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ABSTRACT
Hybrid density functional approximations (DFAs) offer compelling accuracy for ab initio electronic-structure simulations of molecules,
nanosystems, and bulk materials, addressing some deficiencies of computationally cheaper, frequently used semilocal DFAs. However, the
computational bottleneck of hybrid DFAs is the evaluation of the non-local exact exchange contribution, which is the limiting factor for the
application of the method for large-scale simulations. In this work, we present a drastically optimized resolution-of-identity-based real-space
implementation of the exact exchange evaluation for both non-periodic and periodic boundary conditions in the all-electron code FHI-aims,
targeting high-performance central processing unit (CPU) compute clusters. The introduction of several new refined message passing inter-
face (MPI) parallelization layers and shared memory arrays according to the MPI-3 standard were the key components of the optimization.
We demonstrate significant improvements of memory and performance efficiency, scalability, and workload distribution, extending the reach
of hybrid DFAs to simulation sizes beyond ten thousand atoms. In addition, we also compare the runtime performance of the PBE, HSE06,
and PBE0 functionals. As a necessary byproduct of this work, other code parts in FHI-aims have been optimized as well, e.g., the compu-
tation of the Hartree potential and the evaluation of the force and stress components. We benchmark the performance and scaling of the
hybrid DFA-based simulations for a broad range of chemical systems, including hybrid organic–inorganic perovskites, organic crystals, and
ice crystals with up to 30 576 atoms (101 920 electrons described by 244 608 basis functions).

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0208103

I. INTRODUCTION

Density functional theory (DFT) and its approximations
(DFAs) have shaped the fields of computational chemistry and
materials science by providing a powerful framework to investigate
molecules, nanosystems, solids, and surfaces at the atomic scale. The
scaling for finding the solution to the Kohn–Sham equations for
(semi)local DFAs is formally O(N3), where N is a measure of the
system size, when using direct eigensolvers. In practice, the actual

scaling can often be reduced to O(N2) when the cache memory
of modern central processing units (CPUs) is efficiently utilized,
as, e.g., demonstrated by the ELPA eigensolver.2–4 Recent develop-
ments for linear scaling DFT have driven the field to system sizes
of dizzying orders of magnitudes (up to many tens of millions of
atoms).5,6 The key to achieving linear-scaling in electronic struc-
ture methods is exploiting locality since localized basis functions
with finite spatial extent lead to sparsity in the density matrix. Some
prominent choices for localized basis functions are numeric atom-
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TABLE I. Some published large-scale hybrid DFT calculations for different methods and codes at the time of writing. The selection is restricted to simulations with three
dimensional periodic boundary conditions. NAOs: numeric atom-centered orbitals, MLWF: maximal localized Wannier functions, NGWFs: Non-orthogonal generalized Wannier
functions, GTOs: Gaussian-type orbitals.

Code name System (number of atoms) Method References

FHI-aims (H2O)10192 (30 576 atoms) NAOs with localized resolution of identity This work
Quantum Espresso (H2O)512 (1 536 atoms) SCDM orbitals with adaptively compressed exchange Ref. 35
CP2K Rubredoxin (2 825 atoms) GPW and auxiliary density matrix methods Ref. 36
ONETEP Stacked polymer chains (2 000 atoms) NGWFs and spherical waves resolution of identity Ref. 8
BigDFT (H2O)512 (1 536 atoms) Wavelets with GPU acceleration Ref. 37
CRYSTAL Amorphous silica MCM-41 (4 632 atoms) GTOs Ref. 38

centered orbitals (NAOs),7 non-orthogonal generalized Wannier
functions,8 polarized atomic orbitals,6 and Gaussian functions. For
all these approaches, large-scale, semilocal DFT calculations with
linear scaling were successfully demonstrated.

Local and semilocal DFAs, such as the local density approxi-
mation (LDA), generalized gradient approximations (GGAs), and
meta-GGAs, often face accuracy limitations in predictions of impor-
tant chemical and physical properties, especially when charge trans-
fer or localization play an important role.9,10 To overcome these
challenges and enhance the predictive capabilities of DFT, hybrid
DFAs11–13 have long been employed. For many systems, hybrid
DFAs significantly improve the prediction of electronic proper-
ties, e.g., bandgaps,14 charge localization,15 or the description of
d-orbitals.16 The key ingredient to hybrid DFAs is mixing the
(semi)local exchange of LDA, GGAs, or meta-GGAs with some frac-
tion of non-local exact exchange (EXX). Additional flexibility is
provided by treating only a certain spatial range of the Coulomb
operator non-locally within the framework of the hybrid density
functionals, while keeping the remainder semilocal: by introduc-
ing a range-separation function for the Coulomb potential, a variety
of different functionals can be constructed, e.g., HSE06,13,17,18 LC-
wPBEh,19 M11,20 and ωB97.21 Because of its smoothness, the error
function is a frequent choice to divide the Coulomb potential into
long- and short-range parts,

v(r) = 1 − erf(ωr)
r

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
vSR(r)

+ erf(ωr)
r

´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
vLR(r)

. (1)

Here, r = ∣r − r′∣, ω (an adjustable inverse length) is the range-
separation parameter, and vSR(r) and vLR(r) are the short- and
long-range Coulomb potential, respectively. Other physics-inspired
range separation strategies are possible as well.22 In the following,
we will refer to the individual range-separated parts of the Coulomb
potential in the exchange operator as Coulomb kernels. In general,
we can denote the fractions of non-local full exchange and of nonlo-
cal short-range exchange by two parameters α and β, respectively.
Thus, the following contributions to the exchange energy Ex are
obtained:

Ex(α, β, ω) = αEEXX + βESR
EXX(ω)

+ (1 − α)Ex−DFA − βESR
x−DFA(ω). (2)

Here, EEXX is the EXX energy using the full Coulomb potential,
and ESR

EXX(ω) is the short-range EXX energy. Similarly, Ex-DFA is the
semilocal DFA exchange energy for the full-range Coulomb oper-
ator, and ESR

x−DFA(ω) is the short-range semilocal DFA exchange
energy. Using this notation, the PBE0 functional12,23 can be recov-
ered by choosing α = 0.25 and β = 0 and a typical version of the
HSE06 functional13,17 benchmarked by Krukau et al.18 can be
obtained by setting α = 0.0, β = 0.25, and ω = 0.11 bohr−1. The long-
range corrected LC-ωPBEh19 and the long-range corrected B97
functional ωB9721 require α = 1.0, β = −1.0, and ω = 0.4 and choos-
ing PBE or B97 as GGA functionals, respectively. In order to cover
families of functionals with α ≠ 0 and β ≠ 0, it can be convenient to
compute two EXX matrices within a single call to a first-principles
code—one matrix for each Coulomb kernel. In the following, we
refer to all types of screened (long- and short-range) and un-
screened (full) EXX contributions simply as EXX contributions. The
difference between these different types of EXX contributions lies
just in the shape of the screened or unscreened Coulomb potential
(i.e., the Coulomb kernel) and the same algorithm can be employed
to evaluate the exchange contribution.

Along with the increase in accuracy, hybrid DFAs typically
result in significantly larger computational cost compared to semilo-
cal DFAs due to the need to evaluate the non-local exchange oper-
ator. In fact, a naïve implementation of the electron-repulsion inte-
grals formally scales with O(N4) with system size N. To overcome
this hurdle and enable linear-scaling [O(N)] hybrid DFT calcula-
tions for extended systems, various strategies have been successfully
employed, e.g., linear scaling incremental Fock builds,24 the linear
exchange K (LinK) approach,25 resolution-of-identity schemes (e.g.,
Refs. 26–29 and references therein), auxiliary density matrix meth-
ods,30 non-orthogonal generalized Wannier functions,31 transfor-
mations to maximally localized Wannier functions,32,33 and adaptive
compression in a low-rank decomposition.34 However, the com-
putational and book-keeping overhead that incurs in such linear-
scaling approaches leads to considerably higher prefactors and more
complex code, typically hindering an efficient parallelization in
terms of memory and computation time. Accordingly, hybrid DFT
calculations are still typically considerably more costly than standard
semilocal DFAs. In Table I, we present some literature examples
of large-scale hybrid DFT calculations, including the codes and
methods that were employed. Evidently, several codes and imple-
mentations can facilitate hybrid DFT calculations up to several
thousands of atoms in size on modern HPC architectures.
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This work describes recent algorithmic improvements achieved
for the EXX contributions that drastically accelerate hybrid DFT
calculations for large systems (non-periodic and periodic) on exist-
ing massively parallel CPU clusters, without introducing any new
approximations. The approach is implemented in the all-electron
code FHI-aims27,39–42 using numeric atom-centered orbitals (NAOs)
as basis functions, but the underlying techniques are general and
amenable to any other code using localized orbitals for discretiza-
tion. Specifically, we build on the localized resolution-of-identity
(also sometimes referred to as density fitting) implementation, orig-
inally described as RI-LVL in Refs. 27 and 41, and referred to as
“2015 implementation” in the following. Exploiting localization is
key to achieving high performance and a low memory footprint in
the evaluation of the EXX contribution. In the limit of large sys-
tem sizes and for periodic systems with a bandgap, the long-range
tail of the Coulomb potential Eq. (1) will be suppressed in the
exchange term because of the finite range of the density matrix.43

Thus, the EXX term becomes effectively localized. In conjunction
with an appropriate choice of localized basis functions, the EXX
matrix Eq. (4) becomes sparse in real space and can be evaluated
at a computational cost that scales linearly with the system size. In
addition, we describe further algorithmic improvements in the code
regarding the evaluation of the Hartree potential, the evaluation of
the Pulay force terms, and the initialization of general index arrays
for periodic boundary conditions, which could otherwise become
bottlenecks at certain regimes with the new hybrid-functional
implementation.

For most of this paper, we will focus on the HSE06 functional,
which only uses the short-range Coulomb potential vSR(r). This
is a very popular functional that provides a good balance between
accuracy and computational performance (time and memory) in
large-scale simulations due to the restriction of EXX exchange con-
tributions to a smaller range. For comparison, we also show the
performance of the global hybrid functional PBE0. In all cases,
the solution of the generalized Kohn–Sham equations is obtained
with the direct eigensolver ELPA,2–4 version 2023.05.001. Some
key examples of system types and sizes that are now attainable
are shown in Fig. 1, ranging up to 30 576 atoms in size. The
details of these and further benchmarks are provided in Sec. IV
below.

The impact of our work for physics applications will be signif-
icant since simulations of very large, complex systems using hybrid
DFAs are now affordable on typical high-performance comput-
ing resources. In cases where hybrid DFAs matter, e.g., for energy
level alignments in complex structures,44,45 the added accuracy of
hybrid DFAs can be essential. One example that made use of the
hybrid DFT improvements described here is a recent study address-
ing isolated substitutional defects and defect complexes in a layered
hybrid perovskite crystal, phenethylammonium lead iodide1 (PEPI,
also included in Fig. 1). In order to eliminate any relevant interac-
tions of defects across supercell boundaries, structure sizes up to
3383 atoms were employed, providing direct access to the spin–orbit
coupled DFT-HSE06 energy band structure and associated defect
energy levels. In contrast, smaller supercell models were shown
to be insufficiently large, even when many hundred atoms were
included since clear dispersion features of the defect states demon-
strated the presence of noticeable defect–defect interactions across
unit cell boundaries. Affordable simulations of systems spanning

thousands of atoms using hybrid DFAs will be equally beneficial in
many other scenarios where the environment of a localized defect
or chemical process needs to be sufficiently large to enable realistic
results, particularly when energy levels are at issue. Our development
paves the way for such simulations across chemistry and materials
science.

This paper is structured as follows: first, we introduce the for-
mulas needed for the evaluation of the EXX operator. Based on
them, we describe the algorithm and the improvements that have
been made compared to the earlier RI-LVL EXX implementation
in Ref. 41. Then, the strong and weak scaling behaviors of the new
implementation are discussed. Finally, we show benchmarks of the
improved implementation for a broad range of systems covering
solids, surfaces, nanosystems, clusters, and molecules.

II. DESCRIPTION OF THE REAL-SPACE FORMALISM
Here, we briefly outline the notation and formalism of the

real-space evaluation of the EXX operator as implemented in FHI-
aims. The basic equations are those of the initial linear-scaling
implementation of Levchenko et al.41 Thus, we use the notation
introduced in that reference and only briefly summarize the key
expressions and refer to Ref. 41 for details. The formalism works
for both periodic and non-periodic systems. In the following, we
present the more general formulas that account for the periodic
case. The non-periodic case can be recovered by considering only
R = 0, i.e., by omitting any k points and Bloch sums over unit
cells.

In generalized Kohn–Sham theory, the k-dependent EXX oper-
ator K, or a fraction thereof is added to the Hamiltonian. Elements
of the K operator are given by

Kσ
i j(k) =∑

R
eik⋅RXσ

i j(R), (3)

where the Latin symbols i and j denote the NAO basis functions and
σ the spin index. The vector k refers to a point of the Γ-centered
k-grid and the sum runs over all real-space lattice vectors R in the
Born–von Karman cell. Using the localized resolution-of-identity
(RI) approach, called RI-LVL,28 the exchange operator in real-space
Xij(R) can be written as follows:

Xσ
i j(R) =∑

kR′
∑
R′′
∑
μQ′
∑
νQ′′

Cμ(Q′)
ik(R′)

Vμν(R+Q′′−Q′)C
ν(Q′′)
jl(R′′)

×Dσ
kl(R + R′′ − R′), (4)

where Cμ(Q′)
ik(R′)

are the RI expansion coefficients and

Dσ
kl(R) =

1
Nk
∑

k
∑

m
fmσ(k)ck

mσ(k)cl∗
mσ(k)eikR (5)

is the Fourier transform of the density matrix, with the occupation
numbers fmσ , the Kohn–Sham eigenvectors ck

mσ(k), and the number
of k-points in the Brillouin zone Nk. R and Q denote lattice vectors;
the sum over them is not restricted to the extent of the Born–von
Karman cell, but solely by the overlap of the basis functions. The
Greek symbols μ and ν are the indices of the auxiliary basis func-
tions, as introduced next. All the basis functions and auxiliary basis
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FIG. 1. Benchmark results for the largest periodic structures considered in this work. Average runtimes to evaluate the HSE06 exchange operator (blue bars) and the ELPA
two-stage eigenvalue solver (red bars) per self-consistent field iteration are shown. The HSE06 hybrid functional was used for all the simulations. The following systems were
simulated (from left to right): phenylethylammonium lead iodide (PEPI) with a defect complex (as indicated by the square in the chemical formula),1 a 4 × 4 × 4 paracetamol
supercell, a 15 288-atoms Ice XI supercell (including a force evaluation), and a 30 576-atom Ice XI supercell. All the calculations were carried out on the Raven HPC cluster
at the MPCDF using Intel Xeon IceLake (Platinum 8360Y) nodes with 72 cores per node.

functions are labeled with a real-space lattice vector. Dropping that
index refers to basis functions at an atom in the cell R = 0, e.g.,
i = i(0). The RI-LVL expansion is restricted in such a way that prod-
ucts of basis functions ϕi(r − R) at atom I and ϕj(r) at atom J are
expanded in terms of auxiliary basis functions Pμ(r − R′), which
must be associated with the same pair of atoms P(IJ),

ϕi(r − R)ϕj(r − R′)

= ∑
μ(R)
(Cμ(R)

i(R) j(R′)Pμ(r − R) + Cμ(R′)
i(R) j(R′)Pμ(r − R′)). (6)

Formally, this leads to demanding

Cμ(Q)
i(R) j(R′) = 0, for μ ∉ P(IJ), (7)

a condition that can be fulfilled as the auxiliary basis set associated
with P(IJ) approaches completeness. As a result of translational
symmetry, one basis function can always be chosen to be in the cell
R = 0 and so the auxiliary basis functions are only located at Q = 0
or R′. Then, the RI expansion coefficients Cμ(Q)

ik(R) can be derived as

Cμ(Q)
i j(R) = ∑

ν(Q′)∈P(IJ)
(ij(R)∣ν(Q′))LIJ

ν(Q′)μ(Q), (8)

with

(ij(R)∣ν(Q)) =∬ ϕi(r)ϕj(r − R)Pν(r′ −Q)v(r − r′)drdr′ (9)

and the inverse Coulomb matrix LIJ
νμ = (V IJ

μν)
−1 with

Vμν(r) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

∬ Pμ(r)Pν(r′)v(r − r′)drdr′, if μ, ν ∈ P(IJ)
0, otherwise,

(10)
where we dropped the real-space lattice indices for simplic-
ity and v(r − r′) is the Coulomb kernel, whose form depends
on the chosen range-separation approach, i.e., full-range for
Hartree–Fock exchange, short- and long-range for range-separated
hybrid exchange as defined in Eq. (1).

For the actual implementation, the RI coefficients C in Eq. (4)
are grouped according to which atom pairs the auxiliary basis func-
tions belong to. Following Ref. 28, the exchange matrix for each pair
of atoms A1

1A2
1 can be written as

Xσ
i ∈A1

1 j ∈A2
1
(R) = ∑

A1
2(R′)

∑
k∈A1

2(R′)
∑

ν∈A2
1(R)

Fν(R)
ik Eνσ

jk(R−R′)

+ ∑
A2

2(R′′)
∑

l,ν∈A2
2(R′′)

(2Gνσ
il (R + R′′)

+Hνσ
il (R + R′′))Cν

l j(−R′′), (11)

where

Eνσ
jk(R) =∑

lR′′
Cν

jl(R′′)D
σ
kl(R + R′′), (12a)

Fν(R)
ik(R′)

= ∑
μ∈A(i)

Cμ
ik(R′)

Vμν(R), (12b)
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FIG. 2. Labeling of the four atom centers and the lattice vectors connecting
them used for grouping the RI-LVL four-center integrals in Eq. (12). This figure
is adapted from the original reference by Levchenko et al.41

Gνσ
il (R) = ∑

μ∈A(i)
(Eνσ

il(−R))
∗Vμν(R), (12c)

Hνσ
il (R) =∑

kR′
Fν(R−R′)

ki(−R′)
Dσ

kl(R − R′). (12d)

As shown in Fig. 2, A(i) labels the atom of basis function i,
μ ∈ A(i) indicates an auxiliary function Pμ(r) on atom A(i). The ∗
symbol denotes complex conjugation. The choice of these interme-
diate matrices is motivated by the desire to minimize the number of
matrix multiplications. The above-mentioned equation makes use of

the translational symmetry of the RI coefficients, namely, Cμ(R′)
i(0)k(R′)

= Cμ(0)
k(0)i(−R′)

.
The above-mentioned expressions can be extended to also

allow for the computation of derivatives, namely, the force and stress
contributions stemming from Fock exchange. The details of these
contributions can be found in the original publication by Knuth
et al.46

The construction of the auxiliary basis set Pμ is described in
Ref. 28. In brief, the auxiliary basis Pμ is constructed from the prod-
ucts of the original NAO basis setup to a maximum allowed angular
momentum. Moreover, the auxiliary basis set can also be enhanced
by additional NAO basis functions. For example, additional NAO
basis functions are included in the FHI-aims species defaults, e.g.,
for the oxygen atom, an additional 5g function is included in the
intermediate species defaults. In principle, no system-specific para-
meters are needed. Ihrig and co-workers showed that the localized
expansion scheme RI-LVL to compute the Fock matrix Eq. shows
significant errors in the total energy per atom (in the range of
1 meV per atom) comparing to the RI-V scheme for small auxiliary
basis sets that are intended for RI-V, but the error can be system-
atically reduced to become negligible by using additional auxiliary
basis functions. Thus, empirically we find that, for most cases, the
intermediate species defaults settings give reliable results for many
important observables. As a challenging example, we compare the

convergence of the binding energy for the ice XI primitive unit cell
(12 atoms, geometry in supplementary material, Sec. II J) for the
light, intermediate, and really tight species defaults. The binding
energy is given as the difference of the total energy per molecule of
the crystal and the total energy of the (isolated) molecule. We use the
HSE06 functional with the vdw-TS dispersion correction.47 Using
light and intermediate species defaults, we find a binding energy
of −0.7010 and −0.6813 eV, respectively. As reference value for a
well-converged calculation, we use the really tight species defaults
and obtain a binding energy of −0.6516 eV. This converged value
agrees well with the values reported in the literature, e.g., −0.6831 eV
for HF+RPA.48 Although the light and intermediate species defaults
seem to give a similar result for the binding energy, in practice
the intermediate species defaults are beneficial for performing high
quality relaxations because a denser integration grid is used.

III. DESCRIPTION OF THE ALGORITHM
AND ITS IMPROVEMENTS
A. General concepts

FHI-aims purely relies on the message passing interface (MPI)
standard for parallelization. This choice has the advantage that
any code implemented in this way will immediately work in par-
allel across multiple compute nodes, leaving the details of intra-
vs cross-node communication of data arrays up to the underlying
MPI library. In recent years, however, the number of CPU cores
per compute node increased faster than the total available mem-
ory per node. Therefore, arrays that are needed on all MPI tasks
can significantly increase memory consumption on such architec-
tures. To address this issue, a key change in our implementation
was to move any large, precomputed coefficient arrays, e.g., the RI
coefficients Cμ

i j defined in Eq. (8) and the Coulomb matrix Vμν(r)
defined in Eq. (10), which are needed by all MPI tasks, to shared
memory arrays that are managed according to the MPI-3 stan-
dard (i.e., by the MPI library itself). This choice improves scalability
and reduces memory consumption significantly since only one copy
per node instead of one copy per core is stored in the memory.
For example, on a two-socket system with Intel Xeon IceLake-
SP Platinum 8360Y CPUs (36 CPUs per socket, i.e. 72 CPUs per
node), a reduction in the memory consumption for those arrays
by roughly two orders of magnitude is achieved due this strategy
alone.

Furthermore, one can exploit the fact that not all atom pairs
have a significant overlap of basis functions, especially for large
systems. Thus, a large number of computations and the associated
memory cost can be avoided from the start. However, exploiting
this sparsity requires a considerable bookkeeping effort to effi-
ciently store, exchange, and use the sparsified data. In our opti-
mized implementation of the EXX matrix computation, we store
the global book-keeping data for the various sparse arrays in MPI-
3 shared memory arrays. By this means, all MPI tasks have access
to the complete metadata (MPI task and offset) and can hence
access the initialized arrays and the computed results via one-sided
MPI calls.

One additional advantage of the described code infrastructure
is that it facilitates efficient data reshuffling. We repeatedly exploit
this property to optimize the data layout for the different stages of
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computation. The initialization of the Coulomb and overlap matri-
ces, the density computation, the actual EXX matrix computation,
and the Pulay mixing and storage are all performed with a differ-
ent data distribution to speed up computations and to reduce load
imbalance at the various stages.

Moreover, this infrastructure allows introducing an additional
parallelization layer. In the 2015 implementation, the computation
was only parallelized across atom pairs and the number of unit cells
in the Born–von Karman cell, i.e., the set of real-space unit cells
within which the Bloch phases of a finite, Γ-point centered k-space
grid are not yet periodically repeated. This restricted, coarse-grained
parallelization inherently limits the scaling for large core counts
because of the amount of data that needs to be exchanged. By decou-
pling the data layout from the actual work, the computations of the
different j columns of the exchange matrix can now be performed
independently, even if all of them require the data computed during
initialization. Depending on the available memory, we evenly split
the global MPI communicator into n identical subcommunicators.
We refer to these subcommunicators as instances in the following.
All of those instances are set up with everything that is necessary
to compute any column of the exchange matrix Eq. (11), i.e., all
of them have access to the precomputed data (e.g. RI coefficients
and Coulomb matrix), the communicators for parallelization across
atom pairs, and temporary arrays. This allows for the computation
of different chunks of the exchange matrix Xσ

i j(R) [Eq. (11)] (called
blocks in the following) to be performed independently by differ-
ent instances. The gathering of all blocks of the exchange matrix at
the end is very fast compared to the computation. This additional
parallelization layer drastically improves scalability: when enough
memory is available, multiple instances can be spawned, and the
strong scaling behavior is significantly improved, as shown in the
following.

In Fig. 3, we show a sketch of the new workflow for four com-
pute nodes and a situation in which two instances are opened and
three EXX matrix blocks are assigned to each of the two instances.
It should be noted that this distribution can change along the self-
consistent field (SCF) convergence to adjust the load balance. The
number of EXX matrix blocks is given by the number of basis func-
tions nbasis/block size. We explain the individual steps in more detail
in Subsection III B and III C.

B. Initialization
The compute workflow and a schematic data layout for the ini-

tialization are sketched in the upper half of Fig. 3. At the start of
any calculation, the Coulomb matrix Vμν(r) as defined in Eq. (10)
and the RI coefficients Cμ

i j as defined in Eq. (8) are computed. Com-
pared to the 2015 version, data re-use, memory access patterns, and
vectorization have been improved. The parallelization for the ini-
tialization routines is updated so as to minimize load imbalance. As
mentioned above, the arrays are then later redistributed and copied
onto each instance to match the data layout of the computation of
the EXX matrix in Eq. (4) during each SCF iteration, as indicated by
the orange and green arrows shown in Fig. 3. Furthermore, the usage
of data compression was extended: In the 2015 implementation, only
the Coulomb matrix, Eq. (10) was compressed by removing those
columns and rows that exclusively feature elements with absolute
values below a threshold of 10−10. The same compression method

FIG. 3. Computational workflow and data layout for the Fock matrix computation
for the optimized algorithm. The data layout is shown here for a calculation that
uses four nodes, two instances of the computational infrastructure (see the text),
and three blocks of the EXX matrix are treated by each instance.

is now also used for the RI coefficients, Eq. (8). The threshold was
carefully tested so as to not alter the result to a numerically signif-
icant degree for both the Coulomb matrix and the RI coefficients.
Other sparsity criteria were not altered compared to the 2015 version
and are explained in detail in Ref. 41, p. 65. The number of instances
for the main computation is also determined during initialization.
To this end, the available memory per node is measured and com-
pared to the estimated memory consumption per instance to avoid
out-of-memory situations. The memory consumption per instance
is estimated based on the size of the Coulomb matrix and RI coef-
ficients arrays, as well as heuristics for the largest temporary arrays
during the main loop as defined by Eq. (12). We use the following
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formula to estimate the ideal number of instances, i.e., the number
that gives the best performance and still fits into memory,

ninstances =
nnodes ×min (Mfree −Mbuffer)

MCoulomb +MRI +Mmain
, (13)

with the total number of nodes nnodes, the currently available mem-
ory per node Mfree, the estimated memory usage needed for the
actual evaluation per node Mmain, the memory buffer per node
Mbuffer, the memory for the Coulomb matrix MCoulomb, and the
memory for the RI coefficients MRI. However, only divisors of the
total number of nodes are allowed (e.g. for four nodes only one, two,
or four instances can be created), or more than one instance per node
is also possible. With this mechanism, the code can use the entire
available system memory over a wide range of nodes. In a strong-
scaling scenario, the increasing total memory available will lead to
an increasing number of instances, leading to a virtually perfect scal-
ing of the Fock matrix computation, as long as there are enough
blocks to distribute. When the memory requirements of the expected
computation are high compared to the available memory, only one
instance spanning all MPI tasks will be created. By this means, data
redundancy is avoided and the memory is used as efficiently as pos-
sible. Effectively, this recovers the original parallelization scheme
used in the 2015 version, but the remaining computational bene-
fits of the more fine-grained load balancing and of the MPI-3 shared
memory arrays still lead to a significant performance improvement.
Eventually, the Coulomb matrix and RI coefficients are copied to
and redistributed on each instance to achieve optimal performance
during the main loop of the calculation.

As discussed above, the computation of the real-space EXX
exchange matrix, Eq. (4), is performed in blocks over the last index j,
which improves cache usage and reduces the number of MPI calls
within an instance. We refer to this blocking of the Fock matrix
as Fock matrix blocks or simply blocks in the following. The opti-
mal block size is determined during initialization but can also be set
manually as an input parameter. Since many of the temporary arrays
scale with the block size, this quantity has a considerable impact on
the memory consumption per instance. During initialization, the
blocks of the exact exchange matrix are distributed evenly across
all instances. During the main computation, the number of blocks
per instance is increased/lowered after each SCF cycle according to
the actual runtimes for the individual blocks to achieve optimal load
balance.

In the remainder of this paper, we will collectively refer to the
determination of number of instances, the determination of the Fock
matrix block size, and the redistribution of the Fock matrix blocks as
auto-tuning mechanisms.

C. Evaluation of the EXX matrix in real space
The EXX matrix is evaluated once per SCF iteration. The pro-

cess is outlined in the lower half of Fig. 3, where the left column
describes the individual steps that are executed and the right col-
umn indicates the data layout used for the largest arrays. As a first
step, the (un-mixed) density matrix is constructed from the eigen-
vectors of the previous solution of the KS eigenvalue problem and
is Fourier transformed into real space to obtain Dσ

kl(R) according to
Eq. (5). For the first SCF iteration, the solution of the KS eigenvalue
problem for the semilocal PBE functional with an initial density of

superimposed spherical free atoms or ions is used, although more
sophisticated choices could be pursued in a future work. For all the
subsequent SCF iterations, the density matrix from the solution of
the KS eigenvalue problem using the actual hybrid functional is used.
The data layout and communication patterns for the Fourier trans-
forms in Eqs. (3) and (5) have been optimized for different stages
in the computation workflow: e.g., the computation and Fourier
transformation of the distributed density matrix is first computed
efficiently across all MPI tasks and, for the subsequent computa-
tion steps, the real-space density matrix Dσ

kl(R) is redistributed and
stored in a different data layout to be optimal for the matrix mul-
tiplications in Eqs. (12a) and (12d), as indicated by the blue arrows
shown in Fig. 3.

In the following, we briefly outline the computation of a row of
the EXX matrix Eq. (4) in pseudocode. The notation for the tempo-
rary matrices is the same as introduced in Eq. (12). C refers to the RI
coefficients in Eq. (8), while C′ refers to the reordered RI coefficients
to compute Eq. (12c) efficiently. D refers to the density matrix in real
space in Eq. (5). The variable names used on the left hand side of
the pseudo-instructions reflect their naming in the actual code. The
workflow and the data layout that is used during the simulation is
outlined in Fig. 3.

We refer to a collection of several EXX matrix rows as a block
in the following, as also shown by the yellow boxes shown in Fig. 3.
During the first SCF step, all blocks are distributed evenly among
the instances, but they might be later redistributed to optimize the
load balance. In order to use the available memory efficiently, several
temporary arrays are re-used (and over-written) during the compu-
tation of a block. Whether or not temporary arrays or a product of
temporary arrays are computed is decided based on estimates of the
maximum norms of some of the arrays involved, e.g., the density
matrix or the RI coefficients. These screening mechanisms have not
changed and are described in detail in the 2015 paper.41

For systems in which not all atom pairs overlap, a dynamic
load imbalance occurs in the main loop running over the global
basis function index n_basis due to the parallelization of the
Coulomb/overlap matrices over n_atoms. This means that the rela-
tive computational load for different MPI tasks varies between SCF
iterations because the work required for a particular basis func-
tion with index i_basis depends on the overlap between the atom
associated with i_basis and the atom associated with the data
stored locally on the task and on the synchronization points (global
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collectives) in each iteration. We implemented blocking to reduce
the number of synchronization points. It should be noted that the
indices i_basis accessed in each block are not consecutive, i.e., not
associated with the same atom, but aim to achieve some balancing
between all the MPI tasks within each block.

After the EXX matrix is fully constructed in real space, it is
backtransformed into reciprocal space (pink box shown in Fig. 3).
The Pulay mixing algorithm49 with mixing factors based on the
density is used as a default to achieve efficient SCF convergence.
As described initially, we use the unmixed density matrix to con-
struct the Fock matrix. Subsequently, we apply the Pulay mixing
factors of the density to the EXX exchange matrix as well. This choice
significantly increases the memory consumption for large-scale sys-
tems since, by default, the previous eight EXX matrices are stored
and all of them are of the size of the Hamiltonian: nbasis × nbasis
for each k point (orange box shown in Fig. 3). We only store EXX
matrices for the set of non-equivalent k-points per time-reversal
symmetry, unless otherwise requested by the user. This saves a
factor of about two for dense k-grids. In addition, the data lay-
out has been optimized for storing the current EXX matrix while
executing the Fourier back transform. Eventually, the correspond-
ing fraction of the Pulay mixed k-space EXX matrix is added to
the Hamiltonian.

D. EXX force and stress contributions
FHI-aims also provides analytical forces and stress evaluation

for hybrid DFAs,46 which enable, e.g., (periodic) structure opti-
mization or molecular dynamics. For the theoretical background,
we refer to the original paper.46 The Fock exchange force contri-
bution is only computed once per SCF cycle in an additional SCF
step when the electronic convergence criteria have been reached.
Each evaluation of the three force components and each evaluation
of the six (or nine) stress tensor components require a computa-
tion of the same size and complexity as the original Fock matrix.
In a naïve implementation of these Fock derivatives, the total mem-
ory consumption and runtime would increase by a factor of four,
if only forces are computed or by a factor of ten if the stress
is also computed. Especially for large systems, this factor would
lead to huge and undesirable memory consumption. Therefore,
we implemented a splitting of the computation of the stress com-
ponents into several parts. The code determines the mode based
on the available remaining memory. If the problem size is small,
all force and stress components are computed in parallel. If the
problem size is large, the force and stress computation is split
into three parts: first, the exchange matrix plus the three force
components are computed; second, the first three stress compo-
nents; and in a third part, the remaining three stress components
are computed. This choice keeps the memory consumption man-
ageable; however, it increases the computation time by a factor
of two.

E. Improvements of other relevant code parts
In addition to the EXX matrix evaluation, the evaluation of the

electrostatic (Hartree) potential and of the Pulay force terms was
also optimized to reduce the computational time spent for large peri-
odic systems. This improvement benefits both semilocal and hybrid

DFT computations. In FHI-aims, the Hartree potential in each SCF
step is evaluated as a difference to the sum of free atom potentials,
δves(r).39 The difference is computed on each point of the inte-
gration grid by summing up atom centered multipole components
δṽat,lm(r) for each atom; see Ref. 39. In our implementation, we
restructured the computations such that for each multipole com-
ponent, its contribution to the Hartree potential is evaluated for a
batch of points. This avoids branching in the innermost loop and
reduces the number of subroutine calls by two orders of magnitude,
improves memory accesses and cache reuse and allows for compiler
vectorization.

For periodic systems, the Hartree potential is evaluated using
the Ewald method that decomposes the potential into short- and
long-range components. For the long-range components, we intro-
duced a blocking method that evaluates the potential for a batch
of points. Here, it was possible to rewrite the computations using
highly tuned dgemm/zgemm routines of the BLAS (Basic Lin-
ear Algebra Subprograms) standard library instead of a loop-
based implementation, which greatly improved the computational
efficiency.

Similar to the evaluation of the Hartree Potential, we simplified
the branching inside of the main loops of the Pulay force evaluation
and restructured the computation to aggregate/avoid unnecessary
computations. In addition, we improved the repeated initializa-
tion of some large arrays in one of the main loops by exploit-
ing their sparsity, which also helped to reduce computation time
significantly.

IV. BENCHMARK RESULTS
A. Benchmark platform (hardware and software
specification)

The benchmark calculations reported here were performed
on the Lenovo HPC system, Raven,50 at the Max Planck Com-
puting and Data Facility. The compute nodes provide two Intel
Xeon Platinum 8360Y (IceLake-SP) processors with 72 cores per
node, operated at the nominal frequency of 2.4 GHz (turbo
mode disabled). Depending on the memory (RAM) requirements,
we either use nodes equipped with 256 GB RAM or 512 GB
RAM. Both types of nodes share the same memory-performance
characteristics (∼310 GB/s sustained bandwidth on the stream
triad microbenchmark51). All the nodes are connected through a
100 Gb/s Nvidia Mellanox HDR100 InfiniBand network with a
non-blocking fat-tree topology. We use the Intel ifort compiler
2021.6.0, the Intel MPI library 2021.6, and the Intel MKL library
2022.1.

B. Strong and weak scaling behavior
In the following, we compare the parallel scaling behavior of

the new implementation to the original version from 2015. We show
the O(N) scaling with respect to increasing the number of atoms in
the system, while keeping the number of basis functions per atom
constant.

We compare the performance of the improved code to the orig-
inal implementation from 201541 for GaAs supercells of different
sizes. We use the 4 × 4 × 4 primitive unit cell as 128-atom supercell
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and subsequently double the cell in each direction, so we get super-
cell sizes of 256, 512, and 1024 atoms. The k-grid for the 1024-atoms
supercell is chosen as 1 × 1 × 1, and the k-grid density is kept con-
sistent for the remaining supercells. We use the intermediate 2020
species defaults of FHI-aims (which are the earlier “tight” settings
in the 2010 notation as used in the 2015 implementation). The cal-
culations are all-electron calculations with no shape approximations
to the underlying electron–nuclear potential, and they are carried
out without making use of any space group symmetries or other
system-specific simplifications.

1. Strong scaling
The drastic improvements in the code performance are show-

cased in Fig. 4, which presents the actual runtimes for one evaluation
of the EXX (in the original and the improved implementation)
for each GaAs supercell as a function of the number of atoms
included in the supercell. Regardless of the number of nodes used,
a huge reduction in the runtime—roughly at least an order of
magnitude—is observed for all system sizes considered. We observe
a dependence of the runtime that approximately scales as aNb with
system size N. This scaling reveals that the increase in performance
is rooted in both a massive reduction of the prefactor a and in
improvements of the scaling exponent b. For small system sizes,
the observed reduction in the prefactor by about a factor of 6 (4
nodes) and 9 (16 nodes) is largely responsible for the obtained
savings. For larger system sizes, the reduced scaling exponent
becomes more important: Compared to the original implementa-
tion, which already features a favorable, almost linear scaling with
b ≈ 1.1–1.26, the improvements resulted in a further decrease in the
scaling coefficient, leading to an almost perfect linear scaling (b
≈ 1.01–1.05) of the computational cost with N. This is remarkable
since such a consistent linear scaling is extremely hard to achieve
in actual implementations, and this is already observed for the rel-
atively moderate system sizes considered in this plot (N ≤ 1024
atoms).

The observed increase in the code performance also trans-
lates into a better strong scaling behavior, as shown in Fig. 5.
This plot shows actual runtimes for one evaluation of the exact-
exchange operator as a function of the number of nodes viz. cores.
More specifically, GaAs supercells with 256, 512, and 1024 atoms
were investigated using both the original implementation and the
one including our improvements. As mentioned when discussing
Fig. 4, we already observe large improvements in the runtime
of roughly one order of magnitude for small node counts. The
improvements are even more pronounced for larger-scale calcula-
tions featuring thousands of cores and can reach reductions in the
runtime by two orders of magnitude and even more. Compared
to the original implementation, in which the runtime t(n) ≈ 1/nc

scales with respect to the number of cores, n, with an exponent c
between 0.2 and 0.25, the improved implementation scales with an
exponent c between 0.9 and 0.95, very close to an ideal speedup.
Clearly, a more favorable scaling is observed for larger workloads
viz. system sizes. As shown in the next section, the developed
routines show a similarly good scaling on a much larger num-
ber of nodes and cores if the respective problem size is increased
accordingly.

FIG. 4. O(N) scaling of the improved (solid lines) and the 2015 (dashed lines)
implementation of the HSE06 exchange evaluation timings per SCF iteration for
GaAs supercells with 256, 512, and 1024 atoms using the intermediate FHI-aims
species defaults, i.e., 34 NAO basis functions per atom. The gray lines indicate
linear scaling. The calculations were run on nodes with 256 GB RAM.

FIG. 5. Strong scaling of the improved (solid lines) and the 2015 (dashed lines)
implementation of the HSE06 exchange evaluation timings per SCF iteration for
GaAs supercells with 256, 512, and 1024 atoms using the intermediate FHI-aims
species defaults, i.e., 34 NAO basis functions per atom. The gray lines indicate
ideal strong scaling. The calculations were run on nodes with 256 GB RAM.

2. Weak scaling
To showcase weak scaling with a constant workload per node,

cf. Fig. 6, we use the same GaAs supercell data as in the pre-
vious section. For the 2015 implementation, we observe that the
average run time for a constant workload increases almost linearly
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FIG. 6. Weak scaling for the improved (solid lines) and 2015 (dashed lines) imple-
mentation of the HSE06 Fock exchange evaluation timings per SCF iteration for
GaAs supercells with 256, 512, and 1024 atoms using the intermediate FHI-aims
species defaults, i.e., 34 NAO basis functions per atom. The gray lines indicate
ideal weak scaling. The calculations were run on nodes with 256 GB RAM.

with higher node counts, indicating a sub-optimal parallelization
scheme. For the new implementation, this problem has been solved
due to the introduction of the additional parallelization layers. As
shown in Fig. 6, the run time is close to constant for a given
workload.

C. Benchmark calculations for selected systems
Using the algorithm described above, FHI-aims can perform

hybrid density functional calculations for both periodic and non-
periodic systems. To test the limits of the implementation and
document the current runtimes as a reference for future devel-
opments, we have selected different systems and geometries. In
total, we addressed 18 systems (ten bulk materials, two surfaces,
two nanosystems, two clusters, and two molecules). The number of
atoms in the systems range from two to more than 30 000 atoms.
All the details and references to the original publications discussing
these systems and full access to the simulation results are given in
the supplementary material. In this work, we only focus on systems
that exhibit a gap between the highest occupied and lowest unoccu-
pied states. Testing the limits of the implementation with respect to
the number of atoms has helped identify and then resolve issues with
order-N2

atoms arrays across different code parts in FHI-aims, which at
some point would otherwise dominate the memory consumption. In
addition to Tables II and III and the supplementary material, several
key results are shown in Fig. 1.

Our test set covers both high- and low-density compounds to
explore the limits of the parallelization. In this context, it is impor-
tant to keep in mind that the local atom density, i.e., the number
of atoms within the overlap radius of the basis functions, defines

the workload. Formally, the workload scales with O(n4
basis), where

nbasis is the number of basis functions with non-vanishing overlap.
For instance, the simulated carbon allotropes are very dense, so the
workload is comparatively high, although each atom has only a few
basis functions. In contrast, the ice XI or paracetamol crystals have a
low atom density and, in addition, also only few basis functions, so
the workload is low. In addition, we also included systems that con-
tain both heavy and light elements, e.g., the inorganic/organic hybrid
lead iodide perovskite methylammonium lead iodide (MAPI) or the
layered hybrid perovskite phenethylammonium lead iodide (PEPI).
These types of systems represent an important computational chal-
lenge, i.e., the workload per atom is very inhomogeneous since
atoms from very light (H) to very heavy (Pb) elements are included.
The refined parallelization scheme over basis functions and the
establishment of runtime auto-tuning mechanisms that adapt the
workload while running the calculations are critical for efficiently
executing these calculations. Finally, we also included magnetic sys-
tems, i.e., the Fayalite and Hematite unit cells. Using collinear spin
“doubles” the memory and runtime since the spin index in Eq. (4)
runs up to two.

FHI-aims provides pre-defined defaults for individual chemi-
cal elements that include the integration grids, basis functions and
their spatial extent, as well as the expansion order of the mean-field
electrostatic potential. As mentioned before, the construction of the
auxiliary basis is only based on this default. In this work, we mostly
use “light,” “intermediate,” and “tight” species defaults. Here, we use
the defaults denoted as “2020 defaults” in FHI-aims. As the name
indicates, they represent defaults with increasing accuracy and also
higher computational costs. For a discussion of the accuracy of the
“light” and “tight” species defaults, we refer to Ref. 39. We note that
the “intermediate” species defaults are the recommended produc-
tion settings for hybrid DFT calculations in FHI-aims, such as, high
quality geometry relaxations, sophisticated band structures, and
energy differences. In turn, the calculations presented in Tables II–V
with intermediate species defaults can be considered as converged
and indicative of realistic simulation settings for DFT simulations
of the considered materials. For periodic systems, we also used k-
grid densities that can be considered fully converged for systems that
provide a gap. We use a k-grid density of ni ⋅ ai > 50 Å, where ai
is the lattice vector length and ni is the number of k-points along
the corresponding k-space direction i. The k-point grids are deliber-
ately chosen to be very well converged, illustrating that the current
implementation can be used without a priori precision trade-offs
in this respect. For example, even for the 2000 atom diamond car-
bon supercell, a 2 × 2 × 2 k-space grid is used in our benchmark.
We emphasize that for most systems even the less computationally
demanding “light” settings would lead to qualitatively correct and
quantitatively acceptable results, e.g. for geometry optimization or
bandgap computations. Similarly, somewhat reduced k-grids would
lead to notably lower computational cost and results that can be
deemed acceptable. We further note that all the calculations shown
here are using runtime parameters, e.g., the number of instances and
the Fock matrix block size, which are automatically chosen by the
auto-tuning mechanism. As discussed in Sec. III B, this technique
aims at yielding very a good computational performance by default
and to concurrently avoid out-of-memory scenarios since conserva-
tive memory estimates are used. Accordingly, a manual fine tuning
of the parameters for the number of instances and the Fock matrix
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TABLE II. All the calculations are carried out with the HSE06 (α = 0, β = 0.25, ω = 0.11 bohr−1) functional. Species: predefined species defaults in FHI-aims (defaults2020).
Nodes: number of nodes with 72 cores per node and 256 GB memory. Inst.: number of created instances of the auto-tuning mechanism [cf. Eq. (13)]. Init: initialization time for
the Fock exchange computation (only once per SCF cycle). Fock: average HSE06 Fock exchange computation time per SCF iteration. KS: average time per SCF iteration for the
solution of the Kohn–Sham equations. M: estimated maximum memory per node in GB. The references point to the publications from which the structural models were taken.
The visualization of the structures is shown in the supplementary material.

Bulk systems

Species Nodes Inst. Init (s) Fock (s) KS (s) No. of basis No. of states M (GB)

Boron nitride: BN (2 atoms), 19 × 19 × 19 k-grid, Ref. 52

Light 1 8 71.384 2.809 0.054 28 12 86.31
Intermediate 1 8 115.769 20.084 0.128 60 12 131.34
Tight 1 3 147.644 84.480 0.389 78 12 158.19

Carbon diamond: C2000 (2000 atoms), 2 × 2 × 2 k-grid, Ref. 53

Light 16 1 45.677 130.690 60.236 28 000 12 000 142.85
32 4 42.704 53.065 34.734 141.69

Intermediate 64 1 139.876 459.099 57.022 60 000 12 000 207.80

Cubic MAPI: C64N64H384Pb64I192 (768 atoms), 2 × 2 × 2 k-grid, Ref. 54

Light 8 2 68.575 69.039 27.557 15 744 10 912 97.92

Intermediate 8 1 123.644 179.267 32.493 20 672 10 912 127.11
16 2 83.606 92.080 18.611 98.87

Hematite: Fe4O6 (10 atoms), 10 × 10 × 10 k-grid, collinear spin, Ref. 55

Light 1 8 17.090 26.263 0.263 208 116 93.99
Intermediate 1 3 48.562 83.854 0.410 340 116 93.99

Fayalite: Fe8Si4O16 (28 atoms), 4 × 7 × 8 k-grid, collinear spin, Ref. 56

Light 2 8 11.738 18.915 0.923 572 300 85.60
Intermediate 2 2 36.663 92.804 1.544 936 300 93.18

Hydrogen interstitial in silicon: Si64H1 (65 atoms), 4 × 7 × 4 k-grid, Ref. 57

Light 1 2 28.297 62.990 2.561 1 605 643 117.99

Intermediate 1 1 80.690 225.392 2.588 2 187 643 179.04
2 2 44.763 112.293 1.337 127.11

Water (liquid): H128O64 (192 atoms), 4 × 4 × 4 k-grid, Ref. 57

Light 1 6 16.157 8.752 2.475 1 536 704 115.58
Intermediate 1 1 102.727 101.951 4.975 3 328 704 193.93

PEPI with defect: C1152H1728Bi2I288N144Pb69 (3383 atoms), 1 × 1 × 1 k-grid, Ref. 1

Intermediate 16 1 174.454 299.968 69.529 75 100 24 076 209.03
32 1 140.919 227.803 56.663 131.63

4 × 4 × 4 paracetamol: C4096H4608N512O1024 (10 240 atoms), 1 × 1× 1 k-grid, Ref. 58

Light 16 1 216.257 323.327 380.769 101 888 44 288 214.16
32 4 207.386 106.763 218.647 205.84

Intermediate 84 1 409.863 803.045 278.179 219 648 44 288 215.74
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TABLE II. (Continued.)

Bulk systems

Species Nodes Inst. Init (s) Fock (s) KS (s) No. of basis No. of states M (GB)

∗Supercell of ice XI: H20384O10192 (30 576 atoms), 1 × 1 × 1 k-grid, Ref. 59

Light 60 5 1418.280 710.858 1670.647 244 608 112 112 443.27

Surfaces

Graphene on SiC slab: C1108Si432H108 (1648 atoms), 2 × 2 × 1 k-grid, Ref. 60

Light 8 1 76.334 181.153 59.822 26 852 11 184 137.91
Intermediate 32 1 107.521 516.838 32.500 49 116 11 184 141.12

TiO2 slab: Ti1152O2304 (3456 atoms), 1 × 1 × 1 k-grid

Light 32 2 86.544 149.935 84.533 67 968 35 136 107.82
Intermediate 48 1 176.155 615.024 113.114 115 200 35 136 175.15

block size can further speed up calculations by roughly another 25%
for most systems.

1. Bulk systems
The bulk system class is computationally the most challeng-

ing one. Due to the 3D periodicity, the neighboring unit cells in
the Born–von Karman cell lead to contributions for the Fock-type
exchange evaluation in all directions. Boron nitride and the car-
bon diamond supercell are the densest materials among the bulk
test suite with about 0.17 and 0.18 atoms/Å3, respectively. As dis-
cussed earlier, despite a low number of basis functions per atom,
this leads to a potentially high workload per basis function since
the high atom density increases the number of overlapping basis
functions from the neighboring atoms. As a result, the computa-
tional effort scales as O(n4

basis) with nbasis the number of nonzero
basis functions in a given volume element, since no sparsity can be
exploited for basis functions that are placed on top of one another.
In Table II, we compare “light” and “intermediate” species defaults
for most of the systems in the test suite, where intermediate set-
tings are designed to provide sufficient numerical precision for any
production DFT simulations. For boron nitride, we also include the
“tight” species defaults, illustrating the scaling with the number of
basis functions. The Hematite and Fayalite systems require collinear
spin polarization to be included in the calculations in order to obtain
the correct electronic structure for their ground states. Both systems
have an antiferromagnetic spin ordering. The hydrogen interstitial
introduces a shallow defect level that is partially occupied. Among
the largest structural models, we include supercells of cubic methy-
lammonium lead iodide perovskite (MAPI) with 768 atoms, a defect
complex (a lead vacancy with two Bi substitutions at the Pb site) in
the phenylethylammonium lead iodide perovskite with 3383 atoms,1
and a 4 × 4 × 4 paracetamol supercell containing over 10 000 atoms.
The largest system is a supercell of ice XI with over 30 000 atoms
(Fig. 1), treated with light species defaults, for which we used nodes
with 512 GB memory. For some systems, we indicate the strong scal-
ing behavior by doubling the number of nodes. We observe that the
strong scaling for the EXX-contribution evaluation remains intact

even for systems beyond 10 000 atoms. For systems for which the
number of instances is greater than the number of nodes, more than
one instance per node is used. To check the integrity of the algorithm
for the largest simulation cell, we compared the binding energy of
the Ice XI for the supercell to 30 576 atoms with the result based on
the smaller unit cell as described in Sec. II, using a 11 × 11 × 6 k-grid
for the light species defaults. We use the HSE06 functional with the
vdw-TS dispersion correction.47 We find a total energy difference
of 1.4 ×10−7 eV for the binding energy, which can be considered in
perfect agreement within the bounds of the default SCF convergence
criteria (see the supplementary material for more details).

2. Surfaces
The simulation of surface slabs is a special case of the 3D peri-

odic systems, in which a vacuum region is inserted in one of the three
spatial directions. We selected a hydrogen-passivated 6

√
3 × 6
√

3
silicon carbide slab with nine atomic layers and a graphene sheet at
the top (1648 atoms). For this example, the Fermi level is pinned
close to the Dirac cone of the graphene sheet, but due to inter-
action with the slab, the Dirac cone states are partially occupied.
In addition, we choose a (100)-oriented TiO2 slab (3456 atoms)
that possesses no metallic surface states. Both systems are large and
are demonstrated in simulations using significant resources (32 and
48 nodes, respectively, using intermediate settings). Nevertheless,
resources of this kind are available in many high-performance com-
puting centers across the globe and the system sizes shown enable
rather realistic simulations of nanoscale processes across chemistry
and materials science, without undue interactions across periodic
supercell images.

3. Nanosystems
Two different carbon allotropes are chosen: a carbon nanowire

and a carbon nanotube. Both systems are one-dimensional in the
sense that vacuum has been added in two spatial directions and
only one direction is actually periodic. The less bulk-like the sim-
ulated system, the lower is the actual workload. This can be directly
observed for both nanosystems having the same number of atoms,
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TABLE III. All the calculations are carried out with the HSE06 (α = 0, β = 0.25, ω = 0.11 bohr−1) functional. Species: predefined species defaults in FHI-aims (defaults2020).
Nodes: number of nodes with 72 cores per node and 256 GB memory. Inst.: number of created instances of the auto-tuning mechanism [cf. Eq. (13)]. Init: initialization time for
the Fock exchange computation (only once per SCF cycle). Fock: average HSE06 Fock exchange computation time per SCF iteration. KS: average time per SCF iteration for the
solution of the Kohn–Sham equations. M: estimated maximum memory per node in GB. The references point to the publications from which the structural models were taken.
The visualization of the structures is shown in the supplementary material.

Nanosystems

Species Nodes Inst. Init (s) Fock (s) KS (s) n_basis n_states M (GB)

Carbon nanotube: C2000 (2000 atoms), 1 × 1 × 1 k-grid, Ref. 53

Light 4 4 41.446 21.119 30.698 28 000 12 000 124.36
8 8 42.297 11.019 17.887 123.59

Intermediate 8 1 122.634 194.599 42.215 60 000 12 000 168.70

Carbon nanowire: C2000 (2000 atoms), 1 × 1 × 1 k-grid, Ref. 53

Light 8 4 62.211 57.638 20.003 28 000 12 000 112.40
Intermediate 16 1 154.032 549.161 29.219 60 000 12 000 165.05

Clusters and molecules

Species Nodes Inst. Init (s) Fock (s) KS (s) n_basis n_states M (GB)

Solvated DNA: C209H10166N88Na20O5110P20 (15 613 atoms), Ref. 61

Light 32 2 132.269 254.326 546.280 127 328 58 308 180.00
64 8 129.111 104.250 272.003 188.33

Intermediate 128 1 359.336 736.282 320.969 275 236 58 308 210.79

Water drop: H1200O600 (1800 atoms), Ref. 61

Light 2 4 43.654 14.111 9.484 14 400 6600 107.65
Intermediate 4 1 89.275 84.418 11.444 31 200 6600 131.53

Silicon wire: H246Si460 (706 atoms), Ref. 61

Light 4 4 33.700 42.645 3.805 12 730 5092 90.82
Intermediate 4 2 80.333 134.623 4.814 18 346 5092 126.88

Ac-Lys-Ala19-H+: C65H112N21O22 (220 atoms), Ref. 62

Light 2 16 6.567 0.862 0.123 2072 904 35.25
Intermediate 2 8 17.415 10.134 0.215 4472 904 82.98

but a very different EXX evaluation time. Comparing for the same
number of cores and same species defaults, the nanotube can be
evaluated more than five times faster than the nanowire, since the
nanotube can be considered a rolled 2D graphene sheet with no
bulk-like volume. In contrast, the nanowire has a bulk-like core.
Nonetheless, the 2000 atom carbon diamond bulk needs a five times
longer evaluation time on the same number of nodes. For either of
the nanosystems, quite modest resources are required in view of the
system size, i.e., eight and sixteen nodes, respectively.

4. Clusters and molecules
These systems do not have periodic boundary conditions but,

as initially mentioned, can still be simulated with the same code as
described above. We have selected a part of a DNA molecule sol-
vated in saline water containing overall 15 613 atoms, a water cluster

shaped as a sphere (“water drop”) containing 1800 atoms, a sili-
con wire containing 706 atoms and a charged Ac-Lys-Ala19-H+
molecule containing 220 atoms. The DNA system is a remarkably
large system for hybrid DFA-based simulations at the numerical pre-
cision level of intermediate settings. While 128 nodes for the 15 613
atom solvated DNA molecule are large resources, being able to cap-
ture processes in such a system with the accuracy of a hybrid DFA
at all is, again, a considerable success. The strong scaling behavior
is identical for a metallic system, as can be seen, for example, for
the solvated DNA presented in Table III that has fractional occupa-
tions because the strong scaling is only dependent on how work is
distributed among the different MPI tasks.

In general, we observe that the per-SCF-step evaluation of the
EXX matrix shows close-to-ideal strong scaling across the systems.
However, the EXX initialization timings do not always scale with
the number of nodes. In practice, this has little influence on overall
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TABLE IV. Runtime comparison for the HSE06 (α = 0, β = 0.25, ω = 0.11 bohr−1) force (f) and stress (s) evaluation using intermediate species defaults. Mode: Performance of
a SCF cycle without force and stress evaluation (. . .), with only force evaluation (f), with force and stress evaluation (f/s). Inst.: number of created instances of the auto-tuning
mechanism [cf. Eq. (13)]. Init: initialization time for the Fock exchange computation (only once per SCF cycle). Fock: average HSE06 Fock exchange computation time per
SCF iteration. KS: average time per SCF iteration for the solution of the Kohn–Sham equations. Iter: average time for a full SCF iteration. SCF: number of SCF iterations until
electronic convergence has been achieved. M: estimated maximum memory per node in GB.

Bulk systems

Mode No. of N Inst. Init (s) Fock (s) KS (s) Iter (s) f/s (s) No. of SCF M (GB)

Hematite: Fe4O6 (10 atoms), 10 × 10 × 10 k-grid, intermediate, collinear spin

⋅ ⋅ ⋅ 1 3 48.562 84.220 0.410 89.041 ⋅ ⋅ ⋅ 17 89.34
f 1 2 268.248 78.577 0.416 82.642 108.220 18 181.67
f/s 1 2 267.335 75.602 0.410 80.278 575.318 23 200.11

Water (liquid): H128O64 (192 atoms), 4 × 4 × 4 k-grid

⋅ ⋅ ⋅ 4 8 39.000 17.913 2.339 24.349 ⋅ ⋅ ⋅ 11 172.76
f 4 2 65.442 28.589 2.645 35.610 61.176 12 184.58
f/s 4 2 67.330 28.217 2.655 35.783 278.821 15 229.16

Molecules

Ac-Lys-Ala19-H+: C65H112N21O22 (220 atoms), intermediate

⋅ ⋅ ⋅ 2 8 17.415 10.134 0.214 15.619 ⋅ ⋅ ⋅ 12 82.21
f 2 2 27.176 11.022 0.228 15.145 52.991 13 87.16

runtimes since the initialization is only evaluated once per SCF cycle
and usually does not exceed the cost of an extra SCF step. We provide
the number of SCF steps for SCF convergence and the total runtime
for each of the calculations in the supplementary material.

D. Computation of forces and stress
We showcase the runtimes for the evaluation of the forces and

stress for a small subset of the above-mentioned benchmark sys-
tems, as presented in Table IV. As mentioned above, the memory
consumption for force and stress computations are considerably
larger. We use the same number of nodes for energy, force (f), and
force+stress (f/s) evaluation to allow for an unbiased comparison of
runtimes. For Fe2O3, we find that the computation of the force and
stress components increases the memory consumption significantly.
However, the difference between a forces-only and a force+stress
computation is small. This is due to the fact that the stress com-
ponents are not computed concurrently but in serial batches; see
Sec. III D, which, in turn, results in higher runtimes. The num-
ber of SCF iterations also increases, since an additional SCF step is
needed for the force evaluation and two additional steps are needed
for the stress evaluation. It should be noted that the stress eval-
uation takes a few additional SCF steps, since FHI-aims slightly
tightens the electronic convergence criteria for the stress evalua-
tion by default. Similar behavior can be observed for the water
system. It appears that energy and force computations have simi-
lar memory consumption, but the additional memory usage of the
energy-only computation is due to using more instances. Again,
to avoid running out of memory, stress components are computed
sequentially.

E. Performance comparison of the PBE, PBE0,
and HSE06 functionals

This section focuses on the runtime differences between the
semi-local functional PBE and the hybrid density functionals HSE06
and PBE0. We select two bulk materials (hematite: 10 atoms and liq-
uid water: 192 atoms) and a molecule (lysine-terminated polyalanine
helix, 220 atoms) to quantify the differences explicitly for each func-
tional. We run the same system for the three functionals on the same
number of nodes to allow for an easy runtime comparison, even
though PBE and HSE06 would actually need far fewer computational
resources than PBE0.

The run-time differences can be significant for dense materi-
als with heavier elements and few atoms—especially between the
hybrid density functionals PBE0 and HSE06. The timing for the
real-space evaluation of the EXX contribution is directly related to
the extent of its Coulomb kernel. The PBE0 functional uses a bare
Coulomb potential and, thus, its extent is formally infinite; see Sec. I.
In practice, the extent is still limited by the sparsity of the density
matrix and by the overlap of the basis functions due to the finite
extent of the employed atom-centered orbitals. However, the overlap
for the relevant basis pairs in the four-center two-electron inte-
grals extends to several layers of nearest neighbors. In contrast, the
HSE06 functional uses a screened Coulomb potential leading to only
a short-range EXX contribution; see Sec. I. The “standard” screen-
ing parameter for HSE06 is 0.2 Å−1, as given in Ref. 18. In turn,
the exchange contribution is limited to pairs of closest neighbors in
most practical cases. Thus, the sparsity of all the matrices increases
and leads to smaller workloads and hence lower runtimes. As pre-
sented in Table V, the difference between PBE0 and HSE06 is most
pronounced for dense materials—in our case, the Hematite crystal.
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TABLE V. Runtime comparison for the PBE, PBE0 (α = 0.25, β = 0.0), and HSE06 (α = 0, β = 0.25, ω = 0.11 bohr−1) functional for the intermediate species defaults. Inst.:
number of created instances of the auto-tuning mechanism [cf. Eq. (13)]. Init: initialization time for the Fock exchange computation (only once per SCF cycle). Fock: average
HSE06 Fock exchange computation time per SCF iteration. KS: average time per SCF iteration for the solution of the Kohn–Sham equations. Iter: average time for a single SCF
iteration. SCF: number of SCF iterations until electronic convergence has been achieved. M: estimated maximum memory per node in GB.

Bulk systems

Functional Nodes Inst. Init (s) Fock (s) KS (s) Iter (s) No. of SCF M (GB)

Hematite: Fe4O6 (10 atoms), 10 × 10 × 10 k-grid, intermediate, collinear spin

PBE 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.191 2.495 15 21.27
HSE06 2 6 27.476 40.527 0.227 43.497 17 96.19
PBE0 2 2 102.815 241.563 0.238 243.340 18 220.02

Water (liquid): H128O64 (192 atoms), 4 × 4× 4 k-grid

PBE 5 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 1.092 5.515 12 21.51
HSE06 5 10 32.628 14.824 1.209 19.360 11 157.55
PBE0 5 1 34.425 40.576 1.201 45.078 11 156.77

Molecules

Ac-Lys-Ala19-H+: C65H112N21O22 (220 atoms), intermediate

PBE 2 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0.218 5.372 13 21.82
HSE06 2 8 17.415 10.134 0.215 15.619 12 82.21
PBE0 2 8 16.505 12.803 0.228 18.191 12 75.52

HSE06 is a factor of six faster compared to PBE0. In contrast, for a
small molecule, the runtime difference between HSE06 and PBE0 is
negligible.

The semi-local GGA functional PBE is faster by a factor of 18
compared to HSE06 for the Hematite crystal unit cell. The differ-
ences between HSE06 and PBE decrease for large systems and lighter
elements, as well as for less dense materials: this can be observed for
both the periodic water system and the molecule Ac-Lys-Ala19-H+.
As the system size increases, the direct eigensolver ELPA will even-
tually dominate the runtimes, while, for smaller systems, the HSE06
exchange evaluation will dominate the runtime. For the largest sys-
tems presented in Tables II and III, the PBE runtime can be directly
estimated. For those calculations, the eigensolver and the HSE06
exchange evaluation are by far the dominant steps in the calcula-
tion so the total HSE06 runtime per SCF iteration is approximately
the sum of both. In turn, the PBE runtime can be estimated by using
only the timings for the solution of the KS equations. For example,
the 4 × 4 × 4 paracetamol supercell is roughly only a factor of 1.5
faster when using PBE compared to the HSE06 calculation.

F. Limiting factors for the weak scaling behavior
The dense storage of the Hamiltonian, overlap, and Fock-type

matrices, including the copies needed for the Pulay mixing, grow
with O(n2

basis). Dense storage of these matrices is needed since our
examples use a dense eigenvalue solver (ELPA). Therefore, these
matrices become the memory bottleneck for large-scale simulations.
For the exchange matrix evaluation, we observe the O(N2) behavior
for our largest calculations, i.e., for the Ice XI supercells with up to
30 000 atoms, as shown in Fig. 7. It should be noted that it is well

FIG. 7. Weak scaling behavior for the HSE06 Fock exchange evaluation (blue line)
and the solution of the KS equations (orange line) for extreme supercells of the Ice
XI with 7.5k 15k, and 30k atoms. The graph shows the timings per SCF iteration in
seconds in a double logarithmic plot. The horizontal gray lines indicate ideal weak
scaling, and the gray diagonal line shows O(N2) scaling. The calculations were
run on nodes with 256 GB RAM (first two data points from left to right) and with
512 GB RAM (last data point), respectively.

known that all the matrices involved become sparse for very large
systems with a gap, in particular the density matrix and the closely
related exchange matrix. However, this sparsity has not yet been
exploited in the current implementation and will be part of future
work.
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V. CONCLUSIONS
For the localized resolution of identity approach to hybrid den-

sity functional approximations, RI-LVL,27,28 as implemented in the
FHI-aims code, thorough analysis of memory requirements and
code efficiency was performed. An improved distributed storage
algorithm was implemented using features of the MPI-3 standard.
This allows us to exploit shared memory access on individual
nodes for the storage of arrays that are common to each MPI task,
while remaining entirely within the MPI paradigm. Other code
parts were refactored accordingly, including a more sophisticated
load balancing approach that relies on reducing communication
by using the available memory to spawn independent “instances”
(subgroups of MPI tasks) across which the exchange operator is
evaluated. As a consequence, a drastic reduction with respect to
memory requirements and a massive increase in the code per-
formance was achieved. For instance, the required memory per
node now shows an almost optimal inverse scaling with respect to
the number of employed nodes. These improvements are shown
to enable the handling of system sizes ≳10 000 atoms (more than
30 000 atoms in the largest example considered), extending the
reach of hybrid density functional theory on standard CPU-based
hardware far beyond the limits of what was previously possible,
to our knowledge, in any electronic structure code. Furthermore,
the improved distributed storage leads to better load-balance and
reduced communication pressure. In turn, this results in an almost
perfect, linear scaling of the computational effort with respect to
system size and in a virtually ideal speedup with respect to the
node count. For large system sizes, these improvements lead to a
reduction of the runtimes by two orders of magnitude and more
compared to the previous, already optimized implementation in
FHI-aims. Regarding the limits of the current implementation, we
observe O(N2) weak scaling behavior for system sizes ≳10 000
atoms. Nevertheless, the almost ideal strong scaling behavior is still
present even in this regime of extremely large system sizes. The
methods and algorithms presented are general and could be imple-
mented in any electronic structure code that relies on localized basis
functions.

SUPPLEMENTARY MATERIAL

The file supplementary material contains detailed structural
information and references, specifying the sources of the structures.
It includes tables with links to data in the NOMAD repository, mak-
ing all input and output files publicly accessible. In addition, the file
provides tables detailing simulation runtimes from start to finish and
the number of SCF iterations performed.
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