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The Probe-Particle Model combine theories designed for the simulation of scanning probe microscopy experiments, 
employing non-reactive, flexible tip apices to achieve sub-molecular resolution. In the article we present the latest 
version of the Probe-Particle Model implemented in the open-source ppafm package, highlighting substantial 
advancements in accuracy, computational performance, and user-friendliness. To demonstrate this we provide 
a comprehensive review of approaches for simulating non-contact Atomic Force Microscopy. They vary in 
complexity from simple Lennard-Jones potential to the latest full density-based model. We compared those 
approaches with ab initio calculated references, showcasing their respective merits. All parts of the ppafm package 
have undergone acceleration by 1-2 orders of magnitude using OpenMP and OpenCL technologies. The updated 
package includes an interactive graphical user interface and seamless integration into the Python ecosystem 
via pip, facilitating advanced scripting and interoperability with other software. This adaptability positions
ppafm as an ideal tool for high-throughput applications, including the training of machine learning models for 
the automatic recovery of atomic structures from nc-AFM measurements. We envision significant potential for 
this application in future single-molecule analysis, synthesis, and advancements in surface science in general. 
Additionally, we discuss simulations of other sub-molecular scanning-probe imaging techniques, such as bond-
resolved scanning tunneling microscopy and kelvin probe force microscopy, all built on the robust foundation of 
the Probe-Particle Model. Altogether this demonstrates the broad impact of the model across diverse domains of 
on-surface science and molecular chemistry.

1. Introduction

The first Scanning Tunneling Microscopy (STM) and Atomic Force 
Microscopy (AFM) instruments, developed in 1981 [1] and 1986 [2], 
respectively, showcased the ability to visualize individual atoms of in-
organic substrates. It took, however, another two decades of scanning 
probe microscopy (SPM) development to distinguish individual atoms 
inside organic molecules separated by a distance less than 1.5 Å, achiev-
ing sub-molecular resolution. This was accomplished by passivating the 
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apex of the metallic tip with an inert molecule (carbon monoxide, hy-
drogen) or atom (Xe) [3,4]. Due to their low reactivity, these tip apices 
reduce the possibility of damaging or manipulating the sample. Further-
more, the molecules are rather loosely attached to metallic tips, which 
makes them flexible. As a result, high-resolution scanning probe mi-
croscopy (HR-SPM) functions at low temperatures (≤ 10𝐾) to minimize 
thermal motion and prevent molecule desorption from the tip.

The flexibility of the molecule attached to the tip allows it to de-
flect during the interaction with the sample. The tip apex deflection 
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produces image distortions, which manifest themselves as either sharp 
lines at the ridges of the potential energy surface resembling bonds in 
HR-AFM [5] or a discontinuous contrast in the HR-STM images [5,6]. 
A similar effect can be also found in Inelastic Electron Tunnelling Spec-
troscopy (IETS) [7].

SPM has also become a powerful tool for the chemical analysis and 
synthesis of individual organic molecules due to its ability to distinguish 
atoms at close distances, manipulate them, as well as to differentiate 
bond types. For instance, HR-AFM with a CO-decorated tip is sensitive 
to the bond order in aromatic systems [8], free electron pairs in highly 
electronegative atoms [9], and the orbital configuration of transition 
metals in organometallic compounds [10].

The capabilities of SPM techniques made them invaluable tools not 
only in fundamental research (e.g. for the development of futuristic 
molecular nanotechnology [11] and new materials) but also in prac-
tical industrial applications. Currently, SPM helps in deciphering the 
chemical structures of individual molecules within complex mixtures, 
such as crude oil or decomposing and carbonized organic materials in 
the depth of oceans [12–14]. HR-SPM has been also extremely useful for 
the recognition of complex materials and their surfaces such as calcium 
carbonate and fluoride [15,16], showing the HR-SPM general applica-
bility over several scientific disciplines.

Due to single molecule resolution, HR-SPM techniques allow avoid-
ing the preparation of pure substances in macroscopic quantities which 
is required by other techniques for structural analysis such as X-ray or 
neutron diffraction. For example, the modern AFM machines, which can 
employ an automatic tip preparation [17], are restricted mainly by the 
sample preparation and are physically capable of scanning thousands of 
molecules per day. However, the data interpretation, typically done by 
teams of human experts with the aid of atomistic simulations, proves 
to be a tedious and challenging process. This bottleneck hampers the 
broader adoption of SPM-based analytical methods beyond basic re-
search.

The Probe-Particle Model, first introduced nearly a decade ago [5], 
has become a widely used tool for simulating high-resolution AFM and 
STM images. Unlike other AFM simulation models used in the fields of 
contact-AFM, soft-matter and biology [18–20] which focuses typically 
on mesoscopic aspects and AFM operation in the ambient condition, 
the Probe-Particle Model has been developed to explain atom-resolving 
non-contact AFM and STM experiments carried out in ultra-high vac-
uum at cryogenic temperatures with decorated tips. The model enables 
the rationalization of experimentally observed SPM contrast and its at-
tribution to chemical structure. The AFM part of the model, compiled 
into the ppafm computational package, is the main focus of this work.

In this specific domain, ppafm provides a good accuracy of simulated 
images at a low computational cost. This enables rapid exploration of 
candidate molecular or surface structures and the exploration of suit-
able imaging parameters to match experimentally observed contrast to 
an a priori unknown geometry. Moreover, in recent years, ppafm has 
emerged as a key driver of progress in the field of automatic interpre-
tation of AFM data using machine-learned models [21–23], as well as 
for the construction of large datasets [24] of simulated AFM data. To 
the best of our knowledge, ppafm has served as the primary tool for 
generating training data for all machine-learned high-resolution AFM 
interpretation models published to date.

However, despite nearly a decade of development, the documenta-
tion of ppafm has been relatively scarce, leaving potential users largely 
unaware of all its features and its recent development. Therefore, in 
this article, we aim to present the full spectrum of capabilities offered 
by the latest release of ppafm and present it as a comprehensive toolbox 
for high-throughput simulations, encompassing not only high-resolution 
microscopy AFM but also STM, KPFM, IETS, and other related SPM 
techniques: Section 2 describes the theoretical background of the Probe 
Particle Model [5] including systematic comparison of all implemented 
levels of theory for tip-sample interaction in order of increasing accu-
racy, which is missing in previous publications. There we also describe 

Fig. 1. Schematics of forces acting on the flexible probe particle (PP) in
ppafm: The PP represents the very last atom of the non-reactive, flexible tip-
apex (e.g. O atom of attached CO molecule), its position is denoted 𝑟𝑃𝑃 . It is 
anchored to a rigid AFM tip by radial spring with high stiffness 𝑘𝑅 which keeps 
it in a certain distance 𝑅0 from the anchor point 𝑅𝑇𝐼𝑃 , and a lateral spring 
𝑘𝑥,𝑦 which tries to return to equilibrium position 𝑅0

𝑃𝑃
under the tip. Besides 

the forces from the tip, also forces of the sample act on PP. These forces are 
calculated by interpolation of grid projected forcefield (GridFF). GridFF can be 
calculated by projection of atomic potentials (see Eq. (5), Eq. (6)) or by convo-
lution of grid projected densities (see Eq. (7), Eq. (8)).

a newly implemented full density-based model (FDBM) [25] providing 
substantially increased accuracy. Section 3 discusses models for the sim-
ulation of other SPM techniques such as STM, IETS and recently added 
KPFM, which builds on top of the AFM model. Section 4 describes the 
code from the user’s perspective, with the emphasis on recently sim-
plified installation through Python Package Index (PyPI) and real-time 
Graphical User Interface (GUI), allowing for a friendly introduction of 
new users into using ppafm. The technical details concerning the im-
plementation of the method are provided in section 5, showing the 
acceleration gained by smart numerical implementation, and recent par-
allelization on both CPU and GPU allowing for speed-up by several 
orders of magnitude. Last but not least, ppafm is now accompanied 
by enhanced documentation. We believe that these enhancements will 
open the field of AFM simulation towards new users and new applica-
tions in molecular design, materials science, and surface science.

2. AFM simulation models

2.1. Tip description

The original Probe-Particle Model was based on a simple idea: simu-
lating a non-reactive, flexible tip apex such as an attached CO molecule 
(or tip decoration like H2, Xe [4], NTCDA [26] etc.) by modeling it 
as a single spherical particle attached to the end of an AFM tip with 
a spring. This spherical particle, which we call the probe particle (PP), 
represents the very last atom of the flexible tip apex (e.g. O atom in the 
CO-decorated tip). This simplistic approach is motivated by the fact that 
the short-range forces, that determine the measured sub-molecular con-
trast rapidly decay with distance and thus can be neglected for the other 
atoms of the tip-apex. This allows us to separate the forces from the tip 
(indexed with 𝑇 ) and forces from a sample (indexed with 𝑆) so that the 
overall force acting on the PP (𝐹𝑃𝑃 ) during its relaxation is evaluated 
as follows:

𝐹𝑃𝑃 (𝑟𝑃𝑃 ) = 𝐹𝑇 (𝑟𝑃𝑃 ) + 𝐹𝑆 (𝑟𝑃𝑃 ). (1)

The forces from the sample are discussed in greater detail in section 2.2.
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The model for the forces from the tip is as follows:

𝐹𝑇 (𝑟𝑃𝑃 ) = −𝑘𝑅(|𝑑|−𝑅0)(𝑑∕|𝑑|) − 𝑘⃗𝑥,𝑦 ⊙ (𝑑 − 𝑑0). (2)

Here, 𝑑 = 𝑟𝑃𝑃 − 𝑟𝑇 𝐼𝑃 is the displacement of the PP position 𝑟𝑃𝑃 with 
respect to the anchor point ⃗𝑟𝑇 𝐼𝑃 to which the PP is attached (e.g. metal-
lic tip apex to which the CO molecule it attached). 𝑅0 = |𝑑0| stands for 
the equilibrium distance from the anchor point and 𝑑0 = 𝑟0

𝑃𝑃
− 𝑟𝑇 𝐼𝑃 is 

the equilibrium displacement of PP from the anchor point (which is typ-
ically set to (0, 0, 𝑅0) for a symmetric tip but may be deflected in x,y to 
simulate an asymmetric CO tip). Finally, 𝑘𝑅 is the radial stiffness con-
stant and 𝑘⃗𝑥,𝑦 = (𝑘𝑥, 𝑘𝑦, 0) sets the bending stiffness and ⊙ denotes the 
component-wise product of vectors. This differs from the original model 
[5], which used the Lennard-Jones potential for the radial force, keeping 
the PP under the tip, while here we are using the strong spring force 𝑘𝑅 , 
as this is a computationally faster and more stable solution. The lateral 
movement of the PP is controlled by the lateral springs 𝑘𝑥 and 𝑘𝑦 as it 
is shown in Fig. 1(a). From our experience, CO tips are best reproduced 
using a lateral stiffness of 0.24-0.25 N/m [27].

The z-component of the short-range forces acting on the tip (𝐹 𝑡𝑖𝑝
𝑧 ) can 

then be calculated as the z-component of the radial spring force acting 
on the PP, 𝐹 𝑡𝑖𝑝

𝑧 ( ⃗𝑟𝑡𝑖𝑝) = −𝐹𝑇
𝑅,𝑧

at the fully relaxed position of the PP, as 
these forces balance each other out. 𝐹 𝑡𝑖𝑝

𝑧 is then used for calculating 
the actually measured frequency shift Δ𝑓 using the formula derived by 
Giessibl [28]:

Δ𝑓𝑡𝑖𝑝( ⃗𝑟𝑡𝑖𝑝) = −
𝑓0
2𝑘

8
𝜋𝐴2

𝐴∕2

∫
−𝐴∕2

𝑧𝐹
𝑡𝑖𝑝
𝑧 ( ⃗𝑟𝑡𝑖𝑝 + 𝐴̂𝑧)√
𝐴2∕4 − 𝑧2

𝑑𝑧, (3)

where 𝑘 is the stiffness and 𝑓0 is the base oscillation frequency of the 
cantilever, 𝐴 is the peak-to-peak amplitude of the oscillation of the AFM 
tip and 𝐴̂ is the normalized direction vector of the oscillation (typically 
in the z-direction).

2.2. Sample-tip interaction

The sample-tip interaction comprises of Pauli repulsion 𝐹𝑃𝑎𝑢𝑙𝑖, van 
der Waals attraction (or London dispersion force) 𝐹𝑣𝑑𝑊 , and electro-
static interaction 𝐹𝑒𝑙 between the PP and the sample:

𝐹𝑆 (𝑟𝑃𝑃 ) = 𝐹𝑃𝑎𝑢𝑙𝑖(𝑟𝑃𝑃 ) + 𝐹𝑣𝑑𝑊 (𝑟𝑃𝑃 ) + 𝐹𝑒𝑙(𝑟𝑃𝑃 ). (4)

The precision of the ppafm simulation can be tuned by the level of the-
ory describing these interactions.

In the following section, we cover the historical development of the 
different approximate models and their applicability. Despite the actual 
implementation relying on forces, for simplicity, we only discuss formu-
las to compute energy components. The respective formula for the force 
can be obtained as a derivative of the energy 𝐹 (𝑟𝑃𝑃 ) = −∇𝐸(𝑟𝑃𝑃 ).

2.2.1. Lennard-Jones
In the original (and the simplest) Probe-Particle Model [5] the mo-

tion of the PP, 𝑟𝑃𝑃 , is governed by a potential obtained as a sum of 
pair-wise Lennard-Jones (LJ) potentials between the PP and all the 
atoms of the sample. The attractive and repulsive parts of the LJ poten-
tial simulate the attractive London dispersion and the Pauli repulsion 
respectively. The total potential is evaluated as follows:

𝐸𝐿𝐽 (𝑟𝑃𝑃 ) =
∑
𝑖

𝑒𝑖,𝑃𝑃

[(
𝑅𝑖,𝑃𝑃|𝑟𝑖 − 𝑟𝑃𝑃 |

)12
− 2

(
𝑅𝑖,𝑃𝑃|𝑟𝑖 − 𝑟𝑃𝑃 |

)6]
. (5)

Here the position of the sample atoms 𝑟𝑖 are considered rigid (i.e. not 
movable), and traditional mixing rules such as 𝑅𝑖,𝑃𝑃 = 𝑅𝑖 + 𝑅𝑃𝑃 and 
𝑒𝑖,𝑃𝑃 =

√
𝑒𝑖𝑒𝑃𝑃 are used to evaluate the equilibrium distance 𝑅𝑖,𝑃𝑃 and 

binding energy 𝑒𝑖,𝑃𝑃 of the 𝑖-th atom of the sample and the PP. The 
default parameters 𝑒𝑖, 𝑅𝑖 are taken from the OPLS force field [29], but

ppafm also allows for a change of the element-based parameters in a 
user-provided parameter file.

2.2.2. Lennard-Jones with point charge electrostatics
Shortly after the original paper [5], the Probe-Particle Model was 

modified to include the electrostatic interactions between the tip and 
the sample [7].

Initially, the electrostatics was implemented as a sum of Coulomb 
potentials between classical point charges positioned at the center of 
the PP (𝑞𝑃𝑃 ) and the sample atoms (𝑞𝑖):

𝐸𝑒𝑙(𝑟𝑃𝑃 ) = 𝑘e𝑞𝑃𝑃
∑
𝑖

𝑞𝑖|𝑟𝑖 − 𝑟𝑃𝑃 | , (6)

where 𝑘e is the Coulomb constant. Simultaneously with improvements 
in the physics captured by the model, the assumption of a rigid sample 
allowed significant acceleration of the simulations. Both the electrostatic 
and the LJ force field are pre-calculated and stored on a real space grid, 
from which they are interpolated during the simulations, as illustrated 
in Fig. 1 and explained in sec. 5.1.

2.2.3. Lennard-Jones with density functional theory based electrostatics
A more accurate model of the electrostatics was developed further, 

using a grid-based real-space representation of the electrostatic potential 
of the sample (𝑉𝑆 ). 𝑉𝑆 is obtained as the Hartree potential from sample 
electronic structure calculation in density functional theory (DFT). The 
electrostatic potential acting on the PP with its charge density (𝜌𝑃𝑃 ) is 
obtained through a cross-correlation integral:

𝐸𝑒𝑙(𝑟𝑃𝑃 ) = ∫⃗
𝑟

𝜌𝑃𝑃 (𝑟)𝑉𝑆 (𝑟+ 𝑟𝑃𝑃 )𝑑𝑟. (7)

We found that the distortions in AFM images by electrostatic field 
to a large extent explain for example the over-enhanced bond-length 
contrast in fullerenes or other Kekule structures [8,30] but also the 
repulsive contrast over triple bonds and free electron pairs [9]. Nev-
ertheless, the charge required to reproduce experimental contrast with 
monopole charge distribution was unrealistically high (0.2-0.4e).

In further applications [31–33] we concluded that the quadrupolar 
charge distribution better reproduces contrast observed with a CO-tip. 
The quadrupolar charge distribution is better fitting the CO molecule 
and the CO-tip charge density as concluded by DFT calculations [25,32].

While point-charge electrostatics proved useful for quick and easy 
model calculations independent of ab initio inputs, which were often 
conducted by external experimental groups through a web interface 
[34], DFT-based electrostatics of the sample was, nevertheless, found 
necessary to properly simulate intricate image effects, such as those 
arising from free electron pairs and triple bonds. For the CO tip the 
quadrupole moment can vary in between -0.025 to -0.15 𝑒 × Å

2
, de-

pending on the experiment [21,31,35].
A minor disadvantage of the cross-correlation-based approach (see 

sec. 5.1) is the assumption that the PP moves without rotation. How-
ever, according to our experience with the complex-tip model [36] and 
comparison of the Probe-Particle Model against the direct integration 
model by Ellner et al. [25] the differences caused by the multipole rota-
tion are minor. This can be understood from the fact that bending angles 
are rather small at tip-sample distance relevant for high-resolution imag-
ing experiments, and the bending is most significant at the close range 
where the interaction is dominated by the Pauli rather than electrostatic 
interaction.

2.2.4. Full density-based model
Pauli repulsion modeled by the repulsive part (1∕𝑟12) of the spheri-

cally symmetric LJ potential cannot reproduce delicate effects emerging 
from rearrangements of the electron density in the sample which are of-
ten visible using HR-AFM techniques [8–10]. Some of these limitations 
can be mitigated by modification of the LJ parameters of individual 
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atoms (especially van der Waals radius) to match the iso-surface of elec-
tron density obtained from a DFT calculation [10]. This approach allows 
to distinguish between different occupations of the atomic orbitals for 
atoms of the same element and it was also successfully used for calcu-
lations of ionic materials, such as calcite or calcium fluoride [15,16]. 
Nevertheless, such approach is still limited by the spherical symmetry 
of the LJ potential, therefore it cannot fully recover non-spherical effects 
such as free-electron pairs and variation of density in covalent bonds.

In order to addresses these limitations, Ellner et al. [37] introduced 
an improved model called the full density-based model (FDBM), where 
both the Pauli repulsion and electrostatics are calculated directly from 
electron density obtained from DFT. While electrostatics is still calcu-
lated using Eq. (7), the Pauli repulsion is newly calculated by the integral 
of the product of the tip and the sample charge densities scaled by a fit-
ting constant 𝐴. Eventually the product is raised to exponent 𝛽 (although 
𝛽 is typically close to one):

𝐸𝑃𝑎𝑢𝑙𝑖(𝑟𝑃𝑃 ) =𝐴 ∫⃗
𝑟

[
𝜌𝑃𝑃 (𝑟)𝜌𝑆 (𝑟+ 𝑟𝑃𝑃 ))

]𝛽
𝑑𝑟. (8)

The magnitude of the repulsion is significantly more sensitive to the ex-
ponent 𝛽 than the multiplicative factor 𝐴. Even a change of only 0.1 in 
𝛽 results in a significant change in the observed contrast, higher values 
typically resulting in reduced sharpness. However, if the scanning dis-
tance and 𝐴 are adjusted along with 𝛽, similar-looking contrast can be 
observed with multiple distinct combinations of the parameters.

The resulting model, combined with an appropriate dispersion in-
teraction model (previously modeled by the attractive part of the LJ 
potential), and properly fitted, could remarkably reproduce experimen-
tally measured images of rigid molecules. Particularly, it better captures 
the free electron pairs (e.g., oxygen and nitrogen heteroatoms) and 
Kekule structures (e.g., triple bonds), which were previously only em-
ulated through the repulsive electrostatic field in the original LJ-based 
model sometimes using unrealistically high tip charge [30]. Now FDBM 
also accounts for Pauli repulsion, capturing the electron hardness of free 
electron pairs on oxygen and nitrogen atoms.

The dispersion interaction model typically used with the FDBM is the 
Grimme DFT-D3 [38] dispersion correction, which we have also recently 
implemented in ppafm, in particular in the Becke-Johnson damping 
form [39]. One notable aspect of the DFT-D3 correction is that the inter-
action coefficients for each atom depend on their chemical environment, 
based on proximity, to account for the changing polarizability due to 
bonding. In principle, the distance calculations to determine the bond-
ing configuration would also include the PP. However, since the PP is 
supposed to be chemically inert, we choose to exclude the PP from this 
calculation, which allows the interaction coefficients in the sample to 
be calculated independently of the PP position, significantly speeding 
up the calculation.

The DFT-D3 energy also has parameters that are adjusted for par-
ticular DFT functionals - namely s6, s8, a1, and a2 [38]. So far there 
has not been any extensive study on the effect of these parameters on
ppafm simulations and thus we recommend sticking to the parame-
ters connected with the DFT functional used for the calculation of the 
FDBM model input. ppafm provides here predefined parameter values 
for many commonly used DFT functionals.

2.2.5. Comparison of AFM simulation models
To illustrate the strengths and weaknesses of each tip-sample inter-

action model we plot in Fig. 2 results calculated for a representative 
selection of molecules. We compare ppafm simulations against DFT 
reference calculations performed using CP2K [41] with PBE exchange-
correlation functional and Grimme DFT-D3 [38] used for the van der 
Waals correction. Each of the selected molecules represents some char-
acteristic chemical moieties manifested as characteristic features in AFM 
and was previously discussed in HR-AFM-related literature. To make the 
comparison consistent we choose the same simulation parameters for 
each molecule, even though this choice may not be optimal to represent 

the DFT reference or experimentally observed contrast. This means that 
for the FDBM simulation, we set the multiplicative factor 𝐴 = 12 and ex-
ponent 𝛽 = 1.2 (see Eq. (8)), which provided the best overall match to 
DFT for all the molecules. We found that the best match is visible if we 
offset z-distance by −0.2 Å between the DFT and the ppafm simulations 
to get a roughly matching level of sharpness in the observed contrast. 
In the FDBM simulation, the electrostatics used a DFT-calculated charge 
density on the CO-tip. For the Lennard-Jones-based simulation model 
(both with point-charge and Hartree potential) we used quadrupole 
charge distributions on the tip with quadrupole moment −0.05 𝑒 × Å

2
. 

For point charges simulations we used Mulliken charges reported by 
FHI-aims [40].

C60 Fullerene was studied as an example of bond order discrimi-
nation [8]. The difference in the apparent bond length, as well as the 
ovaloid shape of the electron cloud, is very well reproduced by the FDBM 
model. To some degree the difference in apparent bond length can be re-
produced also with the LJ+Hartree model, nevertheless unrealistically 
high charge of the tip is needed to reproduce experimental (or DFT cal-
culated) contrast [30].

FAD (Formic acid dimer) represents carboxylic groups which often 
dimerize in self-assembled structures studied by AFM [9,42]. The FDBM 
again provides contrast most similar to DFT data, including bright spots 
above oxygen atoms. This is due to the ability of FDBM to reflect local-
ized electron pairs in Pauli repulsion. Nevertheless, these bright spots 
are visible also in LJ+PC and LJ+Hartree simulations at higher tip-
sample separation where electrostatic forces dominate [9].

FFPB molecule (4-(4-(2,3,4,5,6- pentafluorophenylethynyl)- 2,3,5,6-
tetrafluorophenylethynyl) phenylethynylbenzene) was studied to see 
the effect of electron depletion on the AFM contrast in a benzene ring 
(𝜋-hole), caused by the electron-withdrawing substituents (fluorines) 
[43,44]. In DFT simulations this is visible as darker contrast over fluori-
nated rings, which can be attributed to a faster decay of the electron den-
sity [45] (due to deeper electrostatic potential and lower work function) 
and by electrostatic attraction between the 𝜋-hole and free electron pair 
of the CO tip. Surprisingly, this effect is best reproduced by the LJ+PC 
model, which used Mulliken charges obtained from DFT calculation. An-
other characteristic feature is the triple bond rendered as a bright line 
perpendicular to the bond. This effect is caused by the toroidal shape of 
the 𝜋-electron cloud around the triple bond [9,46], which produces a 
quadrupolar field both in electrostatics and Pauli repulsion. FDBM again 
reproduce this feature best thanks to the incorporation of proper aspher-
ical Pauli repulsion, while the Lennard-Jones potential is composed of 
spherical potentials around each atom and therefore cannot reproduce 
this feature. Nevertheless, both LJ+PC and LJ+Hartree can reproduce 
the electrostatic contribution of this repulsive feature.

Pentacene molecule was one of the first molecules for which bond-
resolved AFM images were measured [3]. Besides the five hexagonal 
rings, the experiment and DFT simulations show increased repulsion 
over the ends of the aromatic system. This effect is to a large degree 
caused by a higher attractive van der Waals background in the center 
as was explained in the original paper [3]. Nevertheless, our simulation 
done at closer tip-sample separation shows, that the effect is pronounced 
even at a distance where van der Waals contribution is negligible. This 
is reproduced by FDBM but not with LJ-based models. Without detailed 
analysis, we can only speculate that this is because tails of occupied fron-
tier molecular orbitals (HOMO, HOMO-1 etc.) which contribute most to 
Pauli repulsion are more suppressed in the center due to the presence 
of nodes. All models including FDBM and LJ-based models reproduce 
very well the elongation of the rings perpendicular to the molecule axis, 
which is caused by deflection of the probe mostly due to the lateral 
gradient of van der Waals potential (with a slight contribution from 
electrostatics), as was discussed previously [31,47].

Phtalocyanine molecule was widely studied in the SPM community 
[10,48–50] due to its great potential for molecular electronics, catalysis, 
and for biological importance of porphyrin derivatives. The main fea-
tures which can be seen in HR-AFM experiments and which are perfectly 
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Fig. 2. Comparison of ppafm simulations with different models of tip-sample interaction. The columns depict different models. Starting from the left, they are 
Lennard-Jones + point charges (LJ+PC), Lennard-Jones + Hartree (LJ+Hartree), Full density based model (FDBM), and a DFT simulation used as a reference, where 
the tip-sample interaction at each pixel was calculated as an independent relaxation of the tip using the CP2K program. For the Lennard-Jones based simulation model 
(both with point-charge and Hartree potential) we used a quadrupole charge distributions on the tip with the quadrupole moment −0.05 𝑒 ×Å

2
. For the point-charge 

simulations we used Mulliken charges reported by FHI-aims [40]. For FDBM model we set the multiplicative factor 𝐴 = 12 and exponent 𝛽 = 1.2 (see Eq. (8)) which 
provided the best overall match to DFT for all the molecules.

reproduced by DFT simulations are (i) The bright peripheral benzene 
rings contrasting against the darker porphyrin center, and (ii) sharp 
pointy corners of imine nitrogens. Both of these features are nicely re-
produced by FDBM, which properly accounts for the Pauli repulsion 
affected by slower decay of electron clouds in benzene rings (with re-
spect to the porphyrin center), as well as Pauli repulsion of the free 
electron pairs of these nitrogens. The LJ-based model incorrectly ren-
ders the pentagonal rings brighter. This is a simple effect of a higher 
concentration of repulsive atoms in the pentagon ring in contrast to the 
hexagon, as the LJ model cannot account for the rate of decay of tails 
of electron density. Nevertheless, the pointiness of the nitrogen groups 
is rather well reproduced mostly due to the significant role of the elec-
trostatic forces which cause the apparent shrinking of these areas as 
previously discussed [7].

PTCDA (Perylenetetracarboxylic dianhydride) is perhaps the most 
studied molecule in the SPM community [4,5,31,45,51], mostly due to 
experimental convenience and formation of well ordered self-assembled 
monolayers. The experiments as well as DFT simulations show the cen-
tral perylene system considerably brighter than the peripheral anhy-

dride groups. This is more-or-less reproduced by all models, although 
the FDBM model excels in this aspect, as it reflects higher Pauli repul-
sion due to the longer extent of the electron cloud over the perylene 
system [45]. All models properly describe the apparent enlargement of 
the anhydride groups and shrinking of the perylene group caused by 
electrostatic forces [31]. In addition, the DFT simulation shows bright 
repulsive features over the carbonyl oxygens, which are again best re-
produced by the FDBM model.

Despite the generally superior accuracy of the FDBM approach, the
ppafm code allows users to choose from various simulation models 
(Lennard-Jones, Morse, point charges, model charge density integration, 
FDBM) the one which offers an optimal compromise between accuracy 
and simplicity for their particular application. Such a choice should not 
be motivated by the computational cost of AFM simulations, as our ef-
ficient GPU implementation allows interactive simulations even on the 
FDBM level.

Nevertheless, the simpler models (e.g. LJ + point charges) limit re-
liance on DFT data (i.e. charge density and Hartree potential are not 
required). This makes those simple models very convenient for fast 



Computer Physics Communications 305 (2024) 109341

6

N. Oinonen, A.V. Yakutovich, A. Gallardo et al.

screening over various modeled sample geometries or the creation of 
databases for machine learning approaches. The dependence of the DFT-
based electrostatics and FDBM method on DFT calculations (at least 
a thousand times slower) and a large amount of volumetric data are 
making this method less attractive for fast high-throughput simulation 
scenarios. For rapid training of AFM recognition models, we recommend 
pre-training the model on the data obtained from simple LJ and point-
charge-based simulations, with the refinement step performed on fewer 
examples generated by the FDBM (similar approach was used in [23]).

Notice that LJ simulations presented in 2 were done using default 
LJ parameters which depend only on chemical elements, not on more 
detailed atomic types (i.e. we do not distinguish different sub-types of 
carbon like sp1, sp2, aromatic, carboxylic etc.). With a more careful se-
lection of atomic types and of LJ parameters (particularly the atomic 
radius) even simple LJ model can simulate the different extents of elec-
tron clouds and bring the LJ-PC model closer to AFM experiments with-
out the need for DFT inputs [10,16]. Although the FDBM model does 
not depend on such a detailed choice of atomic types (assuming van 
der Waals D3 parameters are given, and have a minor effect on result-
ing contrast), it still depends on the choice of the two global parameters 
(scaling factors 𝐴 and exponent 𝛽 in Eq. (8)). The optimal choice of these 
two parameters is still under debate and may be system dependent.

3. Other PP-SPM simulation modes

The interaction models discussed in the previous section are the cen-
tral part of the Probe-Particle Model as they determine forces acting on 
the PP and therefore also its deflection. This deflection then modifies 
the measured contrast of other signals (such as STM [5,6] and IETS [7]), 
typically by sharpening or introducing discontinuities to the contrast. In 
addition, other forces can emerge in the junction between tip and sam-
ple e.g. due to polarization of the PP or the molecule under study by 
an external electric field. These microscopic contributions of the polar-
ization force responsible for the sub-molecular contrast in Kelvin probe 
force microscopy (KPFM) can also be simulated with the ppafm pack-
age. KPFM and other simulation techniques built on top of the original 
model are discussed in this section.

3.1. Kelvin probe force microscopy

Traditionally, KPFM experiments measured the electrostatic forces 
between tip and sample due to external electric potentials and differ-
ences between the work functions of the two materials. In this process, 
the tip and the sample can be seen as the plates of a capacitor. The force 
between such plates depends quadratically on the potential difference 
between the tip and the sample 𝑉 and linearly on the gradient of the 
effective capacitance 𝐶(𝑟𝑡𝑖𝑝) with respect to the position of the tip.

𝐹 (𝑟𝑡𝑖𝑝) =
𝑉 2

2
∇𝐶(𝑟𝑡𝑖𝑝). (9)

Although KPFM experiments were originally intended to measure 
mesoscopic features such as the work function of the studied materials 
and long-range charge domains, the development of atomically precise 
SPM techniques had allowed to achieve sub-molecular KPFM contrast, 
corresponding to variations of the charge distribution and polarizabil-
ity within individual organic molecules [43,49,52,53]. Nevertheless, the 
quantitative relation between the measured quantities and the elec-
tronic structure of the molecules was under debate. We introduced a 
KPFM module into the ppafm code to put these relations on quanti-
tative ground and provide a straightforward tool for the simulation of 
these phenomena.

In this implementation, the bias dependence of both the charge den-
sity of the probe and the electrostatic potential of the sample is in-
troduced in Eq. (7), to study its effect on the force 𝐹𝑃𝑃 (𝑟𝑡𝑖𝑝) and the 
corresponding frequency shift Δ𝑓 . As has been shown in our previous 
publications [44,54], the sub-molecular variation of Δ𝑓 (𝑉 ) originates 

Fig. 3. (a) LCPD map taken over the FFPB molecule, simulated using the KPFM 
functionality of ppafm. (b) AFM image for the same tip distance as in the LCPD 
map. Images in both panels are overlaid with the atomic structure of the FFPB 
molecule. The Tip_z = 8.05 Å distance quoted as the height of the scanning 
plane position was measured between the molecular plane and the anchor pivot 
(metallic apex) of the tip. The tip distance 𝑧tip = 4.05 Å used to scale the electric 
field induced by the voltage between the tip and the molecule was smaller by 
𝑅0 = 4.00 Å. A CO-tip model with the static quadrupole moment of −0.05 𝑒 ×
Å
2

and default electric polarizability was used. The capacitance of the metallic 
part of the tip was modeled with a sphere of the 𝑅tip = 40 nm radius. (For 
interpretation of the colors in the figure(s), the reader is referred to the web 
version of this article.)

mostly from the intrinsic charges within the tip or the sample that in-
teract with bias-induced electric polarization of the opposite electrode. 
The output of the KPFM mode can be represented as a map of (apparent) 
local contact potential difference (LCPD or 𝑉LCPD), which corresponds to 
the bias voltage at which the maximum of the (approximately) parabolic 
Δ𝑓 (𝑉 ) dependence lies.

Currently, the KPFM functionality is implemented in the ppafm
package in two variants. In the first version, the changes in the charge 
densities of the tip and sample due to the application of an external field 
in the z-direction must be provided as inputs from external DFT calcu-
lations. In the second version, analytically generated tip polarizations, 
fitted to the DFT calculated ones, are provided for user convenience. For 
a more detailed description of the usage of the KPFM module and the 
theoretical basis of the model, please refer to the code manual and the 
supplementary information of [54].

As an example of a KPFM simulation, Fig. 3a shows the LCPD map 
over the FFPB molecule. The LCPD is affected by the local electric 
charges on the molecule: positive charge under the tip tends to shift 
the LCPD towards more negative values, and negative charge towards 
more positive values. The resulting figure clearly shows the polarization 
within the molecule. The two positive-charged (electron-depleted) ben-
zene rings in the right-hand-side half of the molecule are surrounded by 
negative charge of the fluorine atoms, while the two electron-rich ben-
zene rings in the left-hand-side half are surrounded by more positive 
hydrogen atoms. Notice that the simulated contrast is consistent with 
experimentally measured KPFM pictures from literature [43]. KPFM ex-
periments usually need to be performed with larger tip–sample distance 
as compared to HR-AFM, resulting in a much more blurred AFM image 
(Fig. 3b) in comparison with the HR-AFM of FFPB in Fig. 2.
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Fig. 4. Schematics of ppstm with example of PTCDA. (a) ppstm calculates 
the electron tunneling rate 𝑇𝑇𝑆 between the molecular orbitals of the sample and 
the tip using Chen’s rules [56]. The orbitals of the tip are modeled by atomic or-
bitals, like 𝑠, 𝑝𝑧, 𝑝𝑥 (on the image) and 𝑝𝑦, positioned at the probe particle. This 
is done for the PP positions previously relaxed by ppafm in order to account 
for the displacement of e.g. a CO molecule caused by the interaction with the 
sample. (b,c) Examples of a simulated ppstm of the PTCDA molecule image us-
ing the dIdV mode. The model electronic structure of the tip was chosen to be 
13% of 𝑠 PP orbital and 87% of 𝑝𝑥 and 𝑝𝑦 orbitals. This configuration best repro-
duced experimentally observed contrast measured with CO-tip in the previous 
publications (e.g. [35]). (b) dIdV image at the sample bias corresponding to the 
HOMO orbital energy. (c) dIdV image at the sample bias corresponding to the 
LUMO orbital energy. Please note that in the experiment the STM contrast can 
be affected by interaction of molecular orbitals with the interface states of the 
substrate, forming a delicate electronic structure.

3.2. Bond-resolved STM

Despite the fact that the bond-resolved STM technique preceded sub-
molecular resolution in AFM [4], this technique received less attention in 
scientific community because the interpretation of the measured signal 
was unclear. In order to put the interpretation of these techniques on 
more quantitative grounds, and provide a straightforward simulation 
tool, we developed ppstm [6,55] which builds on top of ppafm. The
ppstm code can be used as a standalone STM simulation package (in-
dependent of ppafm) to simulate normal STM with rigid (e.g. metallic) 
tip. It is based on Chen’s rules [56] approximation of Bardeen tunneling 
theory to evaluate tunneling current between the tip and sample.

Nevertheless, the real strength of the ppstm code is in its capability 
to calculate high-resolution (i.e. bond-resolved) STM images obtained 
with flexible tip-apices (e.g. CO, Xe, H2). In this application ppstm is 
combined with the ppafm code for pre-calculating the PP positions 𝑟𝑃𝑃
for each position of the tip 𝑟𝑡𝑖𝑝 during the scanning. This essentially just 
shifts the position of the orbitals located on the PP involved in the Chen’s 
tunneling formulas, as is illustrated in Fig. 4(a), which distorts the re-
sulting image and gives rise to the characteristic sharp contrast in the 
high-resolution STM images as was described in [5,6]. Bond-resolved 
imaging and STM simulations can be especially beneficial for STM ma-
chines without AFM possibilities, since STM measurements are typically 
experimentally simpler than AFM. This was used for example for study 
of carbon nanoribbons and other graphitic structures [57,58].

The main drawback of this approach is the added complexity of the 
interpretation and theoretical rationalization of the measured STM sig-
nal, which depends both on geometrical relaxation of the PP as well as 
on precise estimation of elusive electronic structure of the sample, and 
the tip [6], as is illustrated in Fig. 4(b) and (c). Precise hybrid functional 
DFT calculations of the whole sample (i.e. including both molecule and 
substrate) are often necessary in order to achieve agreement with ex-
periment [35].

Fig. 5. IETS simulation encoded in the ppafm with example of Iron Phtalo-

cyanine (FePc). (a) Schematic illustration of the IETS imaging mechanism as 
built in the ppafm. The stiffness of the lateral CO vibration (𝑘0) is modified 
by curvature of the tip-sample interaction potential 𝑉𝑠𝑢𝑟𝑓 . The stiffness as well 
as the associated vibration frequency is increased at the position of a convex 
𝑉𝑠𝑢𝑟𝑓 and decreased at position of a concave potential (e.g. above atoms and 
bonds). Due to broadening of peaks measured in IETS spectroscopy, this soften-
ing of the modes above atoms and bonds allows detecting higher amplitude of 
inelastic tunneling signal originating from lateral CO vibration below the base 
energy 𝜖0 associated with the base stiffness 𝑘0, as was done by the Ho group 
[59]. For a more detailed explanation please see [7,35]. (b) Example of an IETS 
map calculated by ppafm on the iron phtalocyanine (FePc) molecule using just 
a Lennard-Jones force-field. Notice that in this particular simulation neither the 
distortions caused by electrostatics as discussed in [7] nor the modulation of the 
tunneling signal by orbital symmetry discussed in [35] are present.

3.3. Inelastic scanning tunneling microscopy

Another method to achieve sub-molecular resolution, very close to the 
HR-AFM contrast, was demonstrated by the Ho group with inelastic STM 
[59]; however, without explanation of its mechanism. Already in the 
same year we were able to explain and simulate the observed contrast 
with the new IETS module added to our ppafm package [7]. This mod-
ule calculates the change of the stiffness (resp. vibration frequency) of 
lateral vibration modes of the CO molecule attached to the AFM tip due 
to its interaction with the sample (see Fig. 5a). In repulsive regime the 
ridge-lines in tip-sample interaction potential (e.g. over the bonds be-
tween atoms in the sample) introduce negative curvature to the total 
potential in which the CO molecule vibrates. This effectively decreases 
the stiffness and vibration frequency of the relevant vibration mode, 
therefore shifting the inelastic tunneling peaks to lower energy. This ef-
fect is visible in simulated map shown in Fig. 5b, where bright contrast 
above the atoms and bonds correspond to increased inelastic tunnel-
ing signal at energy (i.e. bias voltage set-point) below the base energy 
of lateral CO vibration mode. The amplitude of the peak is related to 
shift of the peak energy when considering e.g. Gaussian broadening as 
explained in [7].

Later we were able to improve this technique through considering 
the variation of the tunneling current, which depends on the orbital 
symmetry [35]. The inelastic signal modulation via the electron-phonon 
coupling between the tunneling (calculated by Chen’s rules as in sec-
tion 3.2) and the lateral vibration mode, are described in detail in [35].

4. ppafm from the user perspective

4.1. Installation

The default way to install the ppafm code is through the pip installer 
for Python packages. This can be achieved by running

pip i n s t a l l ppafm

on the command line. This installs the package from the Python Package 
Index (PyPI), which contains pre-compiled distributions of the ppafm
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Fig. 6. Interactive GUI for GPU-accelerated ppafm simulations. The user can interactively modify imaging parameters by using input boxes or a mouse-wheel, and 
image contrast is updated automatically.

code for several operating systems. If the binary files for your environ-
ment do not exist, pip will attempt to compile them upon download. 
Additionally, pip installs all the necessary Python dependencies. Some 
non-Python GPU dependencies, however, might be installed separately 
from appropriate OpenCL-capable GPU drivers and related libraries. For 
more experienced users and developers we provide alternative ways of 
installing and running the code. The most up-to-date installation in-
structions can always be found in the repository [60]. They include 
installation in a dedicated Conda environment, Docker container, build-
ing from the source code, and others.

4.2. Command-line user interface

The command-line interface (CLI) of the ppafm code provides users 
with access to the full capabilities of the package. This is an alternative 
to the graphical user interface discussed in the following section. The CLI 
interface allows to run simulations on supercomputers, cloud computers, 
and other computational resources without a graphical interface. Also, 
the CLI interface is used for high-throughput simulations when run by 
a workflow manager.

Once the ppafm package is installed user gets access to a variety of 
tools to compute force fields, relax the probe particle, and plot the re-
sults. Below is an example of launching ppafm to compute the Lennard-
Jones force field:

ppafm−generate−l j f f −i s t r u c tu r e . xyz

In the example above we specify an XYZ file with an input structure. 
Additionally, the user can create a “params.ini” file containing more 
fine-tuning settings of the simulation. If the file is present in the folder, 
the code will pick it up automatically. The ppafm repository [60] con-
tains detailed instructions on how to use ppafm through the CLI.

4.3. Graphical user interface

The latest GPU-accelerated version of the ppafm code is so fast that 
interacting with the user solely through scripts or a bash terminal be-
comes a significant bottleneck. Simulations of a full stack of AFM images 

with typical resolutions of 200x200x20 pixels take ∼0.1 s on a typi-
cal desktop computer equipped with a dedicated GPU. For this reason, 
we have developed a simple graphical user interface (GUI) (see Fig. 6) 
that enables users to quickly explore simulation results obtained with 
different inputs. Users can vary parameters such as the bending stiff-
ness of the CO tip, oscillation amplitude of the AFM cantilever, effective 
charge of the tip, or parameters of the FDBM model, and immediately 
visualize the results for comparison with experimental references. This 
approach is particularly useful for new users who are trying to famil-
iarize themselves with the code and gain intuition about how various 
imaging parameters can affect measured AFM contrast. This exploration 
can be also useful to the experimentalist who wishes to gain an idea of 
what to expect from the images from a real HR-AFM machine. Another 
application is manually finding the set of parameters that most closely 
resembles a specific set of reference AFM images obtained with a partic-
ular setup. This can be used, for example, in the refinement of training 
data for machine-learned models of automatic image interpretation.

4.4. Integration with other software

In order to fully exploit the computational efficiency of the ppafm

code (especially in GPU-accelerated version) for machine-learning and 
other high-throughput applications, we provide a Python application 
programming interface (API) which allows for seamless integration with 
other Python-based software. In particular, this API was used to rapidly 
generate training data for a machine-learning application for automated 
AFM image interpretation [21].

The Python API is structured in multiple levels that reflect the differ-
ent computational steps in the ppafm simulation. On the high level, the 
user can simply provide a molecular geometry or Hartree potential from 
a DFT calculation, construct a simulator with given physical parameters, 
and run the whole simulation in one step. On the lower level, the user 
could choose to manually construct the PP-sample force field with the 
different chosen force field models (sec. 2.2) or run the PP relaxation 
for a given force field.
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The API also provides tools for easily creating large datasets of AFM 
simulations for machine learning applications. In particular, this was 
used in a previous study by Alldritt et al. [21], who used so-called image 
descriptors for identifying the atomic structures of molecules. ppafm
provides implementations for several different image descriptors that 
the user can compute for a given molecular geometry. In order to create 
datasets of both AFM simulations and any desired image descriptors, we 
provide a high-level generator API that takes a list of samples (geometry, 
Hartree potential) as an input and generates batches of samples contain-
ing the AFM images, the descriptors, and the molecule structures, ready 
for use in machine-learning training as is or for storing on the disk for 
later use. Additionally, it is possible to introduce randomizations to the 
simulation parameters during the generation process to account for pa-
rameters varying during the experiment, either from a predefined list of 
randomization operations or custom user-defined operations.

5. Implementation details

5.1. Numerical methods

5.1.1. Grid force-field
In order to accelerate the relaxation the PP interacting with the sam-

ple we split the simulation into two steps:

1. Force field generation: The first step involves projection of all 
components of the sample potential and force-field (i.e. electro-
static, Pauli, van der Waals, see Eq. (4)) onto a uniform rectan-
gular real-space grid covering the whole simulation supercell. This 
means, that for each such grid point we sum atomic contribution 
in Eqs. (5) and (6) from all atoms of the sample, or evaluate the 
integrals in Eqs. (7) and (8).
A typical spacing of the grid points is 0.1-0.2 Å which produces 
1-10 million sampling points for typical simulation supercell of 
size 20x20x20 Å. In the CPU implementation the components of 
these grid force-fields are saved into files (e.g. FFLJ_[𝑥|𝑦|𝑧].xsf, 
FFel_[𝑥|𝑦|𝑧].xsf). In the GPU implementation this is ommited, since 
saving and loading of these data files from disk is often slower than 
the evaluation on the GPU.

2. Relaxation: In the second step, the PP position is optimized by 
the FIRE relaxation algorithm [61] using the forces interpolated 
from previously constructed grid force field. Currently we used tri-
linear interpolation of the forces (which corresponds to quadratic 
interpolation of the potential). But we are experimenting with tri-
cubic interpolation of the potential which may allow us to use larger 
grid spacing and avoid storage of forces (i.e. improve memory effi-
ciency).

In practice, the two-step simulation procedure was found to be ap-
proximately 10-100 times faster than implementation not using an in-
termediate grid-based force field for typical samples comprising of tens 
to hundreds of atoms. The simulation speed of the two-step proce-
dure is typically limited by the first step (force field generation), which 
takes roughly 1 minute on a single CPU for typical grid size comprising 
of a million points (100x100x100). In the case of Lennard-Jones and 
point-charge electrostatics the algorithm is perfectly parallelizable and 
it scales proportionally to number of CPUs when OpenMP acceleration is 
used (which is on by default in the CPU version) and it takes just ∼0.1 s 
when using OpenCL accelerated code on contemporary GPU equipped 
desktops with thousands of cores.

5.1.2. Convolution theorem
The evaluation of the electrostatic force-field from the electrostatic 

potential of the sample and the tip charged density distribution Eq. (7)
and the evaluation of the Pauli repulsion from the overlap of the 
sample and tip charged densities Eq. (8) have the form of a cross-
correlation. Therefore they can be expressed using the convolution 

theorem simply as a product in the Fourier space (with an additional 
complex conjugation in the cross-correlation case). For a typical grid 
size (e.g. 100x100x100 = 1 million points) such transformation using 
Fast Fourier transform is orders magnitude faster than direct integra-
tion of the formulas Eq. (7), Eq. (8) point-by-point in real space (the 
scaling is 𝑂((𝑛 log(𝑛))3) for FFT vs 𝑂(𝑛6) for direct integration, where 
𝑛 = 100 is the grid dimension in one direction). The calculation of Eq. (7)
and Eq. (8) using FFT was implemented on both CPU and GPU and the 
computational cost is similar to Lennard-Jones and point-charge elec-
trostatics. In the current implementation the CPU version computes the 
FFT using NumPy [62] (not parallized) and the GPU version uses Reikna 
[63].

5.2. Code structure

5.2.1. Python package with a C++/OpenCL backend
ppafm code is designed to behave as standard Python package and 

exposes a Python front-end to the user, allowing sophisticated scripting. 
Python (with NumPy) is used to implement of the high-level logic, and 
most of utility functions for saving and loading simulation parameters, 
molecular geometry and some operations on 3D datagrids. Matplotlib 
library is used for plotting of final results. The computational core of 
the package is implemented in C++ (for CPU version) and OpenCL (for 
GPU version). The C++ code is interfaced with Python using the ctypes-
library in Python.

5.2.2. GPU implementation
Modern graphics processing units (GPUs) possess thousands of in-

dependent computing cores, offering orders of magnitude higher raw 
computing power than traditional CPUs. However, efficient utilization 
of this computing power is limited to tasks that are naturally paral-
lel (i.e., independent) and not memory-bound (either by main memory 
bandwidth or cache size). AFM simulations are ideal for GPU accelera-
tion since the simulations of individual pixels (i.e., positions of the AFM 
tip) are virtually independent. Furthermore, the simulation scheme that 
evaluates the sample potential through interpolation of the real-space 
grid can be accelerated using texture interpolation hardware. Therefore 
we ported all performance intensive tasks on GPU using pyOpenCL. This 
includes the FFT convolution, projection of atom-wise LJ, electrostatic, 
and D3 van der Waals force fields to the grid, and relaxation of the probe 
particle position. Generally speaking, the GPU accelerated simulations 
are so fast that the timing is relevant only for interactive work (GUI) or 
high-throughput tasks such as machine learning.

5.3. Performance

We conducted thorough performance tests (see Fig. 7) on a periodic 
(infinite) graphene sheet using different levels of theory (see section 2.2) 
and hardware (both CPU and GPU). The simplicity of this test system 
allows us to systematically scale the simulation size in a broad range by 
varying the size of the simulation box, when both the number of atoms 
𝑛 and grid points 𝑚 scales proportionally at the same time. Therefore we 
can plot both on the same x-axis. Fig. 7a shows the comparison of to-
tal simulation time of different methods (Lennard-Jones + point charges 
(LJ+PC), Lennard-Jones + Hartree (LJ+Hartree), and full density-based 
model (FDBM)) on a desktop GPU. Notice the comparable performance 
cost and rather ideal scaling for all methods over the whole range of sys-
tem sizes. The exceptions are the smallest systems (<10 atoms), where 
initialization and other overheads become the bottleneck. For small sys-
tems the LJ+PC method is ∼2x faster than FDBM, while for a system 
with >200 atoms FDBM actually becomes cheaper.

This can be rationalized by different asymptotic scaling of the algo-
rithms. While the projection of the atomic force field on the grid used 
for calculating the Lennard-Jones and point-charge electrostatics scales 
as 𝑂(𝑛𝑚), the product of grid size 𝑚 and the number 𝑛 of atoms, the 
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Fig. 7. Examples of performance scaling of the ppafm code on various hard-

ware. Results shown in both plots (a, b) were measured for simulation of a 
box containing a periodic graphene sheet of different sizes and thus number 
of atoms. Notice that the number of computational grid points is proportional 
to the number of atoms, which allows us to plot the results with a common 
x-axis, in this example. (a) The total execution time (i.e. both force-field gener-
ation and relaxation) of GPU accelerated simulation, for three different levels of 
theory depending on the size of the system: Lennard-Jones potential with point-
charges electrostatics (LJ + PC), Lennard-Jones potential + electrostatics from 
the Hartree potential (LJ+Hartree) and the full density based method (FDBM). 
These calculations were performed on AMD RX 6700 XT GPU. (b) Comparison 
of the force-field generation step for FDBM method using OpenMP acceleration 
with multi-core CPU and various GPUs with OpenCL. The used CPU is Intel i9-
13900K, and the GPUs are: laptop Nvidia GTX 1650Ti Mobile, desktop AMD RX 
6700 XT and server Nvidia A100. The last two points for the laptop GPU are 
missing because the memory requirement exceeds the capability of the GPU.

FFT-based cross-correlation used to compute the Hartree and Pauli po-
tentials in FDBM scales as 𝑂(𝑚𝑙𝑜𝑔(𝑚)) with the grid size 𝑚 and is notably 
independent of the number of atoms 𝑛. The LJ+Hartree method using a 
combination of both algorithms is in between LJ+PC and FDBM method. 
It should be noted that execution time relationship could vary for dif-
ferent types of systems, e.g. a non-periodic system with empty space on 
the sides of the simulation box. Such systems can have a significantly 
smaller number of atoms, while having a similar grid size. This would 
lead to the LJ+PC method being significantly faster than the other two. 
The relaxation of the PP, which scales as 𝑂(𝑚), typically takes a negli-

gible share (<5%) of the total simulation time, which is dominated by 
the force-field generation.

To clearly demonstrate the speedup achieved with GPU (OpenCL) 
and CPU (OpenMP) parallelization, we also compare the time required 
to build the FDBM force field on different platforms (see Fig. 7b): a 
CPU (Intel i9-13900K) using a varying number of threads, a laptop 
GPU (Nvidia GTX 1650Ti Mobile), a desktop GPU (AMD RX 6700 XT), 
and a server GPU (Nvidia A100). The measured performance profiles 
demonstrate that the OpenCL implementation even on the laptop GPU 
outperforms a single-core CPU by roughly two orders of magnitude over 
the whole range of sizes. The exceptions are the largest systems which 
do not fit into the laptop GPU memory. The server GPU is by yet another 
order of magnitude faster, except smallest sizes where the performance 
is limited by initialization overheads in the server environment. Notice 
that the CPU performance for 32 threads is not proportionally improved 
in comparison to 8 threads. This is because the CPU code uses NumPy’s 
implementation of FFT, which is not affected by OpenMP settings. Re-
placing the NumPy FFT by a different better-parallelized FFT library is 
a simple way to further improve performance on CPU in the future.

These measurements exclude additional time taken by loading the 
input files from disk and preparing arrays in the GPU memory, which 
actually become the bottleneck for single small simulations. However, 
these operations are amortized if a batch of simulations is run using 
the same grid, as is the case for example in the GUI when changing 
simulation parameters unrelated to the grid size.

6. Summary and conclusions

In this paper, we summarize the significant development that Probe-
Particle Model has gone through during its roughly decade-long history 
since its inception [5], and illustrate its computational efficiency to-
gether with its versatility through wide variety of applications in the 
field of high-resolution scanning probe microscopy. The sub-molecular 
AFM simulations model, compiled into the ppafm package, integrates 
different levels of theory, described in section 2.2, allowing to balance 
speed and accuracy and analyze the effect of different physical inter-
actions on the resulting AFM image. Even the most accurate method 
implemented (FDBM) cannot exactly reproduce all physical interac-
tions between the tip and the sample (such as deformation of electron 
clouds and displacement of sample atoms), which can be captured by 
expensive quantum mechanics calculations like DFT. Nevertheless, as 
demonstrated by Fig. 2, it can typically match all relevant features ex-
tremely well at a tiny fraction of the computational cost. This efficiency 
and the user-friendly interface, through the command-line or the GUI, 
makes ppafm an ideal tool for quickly searching over different sample 
structures often used for sample structure recovery. The unparalleled 
numerical performance of ppafm (especially in its GPU-accelerated ver-
sion) has been recently exploited for the production of large databases 
of simulated AFM data for training machine-learned models for the re-
construction of molecular geometries from AFM images. In this area we 
expect great application potential, as it opens door to widespread use of 
high-resolution SPM methods as tool for routine single-molecule analy-
sis.
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