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A B S T R A C T

This paper introduces a novel approach to learn multi-task regression models with constrained architecture
complexity. The proposed model, named RFF-BLR, consists of a randomised feedforward neural network with
two fundamental characteristics: a single hidden layer whose units implement the random Fourier features that
approximate an RBF kernel, and a Bayesian formulation that optimises the weights connecting the hidden and
output layers. The RFF-based hidden layer inherits the robustness of kernel methods. The Bayesian formulation
enables promoting multioutput sparsity: all tasks interplay during the optimisation to select a compact subset of
the hidden layer units that serve as common non-linear mapping for every tasks. The experimental results show
that the RFF-BLR framework can lead to significant performance improvements compared to the state-of-the-art
methods in multitask nonlinear regression, especially in small-sized training dataset scenarios.

1. Introduction

This paper focused on MultiTask Regression (MTR) problems with
two particular restrictions: small-sized training sets and constraints on
the complexity of the model architecture. The demand for this type of
models naturally arises in application domains subject to strong regu-
lation, such as health or finances (Ketu & Mishra, 2021; Xiong, Bao, &
Hu, 2014). Multitasking (Caruana, 1997) also appears naturally in these
scenarios. Consider, for instance, the case of a clinical study focused on
the characterisation of a disease. A common setup starts with a cohort
of a few tenths (hundreds if we are lucky) of patients going through the
same data acquisition process. Subsequently, these data can be used
in the construction of machine learning models for the prediction of
scores that can help capture patterns that characterise the progression
of the disease, the probability of a successful response to particular
treatment, etc. The interplay among those closely related tasks suggests
that fitting all these models under the same joint optimisation can
be more beneficial than fitting each model with a separate indepen-
dent optimisation. In fact, several recent works (Spyromitros-Xioufis,
Tsoumakas, Groves, & Vlahavas, 2016; Zhen, Yu, He, & Li, 2018;
Zhen, Yu, Zheng, et al., 2018) show that the MTR paradigm can lead
to significant improvements in performance achieved by learning an
independent model per task. The outperformance of MTR is especially
noticeable in cases with small training sets that demand non-linear
modelling. These results have recently motivated a growing interest
in MTR algorithms and in their successful application in numerous
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real-world problems. Among these applications, it is worth mentioning
commerce and finance (e.g., prediction of stock price Li et al., 2019),
environmental modelling (e.g., air quality Masmoudi, Elghazel, Taieb,
Yazar, & Kallel, 2020 and weather forecast Li et al., 2019), robotics (Li
et al., 2019), computer vision (Emambakhsh, Bay, & Vazquez, 2019;
Farlessyost, Grant, Davis, Feil-Seifer, & Hand, 2021; Tan, Chen, Ji, &
Geng, 2022), speech-related tasks (e.g., speech enhancement Tu, Du,
Gao, & Lee, 2020 and speech intelligibility prediction Ry et al., 2022),
and biomedical applications (e.g., medical image analysis Ma, Kundu, &
for the Alzheimer’s Disease Neuroimaging Initiative, 2024; Zhen et al.,
2017).

The constrained model complexity feature points towards single-
hidden-layer Neural Network (NN) as a strong candidate for core
technology in these scenarios. Examples of such architectures are the
Radial Basis Function (RBF) NNs (Hartman, Keeler, & Kowalski, 1990),
Two Layer Perceptrons (TLP) (Rumelhart, Hinton, & Williams, 1985),
and randomised feedforward networks such as the Extreme Learning
Machine (ELM) (Huang et al., 2006; Huang, Zhu, & Siew, 2004) and
the Random Vector Functional Link Network (RVFLN) (Pao & Take-
fuji, 1992). Moreover, broadly used Kernel Methods (KMs) such as
the Support Vector Regressor (SVR) (Smola & Schölkopf, 2004), the
Kernel Ridge Regressor (KRR) (Vovk, 2013) or Gaussian Processes (GPs)
(Rasmussen, 2003) can also be regarded as NNs with a single hidden
layer (Burges, 1998). The usual approach to solve MTR problems with
these architectures involves combining various tasks within a layer

https://doi.org/10.1016/j.neunet.2024.106619
Received 3 November 2023; Received in revised form 23 July 2024; Accepted 6 August 2024

https://www.elsevier.com/locate/neunet
https://www.elsevier.com/locate/neunet
mailto:carlos.sevillasalcedo@aalto.fi
https://doi.org/10.1016/j.neunet.2024.106619
https://doi.org/10.1016/j.neunet.2024.106619
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2024.106619&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Neural Networks 179 (2024) 106619

2

C. Sevilla-Salcedo et al.

of common latent variables and the use of KMs (Zhen, Yu, He, & Li,
2018; Zhen, Yu, Zheng, et al., 2018) or ELMs (da Silva, Inaba, Salles,
& Ciarelli, 2020) to learn a non-linear mapping between the inputs
features and these latent variables. These works have reported more
accurate models than other approaches such as ensembles of regression
trees (Spyromitros-Xioufis et al., 2016), or the use of gene expression
programming to jointly learn a non-linear model for each task (Moyano,
Reyes, Fardoun, & Ventura, 2021).

One of the most important pros in favour of RVFLN to implement
these models is their universal approximator feature, despite their
relative mathematical simplicity (Huang, Bai, Kasun, & Vong, 2015).
The standard ELM consists of a single hidden layer where each neuron
is connected to the input layer by a weight vector whose values are
selected at random during the network instantiation. Moreover, the
user is also free to select the non-linear activation of each neuron in
the hidden layer. Once the network is created, an optimisation sets
the values of the weights that connect the hidden layer to the output
layer. This optimisation is significantly cheaper (a simple ridge regres-
sion) compared to those needed to fit more complex architectures.
The RVFLN can be regarded as an ELM completed with functional
links: a set of weights that connect the input and output layers. These
functional links are jointly optimised with the weights connecting the
hidden and the output layers.

However, these characteristics stand as double-edged weapons in
the cases of interest in this research. This high degree of flexibility
to design the hidden layer (number of neurons, activation function,
and probability distributions that guide the choosing of the random
weights) significantly increases the risk of overfitting in MTR with small
datasets, as the complexity of the non-linear mapping that connects the
input and hidden layers can be difficult to control.

One way to control the size of the hidden layer and help alleviate
overfitting could be the incorporation of elastic net penalties into the
optimisation of the output weights, as discussed in Martínez-Martínez
et al. (2011). Moreover, ELMs combined with structured regularisation
techniques, such as group lasso (Yuan & Lin, 2006), have been applied
to multitask scenarios (da Silva et al., 2020; Inaba, Teatini Salles,
Perron, & Caporossi, 2018). Nevertheless, these approaches typically
involve a large number of hyperparameters to be tuned, often through
a resource-intensive cross-validation procedure. Furthermore, establish-
ing a meaningful connection with domain-specific prior knowledge can
be challenging in certain types of scenario.

Another means of alleviating overfitting within the randomised
feedforward NNs (RFNNs) family is the Sparse Bayesian ELM (Luo,
Vong, & Wong, 2013). This Bayesian formulation enables the introduc-
tion of prior knowledge in the architecture design (Soria-Olivas et al.,
2011), with an optimisation that controls overfitting by increasing the
sparsity in the output layer. This sparsity serves as a regularisation by
nullifying the effect of irrelevant nodes in the hidden layer. This way,
the network prediction will in fact be a function of a smaller subset
of neurons in the hidden layer. However, to the best of our knowl-
edge, the Bayesian ELM and its sparse version are only formulated for
single-target regression.

An efficient extension to the multitasking case requires a prior
that enforces a joint sparsity over the different task-related sets of
parameters, resulting in all tasks sharing the same hidden layer (with
a different output layer per task) and leading to an effective transfer
of knowledge among tasks. This idea underlies MTR models such as
group lasso (Yuan & Lin, 2006), dirty models (Jalali, Sanghavi, Ruan,
& Ravikumar, 2010), or multilevel lasso (Lozano & Swirszcz, 2012). In
this context, Bayesian formulations offer notable advantages. Bayesian
methods excel in achieving robust generalisation, particularly in scenar-
ios with limited data samples. Additionally, they provide a predictive
distribution that not only informs about the model’s confidence but also
helps handling uncertainty. Moreover, recent research shows that by
defining appropriate priors, Bayesian approaches facilitate the trans-
fer of knowledge between tasks, as demonstrated in recent research

(Goncalves et al., 2019). However, this work primarily relies on linear
mappings from the shared input space to task-dependent output spaces.
While this approach offers interpretability, it may limit the model’s
ability to capture complex non-linear relationships inherent in the data.

Focusing on the two other aspects, the selection of the activation
functions and of the random weights connecting the input and hidden
layer, this paper proposes to use an interesting equivalence between
KMs and ELMs or RVFLNs through RFFs (Rahimi & Recht, 2007). We
show that an ELM is in fact an approximation to a KM endowed with
an RBF kernel if these two characteristics are met:

• its hidden layer is formed by neurons implementing a cosine
activation function,

• the weights connecting the input and hidden layer (that act as
frequencies in the cosine activations) are selected at random
following the Fourier Transform of the RBF kernel as detailed in
Section 2.2.3.

The quality of this approximation converges exponentially with the
size of the hidden layer. Moreover, this observation is extended to
the RVFLNs approximating a KM endowed with a composite kernel
resulting from the addition of an RBF kernel with a linear one.

The method proposed in this paper, termed RFF-BLR, builds on
this connection between KMs and ELMs (or RVFLNs) to combine the
advantages of these two technologies with those of the Sparse Bayesian
ELM in the same framework targeted at MTR with small datasets. The
RFF-BLR architecture is designed as an ELM (or RVFLN) whose hidden
layer contains RFFs that approximate an RBF kernel with a certain
lengthscale 𝛾. The initial value of 𝛾 can capture valuable knowledge
to draw an initial coarse resolution model that depends on a single
parameter. Notice that the fact that this architecture approximates a
KM somehow endows it with their robustness. Then, the weights of the
output layer are optimised under a Sparse Bayesian formulation. This
formulation introduces a shared-among-tasks prior that encourages
multioutput sparsity: the relevance of each neuron in the hidden layer
(that determines if this neuron is not pruned during the optimisation
and therefore forms part of the final architecture) depends on all the
tasks. Moreover, the Bayesian formulation can be easily extended to
cover the value of 𝛾, avoiding the need for cross-validation.

The main contributions of the paper can be summarised as follows:

• A formulation that establishes the connection between a KM
endowed with a RBF kernel and an equivalent ELM by recognising
their link through the RFF approximation of the kernel. This
connection is extended to a RVFLN approximating a KM endowed
with a composite kernel resulting from the addition of a RBF
kernel and a linear one.

• A model for multi-target regression where a single and efficient
non-linear mapping is jointly learned across all tasks via Bayesian
optimisation.

• A probabilistic framework for automatically learning the RBF
kernel lengthscale without the necessity of cross-validation pro-
cedures.

• An empirical evaluation of the advantages of this proposal in
several small-sample MTR benchmarks.

2. Related work and background

This part of the paper starts with a general overview of the works
in multitask and multiview machine learning that are somehow related
with our proposal. The second part of this section focuses on a more
detailed review of the proposed method building blocks: ELMs, RVFL
networks, KMs, and RFFs.
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2.1. Related work

Besides the works already mentioned in the introduction, there are
several approaches in the literature that deal with multitask prob-
lems (Borchani, Varando, Bielza, & Larranaga, 2015). The most com-
mon methods are based on linear models that exploit the correla-
tion between the output tasks by means of regularisation. This is the
case of the aforementioned group lasso model (Yuan & Lin, 2006),
dirty models (Jalali et al., 2010), multilevel lasso (Lozano & Swirszcz,
2012), Multiple output Regression with Output and Task Structures
(MROTS) (Rai, Kumar, & Daume, 2012), the Multivariate Regression
with Covariance Estimation (MRCE) (Rothman, Levina, & Zhu, 2010),
that jointly learns the model weights and the task correlations, or the
work of Liu, Wang, and Zhao (2015), where additional regularisation
parameters are included to deal independently with the noise in each
task.

Other methods rely on the building of ensemble architectures to
improve multi-output regression performance, such as the FItted Rule
Ensembles (FIREs) (Aho, Ženko, Džzeroski, Elomaa, & Brodley, 2012),
the multi-objective random forests (Kocev, Vens, Struyf, & Džeroski,
2007), or the work of Moyano et al. (2021) which combines the
ensemble architecture with gene expression programming.

Conversely, other works propose to simplify the modelling of the
output space relationships employing a cluster structure. In this ap-
proach, each cluster of tasks is modelled separately, with tasks in the
same cluster sharing similar weight vectors. Here, Clustered Multi-
Target Learning (CMTL) (Jacob, Vert, & Bach, 2008) and Flexible
Clustered Multi-Target (FCMTL) (Zhou & Zhao, 2015) stand out, where
the cluster structure is learnt by identifying representative tasks. On
the other hand, (Khan, Hu, Li, Diallo, & Du, 2023) proposes a method
for jointly learning representations from multiple views using sparse
and low-rank structures, enhancing clustering performance. Similarly,
Multi-view Clustering for Multiple Manifold Learning via Concept Fac-
torisation (Khan, Hu, Li, Diallo, & Wang, 2023) introduces a framework
that learns multiple manifolds across different views by factorising
the concept representation matrices, facilitating clustering tasks in
multi-view scenarios.

However, the kernel-based multitask methods, capable of exploit-
ing non-linear relationships between data and/or between tasks, have
shown the best performance. This is the case for algorithms such
as (Brouard, Szafranski, & d’Alché-Buc, 2016), where the authors use
kernels to learn the non-linear structure of the observations, or (Din-
uzzo, Ong, Pillonetto, & Gehler, 2011), where the kernel is used in the
output. Within this framework, the Multi-layer Multi-target Regression
(MMR) method delivers very competitive results in terms of accu-
racy (Zhen, Yu, He, & Li, 2018; Zhen, Yu, Zheng, et al., 2018). In these
works the data are mapped into a reproducing kernel Hilbert space
where a common feature representation and inter-target correlation are
learnt.

Another set of techniques that can be used for multitasking prob-
lems are models based on deep learning. Under this paradigm, non-
linear relationships can be easily modelled and can be efficiently ap-
plied to areas involving image or time series processing (Ruder, 2017).
However, they do not meet any of the requirements of the scenarios we
want to work with, as deep learning models demand a large amount of
data to avoid overfitting, require long training time, and yield networks
that are difficult to interpret.

2.2. Review of the building blocks of the proposal

This section focuses on a review from the point of view of regres-
sion of the main techniques (ELMS, RVLFNs, KMs and RFFs) that are
required for the understanding of our method. For the sake of sim-
plicity, this section considers a generic single-task regression problem.
Section 4 details how these results are extended to the MTR setting,
which is the main focus of this research.

The goal of a single task regression model is to find a mapping 𝑓 (⋅)
from observations in a certain input space x ∈ R𝐷 to real valued targets
𝑦 ∈ R. This mapping is learnt from a given training dataset formed
by 𝑁 observations with their corresponding targets {(x𝑛, 𝑦𝑛)}𝑁𝑛=1. Let
us denote by X the 𝑁 × 𝐷 matrix whose rows contain the training
observations and by y the 𝑁-dimensional vector resulting from the
concatenation of the corresponding targets. For convenience, x𝑛,∶ de-
notes the 𝑛th row of matrix X (that corresponds to the 𝑛th training
observation).

2.2.1. Review of extreme learning machines and random vector functional
link networks

ELMs and RVFLs are two instances of a machine learning paradigm
known as randomised feedforward NNs (Suganthan & Katuwal, 2021).
This approach advocates for the random selection of all weights and
parameters in hidden layers, while focusing optimisation efforts, often
through ridge regression, solely on the connections connecting the last
hidden layer with the output layer.

A typical ELM is characterised by a single hidden layer comprising
M neurons, each implementing an activation function 𝜙𝑚(x) that relies
on a set of randomly chosen parameters during the initialisation of the
network, which remains unoptimised. Non-linear activation functions
frequently employed in ELMs include sigmoid, trigonometric, RBFs, or
polynomial functions, as extensively discussed in (Huang, 2015).

Once all the 𝑀 activations of the ELM hidden layer have been fixed,
the mapping that predicts the target 𝑦 for a given input observation x
presents the following structure1:

𝑓ELM(x) = w⊤𝝓ELM(x), (1)

where the weight vector w results from the concatenation of the M
weights, 𝑤𝑚, that connect each neuron in the hidden layer with the
output layer, and feature vector 𝝓ELM(x) results from the concatenation
of the 𝑀 activation functions, 𝜙𝑚(x), 𝑚 = 1,… ,𝑀 .

The ELM fitting process involves an optimisation procedure that
determines the value of coefficients 𝑤𝑚. A prevalent method for this
optimisation is ridge regression, expressed as:

min
w

1
2
‖𝜱ELMw − y‖2 + 𝜆

2
‖w‖

2, (2)

where 𝜱ELM denotes the 𝑁 × 𝑀 matrix formed by the 𝑀 activation
functions evaluated across the 𝑁 training samples: (𝜱ELM)𝑛,𝑚 = 𝜙𝑚(x𝑛).

On the other hand, the RVFLN can be seen as an expansion of the
ELM framework by incorporating direct connections, termed functional
links, that link the input layer with the output layer. Consequently, the
mapping function established by the RVFLN is expressed as:

𝑓RVFL(x) =
𝑀
∑

𝑚=1
𝑤𝑚𝜙𝑚(x) +

𝑀+𝐷
∑

𝑚=𝑀+1
𝑤𝑚𝑥𝑚−𝑀 (3)

where 𝑥𝑑 , 𝑑 = 1, 𝑑𝑜𝑡𝑠,𝐷, denotes the 𝑑th feature of a generic input
observation x.

The optimisation that would determine the weight values 𝑤𝑚, 𝑚 =
1,… ,𝑀 +𝐷 can also be carried out with ridge regression, introducing
the functional links in the optimisation of Eq. (2):

min
w

1
2
‖𝜱RVFLw − y‖2 + 𝜆

2
‖w‖

2 (4)

where 𝜱RVFL = [𝜱ELMX] is the 𝑁 × (𝑀 + 𝐷) matrix defined as the
concatenation of 𝜱ELM and X. Notice that weight vector w in Eq. (4)
has 𝑀 +𝐷 components.

In the recent literature one can find a number of extensions of
these basic ELM and RVFL networks with an augmented expressive

1 This model can be extended by the introduction of a bias term 𝑏 to yield
𝑓ELM(x) = w⊤𝝓ELM(x) + 𝑏. This can be easily handled in the optimisation by
adding a column of 1s to the right of 𝜱ELM and 𝑏 as the last element of w.
For the sake of simplicity we consider this extension could be included into
all the models described in the remainder of this section.
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power that enables the development of accurate complex models in
these situations where the size of the training set invites crossing the
shallow-to-deep learning threshold. For instance, in Huang et al. (2015)
the concept of hidden neurons is extended to architectures where the
units in the hidden layers become sub-networks. In the RFVL case,
those extensions include Ensemble deep RVFL (edRVFL) (Shi, Katuwal,
Suganthan, & Tanveer, 2021), which proposes an RVFLN with several
hidden layers that can be further combined in ensembles, as well as
other variants like (Gao, Li, Hu, Suganthan, & Yuen, 2023; He et al.,
2023; Li et al., 2023; Sajid, Tanveer, & Suganthan, 2024) that use this
technique in fuzzy networks, electroencephalogram-based recognition,
online learning, and self-supervised learning, respectively. In addition,
the Neuro-Fuzzy RVFL (NFRVFL) network (Sajid, Malik, Tanveer, &
Suganthan, 2024) incorporates the principles of fuzzy logic to better
deal with the uncertainty inherent in the datasets. The reader is referred
to Malik, Gao, Ganaie, Tanveer, and Suganthan (2023) for a complete
survey of RVFLNs and their extensions and their applications.

2.2.2. Review of kernel methods for regression
Kernels are symmetric and positive semidefinite real-valued func-

tions with two arguments. Every kernel, denoted 𝜅(x𝑖, x𝑗 ), is connected
with a lifting h(⋅) of the input space into a particular feature space such
that the evaluation of the kernel between two observations in the input
space is equivalent to computing the inner product between h(x𝑖) and
h(x𝑗 ) (Schölkopf & Smola, 2002):

𝜅(x𝑖, x𝑗 ) = ⟨h(x𝑖),h(x𝑗 )⟩. (5)

Common examples of kernel functions are linear, RBF, or polynomial.
Moreover, the sum of two given kernel functions 𝜅1(x𝑖, x𝑗 ) with lifting
h1(x), and 𝜅2(x𝑖, x𝑗 ) with lifting h2(x) becomes a valid kernel (Schölkopf
& Smola, 2002):

𝜅+(x𝑖, x𝑗 ) = 𝜅1(x𝑖, x𝑗 ) + 𝜅2(x𝑖, x𝑗 ) (6)

with a lifting h+(x) that results from the concatenation of the liftings
of the addends: ℎ+(x) = [ℎ1(x) ℎ2(x)]. KMs can be used to obtain
robust non-linear versions of linear models as long as the input obser-
vations appear combined exclusively in terms of dot products in the
model formulation (Schölkopf & Smola, 2002). That being the case,
one just needs to apply the kernel trick: replace each scalar product
by the kernel of the corresponding observations to arrive at the non-
linear version. For example, given a specific kernel function 𝜅(⋅, ⋅), a
kernelized regression model would formulate a mapping described by
the expression:

𝑓 (x) = 𝜿(x)⊤𝜷 + 𝑏, (7)

where 𝜿(x) =
[

𝜅(x1, x),… , 𝜅(x𝑁 , x)
]⊤ is the vector whose components

are the evaluation of the kernel between x and the 𝑁 training obser-
vations, and 𝜷 =

[

𝛽1,… , 𝛽𝑁
]⊤ and 𝑏 are the model parameters that are

determined during an optimisation. This optimisation usually involves
minimising a loss function evaluated in the training set, (𝑓 (x), 𝑦) plus
a regularisation term 𝛺(𝜷) that helps prevent overfitting:

min
𝜷,𝑏

𝑁
∑

𝑛=1
(𝑓 (x𝑛), 𝑦𝑛) + 𝜆𝛺(𝜷). (8)

For instance, in kernel ridge regression (Vovk, 2013) the loss func-
tion is the square error (𝑓 (x), 𝑦) = (𝑓 (x) − 𝑦)2 and the regularisation
penalty is 𝛺(𝜷) = 1∕2𝜷⊤𝐾𝜷, where 𝐾 is the 𝑁 × 𝑁 kernel matrix
constructed with all pairwise kernel evaluations involving the training
observations, i.e., 𝐾𝑖,𝑗 = 𝜅(x𝑖,∶, x𝑗,∶), 𝑖, 𝑗 = 1,… , 𝑁 .

If we focus on the ubiquitous RBF kernel, given by:

𝜅RBF(x𝑖, x𝑗 ) = exp
(

−𝛾‖x𝑖 − x𝑗‖2
)

, (9)

one can realise that a model with the structure of Eq. (7) and this
kernel can be implemented as a single layer RBF NN. This involves
particularising the model in Eq. (1) to:

• 𝑀 = 𝑁 neurons in the hidden layer, one neuron per each
observation in the training set.

• The activation function of the 𝑚th neuron in the hidden layer
𝜙𝑚(⋅) is a RBF activation function centred in the 𝑚th training
observation x𝑚:

𝜙𝑚(x) = exp
(

−𝛾‖x𝑚 − x‖2
)

• Coefficients {𝛽𝑛}𝑀𝑛=1 optimised with (8) are used as the weights
that connect the hidden layer to the output layer.

• The kernel hyperparameter 𝛾 is used as a spread parameter in all
activation functions of the neurons in the hidden layer.

2.2.3. Review of random fourier features to approximate RBF kernels
RFFs are introduced in (Rahimi & Recht, 2007) as an alternative

to construct approximations to RBF kernel machines in cases where
the number of observations is so large that the optimisation needed
to fit the model (which depends on the size of the kernel matrix)
becomes extremely costly. The RFFs can be regarded as a deconstruc-
tion of the kernel trick. In other words, instead of using kernels and
solving an optimisation with one variable per training observation,
the RFFs approximate the lifting h(⋅) associated with the kernel by
a lower-dimensional mapping 𝝓RFF(x) (notice that for some kernels
the corresponding h(⋅) involves lifting into a feature space of infinite
dimensions) so that

𝜅RBF(x𝑖, x𝑗 ) = exp
(

−𝛾‖x𝑖 − x𝑗‖2
)

= ⟨h(x𝑖),h(x𝑗 )⟩ ≈ 𝝓RFF(x𝑖)⊤𝝓RFF(x𝑗 ).
(10)

This way, the kernel machine is approximated by a linear model
with features given by the components of 𝝓RFF(x). Such approximation
can be fitted with an optimisation of reduced computational burden
(Shalev-Shwartz, Singer, Srebro, & Cotter, 2011).

The dimensionality of the mapping 𝝓RFF(x), 𝑀RFF, determines the
quality of the kernel approximation in Eq. (10). The authors in Rahimi
and Recht (2007) proves that an invariant kernels such as the RBF can
be approximated within an accuracy of 𝜖 if 𝑀RFF = (𝐷𝜖−2 log 1

𝜖2
),

where 𝐷 is the dimensionality of the input data. Moreover, they em-
pirically shows that smaller values of 𝑀RFF can lead to approximations
with excellent performances.

In particular, one of the algorithms presented in Rahimi and Recht
(2007) proposes to form the mapping 𝝓RFF(x) as a concatenation of 𝑀RFF
RFF components as:

𝝓RFF(x) =
√

2
𝑀RFF

[

𝜙1(x),… , 𝜙𝑀𝑅𝐹𝐹
(x)

]⊤
, (11)

The {𝜙𝑚(x)}
𝑀𝑅𝐹𝐹
𝑚=1 are sinusoid functions with 𝐷-dimensional frequen-

cies 𝝎𝑚 sampled following the Fourier transform of the kernel:

𝜙𝑚(x) = cos(𝝎⊤𝑚x + 𝑣𝑚), 𝑚 = 1,… ,𝑀RFF (12)

where coefficients 𝑣𝑚, 𝑚 = 1,… ,𝑀RFF, are uniformly sampled from the
interval [0, 2𝜋]. Since the Fourier transform of an RBF kernel with the
spread parameter 𝛾 is given by

𝑝(𝝎) =
√

𝜋
𝛾
exp

(

−𝜋2‖𝝎‖2

𝛾

)

(13)

frequencies {𝝎𝑚}
𝑀RFF
𝑚=1 are sampled from R𝐷 (the input space) according

to a Gaussian distribution with zero mean and spherical covariance
matrix with variances proportional to 𝛾 (Rahimi & Recht, 2007).

3. Random fourier features connect kernel methods with extreme
learning machines and random vector functional link networks

RFFs establish a connection between KMs and ELMs: a KM endowed
with an RBF kernel can be approximated by an ELM with a hidden layer
formed by the RFFs that approximate the kernel.
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Let us start from an already fitted KM endowed with an RBF kernel
with spread parameter 𝛾:

𝑓 (x) = 𝜷⊤𝜿RBF(x) + 𝑏, (14)

where 𝜿RBF(x) =
[

𝜅RBF(x1, x),… , 𝜅RBF(x𝑁 , x)
]⊤.

Next, 𝜅RBF(x𝑖, x𝑗 ) is approximated by a mapping 𝝓RFF(x) like the one
in Eqs. (11)–(12). Therefore 𝜿RBF(x) can be approximated as

𝜿RBF(x) ≈
[

𝝓RFF(x1)⊤𝝓RFF(x),… ,𝝓RFF(x𝑁 )⊤𝝓RFF(x)
]⊤ = 𝜱RFF𝝓RFF(x), (15)

where 𝜱RFF is the 𝑁 ×𝑀RFF matrix whose rows are {𝝓RFF(x𝑛)⊤}𝑁𝑛=1.
Therefore, the KM regressor of Eq. (14) can be approximated by

𝑓 (x) ≈ 𝜷⊤𝜱RFF𝝓RFF(x) + 𝑏 = w⊤𝝓RFF(x) + 𝑏, (16)

where w = 𝜱⊤
RFF𝜷. Notice how the last expression in Eq. (16) resembles

that of Eq. (1) plus the bias term. This implies that the RFF based
approximation to the regressor in Eq. (14) can be implemented by an
ELM following Steps 1–5 and Step 7 of Algorithm 1.

Moreover, Algorithm 1 can be tuned to construct from scratch an
ELM that approximates a certain KM regressor without first obtaining
the regressor, that is, without actually solving the problem given by
Eq. (8). This procedure would reproduce all the steps in Algorithm 1
but the 7th and 9th ones, and replace Step 7 with an optimisation that
yields w through the adaptation of Eq. (8). For example, in the case of
kernel ridge regression, Eq. (8) becomes

min
𝜷,𝑏

1
2
‖K𝜷 + 𝑏1𝑁 − y‖2 + 𝜆

2
𝜷⊤K𝜷 (17)

where 1𝑁 is a vector with its 𝑁 components set to 1 and K is the
𝑁 × 𝑁 kernel matrix containing all pairwise kernel products among
the training data. After introducing the RFF approximation to the RBF
kernel, the optimisation in Eq. (17) becomes

min
𝜷,𝑏

1
2
‖𝜱RFF𝜱⊤

RFF𝜷 + 𝑏1𝑁 − y‖2 + 𝜆
2
𝜷⊤𝜱RFF𝜱⊤

RFF𝜷. (18)

Now we introduce w = 𝜱⊤
RFF𝜷 to arrive at

min
w,𝑏

1
2
‖𝜱RFFw + 𝑏1𝑁 − y‖2 + 𝜆

2
w⊤w (19)

which is the ridge regression problem of Eq. (2) that optimises the
weights connecting the hidden layer with the output layer in the
ELM. As long as 𝑀RFF is large enough, the RFF approximation of
the kernel will be sharp enough to guarantee the quality of the ELM
approximation to the KM.

However, if the KM regressor is endowed with a composite kernel
resulting from the addition of an RBF kernel with spread parameter 𝛾
and a linear kernel, 𝜿C(x) = 𝜿RBF(x) +Xx, the RFF approximation of the
RBF kernel would lead to a RVFLN approximation of the KM regressor.
Notice that the RFF will only approximate the RBF kernel, as the linear
one does not need a linear approximation

𝜿C(x) ≈ 𝜱RFF𝝓RFF(x) + Xx

and the regressor model with the composite kernel 𝑓𝑐 (x) = 𝜷⊤𝜿C(x) + 𝑏
is approximated by

𝑓𝑐 (x) ≈ 𝜷⊤𝜱RFF𝝓RFF(x) + 𝜷⊤Xx + 𝑏 = w⊤
H𝝓RFF(x) +w⊤

FLx + 𝑏 (20)

where wH = 𝜱⊤
RFF𝜷 are the weights connecting the hidden layer

units with the neuron of the output layer, and wFL = X⊤𝜷 are the
functional links. Therefore, the RFF based approximation to 𝑓𝑐 (x) can
be implemented by a RVFL following Algorithm 1.

Analogously to what we showed for the ELM, the RVFL that ap-
proximates the KM regressor with composite kernel 𝜿C(x) can be fitted
without explicitly solving problem (8). For this purpose, one needs to
reproduce the all the steps of Algorithm 1 but the 7th one, and replace
Step 7 by an optimisation in terms of variables wH and wFL. This pro-
cedure is again illustrated for the case of kernel ridge regression. The

starting point is the optimisation that fits the KM with the composite
kernel:

min
𝜷,𝑏

1
2
‖(KRBF + KL)𝜷 + 𝑏1𝑁 − y‖2 + 𝜆

2
𝜷⊤(KRBF + KL)𝜷 (21)

where KRBF and KL are the RBF and linear kernel matrices obtained with
the training set, respectively. Then the RBF kernel is approximated by
the RFFs, transforming the optimisation of Eq. (21) in:

min
𝜷,𝑏

1
2
‖(𝜱RFF𝜱⊤

RFF + XX
⊤)𝜷 + 𝑏1𝑁 − y‖2 + 𝜆

2
𝜷⊤(𝜱RFF𝜱⊤

RFF + XX
⊤)𝜷 (22)

The next step is to rewrite (𝜱RFF𝜱⊤
RFF + XX

⊤) as a matrix product:

𝜱RFF𝜱⊤
RFF + XX

⊤ =
[

𝜱RFFX
]

[

𝜱⊤
RFF
X⊤

]

=
[

𝜱RFFX
] [

𝜱RFFX
]⊤ (23)

This rewriting enables

(𝜱RFF𝜱⊤
RFF + XX

⊤)𝜷 =
[

𝜱RFFX
]

[

𝜱⊤
RFF
X⊤

]

𝜷

=
[

𝜱RFFX
]

[

𝜱⊤
RFF𝜷
X⊤𝜷

]

=
[

𝜱RFFX
]

[

wH
wFL

]

and

𝜷⊤(𝜱RFF𝜱⊤
RFF + XX

⊤)𝜷 = 𝜷⊤
[

𝜱RFFX
]

[

𝜱⊤
RFF
X⊤

]

𝜷 =
[

w⊤
Hw

⊤
FL

]

[

wH
wFL

]

Defining 𝜱RVFL =
[

𝜱RFFX
]

and wRVFL =
[

w⊤
Hw⊤

FL

]⊤ enables writing the
optimisation as

min
wRVFL ,𝑏

1
2
‖𝜱RVFLwRVFL + 𝑏1𝑁 − y‖2 + 𝜆

2
w⊤

RVFLwRVFL (24)

what results in the ridge regression that one needs to solve to obtain
the output weights of a RVFLN, as shown in Eq. (4).

4. Random fourier features Bayesian linear regression (RFF-BLR)
for multitask problems

Algorithm 1: Approximation of a KM by either a ELM or a RVFL
network

Data: 𝑀RFF, 𝛾, X, y
1 Set up a single hidden layer with 𝑀RFF neurons with cosine

activations;
2 Randomly sample 𝝎𝑚, 𝑚 = 1,… ,𝑀RFF from 𝑝(𝝎) (see Eq. (13));
3 Set the weights that connect the input layer with each neuron

in the hidden layer to 𝝎𝑚, 𝑚 = 1,… ,𝑀RFF;
4 Randomly sample 𝑣𝑚, 𝑚 = 1,… ,𝑀RFF from [0, 2𝜋];
5 Set the bias terms of the neurons in the hidden layer to 𝑣𝑚,

𝑚 = 1,… ,𝑀RFF;
6 Construct 𝜱RFF;
7 Get 𝜷 as the solution to the optimization problem that gives

the KM Eq. (8);
8 Set weights w connecting the hidden layer with the single

neuron of the output layer to w = 𝜱⊤
RFF𝜷.;

9 If RVFL, set the functional links to wFL = X⊤𝜷 (weights wH
connecting the hidden layer with the single neuron of the
output layer are also obtained from wH = 𝜱⊤

RFF𝜷);

The derivation of the Bayesian formulation starts with the definition
of the corresponding generative model, followed by the development of
the variational inference of the model parameters.

The description of the Bayesian linear regression in the space de-
fined by the RFFs model is started from the single task case.

𝑦𝑛,𝑐 = 𝝓RFF(x𝑛)⊤w𝑐 + 𝑏𝑐 + 𝜂𝑛,𝑐 (25)

where w𝑐 and 𝑏𝑐 are the weight vector and bias term of task 𝑐, respec-
tively, and 𝜂𝑛,𝑐 represents the Gaussian noise with precision 𝜏 related
to the 𝑛th observation in the training set in the 𝑐th task. The model
in Eq. (25) is easily extended to multitask regression by introducing
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Fig. 1. Plate diagram for the RFF-BLR model. Grey circles denote observed variables,
white circles unobserved r.v. Symbols without a circle correspond to deterministic
(although unknown) hyperparameters. Symbol 𝝓RFF(⋅) indicates the fact that the input
variables are connected with the targets through that mapping.

the multitask targets y𝑛,∶, and stacking the weight vectors {w𝑐}𝐶𝑐=1 in a
𝑀RFF × 𝐶 matrix W and the 𝐶 bias terms in vector b ∈ R1×𝐶 :

y𝑛,∶ = 𝝓RFF(x𝑛)⊤W + b + 𝜼𝑛,∶, (26)

where 𝐶-dimensional vector 𝜼𝑛,∶ contains the noises related to the 𝑛th
observation of the training set in all the tasks. The final model is
completed by stacking the equations corresponding to the 𝑁 training
data:

Y = 𝜱RFFW + 1𝑁b + 𝜼, (27)

where 1𝑁 is a column vector of ones with dimension 𝑁 and 𝜼 is a 𝑁×𝐶
matrix with the all the noise elements. Fig. 1 depicts a plate diagram
detailing the dependence relationships among all the random variables
and deterministic hyperparameters involved in the generative model
associated with Eq. (27). Distributions associated with the random
variables (r.v) of the model can be defined as

y𝑛,∶ ∼ 
(

𝝓RFF(x𝑛,∶)⊤W + b, 𝜏−1I𝐶
)

, (28)

w𝑚,∶ ∼ 
(

0, 𝛼𝑚−1I𝐶
)

, (29)

𝛼𝑚 ∼ 𝛤
(

a0𝛼m
, b0
𝛼m

)

, (30)

b ∼ 
(

0, I𝐶
)

, (31)

𝜏 ∼ 𝛤
(

a0𝜏 , b
0
𝜏

)

, (32)

where  (a,A) denotes a Gaussian distribution with mean a and co-
variance matrix A, 𝛤 (𝛼, 𝛽) is a Gamma distribution with parameters 𝛼
and 𝛽, I𝐶 is an identity matrix of dimension 𝐶; a0𝛼m

, b0
𝛼m

are 𝛼𝑚 prior
hyperparameters, and a0𝜏 , b0

𝜏 are 𝜏 prior hyperparameters. Moreover,
w𝑚,∶ denotes the 𝑚th row of matrix W.

In the definition of the generative model, r.v. w𝑚,∶ and 𝛼𝑚 form
an Automatic Relevance Determination (ARD) prior (Neal, 2002) that
promotes sparsity over the rows of W. According to the model, each
w𝑚,∶ is drawn from a Gaussian with zero mean and precision 𝛼𝑚.
Therefore, an 𝛼𝑚 ending up with a high value after the inference forces
that all the elements in w𝑚,∶ will tend to zero. Since w𝑚,∶ connects the
𝑚th hidden unit with the output layer, zeroing all its elements forces
this neuron to become irrelevant for the computation of the output of
the model for all the tasks. In summary, this formulation allows for

the automatic selection of the most relevant RFFs jointly for all tasks,
enabling the transfer of knowledge among them.

Once the probabilistic model is defined, the next step is to find
values for the model parameters W, b, {𝛼𝑚}

𝑀RFF
𝑚=1 and 𝜏 through an

inference process that maximises the posterior probability of such
parameters conditioned on the observed training set. Let us denote
by 𝛩 an array that includes all unobserved r.v. and parameters of
the model: 𝛩 = [W,𝜶,b, 𝜏], where 𝜶 is the vector resulting from
the concatenation of {𝛼𝑚}

𝑀RFF
𝑚=1 . The usual procedure in the Bayesian

framework is to approximate the untractable posterior 𝑝(𝛩|𝜱RFF,Y) by
a tractable distribution 𝑞(𝛩). In this case we opt for the fully factorised
mean-field approximation:

𝑝(𝛩 ∣ 𝜱RFF,Y) ≈ 𝑞 (W) 𝑞 (𝜏) 𝑞 (b)
𝑀RFF
∏

𝑚=1
𝑞
(

𝛼𝑚
)

. (33)

The goal of the approximation is to find values for the elements
in 𝛩 so that 𝑞(𝛩) becomes a close approximation of 𝑝(𝛩|𝜱RFF,Y) in
the sense that the Kullback–Leibler (KL) divergence between the two
distributions is minimised. This KL divergence is defined as

𝐾𝐿(𝑞 ∥ 𝑝) = ∫ 𝑞(𝛩) ln
(

𝑞(𝛩)
𝑝(𝛩|X,Y)

)

𝑑𝛩 = (34)

∫ 𝑞(𝛩) ln
(

𝑞(𝛩)
𝑝(Y, 𝛩|X)

)

𝑑𝛩 + ln (𝑝(Y|X)) . (35)

Let us now denote

𝐿(𝑞) = −∫ 𝑞(𝛩) ln
(

𝑞(𝛩)
𝑝(𝛩,Y|X)

)

𝑑𝛩, (36)

then

𝐾𝐿(𝑞 ∥ 𝑝) = ln (𝑝(Y|X)) − 𝐿(𝑞)

Since the evidence ln (𝑝(X,Y)) is fixed for any given training set and
the KL divergence is non-negative, 𝐿(𝑞) becomes a lower bound of the
evidence:

ln (𝑝(X,Y)) ≥ 𝐿(𝑞).

As a consequence, the maximisation of Eq. (36) yields 𝑞∗(𝛩) that
approximates the posterior 𝑝(𝛩|X,Y). The joint distribution in 𝐿(𝑞) can
be developed as

𝑝(Y,W,𝜶, 𝜏,b ∣ 𝜱RFF)

=
N
∏

n=1
𝑝
(

y𝑛,∶ ∣ 𝝓RFF(x𝑛,∶),W,b, 𝜏
)

𝑝 (W ∣ 𝜶) 𝑝 (𝜶) 𝑝 (b) 𝑝 (𝜏) , (37)

where we have introduced the fact that the observations {x𝑛}𝑁𝑛=1 exclu-
sively appear in the model through the RFFs.

The mean-field posterior structure along with the lower bound re-
sults in a feasible coordinate-ascent-like optimisation algorithm (Bishop,
2006, Chapter 10) in which the optimal value of each factor in Eq. (33)
can be computed if the rest remain fixed using the following expression

log(𝑞∗(𝜃𝑖)) ∝ E𝛩−𝑖

[

log 𝑝(𝛩,y1,∶,… ,y𝑁,∶ ∣ 𝜱RFF)
]

, (38)

where 𝛩−𝑖 comprises all r.v. in 𝛩 but 𝜃𝑖. This new formulation is
generally feasible as it does not require a complete marginalisation of 𝛩
from the joint distribution, which is calculated with Eq. (37). Therefore,
model update rules for each r.v. can be obtained through Eq. (38).
The resulting approximate distributions are shown in Table 1. As the
estimated distribution for each r.v. also depends on some other r.v.,
e.g. ⟨w∶,𝑐⟩ depends on ⟨𝜏⟩ and ⟨bc⟩, we need to iterate over the vari-
ables, analysing the evolution of the lower bound after each iteration
until convergence. Appendix A describes the complete development of
all 𝑞∗ distributions as well as the final mean-field factor update rules.
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Table 1
Update rules for the distributions 𝑞 of the r.v. in the graphical model. Here, 𝑑𝑖𝑎𝑔(x) is
an operator that transforms a vector into a diagonal matrix with diagonal x, 1𝑁 is a
column vector of ones of dimension 𝑁 , and < 𝑥 > denotes the expectation with respect
to 𝑞() of random variable 𝑥. These expressions have been obtained using the update
rules of the mean-field approximation in Eq. (38).

Variable 𝑞∗ distribution Parameters

W
C
∏

c=1
 (w∶,𝑐 ∣ ⟨w∶,𝑐⟩, 𝛴W)

⟨w∶,𝑐⟩ = ⟨𝜏⟩𝛴W𝜱⊤
RFF(y∶,𝑐 − 1𝑁 ⟨bc⟩)

𝛴−1
W = 𝑑𝑖𝑎𝑔(⟨𝜶⟩) + ⟨𝜏⟩𝜱⊤

RFF𝜱RFF

𝛼𝑚 𝛤 (𝛼𝑚 ∣ a𝛼𝑚 ,b𝛼𝑚 )
a𝛼𝑚 = a0𝛼m

+ 𝐶
2

b𝛼𝑚 = b0
𝛼m

+ 1
2

̄w𝑚,∶
⊤w𝑚,∶

b  (b ∣ ⟨b⟩, 𝛴b)
⟨b⟩ = ⟨𝜏⟩

∑N
n=1(y𝑛,∶ − 𝝓RFF(x𝑛,∶)⟨W⟩)𝛴b

𝛴−1
b = (𝑁⟨𝜏⟩ + 1)I𝐶

𝜏 𝛤 (𝜏 ∣ a𝜏 ,b𝜏 )

a𝜏 = a0𝜏 +
𝑁𝐶
2

b𝜏 = b0
𝜏 +

1
2

∑N
n=1

C
∑

c=1
𝑦2𝑛,𝑐 +

1
2
𝑇 𝑟{⟨W⊤W⟩𝜱RFF𝜱⊤

RFF}

−𝑇 𝑟{Y⟨W⊤
⟩𝜱⊤

RFF} −
∑N

n=1 y𝑛,∶⟨b
⊤
⟩

+
∑N

n=1 𝝓RFF(x𝑛,∶)⟨W⟩⟨b⊤⟩ + 𝑁
2
⟨bb⊤⟩

4.1. Optimisation of the kernel parameter 𝛾 in RFF-BLR

RFFs rely on a crucial hyperparameter, 𝛾, which controls the spread
of the kernel. Traditionally, determining an optimal value for 𝛾 involves
a costly cross-validation that introduces additional complexity and
uncertainty into the fitting of the model. To streamline this process,
we propose to introduce the optimisation of 𝛾 within the Bayesian
framework.

To achieve this, we decompose the process of generating the RFF
frequencies, 𝝎𝑚, into two steps (instead of directly applying Eq. (13)).
Firstly, we generate a set of 𝑀𝑅𝐹𝐹 normalised frequencies, 𝝎̄𝑚, by
sampling from a Gaussian distribution with zero mean and an identity
covariance matrix. Then, we scale these frequencies by 𝛾 to obtain the
actual 𝝎𝑚 values, i.e.,

𝝎𝑚 = 𝛾 𝝎̄𝑚 𝑚 = 1,… ,𝑀𝑅𝐹𝐹 .

The set of vectors {𝝎̄𝑚}
𝑀𝑅𝐹𝐹
𝑚=1 is initially generated and kept fixed during

inference process, while 𝛾 is iteratively updated. Thus, this process
allows us to automatically learn the optimal variance for the set of the
RFF frequencies without the need for cross-validation of 𝛾.

The optimisation problem that yields the update of 𝛾 results from
the particularisation of the lower bound defined in Appendix B to the
terms that depend on 𝛾, leaving the other terms as constant. Since 𝜱RFF
is the only element that depends on 𝛾, this optimisation results in the
maximisation of

𝐿𝐵′ = ⟨𝜏⟩
N
∑

n=1

C
∑

c=1

(

𝑦𝑛,𝑐⟨w⊤
∶,𝑐⟩𝝓RFF(x𝑛,∶)⊤

− 1
2
⟨w∶,𝑐w⊤

∶,𝑐⟩𝝓RFF(x𝑛,∶)⊤𝝓RFF(x𝑛,∶)

− 𝝓RFF(x𝑛,∶)⟨w∶,𝑐⟩⟨bc⟩
)

+ const. (39)

where const includes the terms that do not depend on 𝜱RFF. Then, the
model can alternate between mean-field updates over the variational
bound and direct maximisation of Eq. (39) w.r.t. 𝛾 using any gradient
ascend method (e.g. Adam Kingma & Ba, 2015).

4.2. RFF-BLR with functional links

The RFF-BLR formulation can be straightforwardly extended to
include functional links in the architecture of the network, allowing
it to effectively handle both linear and nonlinear relations in the data.
This can be obtained by simply:

• Adding 𝐷 rows to W to accommodate the functional links so that
now W ∈ R(𝑀+𝐷)×𝐶 .

• Add the corresponding precisions {𝛼𝑚}𝑀+𝐷
𝑚=𝑀+1, one per each new

row w𝑚,∶, to 𝜶 so now 𝜶 ∈ R𝑀+𝐷.

• Append matrix X as new columns to 𝜱RFF: 𝜱RFF ← [𝜱RFFX].

To unify the notation between ELM and RVFL architectures, let us
define 𝑀𝑜 as the dimension of the output layer. In practice, for the ELM
𝑀o =𝑀RFF and for the RVFL 𝑀o =𝑀RFF +𝐷.

A summary of the RFF-BLR method for multitask regression in-
cluding all the relevant steps described in these Sections is shown in
Algorithm 2.

Algorithm 2: RFF-BLR for multitask problems
Input: 𝑀RFF, X, Y, 𝑅𝑉 𝐹𝐿 (bool), 𝛾𝑖𝑛𝑖

1 sample {𝝎̄𝑚}
𝑀RFF
𝑚=1 from 

(

0, I𝐷
)

;
2 calculate 𝝎𝑚 = 𝛾𝑖𝑛𝑖𝝎̄𝑚 ;
3 sample {𝑣}𝑀RFF

𝑚=1 from [0, 2𝜋];
4 construct 𝜱RFF with X, {𝝎}𝑀RFF

𝑚=1 and {𝑣}𝑀RFF
𝑚=1 ;

5 if RVFL then
6 𝜱 = [𝜱RFFX];
7 else
8 𝜱 = 𝜱RFF;
9 end
10 initialize ⟨W⟩, 𝛴−1

W , a𝛼𝑚 , b𝛼𝑚 , ⟨b⟩, a𝜏 and b𝜏 ;
11 repeat
12 run 10 iterations of the inference with the update equations

of Table 1;
13 prune the irrelevant components (w𝑚,∶, 𝛼𝑚 and the

corresponding hidden unit);
14 update 𝛾 according to Section 4.1;
15 update the non-pruned vectors 𝝎𝑚 = 𝛾𝝎̄𝑚;
16 recompute 𝜱RFF with the updated frequencies;
17 until convergence;

4.3. Theoretical computational cost analysis

Table 2 includes the computational cost of each of the update steps
in Table 1. The overall cost of the whole algorithm is shown in the
last row of Table 2, highlighting the most common case in which the
dimension of the output layer (𝑀o) is greater than the number of data
(𝑁), and also greater than the number of output tasks (𝐶). This is the
case contemplated in the experiments, as we have set 𝑀RFF = 1.5 𝑁 .

The theoretical cost of the algorithm is linear with 𝐶, quadratic with
𝑁 and cubic with 𝑀o. However, this result is, in fact, an upper bound
to the actual cost of fitting the model. As the experimental section
shows, the sparsity inducing prior allows to automatically eliminate
those components of the hidden layer (and of the functional links)
that are not relevant. This pruning effectively reduces the number of
parameters of the model and, therefore, the computational cost of the
training.

5. Experimental work

This section starts with an extense performance analysis on broadly
used MTR benchmarks to help gain insight into the true capabilities
of the proposal in real-world scenarios. Afterwards, we focus on the
analysis of the sparsity imposed by the Bayesian formulation. Next,
we move to an ablation study of RFF-BLR that illustrates the impact
of each of the contributions included in the model definition. The
section concludes with an experimental computational cost study that
completes that of Section 4.3. Furthermore, a Python implementation
of RFF-BLR together with some example notebooks is openly available
in this GitHub repository: https://github.com/sevisal/RFF-BLR.

https://github.com/sevisal/RFF-BLR
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Table 2
Upper bound of the computational cost of each update step and final cost of the model.
𝑁 is the number of data, 𝑀o the number of RFF components (plus the number of links
if applicable) and 𝐶 the number of output tasks.

Variable update Computational cost

W (𝐶𝑁𝑀2
o) + (𝑀3

o) + (𝐶𝑀o𝑁2)

𝜶 (𝐶𝑀o)

b (𝐶𝑁𝑀o)

𝜏 (𝐶𝑀2
o) + (𝐶𝑁2) + (𝑁𝑀2

o)

RFF-BLR (𝐶𝑁𝑀2
o) + (𝑀3

o) + (𝐶𝑀o𝑁2) + (𝐶𝑁2)
RFF-BLR (𝑀o > 𝑁 > 𝐶) (𝐶𝑁𝑀2

o) + (𝑀3
o)

5.1. Performance analysis with multitaks regression benchmarks

5.1.1. Baselines
The first baseline is theMulti-layer Multi-target Regression (MMR)

method proposed in Zhen, Yu, Zheng, et al. (2018). This method uses an
RBF kernel to construct a non-linear mapping from the input space into
a set of latent intermediate features. These latent features are connected
with the output space with a linear mapping that captures the interde-
pendencies among the different tasks. The fitting of this model depends
on three hyperparameters that control the regularisation and the kernel
lengthscale. Following (Zhen, Yu, Zheng, et al., 2018) we adjusted the
values of the regularisation parameters exploring 9 values in the range
of 10−5 to 103 on the logarithmic scale and used the average of all
pairwise distances between training instances to estimate the kernel
lenghtscale.

The next set of baselines cover the randomised feedforward NNs
spectrum:

• Generalised Outlier Robust ELM (GOR-ELM) (da Silva et al.,
2020) is a feed-forward NN that combines 𝓁2,1 regularisation with
Elastic Net theory to work with MTR problems. The neurons
forming its hidden layer are equipped with sigmoid functions as
nonlinearities. Following (da Silva et al., 2020) we used 1000
neurons in the hidden layer and cross-validated the value of the
model hyperparameters 𝛼 in the range {0, 0.25, 0.5, 0.75, 1} and 𝜆
in the range 2−20∶1∶20.

• Random Vector Functional Link (RVFL) (Husmeier, 1999) is a
feedforward NN with stochastically generated weights and biases
for the hidden layer. The direct connectivity between the input
and output layers bypasses this layer. The activation function used
was a sigmoid.

• Ensemble deep RVFL (edRVFL) (Li et al., 2023) uses an ensem-
ble of diverse RVFL models to improve prediction accuracy and
model robustness. We used the sigmoid activation function. The
embedding consisted of 50 RVFLs, chosen to facilitate complete
representation learning.

• Neuro-Fuzzy RVFL (NFRVFL) (Sajid, Malik, Tanveer, & Sug-
anthan, 2024) incorporates the principles of fuzzy logic into
the RVFL framework, addressing the issues of uncertainty and
imprecision of the data. Consequently, it augments the RVFL’s
capacity to learn intricate and ambiguous patterns in data. The
activation function used was a sigmoid, the number of hidden
neurons was set at 1.5 times the total number of training samples,
and the clustering method used was K-means. We cross-validated
the regularisation hyperparameter 𝐶 exploring a grid of 10−5∶1∶5
and for the number of Fuzzy Nodes we used a grid of 5 ∶ 5 ∶ 50,
as suggested in Sajid, Malik, Tanveer, and Suganthan (2024).

In addition, we have considered another set of baselines that di-
rectly learn a linear combination of the RFFs and impose sparsity on
the weight matrix (W):

Table 3
Characteristics of the multitask databases from the Mulan repository.

Database Samples Features Tasks Application

atp1d 337 411 6 Airline ticket prices
atp7d 296 411 6 Airline ticket prices
oes97 334 263 16 Employment rate
oes10 403 298 16 Employment rate
edm 154 16 2 Electrical discharge machining
jura 359 15 3 Soil metal concentrations
wq 1,060 16 14 Water quality
enb 768 8 2 Building energy efficiency

• Multi-Task Feature Learning (MTFL) (Argyriou, Evgeniou, &
Pontil, 2006) uses the group LASSO to regularise the features
used by different tasks, imposing sparsity on the weight matrix.
We cross-validated the regularisation hyperparameter exploring a
grid of 10−5∶1∶5 and for the RBF kernel hyperparameter 𝛾 we used
a grid of 1

𝐷 2−10∶1∶0, where 𝐷 is the dimensionality of the input
space.

• SB-ELM (Luo et al., 2013) induces sparsity in the output layer
by using an ARD prior to perform automatic feature selection.
Since the SB-ELM is not a proper multitask method, we train an
independent model for each output task.

Finally, we also included two NN models using the RBF nonlinearities
in several hidden layers that offer a larger expressive power than that
of the single hidden layer NNs of this study:

• Feed-forward Neural Network (FNN) (Murtagh, 1991) with
non-linear relations between the inputs and the multiple outputs.
We validated five configurations: (i) one hidden layer with 100
neurons, (ii) two hidden layers with 100 and 50 neurons, (iii)
three hidden layers with 100, 50 and 100 neurons, (iv) four
hidden layers with 100, 50, 50 and 100 neurons, and (v) five
hidden layers with 100, 50, 25, 50 and 100 neurons.

• Heterogeneous Incomplete - Variational AutoEncoder (HI-
VAE) (Nazabal, Olmos, Ghahramani, & Valera, 2020) is an adap-
tation of the Variational AutoEnconder that captures the latent
representation of the data while being able to work with heteroge-
neous data. We used the layer configuration suggested in Nazabal
et al. (2020): three layers of dimensions 50-50-50, respectively.

5.1.2. Datasets and experimental setup
We used eight MTR datasets from the Mulan repository (Džeroski,

Demšar, & Grbović, 2000; Karalič & Bratko, 1997; Spyromitros-Xioufis
et al., 2016). Table 3 summarises their main characteristics, includ-
ing the specific applications for which they were intended. These
applications cover a variety of domains, from the commerce field,
like the forecasting of airline ticket prices, to the demographic and
socioeconomic characterisation of a community, like the estimation of
the number of full-time employees in a particular area. Other appli-
cations are related to the sustainability and environment protection
domains, such as the estimation of the concentration of certain metals
in the soil of a region, the forecasting of the chemical composition of
river water from its biological traits, and the prediction of the energy
efficiency of a building. Finally, the industrial domain is also present
through the electrical discharge machining application consisting of the
optimisation of several parameters of this manufacturing technique.

Each dataset was evaluated following a 10-fold Cross-Validation
(CV). For models that need to cross-validate hyperparameters, we
adopted a nested cross-validation scheme within each training partition
of the main 10-fold cross-validation. We standardised the input data
for all models except for MMR, which validates whether to standardise
the data, and GOR-ELM, which uses min–max scaling, as suggested
in da Silva et al. (2020). We use the coefficient of determination (𝑅2)
to compare the performance of the different methods and adjust their
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hyperparameters. For a test set of size 𝑁𝑡 the value of the coefficient
of determination is given by the following expression:

𝑅2 = 1 −
∑𝑁𝑡
𝑡=1 (𝑦𝑡 − 𝑦̂𝑡)

2

∑𝑁𝑡
𝑡=1 (𝑦𝑡 − 𝑦̄)

2

where {𝑦𝑡}
𝑁𝑡
𝑡=1 are the true targets of the test set, {𝑦̂𝑡}

𝑁𝑡
𝑡=1 are the predic-

tions output by the model for the 𝑁𝑡 test data and 𝑦̄ is the average of
the targets in the training set. This accuracy score achieves a maximum
value of 1 when the model can approximate all the targets in the test
set without error. Therefore, the higher the value of this score, the more
accurate the model. For each dataset, we report as the final score the
arithmetic average (and standard deviations) of all 𝑅2 scores obtained
in all tasks and CV folds.

For the methods RVFL, edRVFL, SB-ELM, and RFF-BLR, we have
established 𝑀RFF = 1.5 𝑁 and conducted 10 random initialisations,
choosing the model that exhibited the best performance. To determine
the number of iterations of the inference process of RFF-BLR and SB-
ELM, we used a convergence criteria based on the evolution of the
lower bound. For both models, latent factors are automatically pruned
through the application of the ARD prior embedded within the projec-
tion matrix W. This pruning occurs when a latent factor’s magnitude
falls below 10−1 across all features, at which point it is eliminated. In
particular, we stop the algorithm either when 𝑚𝑒𝑎𝑛(𝐿𝐵[−101 ∶ −2]) >
𝐿𝐵[−1](1−10−6), where 𝐿𝐵[−1] is the lower bound at the last iteration
and 𝑚𝑒𝑎𝑛(𝐿𝐵[−101 ∶ −2]) the mean value of the previous values of
the lower bound, or when it reaches 103 iterations. Concerning our ap-
proach and the intrinsic randomness of the RFF, we perform 10 random
initialisations of the frequencies, 𝝎𝑚, retaining the one that achieves
the optimal lower bound after a single mean-field update iteration. We
decided to initialise parameter 𝛾 = 1

2𝜎2 = 1
2 . Besides, we adopt an

asymmetrical alternation approach, carrying out 10 mean-field update
iterations for each maximisation step with respect to 𝛾.

5.1.3. Experimental results
Table 4 displays the results of the empirical comparison between

RFF-BLR and the baselines. These results show that RFF-BLR outper-
forms the baselines in all databases except two. In particular, it achieves
an improvement of around 0.14 in oes97 and of 0.21 in jura over the
𝑅2 achieved by the best competitors. For the rest of the databases, it
consistently provides good performance, obtaining an 𝑅2 average score
of 0.72 − 0.73 while the best baselines, GOR-ELM and MTFL, obtain an
average 𝑅2 of 0.62. Note that, even though the mean performance of
edRVFL is better than our proposal’s in wq, the low standard deviation
makes our approach the most stable.

With respect to the impact of the functional links in RFF-BLR, it
can be observed that on average their introduction produces a slight
improvement of the results. Specifically, it is worth mentioning the
good performance of RFF-BLR with functional links in oes97 and oes10,
the datasets with the largest number of tasks.

With respect to the baselines performance, the first remark is the
clear superiority of the MTR models over the single-task SB-ELM. More-
over, two of the single hidden layer NNs with multitask formulation,
MTFL and GOR-ELM, outperform multitask NNs with several hidden
layers (HI-VAE and FNN). Our intuition behind this fact is that the small
size of the training datasets hampers the models with more expressive
power. With respect to the influence of the non-linear function on the
performance of the model, the behaviour is not consistent along all
the datasets. For example, the baseline equipped with a sigmoid as
non-linearity (GOR-ELM) achieves the best performance in atp1d and
jura, whereas the MMR endowed with an RBF kernel becomes the best
baseline in dataset wq, and the MTFL with RFF produces the best results
in oes97 and oes10 datasets. In this context, it is worth noting the fact
that RFF-BLR incorporates both RBF and RFF dual views of the same
model in a formulation that does a good job adjusting the expressive
power of the model to the needs of each dataset, hence achieving this
significantly better performance.

5.2. Sparsity analysis

Let us now focus the discussion on the level of sparsity achieved
by the RFF-BLR method (with and without functional links) in the
benchmarks. Fig. 2 shows the dependence of the final accuracy of the
model with the quotient of the initial value of 𝑀o (number of RFFs
+ number of functional links) and the number of training data 𝑁 .
We include here the results in two databases, while the results for
the additional six databases are available in Appendix C. The curves
in the plots show the 𝑅2 averaged for all tasks for each algorithm
under study. The bars below the curves indicate the number of 𝑀o that
define the final model once the optimisation is finished, and the vertical
dashed line marks the point where the initial number of neurons in
the hidden layer equals the size of the training set. We include as a
baseline for comparison the SB-ELM (orange curves), as it also follows
a sparse Bayesian framework specially targeted to develop ELMs with
a very compact hidden layer. The results show that the two versions
of the RFF-BLR achieve clearly higher 𝑅2 scores than SB-ELM; besides,
the RFF-BLR performance is not very sensitive to the initial value of
𝑀o, unlike for SB-ELM. However, it is noteworthy the decay of the
𝑅2 value in the RFF-BLR with functional links when the number of
initial components is too high; this behaviour is due to the high number
of parameters generated in the model (compared to the amount of
data) that limit its learning. This effect is not observed in the RFF-BLR
without functional links because it needs to optimise a smaller number
of parameters.

The final number of components used by each model indicates that
Bayesian optimisation succeeds in selecting this quantity. Note that the
version with functional links uses 𝑀o =𝑀RFF +𝐷 so the percentage of
selected components is relative to that number, which is 𝐷 elements
lower than for the other two cases. We can observe a higher sparsity
in the version with functional links as the number of 𝑀RFF increases.
Our intuition is that the introduction of these links incorporates some
redundant RFFs that the algorithm is able to prune.

5.3. Ablation study

The synthetic dataset employed in this study tries to mimic sce-
narios pertinent to the subsequent analyses. It comprises 500 samples
with 100 features generated using a polynomial regression framework.
The 16 output tasks are computed as Y = 𝜈(X)W + 𝜂, where 𝜈(⋅)
is a polynomial function of degree 4 in which terms with power of
2 or higher of the same input feature are excluded. Besides, weight
matrix W is randomly generated imposing that only 20 features of
𝜈(X) are informative. In addition, 𝜂 contains zero-mean Gaussian noise
components, with a standard deviation of 2.

The proposed ablation study pursues to isolate the impact of each of
the three main elements that define the RFF-BLR model: (1) addition
or not of functional links; (2) Bayesian formulation, or non-Bayesian
formulation, for automatic elimination of irrelevant components; (3) 𝛾
is optimised within the Bayesian framework or cross-validated. Table 5
shows the results of this analysis.

The study’s findings highlight the pivotal role of the Bayesian
formulation in automatically selecting relevant RFF components and/or
functional links. While the inclusion of functional links leads to a
slight performance enhancement, this effect is only noticeable when the
network is optimised using the Bayesian formulation. Moreover, this
case remarks how the inclusion of functional links tends to yield more
compact solutions.

Regarding the automatic choice of 𝛾, this study reveals that its
optimisation does not directly improve accuracy, but represents a sig-
nificant computational improvement by circumventing the parameter
selection process through CV. However, in some cases, such as RFF-
BLR with functional links and Bayesian optimisation, optimisation of
𝛾 under the Bayesian framework produces models that achieve an
expected accuracy that seems dramatically higher than that of models
with the same configuration, but with a cross-validated 𝛾 (𝑅2 of 0.79
vs. 0.38). This disparity remarks the importance of a good 𝛾 selection
strategy.



Neural Networks 179 (2024) 106619

10

C. Sevilla-Salcedo et al.

Table 4
Results in multitask benchmark datasets. The values represent the mean and standard deviation of the 𝑅2 scores obtained by each method for
all tasks in each dataset and all CV folds. The second column specifies the non-linearity used, namely, RBF kernels (RBF), sigmoid function
(sig), RFF projection (RFF) or a combination of these with the input links (link).

Model Kernel atp1d atp7d oes97 oes10 edm jura wq enb average

HI-VAE (RBF) 0.72
±0.07

0.42
±0.12

0.50
±0.22

0.66
±0.10

0.34
±0.11

0.54
±0.07

0.07
±0.02

0.91
±0.01

0.52
±0.09

FNN (RBF) 0.80
±0.10

0.64
±0.12

0.60
±0.16

0.77
±0.09

0.10
±0.34

0.35
±0.19

0.13
±0.03

0.99
±0.02

0.55
±0.13

MTFL (RFF) 0.78
±0.09

0.55
±0.13

0.69
±0.12

0.83
±0.07

0.36
±0.15

0.61
±0.10

0.12
±0.01

0.98
±0.01

0.62
±0.08

MMR (RBF) 0.80
±0.09

0.53
±0.51

0.45
±0.26

0.57
±0.31

0.36
±0.22

0.60
±0.10

0.15
±0.01

0.91
±0.05

0.55
±0.19

GOR-ELM (sig) 0.81
±0.09

0.63
±0.14

0.68
±0.14

0.82
±0.05

0.26
±0.30

0.64
±0.11

0.12
±0.03

0.98
±0.01

0.62
±0.11

SB-ELM (RFF) 0.60
±0.16

0.60
±0.14

0.31
±0.32

0.46
±0.23

0.38
±0.20

0.64
±0.09

−0.02
±0.07

0.97
±0.01

0.49
±0.15

RVFL (sig+link) 0.74
±0.15

0.53
±0.16

0.60
±0.23

0.81
±0.07

0.18
±0.32

0.58
±0.11

0.12
±0.03

0.98
±0.01

0.55
±0.13

edRVFL (sig+link) 0.77
±0.12

0.57
±0.14

0.66
±0.17

0.83
±0.07

−0.63
±0.55

0.42
±0.24

0.35
±0.20

0.90
±0.02

0.49
±0.19

NFRVFL (sig+link) 0.69
±0.28

0.53
±0.14

0.60
±0.16

0.77
±0.17

0.06
±0.27

0.35
±0.20

−2.41
±0.57

0.90
±0.02

0.19
±0.23

RFF-BLR (RFF) 0.83
±0.06

0.74
±0.15

0.83
±0.05

0.83
±0.12

0.49
±0.14

0.85
±0.07

0.21
±0.02

0.96
±0.02

0.72
±0.08

(RFF+link) 0.81
±0.07

0.73
±0.08

0.90
±0.04

0.93
±0.04

0.47
±0.12

0.83
±0.08

0.21
±0.02

0.95
±0.04

0.73
±0.06

Fig. 2. Evaluation of the 𝑅2 score as a function of the initial and final number of RFFs. This experiment compares the performance of SB-ELM (orange), RFF-BLR with functional
links (green) and RFF-BLR without functional links (blue) averaged over 10-folds. The vertical dotted line shows the point where the initial number of RFFs is equal to the size of
the training set. The bars represent the final number of components selected after pruning for each number of initial RFF features. These bars are measured with the right 𝑦-axis
while the 𝑅2 score is measured with the left 𝑦-axis.

5.4. Computational cost

The last part of this section is devoted to a more in-depth assess-
ment of the computational efficiency of our approach. This evaluation
consists in measuring the computational time needed to fit an instance
of RFF-BLR in a synthetic dataset covering the different configurations
defined in these ranges:

• For the number of output tasks, 𝐶, we have explored all the values
in the range [2, 16], fixing 𝑁 = 1, 000 and 𝑀RFF = 1.5 𝑁 .

• 50 values between 50 and 1000 for the size of the training set,
𝑁 , fixing 𝐶 = 16 and 𝑀RFF = 1.5 𝑁 .

• 20 values between 100 and 5000 for the number of RFFs, 𝑀RFF,
fixing 𝑁 = 1, 000 and 𝐶 = 16.

We carried out these experiments five times with different initialisa-
tions and calculated the average results across these repetitions. and
using a set number of features 𝐷 = 20. The results of this study are
shown in Fig. 3.

The plots show that the dependence of the computational cost on
the number of output tasks is slightly less than logarithmic (Fig. 3(a)).
Moreover, the dependence of this cost on the size of the training set
turns out to be less than quadratic (Fig. 3(b)), and less than linear
with respect to the number of RFFs up to 3500 (3.5 𝑁) and less
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Table 5
Results in the MTR synthetic dataset with 500 samples, 100 features and 16 output tasks. The values
represent the mean and standard deviation of the 𝑅2 scores obtained by each method for all tasks in a 10
fold evaluation, as well as the final number of RFF components and, if applicable, the number of functional
links used in the hidden layer. All models are trained with 𝑀𝑅𝐹𝐹 = 675. The dataset was evaluated using
a 10-fold CV.

Configuration 𝑅2 Hidden layer dim.

Links Bayesian 𝛾 optimisation Links RFF

✗ ✗ ✗ −0.52 ± 0.12 – 675
✓ ✗ ✗ 0.27 ± 0.06 100 675
✗ ✓ ✗ 0.38 ± 0.05 – 323 ± 3
✗ ✗ ✓ −2.58 ± 0.17 – 675
✓ ✓ ✗ 0.82 ± 0.01 25 ± 1 45 ± 4
✓ ✗ ✓ 0.34 ± 0.04 100 675
✗ ✓ ✓ 0.79 ± 0.02 – 211 ± 14
✓ ✓ ✓ 0.82 ± 0.01 26 ± 1 42 ± 52

Fig. 3. Evaluation of the computational cost of the model on a synthetic dataset.

than quadratic from then on (Fig. 3(c)). The reduction relative to the
number of RFFs is especially notable, as the sparsity induced by the
Bayesian framework allows a decrease in computational cost from a
cubic dependency on 𝑀RFF to sublinear. These results show that in
practice the computational cost of fitting the model turns out to be
much lower than the upper bounds of Table 2. These upper bounds
predicted a cost linear with 𝐶, quadratic in 𝑁 and cubic with 𝑀RFF.

This behaviour means that our proposal is particularly efficient and
robust when dealing with a large number of RFF components and
output tasks. In addition, the fact that it is quadratic with 𝑁 indicates
that our model also outperforms common kernel methods that typically
exhibit a cubic increase in computational cost with the size of the
training set.

6. Conclusions

This paper has presented the RFF-BLR, a framework suited to learn
accurate sparse MTR models. In essence, RFF-BLR consists in a ran-
domised feedforward NN built on two fundamental pillars: a single
hidden layer that implements an RFF approximation to a RBF kernel,
and a Bayesian formulation that optimises the weights connecting the
hidden and output layers. The RFF-based hidden layer inherits the
robustness of kernel methods to serve a non-linear mapping common to
all tasks. The Bayesian formulation controls the expressive power of the
network by (1) controlling the convergence of the training in scenarios
where the number of parameters significantly exceeds the size of the
training dataset; (2) enforcing sparsity in the hidden layer, delivering
solutions of constrained architecture complexity; and (3) optimising the
kernel parameter to avoid expensive cross-validations.

The experimental results show that RFF-BLR achieves significantly
better performance than state-of-the-art single hidden layer NN models
with various non-linearities on several widely used MTR benchmark
problems with small training datasets. This advantage is more notice-
able in the scenarios with fewer samples, where the Bayesian nature
of the proposal gives it the robustness necessary to achieve satisfactory

learning with a very small dataset. Additionally, RFF-BLR also outper-
forms NNs with multiple hidden layers in these datasets. However, as
expected, this advantage diminishes in problems with a larger number
of samples, particularly when compared to multi-layer NN models.

From a practitioner’s perspective, our method is a general purpose
algorithm that can be successfully employed in a variety of real-
world applications and domains with limited training data, where
the Bayesian framework can offer tangible advantages in terms of
generalisation capabilities. A particular application use case could be
the prediction of the number of stocks traded in a particular time period
in all the components of a financial index, such as the SP&500 or the
NASDAQ, where each stock would correspond with a regression task
and the observations would be measures of the technical indicators that
capture market relevant information. A use case in the health domain
could be the simultaneous modelling of a set of scores that help with the
characterisation of a disease using as observations a cohort of patients
and control subjects. Moreover, in the sustainability and environment
protection domain another application would be the estimation of the
energy production of the different aerogenerators within a same wind
farm.
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Appendix A. RFF-BLR variational inference updates

This section includes the complete mathematical derivation of the
update rules of the model parameters using variational inference. For
simplicity, we can start by determining the log-probability of the output
data given the model parameters

ln 𝑝
(

Y ∣ 𝜱RFF,W, 𝜏,b
)

=
N
∑

n=1
ln
(


(

𝝓RFF(x𝑛,∶)W + b, (𝜏)−1 I𝐶
))

=
N
∑

n=1

( 1
2
ln ∣ (𝜏)−1 I𝐶 ∣ − 𝜏

2
(

y𝑛,∶ − 𝝓RFF(x𝑛,∶)W − b
)

(

y𝑛,∶ − 𝝓RFF(x𝑛,∶)W − b
)𝑇

)

+ const

= 𝑁𝐶
2

ln (𝜏) − 𝜏
2

N
∑

n=1

(

y𝑛,∶y⊤𝑛,∶ − 2y𝑛,∶W⊤𝝓RFF(x⊤𝑛,∶) + bb
⊤

−2y𝑛,∶b⊤ + 2𝝓RFF(x𝑛,∶)Wb⊤

+𝝓RFF(x𝑛,∶)WW⊤𝝓RFF(x⊤𝑛,∶)
)

+ const, (A.1)

where const include the terms without r.v.

A.1. Distribution of W

The approximate log probability of variable W is given by

ln
(

𝑞∗ (W)
)

= E𝜏,𝜶b
[

ln
(

𝑝
(

Y,W,𝜶, 𝜏,b ∣ 𝜱RFF
))]

= E𝜏,b
[

ln
(

𝑝
(

Y ∣ 𝜱RFF,W, 𝜏,b
))]

+ E𝜶
[

ln (𝑝 (W ∣ 𝜶))
]

+ const, (A.2)

where the first term is

ln
(

𝑝
(

Y ∣ 𝜱RFF,W, 𝜏,b
))

= − 𝜏
2

N
∑

n=1

C
∑

c=1

(

−2𝑦𝑛,𝑐w⊤
∶,𝑐𝝓RFF(x⊤𝑛,∶) + 2w⊤

∶,𝑐𝝓RFF(x⊤𝑛,∶)bc

+w⊤
∶,𝑐𝝓RFF(x⊤𝑛,∶)𝝓RFF(x𝑛,∶)w∶,𝑐

)

+ const

= 𝜏
C
∑

c=1

(

w⊤
∶,𝑐𝜱

⊤
RFFy∶,𝑐 +w

⊤
∶,𝑐𝜱

⊤
RFF1𝑁bc

+1
2
w⊤

∶,𝑐𝜱
⊤
RFF𝜱RFFw∶,𝑐

)

+ const, (A.3)

where 1𝑁 is a column vector of ones of dimension 𝑁 . Then, the second
term is

ln (𝑝 (W ∣ 𝜶)) =
M
∑

m=1
ln
(

𝑝
(

w𝑚,∶ ∣ 𝛼𝑚
))

=
M
∑

m=1

C
∑

c=1

𝛼𝑚
2

wm,c
2 + const

= 1
2

C
∑

c=1
w⊤

∶,𝑐𝑑𝑖𝑎𝑔(𝜶)w∶,𝑐 + const. (A.4)

Then, by calculating the expectation, we get

ln
(

𝑞∗ (W)
)

=
C
∑

c=1

(

⟨𝜏⟩w⊤
∶,𝑐𝜱

⊤
RFF(y∶,𝑐 − 1𝑁 ⟨bc⟩)

−1
2
w⊤

∶,𝑐(𝑑𝑖𝑎𝑔(⟨𝜶⟩)

+⟨𝜏⟩𝜱⊤
RFF𝜱RFF)w∶,𝑐

)

+ const. (A.5)

Identifying terms, we see that the 𝑞 distribution of the variable is

𝑞∗ (W) =
C
∏

c=1


(

w∶,𝑐 ∣ ⟨w∶,𝑐⟩, 𝛴w∶,𝑐

)

, (A.6)

where the covariance matrix is common for all output tasks, 𝐶, and can
be expressed as

𝛴−1
W = 𝑑𝑖𝑎𝑔(⟨𝜶⟩) + ⟨𝜏⟩𝜱⊤

RFF𝜱RFF, (A.7)

and mean

⟨W⟩ = ⟨𝜏⟩𝛴W𝜱⊤
RFF

(

Y − 1𝑁 ⟨b⟩
)

, (A.8)

where ⟨W⟩ is a stacked version of ⟨w∶,𝑐⟩.

A.2. Distribution of 𝜶

The approximate distribution of 𝜶 follows

ln
(

𝑞∗ (𝜶)
)

= EW
[

ln
(

𝑝
(

Y,W,𝜶, 𝜏,b ∣ 𝜱RFF
))]

= EW
[

ln (𝑝 (W ∣ 𝜶))
]

+ E [ln (𝑝 (𝜶))] + const, (A.9)

where the first term corresponds to Eq. (A.4) and the second term is

E [ln (𝑝 (𝜶))] =
M
∑

m=1

(

ln
(

𝑝
(

𝛼𝑚
)))

=
M
∑

m=1

(

−b0
𝛼m
𝛼𝑚 +

(

a0𝛼m
− 1

)

ln
(

𝛼𝑚
)

)

+ const. (A.10)

Then, joining both terms, we get

ln
(

𝑞∗ (𝜶)
)

=
M
∑

m=1

((𝐶
2
+ a0𝛼m

− 1
)

ln
(

𝛼𝑚
)

−
(

b0
𝛼m

+ 1
2
⟨w⊤

𝑚,∶w𝑚,∶⟩
)

𝛼𝑚
)

+ const. (A.11)

Therefore, the 𝑞 distribution of 𝜶 is

𝑞 (𝜶) =
𝑀RFF
∏

𝑚=1
𝛤
(

𝛼𝑚 ∣ a𝛼𝑚 ,b𝛼𝑚
)

, (A.12)

with the distribution parameters calculated as

a𝛼𝑚 = a0𝛼m
+ 𝐶

2
, (A.13)

b𝛼𝑚 = b0
𝛼m

+ 1
2
⟨w⊤

𝑚,∶w𝑚,∶⟩. (A.14)

A.3. Distribution of b

The distribution of variable b is given by

ln
(

𝑞∗ (b)
)

= EW,𝜏
[

ln
(

𝑝
(

Y,W,𝜶, 𝜏,b ∣ 𝜱RFF
))]

= EW,𝜏
[

ln
(

𝑝
(

Y ∣ 𝜱RFF,W, 𝜏,b
))]

+ E
[

ln (𝑝 (b))
]

+ const, (A.15)

where the effect of the prior of the bias is given by

ln (𝑝 (b)) = ln
(


(

0, I𝐶
))

= −1
2
bb⊤ + const,

and the remaining term of the distribution can be calculated similarly
to Eq. (A.3). Then, by calculating the expectation, we get

ln
(

𝑞∗ (b)
)

=
N
∑

n=1

(

⟨𝜏⟩(y𝑛,∶ − 𝝓RFF(x𝑛,∶)⟨W⟩)b⊤

−
1 +𝑁⟨𝜏⟩

2
bb⊤

)

+ const. (A.16)
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Once this expectation is calculated, we can determine that the
distribution followed by the parameter is given by

𝑞∗ (b) = 
(

b ∣ ⟨b⟩, 𝛴b
)

, (A.17)

where the variance is

𝛴−1
b = (𝑁⟨𝜏⟩ + 1) I𝐶 , (A.18)

and the mean is

⟨b⟩ = ⟨𝜏⟩
N
∑

n=1

(

y𝑛,∶ − 𝝓RFF(x𝑛,∶)⟨W⟩

)

𝛴b. (A.19)

A.4. Distribution of 𝜏

Finally, the approximate distribution of 𝜏 is

ln
(

𝑞∗ (𝜏)
)

= EW,b
[

ln
(

𝑝
(

Y ∣ 𝜱RFF,W, 𝜏,b
))]

+ E [ln (𝑝 (𝜏))] + const. (A.20)

We can calculate the expectation of Eq. (A.1), obtaining

EW,b
[

ln
(

𝑝
(

Y ∣ 𝜱RFF,W, 𝜏,b
))]

= 𝑁𝐶
2

ln (𝜏)

− 𝜏
2

( N
∑

n=1

C
∑

c=1
𝑦2𝑛,𝑐 − 2Tr

{

⟨W⊤
⟩𝜱⊤

RFFY
}

+Tr
{

⟨WW⊤
⟩𝜱⊤

RFF𝜱RFF
}

− 2
N
∑

n=1
y𝑛,∶⟨b⊤⟩

+2
N
∑

n=1
𝝓RFF(x𝑛,∶)⟨W⟩⟨b⊤⟩ +𝑁⟨bb⊤⟩

)

, (A.21)

and then the second term is

E [ln (𝑝 (𝜏))] = ln (𝑝 (𝜏)) = −𝛽𝜏0 𝜏 +
(

𝛼𝜏0 − 1
)

ln (𝜏) + const. (A.22)

So, if we join both expectation elements and identify distribution
terms, we see that the new distribution is

𝑞∗ (𝜏) = 𝛤
(

𝜏 ∣ 𝑎𝜏 , 𝑏𝜏
)

, (A.23)

where the parameter 𝑎𝜏 is

𝑎𝜏 =
𝑁𝐶
2

+ a0𝜏 , (A.24)

and the parameter 𝑏𝜏 can be expressed as

𝑏𝜏 = b0
𝜏 +

1
2

N
∑

n=1

C
∑

c=1
𝑦2𝑛,𝑐 +

1
2
𝑇 𝑟{⟨W⊤W⟩𝜱𝜱⊤

RFF}

− 𝑇 𝑟{Y⟨W⊤
⟩𝜱⊤

RFF} −
N
∑

n=1
y𝑛,∶⟨b⊤⟩

+
N
∑

n=1
𝝓RFF(x𝑛,∶)⟨W⟩⟨b⊤⟩ + 𝑁

2
⟨bb⊤⟩. (A.25)

Appendix B. RFF-BLR lower bound

Here, we present the complete derivation of the lower bound of the
model. We can calculate the changes in the lower bound as follows:

𝐿𝐵 = −∫ 𝑞 (𝛩) ln

(

𝑞 (𝛩)
𝑝
(

Y, 𝛩 ∣ 𝜱RFF
)

)

𝑑𝛩

= ∫ 𝑞 (𝛩) ln
(

𝑝
(

Y, 𝛩 ∣ 𝜱RFF
))

𝑑𝛩 − ∫ 𝑞 (𝛩) ln (𝑞 (𝛩)) 𝑑𝛩

= E𝑞
[

ln
(

𝑝
(

Y, 𝛩 ∣ 𝜱RFF
))]

− E𝑞 [ln (𝑞 (𝛩))] . (B.1)

We will separately calculate the terms related to E𝑞
[

ln
(

𝑝
(

Y, 𝛩 ∣ 𝜱RFF
))]

and the entropy of 𝑞 (𝛩).

B.1. Terms associated to E𝑞
[

ln
(

𝑝
(

Y , 𝛩 ∣ 𝜱RFF
))]

This first term of the lower bound would be composed by the
following terms:

E𝑞
[

ln
(

𝑝
(

Y, 𝛩 ∣ 𝜱RFF
))]

=

E𝑞
[

ln (𝑝 (W ∣ 𝜶))
]

+ E𝑞 [ln (𝑝 (𝜶))]

+ E𝑞
[

ln
(

𝑝
(

Y ∣W,𝜱RFF,b, 𝜏
))]

+ E𝑞 [ln (𝑝 (𝜏))] + E𝑞
[

ln (𝑝 (b))
]

.

(B.2)

These are calculated as

E𝑞
[

ln (𝑝 (W ∣ 𝜶))
]

= −𝑀𝐶
2

ln (2𝜋) −
M
∑

m=1

(

𝑎𝛼𝑚
)

+ 𝐶
2

M
∑

m=1

(

𝜓
(

𝑎𝛼𝑚
)

− ln
(

𝑏𝛼𝑚
))

+ 𝛽0
M
∑

m=1

(

𝑎𝛼𝑚
𝑏𝛼𝑚

)

, (B.3)

where 𝜓 (𝑥) represents the cumulative distribution function.

E𝑞 [ln (𝑝 (𝜶))] = 𝐶
(

𝛼0 ln
(

𝛽0
)

− ln
(

𝛤
(

𝛼0
)))

+
M
∑

m=1

(

−𝛽0
𝑎𝛼𝑚
𝑏𝛼𝑚

+
(

𝛼0 − 1
)

(

𝜓
(

𝑎𝛼𝑚
)

− ln
(

𝑏𝛼𝑚
))

)

(B.4)

E𝑞
[

ln (𝑝 (W,𝜶))
]

=
(𝐶
2
+ 𝛼0 − 1

)

M
∑

m=1

(

𝜓
(

𝑎𝛼𝑚
)

− ln
(

𝑏𝛼𝑚
))

− 𝑀𝐶
2

ln (2𝜋) + 𝐶
(

𝛼0 ln
(

𝛽0
)

− ln
(

𝛤
(

𝛼0
))

)

−
M
∑

m=1

(

𝑎𝛼𝑚
)

,

(B.5)

E𝑞
[

ln
(

𝑝
(

Y ∣W,𝜱RFF,b, 𝜏
))]

= −𝑁𝐶
2

ln (2𝜋) + 𝐶
2
(

E𝑞 [ln (𝜏)]
)

−
⟨𝜏⟩
2

N
∑

n=1

C
∑

c=1

(

𝑦𝑛,𝑐𝑦𝑛,𝑐 + 𝑦𝑛,𝑐⟨w⊤
∶,𝑐⟩𝝓RFF(x𝑛,∶)⊤

− 1
2
⟨w∶,𝑐w⊤

∶,𝑐⟩𝝓RFF(x𝑛,∶)⊤𝝓RFF(x𝑛,∶) − 𝑦𝑛,𝑐⟨bc⟩

− 𝝓RFF(x𝑛,∶)⟨w∶,𝑐⟩⟨bc⟩ +
1
2
⟨bcbc⟩

)

, (B.6)

E𝑞 [ln (𝑝 (𝜏))] = 𝛼𝜏0 ln
(

𝛽𝜏0
)

− ln
(

𝛤
(

𝛼𝜏0
))

− 𝛽𝜏0
𝑎𝜏
𝑏𝜏

+
(

𝛼𝜏0 − 1
)

(

𝜓
(

𝑎𝜏
)

− ln
(

𝑏𝜏
)

)

, (B.7)

E𝑞
[

ln (𝑝 (b))
]

= −𝐶
2
ln (2𝜋) − 1

2
⟨bb⊤⟩. (B.8)

B.2. Terms of entropy of 𝑞 (𝛩)

The second term of the lower bound, the entropy, can be calculated
as

E𝑞 [ln (𝑞 (𝛩))] = E𝑞
[

ln (𝑞 (W))
]

+ E𝑞 [ln (𝑞 (𝜶))]

= +E𝑞 [ln (𝑞 (𝜏))] + E𝑞
[

ln (𝑞 (b))
]

, (B.9)

where we can now determine the entropy of each model parameter
having

E𝑞
[

ln (𝑞 (W))
]

= 𝑀𝐶
2

ln (2𝜋𝑒) + 𝑀
2

ln ∣ 𝛴W ∣, (B.10)

E𝑞 [ln (𝑞 (𝜶))] =
M
∑

m=1

(

𝑎𝛼𝑚 + ln
(

𝛤
(

𝑎𝛼𝑚
))

−
(

1 − 𝑎𝛼𝑚
)

𝜓
(

𝑎𝛼𝑚
)

− ln
(

𝑏𝛼𝑚
) )

, (B.11)
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Fig. C.4. Evaluation of the 𝑅2 score as a function of the initial and final number of RFFs. This experiment compares the performance of SB-ELM (orange) and RFF-BLR with and
without links (green and blue) averaged over 10-folds. The vertical dotted line shows the point where the initial number of RFFs is equal to the size of the training set. The bars
represent the final number of features selected after pruning for each number of initial RFF features. These bars are measured with the right 𝑦-axis while the 𝑅2 score is measured
with the left 𝑦-axis.
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E𝑞 [ln (𝑞 (𝜏))]

= 𝑎𝜏 + ln
(

𝛤
(

𝛼𝜏0
))

−
(

1 − 𝛼𝜏0
) (

𝜓
(

𝛼𝜏0
)

− ln
(

𝛽𝜏0
))

, (B.12)

E𝑞
[

ln (𝑞 (b))
]

= 𝐶
2
ln (2𝜋𝑒) + 1

2
ln ∣ 𝛴b ∣ . (B.13)

B.3. Complete lower bound

Finally, if we combine both terms, Eq. (B.2) and (B.9), we get that
the complete lower bound is

𝐿𝐵 = −
(𝐶
2
+ 𝛼0 − 1

)

M
∑

m=1

(

ln
(

𝑏𝛼𝑚
))

−
(

𝛼𝜏0 − 1
)

ln
(

𝑏𝜏
)

− 1
2
⟨bb⊤⟩ − 𝛽𝜏0

𝑎𝜏
𝑏𝜏

+ 𝐶
2
(

E𝑞 [ln (𝜏)]
)

−
⟨𝜏⟩
2

N
∑

n=1

C
∑

c=1

( 1
2
⟨bcbc⟩ + 𝑦𝑛,𝑐⟨w⊤
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where we can use Eq. (A.25) to simplify the lower bound
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(
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B.4. Lower bound dependent on 𝜱RFF

To maximise the lower bound to obtain the optimum 𝛾 value we
need the terms dependent on 𝜱RFF from Eq. (B.14), obtaining

𝐿𝐵 = ⟨𝜏⟩
N
∑

n=1

C
∑

c=1

(

𝑦𝑛,𝑐⟨w⊤
∶,𝑐⟩𝝓RFF(x𝑛,∶)⊤ − 𝝓RFF(x𝑛,∶)⟨w∶,𝑐⟩⟨bc⟩

− 1
2
⟨w∶,𝑐w⊤

∶,𝑐⟩𝝓RFF(x𝑛,∶)⊤𝝓RFF(x𝑛,∶)
)

. (B.16)

Appendix C. Sparsity analysis

In this section, we present the graphs obtained for the 6 databases
that were not included in the Results section. Fig. C.4 includes the
results obtained when running both our proposal and SB-ELM for
different numbers of initial RFF.
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