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Exploring the Impact of Fine-Tuning the

Wav2vec2 Model in Database-Independent
Detection of Dysarthric Speech

Farhad Javanmardi
and Paavo Alku

Abstract—Many acoustic features and machine learn-
ing models have been studied to build automatic detec-
tion systems to distinguish dysarthric speech from healthy
speech. These systems can help to improve the reliabil-
ity of diagnosis. However, speech recorded for diagnosis
in real-life clinical conditions can differ from the train-
ing data of the detection system in terms of, for exam-
ple, recording conditions, speaker identity, and language.
These mismatches may lead to a reduction in detection per-
formance in practical applications. In this study, we inves-
tigate the use of the wav2vec2 model as a feature extractor
together with a support vector machine (SVM) classifier to
build automatic detection systems for dysarthric speech.
The performance of the wav2vec2 features is evaluated
in two cross-database scenarios, language-dependent and
language-independent, to study their generalizability to un-
seen speakers, recording conditions, and languages before
and after fine-tuning the wav2vec2 model. The results re-
vealed that the fine-tuned wav2vec2 features showed bet-
ter generalization in both scenarios and gave an absolute
accuracy improvement of 1.46%—-8.65% compared to the
non-fine-tuned wav2vec? features.

Index Terms—Dysarthria, fine-tuning, self-supervised
learning, wav2vec 2.0.

[. INTRODUCTION

YSARTHRIA occurs due to various neurodegenerative
D conditions and diseases, including stroke, cerebral palsy,
Parkinson’s disease, and amyotrophic lateral sclerosis. These
conditions affect muscle control in organs (the lips, tongue, and
throat) involved in speech production [1]. Therefore, individuals
with dysarthria often produce speech characterized by abnormal-
ities in phonatory, resonatory, articulatory, and prosodic aspects
of speech [2]. Automatic detection of dysarthria from acoustic
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speech signals has become a widely-studied research topic due to
progress in signal processing and machine learning. Automatic
detection systems can be used as effective tools to facilitate the
clinical diagnosis and treatment of dysarthria. The techniques
studied in dysarthric speech detection are mainly based on the
popular two-stage architecture consisting of separate feature
extraction and classification stages. The detection system is built
by training a machine learning algorithm based on supervised
learning using a set of collected speech samples and their labels
(healthy vs. dysarthric).

Research on automatic, speech-based detection of dysarthria
has mainly been conducted by using speech samples from just
one database and the popular cross-validation (CV) approach in
which the system is trained and tested using samples of the cor-
responding database. The databases used in the study area have
mainly been recorded in controlled laboratory environments
using professional equipment. However, when these detection
systems are applied in medical diagnosis using realistic test
speech samples recorded in clinical environments, the system
performance may decrease because several factors (e.g. the level
of environment noise, recording equipment, speaker identity,
language) can be different between training and inference. In
order to enhance the generalization ability of detection systems
to data from unseen speakers and recording conditions, a large
amount of training data is needed. In the area of dysarthria
detection, the amount of available training data is, however,
much smaller compared to areas such as speech synthesis and
automatic speech recognition (ASR). In order to artificially
increase the volume of training data, a widely used approach is
to employ data augmentation (DA) [3], [4]. Ideally, the new data
generated by DA should enrich the training data by introducing
natural variability generated by different speakers and recording
conditions [4], [5].

Another approach to enrich the training data is to use self-
supervised deep learning models such as the wav2vec2 [6] that
have become highly popular in the past few years. Such models
have been pre-trained in an unsupervised manner on large speech
datasets to be used in automatic speech recognition (ASR)
tasks. Several studies have shown that the so-called context
embeddings extracted from the transformer layers of the pre-
trained wav2vec2 model contain information that is useful for a
wide variety of speech-related tasks, including dysarthric speech
detection [7], [8], [9], [10], [11], [12]. Therefore, the pre-trained
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models can serve as powerful feature extractors in detection sys-
tems based on the two-stage pipeline architecture [11], [13]. The
main advantage of pre-trained models is that they can be easily
fine-tuned using small amounts of labeled data to achieve state-
of-art results in the required task [14], [15], [16], [17]. When
the wav2vec2 model is fine-tuned on a specific task, the model
is capable of using its knowledge of general characteristics of
speech that it has learned by seeing a large amount of speech
data in the pre-training phase. This learned knowledge allows
the wav2vec model to adapt to the nuances of a new task. In fact,
the pre-trained wav2vec2 model simply refines its pre-learned
representations to align with the unique characteristics of the
new task, without the need to learn these representations again.
This capability dramatically reduces the necessity to use large
volumes of labeled data for fine-tuning and enables building
better classification systems with small data. This adaptability
and efficiency of the pre-trained wav2vec2 model in learning
from small amount of labeled data is a considerable advantage
in fields such as pathological speech detection where most
datasets are relatively small. In addition, the pre-trained model is
beneficial for the task in which out-of-domain data is used [18],
because pre-training the models on extensive datasets inherently
develops robustness with respect to variations and noise. This
robustness translates into a strong generalization ability when
applied to out-of-domain data.

Previous studies on dysarthria detection have mainly focused
on designing handcrafted acoustic features that characterize
phonation, articulation, and prosodic aspects of speech pro-
duction [19], [20], [21], [22], [23], [24], [25], [26]. In [27],
[28], the single frequency filtering-based features were investi-
gated for dysarthric speech detection. In [29], automatic feature
extraction from raw speech waveforms was studied using a
fully-learnable audio frontend. Due to success of deep learning
(DL) in several speech processing tasks, many studies have
recently explored various DL-based techniques in the detection
of dysarthric speech [30], [31], [32], [33], [34], [35], [36].
DL-based techniques for dysarthria detection include mapping
from handcrafted acoustic features to output labels, as well as
modern end-to-end systems in which the raw speech signal or
time—frequency spectrogram is directly used by a DL model
to compute the output labels. However, even though the modern
end-to-end DL techniques have shown significant progress, they
can still be criticized for the following two major issues: 1) large
amounts of speech data are needed in the system training [37],
and 2) interpretability of results provided by DL approaches is
difficult and therefore the clinical relevance of the technology
might be questioned by specialists [38].

While the aforementioned studies have demonstrated promis-
ing performance in dysarthric speech detection through both the
development of handcrafted acoustic features and the applica-
tion of advanced DL techniques, the necessity for further verifi-
cation in cross-database scenarios (i.e., training and testing the
system using different databases) remains an important research
topic. Studying cross-database scenarios enables assessing the
effect of different mismatches (e.g., recording environment,
equipment, and language) between the system training and test-
ing. In the field of pathological speech detection, several studies
have investigated cross-database scenarios in one language or

across different languages for voice disorder detection [10],
[39], [40], Parkinson’s disease detection [41], [42], and dementia
detection [43]. To the best of our knowledge, however, only three
studies have investigated cross-database scenarios in dysarthric
speech detection [44], [45], [46]. In [44], the usage of spectral
and prosodic features was studied in cross-database experiments.
The experiments of [45] explored a specific disease (hypoki-
netic dysarthria for Parkinson’s disease) in cross-language ex-
periments using mel frequency cepstral coefficients (MFCCs)
along with prosodic features. In [46], domain-adversarial train-
ing and mutual information minimization were proposed to
extract domain-invariant biomarker embeddings from acoustic
features (e.g., mel-spectrogram) in cross-database dysarthric
speech detection. Importantly, pre-trained models have not been
studied before as feature extractors in cross-database scenarios
in detection of dysarthria.

In this paper, we investigate the effectiveness of fine-tuning
the wav2vec2 model as a feature extractor in dysarthric speech
detection. More specifically, the features extracted using the
fine-tuned wav2vec2 model are compared in two scenarios
where training and testing of the systems were first conducted
with two different English databases, and then training and
testing of the systems were carried out using two databases rep-
resenting two different languages (English and Italian). In these
experiments, we used wav2vec2-BASE [6] as an English-based
wav2vec2 model and wav2vec2-XLSR [47] as a multilingual
wav2vec2 model.

The main contributions of this study are:

¢ Conducting a layer-by-layer comparison between fea-
tures extracted by the fine-tuned wav2vec2 model and by
the non-fine-tuned wav2vec2 model in the detection of
dysarthria (healthy vs. dysarthric).

e Studying the detection of dysarthria in a language-
dependent and language-independent scenario using a
wav2vec2 model trained in English (wav2vec2-BASE)
and a multilingual wav2vec2 model (wav2vec2-XLSR).

® Presenting new results on speech-based biomarking of
dysarthria showing that the fine-tuned wav2vec2 fea-
tures improved the performance in the detection of the
disease.

[I. DATABASES

The current study uses three publicly available dysarthria
databases. Two of the databases include speech spoken in En-
glish, and one of the databases includes speech spoken in Italian.
The two English databases are the Universal Access Speech
(UA-Speech) database [19] and the TORGO database [48]. The
Italian database used is EasyCall [49].

A. UA-Speech

This database comprises 15 dysarthric speakers (4 females, 11
males) with cerebral palsy and 13 healthy controls (4 females,
9 males), aged between 18 and 58 years [19]. Each speaker
produced 765 isolated words in three blocks, each containing
255 words. Among these, 155 words are common to all blocks,
encompassing 19 computer commands, 26 radio alphabet letters,
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10 digits, and the 100 most common English words. The remain-
ing 100 words in each block were chosen from Project Guten-
berg novels. Speech was recorded using an eight-microphone
array using a sampling frequency of 16 kHz, with micro-
phones spaced 1.5 inches apart. This study utilized speech ut-
terances from all three blocks, captured by microphone number
SIX.

B. TORGO

This database comprises recordings from 8 patients (3 fe-
males, 5 males) diagnosed with cerebral palsy or amyotrophic
lateral sclerosis (ALS) and 7 healthy control speakers (3 females,
4 males), aged between 16 and 50 years. TORGO includes three
categories of speech signals: non-words, words, and sentences.
The non-words category features repetitions of /iy — p — ah/, lah
—p—iyl,Ip—ah—t—ah—-k—ahl/, and vowels at high and low
pitches, each lasting 5 seconds. The words category contains 50
words from the Frenchay Dysarthria Assessment [50] and 360
words from the Yorkston-Beukelman Assessment of Intelligibil-
ity of Dysarthric Speech. The sentences are drawn from various
sources, totaling 162 sentences from the Yorkston-Beukelman
Assessment, 460 sentences from the MOCHA database, the
Grandfather passage from the Nemours database [51], and
spontaneously elicited descriptive texts. Recordings were made
using a head-mounted microphone and an array microphone,
sampled at 16 kHz. This study used all three categories of speech
signals (i.e., non-words, words and sentences) from the array
microphone [48].

C. EasyCall

The EasyCall database encompasses recordings from a total of
24 healthy speakers (10 females and 14 males) and 31 dysarthric
speakers (11 females and 20 males) [49]. Various underlying
conditions contributing to dysarthria, such as Parkinson’s dis-
ease, Huntington’s disease, amyotrophic lateral sclerosis, pe-
ripheral neuropathy, and myopathic or myasthenic lesions, are
represented by the database. The degree of speech impairment
of the dysarthric speakers was assessed by neurologists through
the therapy outcome measure (score ranges from 1-5 corre-
sponding to mild, mild-moderate, moderate, moderate-severe,
and severe). The data consists of 37 commands, encompassing
words and sentences pertinent to the specific task at hand, as
well as 30 non-command utterances. Each participant performed
between 2 to 8 sessions and in each recording session, the
speaker repeated one utterance. Consequently, the dataset com-
prises 21,386 recordings, with 10,077 from healthy speakers and
11,309 from dysarthric speakers. The speech was recorded using
a sampling frequency of 8 kHz. In this study, speech utterances
including words and sentences from all recording sessions were
used. Fig. 3 shows the details of the UA-Speech, TORGO and
EasyCall databases.

[ll. DETECTION SYSTEM

This study explores the effect of fine-tuning the wav2vec2
model as a feature extractor in binary classification problems

Q h
P

Database

Training

Feature extraction using

W _' a fine-tuned wav2vec2 model| | Classifier

Testing

Speech
Database

. Feature extraction using L, Trained ‘_> Prediction
 |a fine-tuned wav2vec2 model model | (healthy/dysarthric)

Fig. 1. Proposed system for database-independent detection of
dysarthric speech using features derived from the fine-tuned wav2vec2
model and using SVM as a classifier.

to distinguish dysarthric speech from healthy speech automati-
cally (i.e., a detection problem) in the following two scenarios:
(1) in a cross-database language-dependent scenario where the
training and testing of the detection system are carried out using
two different dysarthric databases, sharing the same language
(i.e., English), and (2) in a cross-database language-independent
scenario where the detection experiments are conducted using
two different dysarthric databases with different languages (i.e.,
English and Italian). Fig. 1 shows the systems built using the
popular two-stage pipeline approach (consisting of a feature
extraction stage and a classifier stage) for the two scenarios
mentioned above. In the feature extraction stage, the feature
vectors are derived from raw speech waveforms using two pop-
ular pre-trained models (wav2vec2-BASE [6] and wav2vec2-
XLSR [47]) that were fine-tuned using the dysarthric databases
as described in Section III-B). The classifier stage uses a support
vector machine (SVM) to predict the output labels (healthy vs.
dysarthric). The feature extraction and classifier are explained
in the following sub-sections.

A. Pre-Training of the wav2vec2 Model

The selected pre-trained wav2vec2 models used as feature
extractors for the detection problem are the English-based
wav2vec2-BASE model and the multilingual wav2vec2-XLSR
model. In our initial study [11], we found that the features
extracted from the starting layers of the wav2vec2-BASE model,
which was pre-trained on 960 hours of speech from the English
Librispeech corpus [6], showed a better capability to distin-
guish between healthy and dysarthric speech. Therefore, in the
present investigation, we decided to study the fine-tuning of the
wav2vec2-BASE model for cross-database scenarios involving
the English language. For cross-database scenarios involving
different languages, we considered the use of the wav2vec2-
XLSR model, which was originally pre-trained on a combi-
nation of three ASR databases, encompassing 56,000 hours
of speech representing 53 different languages. The wav2vec2
model uses a multi-layer convolutional feature encoder, a con-
text network, and a quantization module. The context network
contains 12 transformer blocks with a model dimension of
768 for the wav2vec2-BASE model and 12 transformer blocks
with a model dimension of 1024 for the wav2vec2-XLSR
model.
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TABLE |
DETAILS OF THE DATABASES USED IN THE CURRENT STUDY
Database Language | Speaking Task Amount of data (=) | Speaker Class No. of Speakers
Male | Female | Total
UA-Speech | English Words 15 hours Healthy 9 4 13
Dysarthric 11 4 15
TORGO English Non-words, Words, and Sentences | 4 hours Healthy 4 3 7
Dysarthric 5 3 8
EasyCall Italian Words and Sentences 13 hours Healthy 14 10 24
Dysarthric 20 11 31
wav2vec2 model wav2vec2-XLSR model, the context network contains 24 trans-
Speech Feature Encoder Context Network

Database

\'4
Update all layers

Fig. 2. Overview of the fine-tuning of the wav2vec2 model.

B. Fine-Tuning of the wav2vec2 Model

Fig. 2 shows the fine-tuning process for the wav2vec2 model.
The feature encoder and context network of wav2vec2 are
fine-tuned on the labeled healthy and dysarthric speech data
by adding two new fully-connected layers, where the second
fully-connected layer performs the binary detection (i.e., clas-
sifying the input as healthy speech or dysarthric speech). The
two added fully-connected layers are randomly initialized and
the wav2vec2 models (wav2vec2-BASE and wav2vec2-XLSR)
are initialized with the original models released in [6], [47]. The
models are optimized using the cross-entropy loss function. As
hyper-parameters used for fine-tuning the wav2vec2 models, a
batch size of 8 and the Adam optimizer with a learning rate of 3e-
5 are used. Because the wav2vec2 models were originally trained
with speech spoken by a large number of healthy speakers, the
fine-tuning of the wav2vec2 models was conducted using all the
dysarthric samples and 20% of the healthy samples of the speech
database. It should be noted that the three speech databases
(UA-Speech, TORGO and EasyCall) were individually used
to fine-tune the wav2vec2 models. This process resulted in 6
fine-tuned models (3 wav2vec2-BASE and 3 wav2vec2-XLSR
models that were fine-tuned using the UA-Speech, TORGO and
EasyCall databases).

C. Feature Extraction Using the Fine-Tuned wav2vec2
Models

After fine-tuning the wav2vec2 models, the outputs from each
of the transformer layers of the context network are utilized as
features in dysarthric speech detection. More specifically, thir-
teen 768-dimensional feature vectors (i.e., the temporal average
of the inputs to the first transformer layer and the outputs of
all 12 transformer layers) are derived for each speech signal
using the fine-tuned wav2vec2-BASE model. For the fine-tuned

former blocks with a model dimension of 1024. Therefore,
twenty-five 1024-dimensional feature vectors are extracted for
each speech signal. The first feature vector is the temporal aver-
age of the inputs to the first transformer layer and the remaining
feature vectors are the outputs of all 24 transformer layers.

In the following sections, we use the term “FT-wav2vec2-
BASE features” when referring to the feature vectors extracted
using the fine-tuned wav2vec2-BASE model. Similarly, we use
the term “NO-FT-wav2vec2-BASE features” when referring to
the features extracted by the non-fine-tuned wav2vec2-BASE
model. Likewise, we denote the feature vectors derived from the
fine-tuned wav2vec2-XLSR model as the “FT-wav2vec2-XLSR
features,” and the features from the non-fine-tuned wav2vec2-
XLSR model as the “NO-FT-wav2vec2-XLSR features.” Addi-
tionally, when referring to the features from the N-th transformer
layer, we use the “FT-wav2vec2-BASE-N" notation.

D. Classifiers and Evaluation

In order to distinguish between healthy and dysarthric sam-
ples, the SVM classifier was chosen in the current study as it is
a very popular ML classifier in the detection and classification
of speech disorders [10], [11], [24]. The parameters used for the
SVM classifiers are as follows: radial basis function as kernel,
a regularization parameter value of 1, and the following scaling
v=1/(D-Var(X)) as gamma parameter, where D is the
dimensionality of the feature vectors and Var(X) is the variance
of the training data. Balanced detection accuracy (ACC) serves
as the primary metric for evaluation, and the results reported
in Section IV are discussed based on this metric. In addition,
four other evaluation metrics (sensitivity (SE), specificity (SP),
F1-score (F1), and equal error rate (EER)) are reported in order
to get a comprehensive overview of the results.

E. Experiments

The goal of the current study is to assess whether the fea-
tures extracted from the fine-tuned wav2vec2 models can re-
duce the training-testing mismatch caused by different record-
ing conditions, recording equipment, and language in the de-
tection of dysarthria. Therefore, the evaluation of the FT-
wav2vec2 features was conducted in the following two sce-
narios: (1) the cross-database language-dependent scenario in
which English databases were used for training (UA-Speech)
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and testing (TORGO) and vice versa and (2) the cross-database
language-independent scenario in which English databases
were used for training (UA-Speech/TORGO) and the Ital-
ian database (EasyCall) was used for testing and vice versa.
These two evaluation scenarios are described in more detail
below.

1) The Cross-Database Language-Dependent Scenario:
The evaluation of the wav2vec2 features was conducted in
three parts consisting of a single-database evaluation (using
the NO-FT-wav2vec?2 features) and a cross-database evaluation
(using the NO-FT-wav2vec2 and FT-wav2vec2 features). In the
single-database evaluation, only the data from an individual
database was used to train and evaluate the SVM classifiers (with
the leave-one-speaker-out (LOSO) cross-validation strategy).
This process was repeated for UA-Speech, TORGO and Easy-
Call. The single-database evaluation enables us to observe the
performance of the NO-FT-wav2vec?2 features in a scenario with
the same recording environment, equipment, and language in the
training and testing phases, where the speaker identity is the only
difference between the two phases. Hence, the single-database
evaluation assesses the ability of the NO-FT-wav2vec2 features
to generalize to unseen speakers. It can also be considered as
baseline for comparison with the cross-database scenarios using
the NO-FT-wav2vec2 and FT-wav2vec?2 features.

The cross-database evaluation was first conducted using the
NO-FT-wav2vec2 features and then using the FT-wav2vec2
features. In the cross-database evaluation, the training and test-
ing were carried out using data from different databases. The
detection systems were first trained using the UA-Speech data
and then evaluated using the TORGO data. This process was re-
peated using the TORGO samples as training data and using the
UA-Speech samples as testing data. The cross-database scenario
enables studying the generalizability of the NO-FT-wav2vec2
features in conditions when there is a mismatch due to recording
environment and equipment between training and testing but
no mismatch due to language. In addition, the sensitivity of the
NO-FT-wav2vec?2 features to the mismatch between training and
testing can be observed when compared with the single-database
scenario.

In the cross-database evaluation using the FT-wav2vec2 fea-
tures, we first trained the detection systems using the FT-
wav2vec2 features extracted from the UA-Speech data (i.e.,
the same data used for fine-tuning the wav2vec2 models).
Then we evaluated it using the FT-wav2vec?2 features extracted
from the TORGO data. Similarly, the system was trained using
the TORGO data (i.e., the same data used for fine-tuning the
wav2vec2 model) and then evaluated using the UA-Speech
data. This scenario enables us to assess the effectiveness of
features extracted using the fine-tuned models. Furthermore,
comparing this scenario to the one where the NO-FT-wav2vec2
features were used enables investigating whether fine-tuning can
reduce the training-testing mismatch caused by environmental
factors.

2) The Cross-Database Language-Independent Scenario:
In this scenario, the evaluation of the wav2vec2 features was
conducted in a similar manner as explained in Section III-E1 ex-
cept for the cross-database evaluation, in which the training and
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Fig. 3. Detection accuracy for the three baseline features (MFCCs,
openSMILE, and eGeMAPS) and for the best-performing wav2vec2-
BASE and wav2vec2-XLSR features for the UA-Speech, EasyCall, and
TORGO databases.

testing were carried out by using data from different databases
with different languages. We first trained the detection systems
using English speech samples of UA-Speech and then evaluated
them using Italian speech samples of EasyCall, and then trained
the systems using Italian samples of EasyCall and evaluated
them using English samples of UA-Speech. This process was
repeated using TORGO (for English samples) and EasyCall
(for Italian samples). The cross-database evaluation allows us
to study the generalizability of the FT-wav2vec2 features in
a scenario with different recording environments, equipment,
and language between training and testing. In addition, the
sensitivity of the FT-wav2vec2 features to the mismatch be-
tween training and testing caused by language can be assessed
when compared with the NO-FT-wav2vec2 features. Table II
gives a brief summary of all experiments conducted in this
study.

IV. RESULTS

This section reports the results obtained using the features de-
rived from the non-fine-tuned and fine-tuned wav2vec2-BASE
and wav2vec2-XLSR models. First, the results of the cross-
database language-dependent experiments are presented in Sec-
tion IV-A. Then the results of the cross-database language-
independent experiments are presented in Section IV-B. Before
reporting the main results of the current study, we briefly present
the results of the experiments where the features obtained from
the wav2vec2-BASE and wav2vec2-XLSR models were com-
pared with three baseline features that represent conventional
widely-used acoustical features (MFCCs [11], openSMILE [52],
and eGeMAPS [53]). In these experiments, the system training
and testing was based on the same database.

Fig. 3 shows the detection accuracies for the baseline features
and for the best-performing wav2vec2-BASE and wav2vec2-
XLSR features (see Figs. 4, 6, and 7) for the UA-Speech, Easy-
Call, and TORGO databases. It can be seen that the wav2vec2-
BASE and wav2vec2-XLSR features outperformed all three
baseline features for all databases (except for the TORGO
database, in which openSMILE showed a slightly higher de-
tection accuracy compared to the two wav2vec2 features). As
the wav2vec2 features performed better than the other features,
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TABLE Il

SUMMARY OF ALL EXPERIMENTS CONDUCTED IN THIS STUDY FOR THE LANGUAGE-DEPENDENT AND LANGUAGE-INDEPENDENT SCENARIOS

Language-dependent scenario

| Experiment | Train data | Test data | Feature | Evaluation strategy |
1. Single-database | UA-Speech | UA-Speech | NO-FT-wav2vec2 (no Fine-tuning) LOSO cross-validation
2. Single-database | TORGO TORGO NO-FT-wav2vec2 (no Fine-tuning) LOSO cross-validation
3. Single-database | EasyCall EasyCall NO-FT-wav2vec2 (no Fine-tuning) LOSO cross-validation
4. Cross-database UA-Speech | TORGO NO-FT-wav2vec2 (no Fine-tuning) Whole test data
5. Cross-database TORGO UA-Speech | NO-FT-wav2vec2 (no Fine-tuning) Whole test data
6. Cross-database UA-Speech | TORGO FT-wav2vec2 (Fine-tuned with train data) | Whole test data
7. Cross-database TORGO UA-Speech | FT-wav2vec2 (Fine-tuned with train data) | Whole test data
| Language-independent scenario
8. Cross-database UA-Speech | EasyCall NO-FT-wav2vec2 (no Fine-tuning) Whole test data
9. Cross-database EasyCall UA-Speech | NO-FT-wav2vec2 (no Fine-tuning) Whole test data
10. Cross-database | TORGO EasyCall NO-FT-wav2vec2 (no Fine-tuning) Whole test data
11. Cross-database | EasyCall TORGO NO-FT-wav2vec2 (no Fine-tuning) Whole test data
12. Cross-database | UA-Speech | EasyCall FT-wav2vec2 (Fine-tuned with train data) | Whole test data
13. Cross-database | EasyCall UA-Speech | FT-wav2vec2 (Fine-tuned with train data) | Whole test data
14. Cross-database | TORGO EasyCall FT-wav2vec2 (Fine-tuned with train data) | Whole test data
15. Cross-database | EasyCall TORGO FT-wav2vec2 (Fine-tuned with train data) | Whole test data

The term “NO-FT-wav2vec2” refers to the feature vectors extracted using the non-fine-tuned wav2vec2 models. Similarly, “FT-wav2vec2”
refers to the feature vectors extracted using the fine-tuned wav2vec2 models. LOSO refers to leave-one-speaker-out cross-validation

strategy.
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Fig. 4. Detection accuracy for the wav2vec2-BASE features (left panel) and for the wav2vec2-XLSR features (right panel). The following conditions

are shown: (1) The single-database scenario (training and testing with the same data, i.e., UA;qin—U Atest and TORGOyyqin—TORGO¢cst), (2)
the cross-database scenario with two English databases (training with one data and testing with another data). In (2), testing was done using both
non-fine-tuned wav2vec?2 features (NO-FT) and fine-tuned wav2vec2 features (FT).

only the wav2vec? features are considered in the remainder of
this study.

A. Detection Results in the Cross-Database
Language-Dependent Scenarios

Fig. 4 displays the detection accuracies for the features derived
from the wav2vec2 models (wav2vec2-BASE and wav2vec2-
XLSR) in the single-database scenario, and also for the fea-
tures derived from the non-fine-tuned and fine-tuned models in
the cross-database scenarios using two English databases (UA-
Speech and TORGO). The results in Fig. 4 show for both mod-
els (wav2vec2-BASE and wav2vec2-XLSR) that in the single-
database scenarios (training and testing with the same data,

i.e., UAt'rain_UAtest and TORGOtTain—TORGOtest), all the
layer-wise features performed better than in the cross-database
scenarios (i.e., training with one dataset and testing with another
dataset, e.g., TORGO¢y-qin—U A;cs; and vice versa), regardless
of whether the models were fine-tuned (FT) or not (No-FT).
In the cross-database scenarios, it is evident that the fine-tuned
(FT) model features outperformed the non-fine-tuned (No-FT)
model features.

The performance of the best-performing features in the single-
database and cross-database scenarios for the UA-speech and
TORGO databases is given in Table III. From the results of the
wav2vec2-BASE model (left side of the table), it can be observed
that when the system was trained with TORGO and tested with
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TABLE IlI
PERFORMANCE METRICS OF THE SINGLE-DATABASE AND CROSS-DATABASE SCENARIOS FOR THE BEST PERFORMING FEATURES (WAV2VEC2-BASE (LEFT
SIDE OF THE TABLE) AND WAV2VEC2-XLSR (RIGHT SIDE OF THE TABLE)) USING THE UA-SPEECH AND TORGO DATABASES

[ wav2vec2-BASE model ]

[ wav2vec2-XLSR model ]

[ Feature [ACC] SE | SP [ F1 [ ERR ]

[ Feature [ACC] SE | SP | F1I [ ERR

UA-Speech (trained also on UA-Speech)

UA-Speech (trained also on UA-Speech)

wav2vec2-BASE-1 [ 93.96 [ 0.93 [ 0.95 [ 0.94 [ 0.059

wav2vec2XLSR-3 | 95.53 | 093 [ 0.98 | 0.96 | 0.044

UA-Speech (trained on TORGO)

UA-Speech (trained on TORGO)

NO-FT-wav2vec2-BASE-12 | 66.09 | 0.61 | 0.72 | 0.66 | 0.341

NO-FT-wav2vec2-XLSR-25 | 76.67 | 0.81 | 0.72 | 0.79 | 0.226

FT-wav2vec2-BASE-11 68.65 | 0.66 | 0.72 | 0.69 | 0311

FT-wav2vec2-XLSR-21 78.67 | 0.85 | 0.71 | 0.81 | 0.201

TORGO (trained also on TORGO)

TORGO (trained also on TORGO)

wav2vec2-BASE-12 [ 72.77 [ 0.61 [ 0.84 [ 0.64 [ 0.385

wav2vec2XLSR-24 | 7121 | 059 | 083 | 062 | 0.383

TORGO (trained on UA-Speech)

TORGO (trained on UA-Speech)

NO-FT-wav2vec2-BASE-13 | 56.40 | 0.62 | 0.50 | 0.49 | 0.405

NO-FT-wav2vec2-XLSR-25 | 36.61 | 0.62 | 0.11 | 037 | 0.422

FT-wav2vec2-BASE-13 61.20 | 0.67 | 0.55 | 0.54 | 0.367

FT-wav2vec2-XLSR-13 38.07 | 0.58 | 0.18 | 0.37 | 0.396

The number at the end of each feature refers to the number of the corresponding layer of the pre-trained model. ACC, SE, SP, F1, and EER refer to accuracy,

sensitivity, specificity, F1-score, and equal error rate, respectively.

UA-Speech with no fine-tuning (NO-FT-wav2vec2-BASE-12),
the performance dropped drastically in comparison to when the
system was both trained and tested using UA-Speech, decreasing
from 93.96% to 66.09% (i.e., an absolute drop of 27.87%).
Similarly, when the system was trained using UA-Speech and
tested using TORGO, the performance dropped in comparison to
when it was trained and tested using TORGO, decreasing from
72.77% to 56.40% (i.e., an absolute drop of 16.37%). When the
models were fine-tuned (FT-wav2vec2-BASE), the performance
improved in both scenarios. The absolute accuracy improvement
was 2.5% (from 66.09% to 68.65%) for UA-Speech and 4.8%
(from 56.40% to 61.20%) for TORGO.

From the results of the wav2vec2-XLSR model (right side
of the table), it can be observed that when the system was
trained using TORGO and tested using UA-Speech with no fine-
tuning (NO-FT-wav2vec2-XLSR-25), the performance dropped
in comparison to when it was trained and tested using UA-
Speech, decreasing from 95.53% to 76.67% (i.e., an absolute
drop of 18.86%). Similarly, when the system was trained using
UA-Speech and tested using TORGO, the performance dropped
drastically in comparison to when it was trained and tested
using the TORGO samples alone, decreasing from 71.21% to
36.61% (i.e., an absolute drop of 34.6%). When the models
were fine-tuned (FT-wav2vec2-XLSR), the performance im-
proved in both scenarios. The absolute accuracy improvement
was 2% (from 76.67% to 78.67%) for UA-Speech and 1.46%
(from 36.61% to 38.07%) for TORGO. Between the two mod-
els (wav2vec2-BASE and wav2vec2-XLSR), wav2vec2-XLSR
performed better, especially when the system was trained us-
ing TORGO and tested using UA-Speech. However, further
investigation is required to understand the poorer performance
found for wav2vec2-XLSR when the system was trained with
UA-Speech and tested with TORGO.

Confusion matrices are shown in Fig. 5 for the best performing
non-fine-tuned and fine-tuned wav2vec2-BASE features for the
system trained using UA-Speech and tested using TORGO.
It can be seen that there are less confusions between healthy
and dysarthric speech for the fine-tuned wav2vec2-BASE fea-
ture (FT-wav2vec2-BASE-13) compared to the non-fine-tuned
wav2vec2-BASE feature (NO-FT-wav2vec2-base-13).

Confusion Matrices

NO-FT-wav2vec2-BASE-13 FT-wav2vec2-BASE-13
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Fig. 5. Confusion matrices of dysarthria detection in the cross-

database language-dependent scenario for NO-FT-wav2vec2-BASE-
13 (the best performing non-fine-tuned wav2vec2-BASE feature) and
for FT-wav2vec2-BASE-13 (the best performing fine-tuned wav2vec2-
BASE feature).

B. Detection Results in the Cross-Database
Language-Independent Scenarios

Fig. 6 displays the detection accuracies for the features derived
from the wav2vec2 models (wav2vec2-BASE and wav2vec2-
XLSR) in the single-database scenario, and also for the fea-
tures derived from the non-fine-tuned and fine-tuned models in
the cross-database scenarios using one English database (UA-
Speech) and one Italian database (EasyCall). Other evaluation
metrics are provided in Table I'V for the best-performing features
from both scenarios (single-database and cross-database) for the
UA-Speech and EasyCall databases.

From the results reported in Table IV for the wav2vec2-BASE
model (left side of the table), it can be observed that when
the system was trained using EasyCall and tested with UA-
Speech with no fine-tuning (NO-FT-wav2vec2-BASE-4), the
performance dropped from 93.96% to 70.52% in comparison to
when it was trained and tested with UA-Speech (i.e., an absolute
drop of 23.44%). Similarly, when the system was trained with
UA-Speech and tested with EasyCall, the performance dropped
in comparison to when it was trained and tested with EasyCall,
decreasing from 87.58% to 68.46% (i.e., an absolute drop of



4958

IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 28, NO. 8, AUGUST 2024

=4 UAvain = UArest
EasyCallyain — UArest(NO — FT)

wav2vec2-BASE

wav2vec2-XLSR

e~ EasyCallysn — UAest (FT) ] 100
—— EasyCallyain — EasyCalliest Eh ik Gt ot ST S G YR N G SN St SRR S N
% e G UAtrain — EasyCalleest(NO — FT) 90
=@~ UAqain — EasyCallest(FT)
P it T sl N g
_ . =" e Pt
S ﬁ’/’ e R = '*-r’l PN T
= 70 ; _ gL ——s S SRR = 70 K S Al
§ g Lt T § / /\\ iaad
3 60 e S 60 / FAE
o1 e g © Va4
< o < [AAPSNESRPSEY EE &
50 50
40 40
30 30
1 2 3 4 5 6 7 8 9 10 11 12 13 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Layer-wise features Layer-wise features
Fig. 6. Detection accuracy for the wav2vec2-BASE features (left panel) and for the wav2vec2-XLSR features (right panel). The following conditions

are shown: (1) The single-database scenario (training and testing with the same data, i.e., U Aty qin—U Atest and FasyCalliyqin—FasyCalliest),
(2) the cross-database scenario using an English database and an Italian database (training with one data and testing with another data). In (2),
testing was done using both non-fine-tuned wav2vec?2 features (NO-FT) and fine-tuned wav2vec2 features (FT).

TABLE IV
PERFORMANCE METRICS OF THE SINGLE-DATABASE AND CROSS-DATABASE SCENARIOS FOR THE BEST PERFORMING FEATURES (WAV2VEC2-BASE (LEFT
SIDE OF THE TABLE) AND WAV2VEC2-XLSR (RIGHT SIDE OF THE TABLE)) USING THE UA-SPEECH AND EASYCALL DATABASES

\ wav2vec2-BASE model |

\ wav2vec2-XLSR model |

[ Feature [ ACC] SE [ SP | F1 [ ERR

\ Feature [ ACC] SE | SP [ F1 [ ERR

UA-Speech (trained also on UA-Speech) UA-Speech (trained also on UA-Speech)

wav2vec2-BASE-1 [ 9396 [ 0.93 ] 0.95 ] 0.94 [ 0.059 wav2vec2-XLSR-3 [ 9553 10937098 ] 096 [ 0.044

UA-Speech (trained on EasyCall) UA-Speech (trained on EasyCall)
NO-FT-wav2vec2-BASE-4 | 70.52 | 0.82 | 0.57 | 0.75 | 0.287 NO-FT-wav2vec2-XLSR-6 | 75.53 | 0.58 | 0.96 | 0.72 | 0.232
FT-wav2vec2-BASE-3 7587 | 0.76 | 0.76 | 0.77 | 0.242 FT-wav2vec2-XLSR-15 81.84 | 0.73 | 0.92 | 0.81 | 0.181

EasyCall (trained also on EasyCall) EasyCall (trained also on EasyCall)
wav2vec2-BASE-9 [ 8758 ] 0.87 [ 0.88 ] 0.88 [ 0.130 wav2vec2-XLSR-24 [ 89.48 1090 ] 0.89 [ 0.90 [ 0.113

EasyCall (trained on UA-Speech) EasyCall (trained on UA-Speech)
NO-FT-wav2vec2-BASE-7 | 68.46 | 0.83 | 0.54 | 0.74 | 0.284 NO-FT-wav2vec2-XLSR-25 | 68.39 | 0.79 | 0.58 | 0.73 | 0.247
FT-wav2vec2-BASE-5 70.76 | 0.69 | 0.72 | 0.71 | 0.287 FT-wav2vec2-XLSR-21 77.04 1 0.84 | 0.70 | 0.79 | 0.227

The number at the end of each feature refers to the number of the corresponding layer of the pre-trained model. ACC, SE, SP, F1, and EER refer to accuracy,

sensitivity, specificity, F1-score, and equal error rate, respectively.

19.12%). When the models were fine-tuned (FT-wav2vec2-
BASE), the performance improved in both scenarios. An abso-
Iute improvement of 5.35% and 2.3% in accuracy was obtained
for UA-Speech and EasyCall, respectively.

From the results of the wav2vec2-XLSR model (right side of
the table), it can be observed that when the system was trained
with EasyCall and tested with UA-Speech with no fine-tuning
(NO-FT-wav2vec2-XLSR-6), the performance dropped in com-
parison to when it was trained and tested with UA-Speech, de-
creasing from 95.53% to 75.53% (i.e., a drop of 20%). Similarly,
when the system was trained with UA-Speech and tested with
EasyCall, the performance dropped drastically in comparison
to when it was trained and tested with EasyCall, decreasing
from 89.48% to 68.39% (i.e., a drop of 21.09%). When the
models were fine-tuned (FT-wav2vec2-XLSR), the performance
improved in both scenarios. The absolute accuracy improve-
ment was 6.31% for UA-Speech and 8.65% for EasyCall. Be-
tween the two models (wav2vec2-BASE and wav2vec2-XLSR),
wav2vec2-XLSR performed better, especially when the system
was trained with EasyCall speech and tested with UA-Speech.

The detection accuracies using the TORGO and EasyCall
databases for the features derived from the wav2vec2 mod-
els (wav2vec2-BASE and wav2vec2-XLSR) in the single-
database scenario and also for the non-fine-tuned and fine-tuned

wav2vec? features in the cross-database scenarios are shown in
Fig. 7. Moreover, the performances of the best-performing fea-
tures from both the single-database and cross-database scenarios
arereported in Table V. From the results in Table V, it can be seen
that fine-tuning the model improved the detection performance
in terms of accuracy compared to the non-fine-tuned model,
and absolute improvements of 3.18% for TORGO and 3.81%
for EasyCall were achieved using the wav2vec2-BASE model.
For the wav2vec2-XLSR model, this improvement was 4.02%
for TORGO and 3.95% for EasyCall. Confusion matrices are
shown in Fig. 8 for the best performing non-fine-tuned and
fine-tuned wav2vec2-BASE features for the system trained using
UA-Speech and tested using EasyCall. It can be seen that there
are less confusions between healthy and dysarthric speech for
the fine-tuned wav2vec2-XLSR feature (FT-wav2vec2-XLSR-
21) compared to the non-fine-tuned wav2vec2-XLSR feature
(NO-FT-wav2vec2-XLSR-25).

Finally, the authors would like to point out that in addition to
the detection experiments that were reported above in Sections
IV-A and I'V-B, preliminary experiments were conducted to find
out how the dysarthria detection using the wav2vec2 features is
affected when a system trained with clean speech and tested
with noisy speech (i.e., another type of mismatch). For this
case, we used one type of additive noise (babble, SNR of 5 dB)
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Detection accuracy for the wav2vec2-BASE features (left panel) and for the wav2vec2-XLSR features (right panel). The following conditions

are shown: (1) The single-database scenario (training and testing with the same data, i.e., TORGO¢,qin—TORGOcs; and EasyCalliyqin—
FEasyCalliest), (2) the cross-database scenario using an English database and an ltalian database (training with one data and testing with another
data). In (2), testing was done using both non-fine-tuned wav2vec2 features (NO-FT) and fine-tuned wav2vec? features (FT).

TABLE V
PERFORMANCE METRICS OF THE SINGLE-DATABASE AND CROSS-DATABASE SCENARIOS FOR THE BEST PERFORMING FEATURES (WAV2VEC2-BASE (LEFT
SIDE OF THE TABLE) AND WAV2VEC2-XLSR (RIGHT SIDE OF THE TABLE)) USING THE TORGO AND EASYCALL DATABASES

‘ wav2vec2-BASE model |

‘ wav2vec2-XLSR model |

\ Feature [ ACC| SE | SP | FI | ERR | \ Feature [ACC] SE | SP [ F1 [ ERR |
TORGO (trained also on TORGO) TORGO (trained also on TORGO)
wav2vec2-BASE-12 \ 72.77 \ 0.61 \ 0.84 \ 0.64 \ 0.385 wav2vec2-XLSR-24 \ 71.21 \ 0.59 \ 0.83 \ 0.62 \ 0.383
TORGO (trained on EasyCall) TORGO (trained on EasyCall)
NO-FT-wav2vec2-BASE-3 | 60.87 | 0.59 | 0.62 | 0.51 | 0.408 NO-FT-wav2vec2-XLSR-5 | 66.28 | 040 | 0.93 | 0.51 | 0.426
FT-wav2vec2-BASE-5 64.05 | 053 | 0.75 | 0.53 | 0.402 FT-wav2vec2-XLSR-18 70.30 | 0.59 | 0.81 | 0.61 | 0.398
EasyCall (trained also on EasyCall) EasyCall (trained also on EasyCall)
wav2vec2-BASE-9 \ 87.58 \ 0.87 \ 0.88 \ 0.88 \ 0.130 wav2vec2-XLSR-24 \ 89.48 \ 0.90 \ 0.89 \ 0.90 \ 0.113
EasyCall (trained TORGO) EasyCall (trained on TORGO)
NO-FT-wav2vec2-BASE-9 | 62.05 | 0.32 | 0.92 | 0.46 | 0.340 NO-FT-wav2vec2-XLSR-22 | 71.60 | 0.81 | 0.62 | 0.75 | 0.263
FT-wav2vec2-BASE-7 65.86 | 047 | 0.85 | 0.58 | 0.335 FT-wav2vec2-XLSR-20 75.55 | 0.86 | 0.65 | 0.79 | 0.244

The number at the end of each feature refers to the number of the corresponding layer of the pre-trained model. ACC, SE, SP, F1, and EER refer to accuracy,

sensitivity, specificity, F1-score, and equal error rate, respectively.

Confusion Matrices
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Fig. 8. Confusion matrices of dysarthria detection in the cross-

database language-independent scenario for NO-FT-wav2vec2-XLSR-
21 (the best performing non-fine-tuned wav2vec2-XLSR feature) and for
FT-wav2vec2-XLSR-25 (the best performing fine-tuned wav2vec2-XLSR
feature).

and conducted our experiments only for the TORGO database.
Moreover, the conventional MFCCs features was used for com-
parison. From the results, it was found that the wav2vec?2 features
outperformed the MFCCs. This experiment suggests that the
wav2vec?2 features are more generalizable not only to different
databases and languages as shown in the current study but they
also show better robustness to noise conditions compared to
the conventional features. Robustness of the wav2vec? features

to mismatch caused by different noise conditions is, however,
outside the scope of this article and it calls for further studies.

V. SUMMARY AND CONCLUSION

In this paper, we studied the automatic detection of dysarthria
from speech signals by comparing features derived from
fine-tuned and non-fine-tuned wav2vec2 models (specifically
wav2vec2-BASE as a model trained with only English sam-
ples and wav2vec2-XLSR as a multilingual model trained
with samples representing many languages). This comparison
involved studying cross-database training and testing in two
scenarios: language-dependent and language-independent. In
the language-dependent scenario, we performed training and
testing of the systems using two English databases, namely
UA-Speech and TORGO. For the language-independent sce-
nario, the training and testing of the systems were conducted
using both an English database (UA-Speech/TORGO) and an
Italian database (EasyCall), and vice versa. In both scenarios, a
comparison with a single-database scenario (training and testing
the system with the same database) was conducted. The primary
goal of this study was to examine the effectiveness of fine-tuned
wav2vec features in generalizing to unseen speakers, recording
environments, and languages.
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The results showed that the performance of the non-fine-
tuned wav2vec2 features remarkably decreased when the sys-
tem trained with one English database and tested with another
English database was compared to the system trained and
tested with the same English database. Similarly, a decrease
in performance was found for a scenario, where databases of
different languages (English and Italian) were used for training
and testing. When the models (wav2vec2-BASE and wav2vec2-
XLSR) were fine-tuned, the performance was improved and
the improvements were between 1.46% and 4.8% (absolute) in
accuracy for the language-dependent scenario. For the language-
independent scenario, the fine-tuned wav2vec2 features showed
absolute accuracy improvements between 2.3% and 8.65%. The
reason why the fine-tuned wav2vec2 features improved detec-
tion performance is because the pre-trained wav2vec2 model has
learned general speech representations from a large amount of
data, and when fine-tuning is carried out on dysarthric speech
data, the model can transfer this general knowledge to better
represent dysarthric speech characteristics, including atypical
articulation, prosody, and phonation patterns. In other words,
fine-tuning allows the model to adapt its existing representations
to the specific traits of dysarthric speech, and this adaptation
enhances the model’s ability to discriminate between healthy
and dysarthric speech patterns.

A comparison between the two wav2vec2 models (wav2vec2-
BASE and wav2vec2-XLSR) indicates that wav2vec2-XLSR
performed better in both cross-database scenarios by show-
ing higher detection accuracy compared to the wav2vec-BASE
model. The improvement shown by wav2vec2-XLSR may be
due to fact that the model was pre-trained on a diverse set
of languages and designed to learn shared representations
across languages. When this multilingual model is fine-tuned on
dysarthric speech data from different languages, the model can
leverage these shared representations to capture cross-linguistic
dysarthric speech characteristics which results in enhanced gen-
eralization ability to unseen speakers and language. In addition,
this improvement can also be attributed to the differences in the
amount of training data and the complexity of the model param-
eters. The wav2vec2-XLSR model benefits from being trained
on a vast corpus comprising 56,000 hours of audio data of 56
different languages. This extensive training allows the model to
capture a broader spectrum of speech variations, including those
characteristic to dysarthric speech. The wav2vec2-BASE model
with fewer parameters trained on a much smaller dataset (960
hours of audio) showed a more pronounced decrease in detection
accuracy. This indicates that the wav2vec2-BASE model has a
narrower scope for learning such varied speech patterns. As a
result, the model’s complexity together with the larger training
dataset can influence the capacity of the model to learn and adapt
to diverse speech patterns, including pathological speech.

Two more observations that are worth mentioning can be
made from the results reported in Section IV. First, it was
found that the detection performance for the TORGO database in
the cross-database language-independent scenario (i.e., training
with EasyCall and testing with TORGO) was better compared
to the detection performance in the cross-database language-
dependent scenario (i.e., training with UA-Speech and testing

with TORGO). This improvement can be attributed to several
factors related to the distinct characteristics and composition of
the database involved. The UA-Speech database includes only
one speaking task (word pronunciation), whereas the number
of speaking tasks in EasyCall is two (pronunciation of words
and sentences) and in TORGO it is three (pronunciation of
non-words, words, and sentences). This overlap in the speaking
task between TORGO and EasyCall potentially enhances the
wav2vec2 model’s capability to extract more generalizable and
robust features, thereby improving performance in detecting
dysarthric speech for the TORGO database. Moreover, fine-
tuning the wav2vec2 model with the EasyCall database, which
is solely in Italian, introduces the model to a different linguistic
context with its unique phonetic and prosodic characteristics.
This exposure to the Italian language could still enrich the
model’s acoustic diversity. It may help the model in developing
refined sensitivity to variations in speech that transcends lan-
guage barriers, aiding in the identification of dysarthric speech
characteristics that are less language-dependent and more uni-
versally present across different speech disorders. This aspect of
cross-lingual training, even with a single non-English language,
might contribute to the model’s enhanced ability to generalize
across varied expressions of dysarthric speech. This observation
can also be seen from the results of the detection experiment in
which the system was trained with EasyCall and tested with
UA-Speech.

Second, the wav2vec2 features applied to TORGO showed a
different trend in results compared to UA-Speech (i.e., a raising
trend in the accuracy when moving from the first layer towards
the final layer). This implies that the features extracted from
final layers showed a better discriminability between healthy
and dysarthric speech. In contrast, our initial study [11] (which
focused exclusively on the wav2vec2-BASE model and utilized
only the UA-Speech database) demonstrated that the features
extracted from the starting layers of the wav2vec2-BASE model
showed a better capability to distinguish between healthy and
dysarthric speech, because these models were originally pre-
trained on a large amount of unlabeled data and fine-tuned
using a small set to perform automatic speech recognition
(ASR). Therefore, the early layers of these models primarily
tend to capture generic speech information. This information
includes acoustic properties such as pitch, formants, and timbre.
These features are vital for detecting dysarthria, which typically
presents with unusual articulation and acoustic fluctuations.
The observed discrepancies in detection accuracy between UA-
Speech and TORGO may be attributed to the unique attributes of
each database such as speaking task, the amount of data, diversity
of speech impairments, and varying levels of background noise.
Specifically, a richer and more complex database like TORGO
(with a broader range of speaking tasks) possibly benefits more
from the nuanced representations captured by the wav2vec2
model’s later layers. Conversely, the comparatively straightfor-
ward nature of the UA-Speech database might be sufficiently
addressed by the features extracted from the initial layers.

Taken together, the experimental findings of the study indicate
that fine-tuning the wave2vec2 models allows to extract features
that are more generalizable to different speakers, recording
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environments, and language in the cross-database scenarios.
Even though the multilingual wav2vec2-XLSR showed better
generalizability, there still exists a gap in its performance when
compared to the single-database scenario. Therefore, further
research is required to study the generalizability of the fine-tuned
models by investigating, for example, how much the severity
level of the disease (e.g., mildly dysarthric vs. healthy) affects
the detection performance. In addition, other popular pre-trained
models such as WavLM [54] and HuBERT [55] can be explored
in cross-database scenarios. Another potential future topic is
to continue the current work by studying the features of pre-
trained models in automatic multi-class classification of various
diseases from speech signals.
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