency SF
TOK Token-based frequency SF
WRD Word-based frequency SF

WER Adaptive Adaptive SF using the WER
SEQ Adaptive SF using the NLL loss

or not. In addition, the down-arrow symbol (↓) will be used to mark all
strategies that use the reverse ordering of the training data (i.e., starting
from the hardest examples and moving towards the easier ones). The
final abbreviations are created based on the following rules:

• Pacing Functions: The prefix VPF- for vanilla PFs and SPF- for
subsampling PFs is added when PFs are used.

• Transfer learning CL: When using transfer learning CL, the prefix
TR- is added. If a PF is also used then this abbreviation is
appended to the PF prefix. One thing to point out regarding such
strategies is that they should not be compared to the ‘‘curriculum
strategy’’ of Hacohen and Weinshall (2019), since the latter uti-
lizes a bigger model trained on more data. In our case, the teacher
model has the exact same architecture as the student and in
trained on the same set of data.

• Uniform Mixing: To mark models that used UM, we add the star
symbol (*) as the suffix.

For example, a strategy that combines an adaptive UM-SF with WER
as its criterion, and a subsampling pacing function, will be named
SPF-WER*. Similarly, a duration-based SF that uses descending sorting
(hardest to easiest example), will be named DUR ↓.

At last, to examine how CL compares to simply randomly shuffling
the training set, we have included the random strategy. In this case,
the data set is randomly shuffled before the first epoch and the order
is saved in a meta-data file, so that it will be kept even if the training
script fails and re-starts. This strategy will be abbreviated as RND.

5. Results

5.1. Lahjoita Puhetta

As already mentioned, the Lahjoita Puhetta training set has been
divided into three sets of different sizes to imitate the performance of
our training strategies in mid and low-resource settings. We will first
present the results on the full training set of 1377 h (LP) and then
move towards the results on the LP138 and LP414 data sets. For the last
two data sets, only the best-performing adaptive SFs and the transfer
learning CL approach will be examined.

Additionally, each experiment will be executed 3 times with differ-
ent random initializations of the weights of the corresponding models.
To aggregate the results, we take an average of the scores yielded by the
three models. This way, we ensure that the weight initialization does

https://github.com/kaldi-asr/kaldi/issues/2141

Speech Communication 163 (2024) 103113

9

G. Karakasidis et al.

Table 3
Results of various CL strategies on the LP data set. The STD is the average of the test
set’s WER scores across the three runs. Bold results are the best ones in each strategy
group, while the best result of each column across the whole table is underlined.

Strategy Validation Test STD

CER WER CER WER

Baselines
DUR 10.21 26.63 10.77 30.69 0.53
DUR↓ 17.74 36.62 21.87 40.96 2.03
RND 7.8 24.45 10.54 29.73 0.45
Adaptive SFs
WER 22.01 47.17 23.33 50.95 4.6
WER ↓ 11.92 32.68 14.43 36.17 0.28
WER* 7.47 23.27 10.14 28.98 0.37
WER* ↓ 9.44 27.98 11.13 30.91 0.24
SEQ* 9.03 27.25 11.5 32.74 0.35
Frequency SFs
CHR 44.67 68.47 48.31 72.13 6.47
CHR* 9.2 27.31 11.07 30.62 0.95
TOK 27.14 52.66 30.63 55.97 22.09
TOK* 9.42 28.08 11.2 31.16 0.26
WRD 21.08 66.12 24.67 69.38 0.99
WRD* 9.03 27.19 10.97 30.41 0.37
Transfer CL
TR-SEQ 9.22 27.61 11.06 30.72 0.38
TR-SEQ* 8.04 24.85 11.19 30.82 0.16
TR-WER* 7.98 24.7 11.1 30.88 0.74
Pacing functions
VPF-TR-SEQ 9.46 28.63 11.23 31.64 0.23
VPF-TR-SEQ* 9.43 28.52 11.26 31.76 0.34
VPF-TR-WER 12.92 34.05 14.94 37.22 8.66
VPF-TR-WER* 13.44 33.76 15.64 37.1 10.23
SPF-WER* 8.26 25.59 10.74 30.78 0.28
SPF-TR-WER* 8.43 26.2 11.05 31.79 0.61

not taint the final results. The cohesion of the performances across the
three runs is also a good indicator of the stability of the corresponding
strategies (i.e., a high standard deviation of a strategy’s scores would
imply that it is unstable and that the average is not a good indicator of
its capabilities).

Table 3 summarizes the effect of different CL strategies on the
performance of models trained on the LP data set, while Table 4
contains the results for the LP subsets. The STD column corresponds
to the standard deviation of the test set’s WER scores across the three
runs. For every CL strategy family, the top-scoring approach always
corresponds to a UM-SF. In addition, for all LP sets, the best strategy
(corresponding to underlined and bold scores) is the WER*, which
consistently outperforms both baseline strategies (DUR and the RND).

Frequency SFs and the transfer learning CL approach also seem to
be improving the performance of the corresponding models when UM is
used. On the contrary, without UM, all frequency-based strategies result
in extremely unstable models (high st. deviation) that vastly overfit the
training data, due to the concept of ‘‘excessive guidance’’ which was
introduced in Section 3.2.2. In contrast, PFs do not offer any increase
in the network’s accuracy on the test set, even though SPFs still manage
to produce WERs similar to those of the DUR strategy.

5.2. Common Voice

The effectiveness of our CL strategies on CV8 is summarized in
Table 5. These experiments were only run once and the reader should
keep in mind that there is no way to distinguish unstable strategies.
The error rates are a bit different compared to the Finnish ones and
very few strategies managed to outperform the DUR baseline (whose
performance was better than RND). In particular, only two had a higher
accuracy on the test set and both of these were adaptive UM-SFs. The
top scoring strategy is still the WER* one, which goes in accordance
with the LP results, and the second best is SEQ*. Contradicting our
previous observations, the transfer CL methods and the frequency-based
SFs performed far worse in CV8 than in LP.

Table 4
Results of various CL strategies on the LP138 and LP414 data sets. The STD is the average
of the test set’s WER scores across the three runs. Bold results are the best ones in
each strategy group, while the best result of each column across the whole table is
underlined.

Strategy Validation Test STD

CER WER CER WER

138 h set
Baselines
DUR 13.67 37.94 16.14 43.56 0.4
RND 12.98 37.17 16.15 43.69 0.28
WER 13.39 38.34 16.43 43.92 0.32
WER* 12.74 36.74 15.86 43.17 0.1
SEQ* 16.36 44.16 19.21 50.13 2.62
TR-WER* 14.23 39.97 17.29 46.07 3.56

414 h set
Baselines
DUR 13.03 32.41 13.61 35.88 1.26
RND 9.23 28.2 12.48 34.74 0.15
WER 11.66 32.34 16.36 39.44 0.89
WER* 9.2 27.89 12.18 34.19 0.38
SEQ* 10.39 30.97 13.17 37.03 0.08
TR-WER* 9.62 29.19 12.86 35.65 0.62

Table 5
Results of various CL strategies on the CV8 data set. Bold results are the best ones
in each strategy group, while the best result of each column across the whole table is
underlined.

Strategy Validation Test

CER WER CER WER

Baselines
DUR 11.62 25.46 15.63 31.23
DUR↓ 12.83 28.26 17.23 34.37
RND 11.82 25.44 16.28 31.7
Adaptive SFs
WER 12.36 27.91 16.46 33.24
WER ↓ 11.59 25.58 15.75 31.29
WER* 11.09 24.34 15.27 30.19
WER* ↓ 12.33 25.96 18.11 33.48
SEQ 17.38 33.44 22.88 40.03
SEQ* 11.33 24.95 15.49 30.57
Frequency SFs
CHR 15.01 30.99 19.93 37.28
CHR* 12.4 26.15 17.85 33.35
TOK 18.15 39.49 23.45 45.8
TOK* 12.2 26.08 18.13 33.79
WRD 20.89 47.08 27.35 54.19
WRD* 13.02 26.95 19.09 34.92
Transfer CL
TR-SEQ* 14.49 30.58 19.0 36.9
TR-WER* 16.06 32.33 22.01 40.14
Pacing functions
VPF-TR-SEQ 12.08 26.52 16.31 32.46
VPF-TR-SEQ* 12.23 26.62 16.6 32.63
VPF-TR-WER 11.69 25.55 15.84 31.3
VPF-TR-WER* 12.91 27.89 17.25 33.99
SPF-TR-WER* 13.51 27.58 19.93 35.44
SPF-WER* 12.73 26.96 17.89 33.92

6. Further analysis

6.1. Performance

The results presented in Section 5 support our initial hypothesis that
a suitable curriculum learning strategy can decrease ASR errors in the
E2E system. This finding was observed on both examined data sets (LP
and CV8) and on the smaller subsets of LP that reflected a low-resource
ASR setting. One of the novelties of this work in the CL realm was that
of adaptive scoring functions combined with randomness injection tech-
niques (uniform mixing and subsampling pacing functions). Our best CL

Speech Communication 163 (2024) 103113

10

G. Karakasidis et al.

Fig. 2. Validation set WER scores for the top scoring strategies of each CL family on the LP data set.

strategy (WER*) consistently outperformed all of its competitors on all
data sets while also providing stable results.

Another important observation is that UM had a 100% success rate
in strengthening a model’s generalization capabilities. As discussed in
Section 3.2.2, providing perfect guidance can lead to severe overfitting
(i.e., memorization) or even underfitting (e.g., when excessive guidance
from a teacher leads to students that do not know how to approach
solving a problem). The addition of noise in terms of mixing hard
and easy examples was shown to help overcome this issue. A similar
finding was observed in Zaremba and Sutskever (2015) where the
authors employed a resembling randomness-injection technique. It is
also important to note that, when using UM, the standard deviation of
the test set WERs was significantly lower than the strategies’ non-UM
counterparts, with the exception of PF-based strategies. This shows the
stabilizing effect that uniform mixing can bring, along with significant
performance improvements. The only case were UM brings only small
improvements, is with the 𝐿𝑃138 and 𝐿𝑃414 datasets that are smaller in
size and for which the model is trained for more epochs. In addition, the
complexity of colloquial Finnish, makes it hard for an E2E ASR system
to learn from 138 h of data, and that is why all CL strategies result
in weak models. It is hence natural that we get diminishing returns
from the application of UM. Regarding PF-based strategies, and VPFs in
particular, the inclusion of UM in a CL strategy did not prove beneficial.
This is because the initial models are only trained on a small subset of
the data, and allowing hard examples at the start of training

Figs. 2 and 3 illustrate the evolution of the validation WER scores
for some of the best-scoring CL strategies (excepting VPF strategies).
The downward arrows mark the strategies with the lowest error rate at
each stage. The differences between those values and the WERs of the
DUR, RND baselines are also statistically significant (see Section 6.2).
The WER* strategy is consistently the one with the lowest error rate.
It is also worth noting that the transfer CL strategies start from high
validation errors, and then drastically improve around the middle of
their training. This behavior is observable for all transfer CL strategies
(mainly on LP) and the reason behind this is that the transferred
difficulty scores from the teacher network do not match the capabilities
of the initially bad networks. In such cases, we hypothesize that it
would be helpful to initialize the models with the DUR strategy for
the first few epochs and then move to the more complex transfer-CL
strategies, but testing this idea is out of the scope of this paper.

In addition, the success of the RND strategy in the LP results also
supports the argument that randomness can be beneficial when training
neural networks. In the case of RND though, this typically comes at the
expense of resources and higher training times, since the examples in
each batch are likely to be of different lengths, hence increasing the
amount of padding that needs to be done. In most cases, this is also
an issue with our CL strategies. Although we empirically noticed that

adaptive CL strategies start with slow training times (per epoch), as the
utterances’ scores change (adapt), the batches become more consistent
in terms of length, and, hence, each epoch is completed faster (see
6.2 for more information). The non-adaptive CL approaches typically
resulted in much more uniform batches, and the training times were
closer to the DUR baseline (which minimizes padding). A more detailed
training time analysis follows in 6.4.

In the case of the LP data set (and its subsets), two out of the three
strategies that outperformed DUR were created using frequency-based
SFs. In particular, by combining uniform mixing with the word and
character-level frequency SFs, we get strong and stable models that
showed little variation in their test set performances. Unfortunately,
this trend is not followed in the case of CV8, where all frequency-based
SFs failed to get close to the either baseline’s performance. A possible
reason for this difference is that the grammatical and syntactical struc-
ture of Finnish is vastly different from that of English. In addition, in
contrast to English, Finnish words are (almost) always pronounced the
same way as it is written. Due to that, the characters, words, and tokens
that are present in a sentence have a 1-1 mapping to the phonemes
pronounced in the corresponding utterance, hence making the textual
frequencies more informative about the underlying difficulty.

6.1.1. Pacing functions
In Hacohen and Weinshall (2019), the authors’ implementation of

pacing functions was shown to bring significant improvements over
their baselines. In this work, we chose a slightly different approach by
combining them with different SFs and UM, and treating them as a tool
to improve the convergence speed of end-to-end models. All PF-based
strategies fail to surpass the DUR strategy while the combination of
WER-based SFs and VPFs, resulted in unstable models (high standard
deviation on the LP data). In addition, contrary to the rest of UM-
based strategies, combining VPFs with UM does not result in stronger
models (e.g. the addition of UM in the VPF-TR-WER strategy, leads
to an ∼ 9% relative increase in WER). There is no clear indication
of what causes this, although it could be argued that this is due to
the sudden introduction of difficult examples from the early stages of
training when using just a subset of the data. On the other hand, given
the fact that PFs (and especially SPFs) parse the training set fewer times
than normal training, we could argue that using them is beneficial. For
instance, in the case of LP, the SPF-TR-WER* strategy achieved a test
WER very close to the DUR baseline while being much faster to train
(see Sections 6.1.3 and 6.4). This means that the use of PFs has the
ability to increase convergence speed and reduce computation costs.

The relative success of SPFs on both data sets can also validate the
general effectiveness of UM, since the SPF strategies typically introduce
hard examples at much earlier stages and there is no abrupt addition
of information. It is worth pointing out again that SPFs are trained

Speech Communication 163 (2024) 103113

11

G. Karakasidis et al.

Fig. 3. Validation set WER scores for the top scoring strategies (no VPF strategies included due to the different number of total epochs) of each CL family on the CV8 data set.

Fig. 4. Validation set WER scores for some PF strategies in LP. All VPF strategies were trained for 27 epochs, while SPF ones for 15 epochs.

for much fewer hours than VPFs (see 6.1.3 for a comparison) without
any significant decrease in quality. Fig. 4 shows the stability of SPFs
since the validation error keeps on improving at the end of training
without any significant oscillations. This implies that the corresponding
models have not yet converged and could potentially perform even
better. Unfortunately, due to time limitations, this assumption was not
tested.

6.1.2. Reverse curriculum
As mentioned in Section 3, the reverse curriculum is not an effective

CL method, at least for E2E ASR. In both of our data sets, the reverse
duration-based CL approach resulted in considerably worse models
compared to both the DUR and RND baseline, while also being more
unstable (high standard deviation in LP). Fig. 5 portrays the effect of
reverse CL strategies on the training and validation losses on the LP
data set. On the left, it is clear that the DUR↓ model shows signs of
overfitting for the bigger part of training since the validation loss is
noticeably higher than the training loss.

On the right-hand side, it seems that reverse CL does not have such
a negative impact on the adaptive CL strategies. This is also clear from
the results in Table 3, where reverse CL contributes as a regularizer
to the otherwise weak WER strategy, leading to an improvement of
almost 29%. Of course, even this kind of improvement is not enough
to make this model competitive. In contrast, the UM-based WER strat-
egy (WER*) has managed to remain relatively stable, even under the
application of a reverse curriculum. Its test set performance is close to
the DUR baseline, being only 0.7% worse in terms of word error rate.

Similar findings are also observed in the case of the Common Voice
data set, except for the WER*↓ strategy, which suffered a setback of
7% compared to the DUR baseline. On the contrary, reverse curriculum
was again beneficial for the WER strategy, leading to a moderate
improvement of 6%.

Overall, our empirical results point us towards the conclusion that
reverse curriculum as a non-beneficial method, especially when com-
bined with a duration-based scoring function. Our experiments show
that initializing a model with hard examples leads to larger updates
of a model’s parameters at the start of training, and, consequently,
slower convergence. On the other hand, normal curriculum learning
– with ascending sorting – tends to overfit on the easy data that it
learns during the early stages of training and fails to generalize. The
solution is to balance the two approaches and utilize easy examples for
faster learning, while also introducing harder examples as a form of
regularization.

6.1.3. Hours seen
Neural networks are typically trained for many epochs to better

approximate the optimal parameters. To fairly compare two models
trained on the same data set, one would expect them both to be trained
for the same number of epochs (assuming that the neural network
architecture stays the same). In the case of models trained with PF
strategies, though, the size of the training set increases at frequent time
intervals, which means that, if the corresponding models are trained for
the same epochs as the either the DUR or the RND baseline, then they
would still have encountered fewer data. For this reason, we are going

Speech Communication 163 (2024) 103113

12

G. Karakasidis et al.

Fig. 5. Comparison of training and validation loss values across the epochs with reverse curriculum strategies on the LP dataset. Note the severe overfitting in the case of DUR↓
and WER↓.

to use the number of hours that each model has seen instead of the
number of epochs they have been trained on.

For all non-PF strategies, calculating this number can be done by
multiplying the number of epochs, with the total amount of hours in the
training set (e.g., 30 ⋅ 1375 for CV8). With VPF strategies, it is possible
to approximate the total number of times the full training set has been
parsed, by using the following formula:

𝑘 1
𝑔
+ 𝑘 2

𝑔
+⋯ + 𝑘

𝑔
𝑔
= 𝑘

𝑔
∑

𝑖=1

𝑖
𝑔
= 𝑘

𝑔
𝑔(𝑔 − 1)

2
=

𝑘(𝑔 − 1)
2

where 𝑘 is the number of epochs after which we increase the training
set size, and 𝑔 is the number of subset groups defined as 𝑔 = 𝐸

𝑘 , with 𝐸
being the total number of epochs. The above sequence can be read as
‘‘use 1

𝑔 of the training set for the first 𝑘 epochs, then
2
𝑔 for the next 𝑘 epochs,

and repeat until the maximum number of epochs is reached’’. In the case
of CV8, 𝑘 was equal to 3 and 𝑔 = 63

3 = 21, which means that for a total
of 1375 h and after 63 epochs, the model had seen 1375 ⋅ 3⋅20

2 = 41250 h
of training data, which is exactly the same as the amount of hours seen
by a model trained for 30 epochs (i.e., 30 ⋅ 1375 = 41250).

Calculating the total number of hours seen by the models trained
with the SPF strategy is a bit more complicated since each subsequent
subset does not necessarily contain all utterances present in the pre-
vious subset. This means that the total amount of hours seen has to
be calculated by summing up the individual hours of each subset. An
implementation of that is provided in the Github repository (Georgios,
2022).

To sum up, Table 6 contains the total amount of hours seen by the
DUR baseline and the PF-based strategies. As already mentioned, VPFs
are designed so that they see almost as many hours as the baselines
(in the case of LP, VPFs processed fewer hours of data because there
was no performance improvement after increasing the hours seen by
the models and we chose to save on resources by reducing the total
number of epochs). On the other hand, SPFs typically process much

Table 6
Number of hours that PF strategies have seen throughout their training cycle (shown
under the Hours column). The validation and test set WER scores are also shown for
comparison.

Strategy Lahjoita Puhetta Common Voice

Hours Valid Test Hours Valid Test

DUR 20.73K 26.63 30.69 41.25K 25.46 31.23
VPF-TR-SEQ 16.54K 28.63 31.64 41.25K 26.52 32.46
VPF-TR-WER 16.54K 34.05 37.22 41.25K 25.55 31.30
SPF-WER* 11.54K 25.59 30.78 23.06K 26.96 33.92
SPF-TR-WER* 11.82K 26.2 31.79 28.81K 27.58 35.44

less data, but even though that is the case, their performance is on
par with the rest of the models. In particular, on the LP data set, the
SPF-WER* strategy had seen around 44% fewer hours of data than the
baselines, while its test set performance is only 3% worse than that
of the DUR strategy. To bring this difference into context, the models
trained on the LP138 data set have seen 10.35𝐾 h of data, but the best
model’s performance is ∼ 40% worse than that of SPF-WER* which
has seen a similar amount of hours. This is mostly because SPF-WER*
models have seen many different kinds of training examples, which
allows them to generalize better. This finding is also an indicator of
the importance of CL and pacing functions, in particular, in training
deep neural networks.

6.2. Variability of the curricula

Each CL strategy leads to the creation of different orderings of
the corresponding training set. To validate the results presented in 5,
we have performed two kinds of statistical significance tests, using
the Matched Pairs Sentence-Segment Word Error test and a 𝑝-value
threshold of 0.001.

Speech Communication 163 (2024) 103113

13

G. Karakasidis et al.

1. Variability of the orderings: This refers to testing the similarities
of the orderings produced by a certain strategy, across the
different weight initializations (only applicable to LP).

2. Variability of the results: This refers to testing how significant
the difference is in our CL strategies’ test set scores compared
to the DUR baseline. The reason for choosing the DUR strategy
instead of RND is because DUR outperformed the latter in the
CV8 dataset which is the one used in our tests.

Concerning the former, no significant difference was observed be-
tween the three TR-WER* models, while the difference in their order-
ings compared to DUR’s was significant at a lower confidence level
(0.001 < 𝑝 < 0.05). This supports the argument that our transfer CL
scoring functions result in orderings that also minimize padding to a
certain degree. Our best CL strategy WER* arranged the training set
in a significantly different way than all other approaches. Even though
that was the case, for one weight initialization, the difference of the
orderings compared to the ones of the RND strategy was shown to
be significant at a lower confidence level (0.001 < 𝑝 < 0.05). The
performance of this model, though, was the worst one out of the three
runs. This could mean that a bad weight initialization can negatively
affect the functioning of the WER* strategy, and bring it closer to
random shuffling.

Regarding the second type of statistical significance test that focused
on the difference of the test WER of our models with respect to DUR’s
performance, we ran the same kind of test on the results of the CV8
data set. All of our strategies had significantly different performances
compared to DUR (𝑝 < 0.001), which is a good indicator that our top-
scoring strategies are indeed better. Although, when comparing the
performance among the strategies we proposed, the results of the best-
scoring WER* strategy were shown to be different at a lower confidence
from that of VPF-TR-WER (0.001 < 𝑝 < 0.05).

By further examining Table 5, it can be noticed that the validation
and test CER scores of the VPF-TR-WER and WER* strategies are
relatively close, while the difference between the WER scores of the
two strategies is bigger. This is partly explained by the large number of
character substitutions needed in the case of the VPF-TR-WER strategy,
due to a large number of orthographic errors. For example, if the
ground truth is ‘‘where do you live’’, and the prediction is ‘‘where do
you leave’’, the word error rate would be 1∕4 = 25% while the character
error rate would be 2∕17 = 11.76%. Even though the prediction shows
a lack of grammatical understanding of English, it is still acoustically
correct since ‘‘leave’’ and ‘‘live’’ are pronounced very similarly. Such
errors were very prominent in the case of VPF-TR-WER and are the
main reason behind its absolute difference in terms of test word error
rate when compared to the WER* strategy. Besides that, the two
models have similar predictions, hence, the lack of the aforementioned
significant difference in terms of performance is partly explained.

6.3. Error analysis

Empirical analysis showed that non-UM-based strategies tended
to have a higher number of substitution and deletion edits required
to transform the predicted transcriptions to the ground truth. Fig. 6
represents the distribution of insertions, deletions, and substitutions for
the WRD and WER strategies, with and without UM, on the LP test
set. Along with the results of Table 7, it is clear that these two types
of edits separate the well-performing models from the bad ones. As
already mentioned, a high number of substitutions (when calculating
the word error rate) implies a misunderstanding of orthography and
syntax. On the other hand, many deletions mean that the model failed
to transcribe some part of an utterance.

The top-scoring WER* strategy has many outliers with a high num-
ber of insertion edits. This is due to extensive word repetitions that
occurred in cases of noisy/unintelligible audio. For instance, a noisy
utterance was transcribed as the word ‘‘hm’’ repeated 126 times, which,

Table 7
Total number of word-level edits (Insertions, Deletions, Substitutions) needed to be
done to ‘‘fix’’ a predicted transcription among UM and non-UM-based strategies. Higher
values are marked with bold.

Strategy Ins Dels Subs Total

LP
WER 1887 4127 12 199 18 213
WER* 1585 1053 4637 7275
WRD 147 22252 15620 38019
WRD* 1841 1004 5196 8041

CV8
WER 1700 6001 18 545 26 246
WER* 2838 3345 16 546 22 729
SEQ 8509 5752 23546 37807
SEQ* 3282 3259 16 864 23 405

in turn, led to 119 insertion edits. Such errors are a well-known issue
with E2E models and Speechbrain. A straightforward way to approach
them would be to ignore all words repeated more than twice in a
row. But, this solution is not able to handle repeated sequences of
words, which are also apparent in many of the predicted transcripts.
The aforementioned outliers are the main reason why the Total Edits
violin plot also shows this kind of sign. Even though this problem was
more apparent in LP, it was also noticed in CV8, which is generally
considered cleaner.

These effects are also visible in Table 7, which shows that non-UM-
based strategies result in a higher number of deletions and substitutions
when compared to their counterparts on both LP and CV8. The pres-
ence of outliers is not as visible here as it is in Fig. 6 and that is
why both forms of representations are needed to find the relationship
between edits and final performance. Even though the best UM-based
strategies have some outlier utterances with the highest number of
edits, their summed number of edits is much less than that of non-
UM-based strategies, which explains the significant difference in their
performance and the superiority of UM-based strategies.

6.4. Training time analysis

Another factor to take into consideration is the total training time
overhead that each CL strategy had when compared to DUR. The reason
we compare with DUR is because this is the strategy that is the fastest
for a given number of steps, since it minimizes padding. In our case, this
is possible to compute since all LP and CV8 models were trained on the
same GPU architecture, using the same resources. Table 8 contains the
observed training time overhead of our tested CL strategies for both
LP and CV8 data sets (note that this also includes the time required to
compute and update the curriculum scores). The overhead is calculated
as the normalized difference between the training time required by
a CL strategy and the time required by DUR. For LP, the times are
first averaged across the three initializations and then the overhead is
computed.4 Note that all results below should be taken with a grain
of salt, since measuring wall-clock times is not always completely
precise. Other (system-related) background jobs may have affected the
processing of each batch and the transitions from CPU to GPU.

It is clear that metric-based adaptive SFs are much slower than the
other alternatives. This is because, in such strategies, a decoding step
needs to be performed for the whole training set, which is typically
slow. Another interesting observation is that UM-based strategies are
slower than non-UM-based ones (except for WRD on LP). In general,
there is a clear difference between the training times on the two data
sets. For example, TR-WER* had only an 8.3% overhead on LP, while
it had 44.9% overhead on CV8. Another noteworthy comparison is

4 The LP138 and LP414 recipes used an older codebase that did not consider
training times, and so they were exempt from this analysis.

Speech Communication 163 (2024) 103113

14

G. Karakasidis et al.

Fig. 6. Distribution of insertions/deletions/substitutions for two pairs of UM and non UM-based strategies on LP.

Table 8
Training time overhead of our CL strategies, compared to the DUR strategy (also
includes the time required to compute the curriculum scores). Bold numbers denote
the faster models of each CL family, while underlined ones denote the slowest
strategies.

Strategy Overhead (%)

Lahjoita Puhetta Common Voice

RND 12.7% 27%
Adaptive SFs
SEQ – 14%
SEQ* −0.3% 17%
WER 2% 17.7%
WER ↓ 11.1% 15.6%
WER* 15% 43%
WER* ↓ 15.5% 39%
Frequency SFs
CHR 8.7% 18.8%
CHR* 12.1% 22.2%
TOK 13% 21.7%
TOK* 14.8% 21.9%
WRD 11.7% 18.4%
WRD* 1% 21.2%
Transfer CL
TR-SEQ 4.6% –
TR-SEQ* −2% 0.5%
TR-WER* 8.3% 44.9%
Pacing functions
VPF-TR-SEQ 15.2% 14.7%
VPF-TR-SEQ* 15.1% 15.4%
VPF-TR-WER 23.3% 40.4%
VPF-TR-WER* 27.5% 15%
SPF-TR-WER* −32.1% −8.1%
SPF-WER* −8.1% 12.2

between RND and the WER strategy on CV8, where RND was much
slower, even though WER requires the extra decoding step mentioned
earlier. It is not clear what caused these discrepancies, but the fact that
CV8 experiments were run only once could mean that this is the result
of randomness.

Regarding the pacing functions, normally, they would be expected
to be much faster than DUR since they perform fewer training steps,
but that is not always the case. For the VPFs, this is easily explained
by the fact that the corresponding models were trained so that they
see the same amount of hours of data as an unpaced model would.
This means that, overall, models trained with VPFs, had to do more
iterations (which can be costly since, at the end of each epoch, the
validation error is also computed) while having the same overhead as
inflicted by our CL strategies (mainly adaptive SFs). On the other hand,
SPFs were trained for the exact number of epochs as the rest of the
models, while having seen much fewer data. This means that they are
much faster in terms of total training time. Unfortunately, this is not
clearly seen in the case of CV8 and SPF-WER*, where the decoding step
was probably too costly. Although, it is clear that when combining SPFs
with transfer CL, training is always faster, without a huge decrease in
terms of quality.

7. Conclusion

In this work, we formally defined curriculum learning as a combi-
nation of scoring and pacing functions and evaluated multiple novel,
ASR-specific CL strategies. Our experiments demonstrate the effective-
ness of such strategies, both in terms of improving a network’s accuracy
and enabling faster convergence, and, at the same time, leading to
lower training times. In particular, the WER* strategy, which combines
uniform mixing and a word error rate-based ordering of the training
data, led to consistent improvements in both Finnish and English ASR
models. However, a drawback of this technique is the extra decoding
step that needs to be performed at the end of each epoch, which
makes training slower. To counter this, we showed that the use of
pacing functions can lead to faster convergence without suffering big
drawbacks in performance when compared to either the commonly
used DUR baseline or the RND baseline. In addition to the audio-
based strategies, the paper also explored text-based ones, which take
token frequencies as an indication of an utterance’s difficulty. The
combination of this approach with uniform-mixing led to the TOK*,
CHR*, and WRD* strategies that provided good results on the Finnish

Speech Communication 163 (2024) 103113

15

G. Karakasidis et al.

data set. However, these strategies were not proved as effective in
English, since words are usually not pronounced the same way they are
written, hence making the token frequency metrics irrelevant. Overall,
it is clear that curriculum learning can be beneficial for ASR, and we
highlight some trade-offs between performance and training time that
can be managed by picking the right CL strategy.

CRediT authorship contribution statement

Georgios Karakasidis: Conceptualization, Data curation, Investi-
gation, Methodology, Software, Validation, Visualization, Writing –
original draft, Writing – review & editing. Mikko Kurimo: Concep-
tualization, Funding acquisition, Investigation, Resources, Supervision,
Writing – review & editing. Peter Bell: Formal analysis, Supervi-
sion, Writing – review & editing. Tamás Grósz: Conceptualization,
Data curation, Formal analysis, Investigation, Methodology, Resources,
Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Both datasets used in our experiments are publicly available. The
lahjoita puhetta subsets (138 and 414 h) are currently not online, but
could be made available upon request.

Acknowledgments

The computational resources were provided by Aalto Science IT,
Finland. We are grateful for the Academy of Finland project fund-
ing number 345790 in ICT 2023 programme’s project ‘‘Understanding
speech and scene with ears and eyes’’.

References

Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R.,
Saunders, L., Tyers, F.M., Weber, G., 2019. Common voice: A massively-multilingual
speech corpus. arXiv preprint arXiv:1912.06670.

Bengio, Y., Louradour, J., Collobert, R., Weston, J., 2009. Curriculum learning. In:
Proceedings of the 26th Annual International Conference on Machine Learn-
ing - ICML ’09. ACM Press, Montreal, Quebec, Canada, pp. 1–8. http://dx.
doi.org/10.1145/1553374.1553380, URL http://portal.acm.org/citation.cfm?doid=
1553374.1553380.

Braun, S., Neil, D., Liu, S.-C., 2017. A curriculum learning method for improved noise
robustness in automatic speech recognition. In: 2017 25th European Signal Pro-
cessing Conference (EUSIPCO). pp. 548–552. http://dx.doi.org/10.23919/EUSIPCO.
2017.8081267, ISSN: 2076-1465.

Chan, W., Jaitly, N., Le, Q., Vinyals, O., 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech recognition. In: 2016 IEEE
International Conference on Acoustics, Speech and Signal Processing. ICASSP, IEEE,
pp. 4960–4964.

Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan, W., Cui, X., Witbrock, M.,
Hasegawa-Johnson, M.A., Huang, T.S., 2017. Dilated recurrent neural networks.
Adv. Neural Inf. Process. Syst. 30.

Elman, J.L., 1993. Learning and development in neural networks: The importance of
starting small. Cognition 48 (1), 71–99, Publisher: Elsevier.

Gage, P., 1994. A new algorithm for data compression. C Users J. 12 (2), 23–38.
Gales, M., Young, S., 2008. The Application of Hidden Markov Models in Speech

Recognition. Now Publishers Inc.
Georgios, K., 2022. Speechbrain-CL. URL https://github.com/aalto-speech/speechbrain-

cl.
Graves, A., 2012. Sequence transduction with recurrent neural networks. arXiv preprint

arXiv:1211.3711.
Graves, A., Bellemare, M.G., Menick, J., Munos, R., Kavukcuoglu, K., 2017. Automated

curriculum learning for neural networks. In: International Conference on Machine
Learning. PMLR, pp. 1311–1320.

Graves, A., Fernández, S., Gomez, F., Schmidhuber, J., 2006. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd International Conference on Machine Learning. pp.
369–376.

Graves, A., Mohamed, A.-r., Hinton, G., 2013. Speech recognition with deep recurrent
neural networks. In: 2013 IEEE International Conference on Acoustics, Speech and
Signal Processing. Ieee, pp. 6645–6649.

Guo, S., Huang, W., Zhang, H., Zhuang, C., Dong, D., Scott, M.R., Huang, D.,
2018. Curriculumnet: Weakly supervised learning from large-scale web images. In:
Proceedings of the European Conference on Computer Vision. ECCV, pp. 135–150.

Guo, A., Kamar, E., Vaughan, J.W., Wallach, H., Morris, M.R., 2020. Toward fairness in
AI for people with disabilities SBG@ a research roadmap. ACM SIGACCESS Access.
Comput. (125), 1.

Hacohen, G., Weinshall, D., 2019. On the power of curriculum learning in training deep
networks. In: International Conference on Machine Learning. PMLR, pp. 2535–2544.

Higuchi, T., Saxena, S., Souden, M., Tran, T.D., Delfarah, M., Dhir, C., 2021. Dynamic
curriculum learning via data parameters for noise robust keyword spotting. In:
ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing. ICASSP, IEEE, pp. 6848–6852.

Jiang, L., Meng, D., Mitamura, T., Hauptmann, A.G., 2014. Easy samples first: Self-
paced reranking for zero-example multimedia search. In: Proceedings of the 22nd
ACM International Conference on Multimedia. pp. 547–556.

Jiang, L., Meng, D., Zhao, Q., Shan, S., Hauptmann, A.G., 2015. Self-paced curriculum
learning. In: Twenty-Ninth AAAI Conference on Artificial Intelligence.

Kala, T., Shinozaki, T., 2018. Reinforcement learning of speech recognition system
based on policy gradient and hypothesis selection. In: 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, pp.
5759–5763.

Karakasidis, G., Grósz, T., Kurimo, M., 2022. Comparison and analysis of new
curriculum criteria for end-to-end ASR. In: Proc. Interspeech 2022. pp. 66–70.
http://dx.doi.org/10.21437/Interspeech.2022-10046.

Kim, S., Seltzer, M., Li, J., Zhao, R., 2018. Improved training for online end-to-
end speech recognition systems. In: Proc. Interspeech 2018. pp. 2913–2917. http:
//dx.doi.org/10.21437/Interspeech.2018-2517.

Kingma, D.P., Ba, J., 2014. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kumar, M., Packer, B., Koller, D., 2010. Self-paced learning for latent variable models.
Adv. Neural Inf. Process. Syst. 23.

Kuznetsova, A., Kumar, A., Fox, J.D., Tyers, F.M., 2022. Curriculum optimization
for low-resource speech recognition. In: ICASSP 2022-2022 IEEE International
Conference on Acoustics, Speech and Signal Processing. ICASSP, IEEE, pp.
8187–8191.

Kuznetsova, A., Kumar, A., Tyers, F.M., 2021. A bandit approach to curriculum
generation for automatic speech recognition. arXiv:2102.03662 [cs, eess] URL
http://arxiv.org/abs/2102.03662.

Moisio, A., Porjazovski, D., Rouhe, A., Getman, Y., Virkkunen, A., AlGhezi, R.,
Lennes, M., Grósz, T., Lindén, K., Kurimo, M., 2022. Lahjoita puhetta: a large-
scale corpus of spoken finnish with some benchmarks. Lang. Resour. Eval. 33.
http://dx.doi.org/10.1007/s10579-022-09606-3.

Newport, E.L., 1990. Maturational constraints on language learning. Cogn. Sci. 14 (1),
11–28.

Ng, D., Chen, Y., Tian, B., Fu, Q., Chng, E.S., 2022. ConvMixer: Feature interactive
convolution with curriculum learning for small footprint and noisy far-field key-
word spotting. In: ICASSP 2022-2022 IEEE International Conference on Acoustics,
Speech and Signal Processing. ICASSP, IEEE, pp. 3603–3607.

Novoa, J., Fredes, J., Poblete, V., Yoma, N.B., 2018. Uncertainty weighting and
propagation in DNN–HMM-based speech recognition. Comput. Speech Lang. 47,
30–46, Publisher: Elsevier.

Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., Wermter, S., 2019. Continual lifelong
learning with neural networks: A review. 113, pp. 54–71,

Pavlov, P.I., 2010. Conditioned reflexes: an investigation of the physiological activity
of the cerebral cortex. Ann. Neurosci. 17 (3), 136, Publisher: SAGE Publications.

Penha, G., Hauff, C., 2019. Curriculum learning strategies for IR: An empirical study
on conversation response ranking. arXiv preprint arXiv:1912.08555.

Platanios, E.A., Stretcu, O., Neubig, G., Póczos, B., Mitchell, T., 2019. Competence-based
curriculum learning for neural machine translation. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). pp.
1162–1172.

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., Hanne-
mann, M., Motlicek, P., Qian, Y., Schwarz, P., et al., 2011. The kaldi speech
recognition toolkit. In: IEEE 2011 Workshop on Automatic Speech Recognition and
Understanding. Vol. CONF, IEEE Signal Processing Society.

Ranjan, S., Hansen, J.H.L., 2018. Curriculum learning based approaches for noise
robust speaker recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 26
(1), 197–210. http://dx.doi.org/10.1109/TASLP.2017.2765832, Conference Name:
IEEE/ACM Transactions on Audio, Speech, and Language Processing.

Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch, L., Sub-
akan, C., Dawalatabad, N., Heba, A., Zhong, J., et al., 2021. SpeechBrain: A
general-purpose speech toolkit. arXiv preprint arXiv:2106.04624.

http://arxiv.org/abs/1912.06670
http://dx.doi.org/10.1145/1553374.1553380
http://dx.doi.org/10.1145/1553374.1553380
http://dx.doi.org/10.1145/1553374.1553380
http://portal.acm.org/citation.cfm?doid=1553374.1553380
http://portal.acm.org/citation.cfm?doid=1553374.1553380
http://portal.acm.org/citation.cfm?doid=1553374.1553380
http://dx.doi.org/10.23919/EUSIPCO.2017.8081267
http://dx.doi.org/10.23919/EUSIPCO.2017.8081267
http://dx.doi.org/10.23919/EUSIPCO.2017.8081267
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb4
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb4
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb4
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb4
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb4
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb4
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb4
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb5
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb5
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb5
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb5
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb5
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb6
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb6
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb6
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb7
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb8
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb8
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb8
https://github.com/aalto-speech/speechbrain-cl
https://github.com/aalto-speech/speechbrain-cl
https://github.com/aalto-speech/speechbrain-cl
http://arxiv.org/abs/1211.3711
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb11
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb11
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb11
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb11
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb11
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb12
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb12
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb12
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb12
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb12
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb12
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb12
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb13
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb13
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb13
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb13
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb13
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb14
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb14
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb14
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb14
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb14
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb15
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb15
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb15
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb15
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb15
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb16
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb16
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb16
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb17
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb17
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb17
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb17
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb17
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb17
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb17
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb18
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb18
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb18
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb18
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb18
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb19
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb19
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb19
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb20
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb20
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb20
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb20
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb20
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb20
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb20
http://dx.doi.org/10.21437/Interspeech.2022-10046
http://dx.doi.org/10.21437/Interspeech.2018-2517
http://dx.doi.org/10.21437/Interspeech.2018-2517
http://dx.doi.org/10.21437/Interspeech.2018-2517
http://arxiv.org/abs/1412.6980
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb24
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb24
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb24
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb25
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb25
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb25
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb25
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb25
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb25
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb25
http://arxiv.org/abs/2102.03662
http://arxiv.org/abs/2102.03662
http://dx.doi.org/10.1007/s10579-022-09606-3
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb28
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb28
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb28
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb29
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb29
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb29
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb29
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb29
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb29
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb29
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb30
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb30
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb30
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb30
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb30
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb31
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb31
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb31
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb32
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb32
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb32
http://arxiv.org/abs/1912.08555
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb34
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb34
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb34
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb34
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb34
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb34
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb34
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb34
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb34
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb35
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb35
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb35
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb35
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb35
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb35
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb35
http://dx.doi.org/10.1109/TASLP.2017.2765832
http://arxiv.org/abs/2106.04624

Speech Communication 163 (2024) 103113

16

G. Karakasidis et al.

Rouhe, A., Van Camp, A., Singh, M., Van Hamme, H., Kurimo, M., 2021. An equal data
setting for attention-based encoder-decoder and HMM/DNN models: A case study
in finnish ASR. In: Speech and Computer: 23rd International Conference, SPECOM
2021, St. Petersburg, Russia, September 27–30, 2021, Proceedings 23. Springer, pp.
602–613.

Rousseau, A., Deléglise, P., Esteve, Y., 2012. TED-LIUM: an automatic speech
recognition dedicated corpus. In: LREC. pp. 125–129.

Shi, Y., Larson, M., Jonker, C.M., 2015. Recurrent neural network language model
adaptation with curriculum learning. Comput. Speech Lang. 33 (1), 136–154.
http://dx.doi.org/10.1016/j.csl.2014.11.004, URL https://linkinghub.elsevier.com/
retrieve/pii/S0885230814001211, Number: 1.

Tay, Y., Wang, S., Luu, A.T., Fu, J., Phan, M.C., Yuan, X., Rao, J., Hui, S.C., Zhang, A.,
2019. Simple and effective curriculum pointer-generator networks for reading
comprehension over long narratives. In: Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics. pp. 4922–4931.

Terbeh, N., Labidi, M., Zrigui, M., 2013. Automatic speech correction: A step to speech
recognition for people with disabilities. In: Fourth International Conference on
Information and Communication Technology and Accessibility. ICTA, IEEE, pp. 1–6.

Turkewitz, G., Kenny, P.A., 1982. Limitations on input as a basis for neural organization
and perceptual development: A preliminary theoretical statement. Dev. Psychobiol.:
J. Int. Soc. Dev. Psychobiol. 15 (4), 357–368.

Wang, X., Chen, Y., Zhu, W., 2021. A survey on curriculum learning. IEEE Trans.
Pattern Anal. Mach. Intell..

Wang, D., Wang, X., Lv, S., 2019. An overview of end-to-end automatic speech
recognition. Symmetry 11 (8), 1018, Publisher: Multidisciplinary Digital Publishing
Institute.

Watanabe, S., Hori, T., Karita, S., Hayashi, T., Nishitoba, J., Unno, Y., Soplin, N.E.Y.,
Heymann, J., Wiesner, M., Chen, N., Renduchintala, A., Ochiai, T., 2018. ESP-
net: End-to-end speech processing toolkit. http://dx.doi.org/10.48550/ARXIV.1804.
00015, URL https://arxiv.org/abs/1804.00015.

Yin, S., Liu, C., Zhang, Z., Lin, Y., Wang, D., Tejedor, J., Zheng, T.F., Li, Y., 2015.
Noisy training for deep neural networks in speech recognition. EURASIP J. Audio
Speech Music Process. 2015 (1), 1–14, Publisher: Springer.

Zaremba, W., Sutskever, I., 2015. Learning to execute. arXiv:1410.4615 [cs] URL
http://arxiv.org/abs/1410.4615.

Zhang, D., Han, J., Zhang, Y., Xu, D., 2019. Synthesizing supervision for learning deep
saliency network without human annotation. IEEE Trans. Pattern Anal. Mach. Intell.
42 (7), 1755–1769.

Zhou, T., Bilmes, J., 2018. Minimax curriculum learning: Machine teaching with
desirable difficulties and scheduled diversity. In: International Conference on
Learning Representations.

Zhou, T., Wang, S., Bilmes, J., 2020. Curriculum learning by dynamic instance hardness.
Adv. Neural Inf. Process. Syst. 33, 8602–8613.

Zhu, Y., Nie, J.-Y., Su, Y., Chen, H., Zhang, X., Dou, Z., 2022. From easy to hard:
A dual curriculum learning framework for context-aware document ranking. In:
Proceedings of the 31st ACM International Conference on Information & Knowledge
Management. pp. 2784–2794.

http://refhub.elsevier.com/S0167-6393(24)00084-0/sb38
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb38
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb38
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb38
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb38
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb38
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb38
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb38
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb38
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb39
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb39
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb39
http://dx.doi.org/10.1016/j.csl.2014.11.004
https://linkinghub.elsevier.com/retrieve/pii/S0885230814001211
https://linkinghub.elsevier.com/retrieve/pii/S0885230814001211
https://linkinghub.elsevier.com/retrieve/pii/S0885230814001211
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb41
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb41
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb41
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb41
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb41
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb41
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb41
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb42
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb42
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb42
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb42
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb42
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb43
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb43
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb43
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb43
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb43
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb44
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb44
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb44
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb45
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb45
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb45
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb45
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb45
http://dx.doi.org/10.48550/ARXIV.1804.00015
http://dx.doi.org/10.48550/ARXIV.1804.00015
http://dx.doi.org/10.48550/ARXIV.1804.00015
https://arxiv.org/abs/1804.00015
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb47
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb47
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb47
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb47
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb47
http://arxiv.org/abs/1410.4615
http://arxiv.org/abs/1410.4615
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb49
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb49
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb49
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb49
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb49
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb50
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb50
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb50
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb50
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb50
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb51
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb51
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb51
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb52
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb52
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb52
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb52
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb52
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb52
http://refhub.elsevier.com/S0167-6393(24)00084-0/sb52

