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A B S T R A C T

The automobile industry usually ignores the height of the path and uses planar vehicle models to implement
automatic vehicle control. In addition, existing literature mostly concerns level terrain or homogeneous road
surfaces for estimating vehicle dynamics. However, ground vehicles utilized in forestry, such as forwarders,
operate on uneven terrain. The vehicle models built on level terrain assumptions are inadequate to capture
the rolling or pitching dynamics of such machines as rollover of such vehicles is a potential risk. Therefore,
knowledge about the height profile of the path is crucial for automating such off-road operations and
avoiding rollover. We propose the use of a six-degrees-of-freedom (6-DOF) dynamic vehicle model to solve the
autonomous forwarder problem. An adaptive linear tire model is used in the 6-DOF model assuming the vehicle
operates in a primary handling regime. The force models are modified to include the three-dimensional (3D)
map information. The calibration procedures, identifying actuator dynamics, and quantifying sensor delays are
also represented.

The proposed vehicle modeling contributed to realizing the continuous-discrete extended Kalman filter
(CDEKF), which takes into account the 3D path during filtering and fixed-lag smoothing. Polaris (an all-terrain
electric car) is used as a case study to experimentally validate the vehicle modeling and performance of the
state estimator. Three types of grounds are selected — an asphalt track, a concrete track with a high elevation
gradient, and a gravel track inside a forest. Stable state estimates are obtained using CDEKF and sparse 3D maps
of terrains despite discontinuities in satellite navigation data inside the forest. The height estimation results
are obtained with sufficient accuracy when compared to ground truth obtained by aerial 3D mapping. Finally,
the proposed model’s applicability for predictive control is demonstrated by utilizing the state estimates to
predict future states considering (3D) terrain.

1. Introduction

The traditional Cut To Length (CLT) machine chain consists of a
human-driven harvester and a human-driven forwarder as shown in
Fig. 1. The harvester fells the tree, debranches, and simultaneously cuts
the stem to logs in the forest. The forwarder loads and transports the
logs from the forest to the roadside for transportation with trucks to
wood processing mills. The heavy traditional forwarder can damage the
forest ground.

We are studying a new sustainable forest machine chain: a human-
driven harvester and two semiautonomous lighter forwarders without
cabins and cranes. The driver of the harvester takes care of the loading
of the forwarder and teleoperates at the roadside for the unloading
using the crane module. One human driver can operate the new ma-

✩ The research is funded by the Technology Industries of Finland Centennial Foundation and Jane and Aatos Erkko Foundation.
∗ Corresponding author.
E-mail address: tabish.badar@aalto.fi (T. Badar).

1 The environment that contains a 3D representation of the path as in Badar, Ouattara, Backman, and Visala (2023) is referred to as the terrain in this article.
A 2D path such as a road homogeneous road surface (Han, Choi, & Choi, 2018) will be referred to as level terrain.

chine chain, instead of two drivers in the traditional CTL-machine
chain.

The human-driven harvester is showing the spatial (2D) driving
paths for the autonomous forwarders with real-time kinematic (RTK-
)corrected Global Navigation Satellite Solution (GNSS) positioning in
the open final cutting areas and in the thinning harvesting areas
relative to trees left growing, map of trees, with LiDAR-based Forest
Simultaneous Localization and Mapping (Forest SLAM) (Hyyti & Visala,
2013).

Autonomous driving is challenging in uneven forest terrain, due to
e.g., slopes, stones, and stumps of harvested trees. The rollover of the
forwarder is a real risk. To avoid rollover, the driving path’s three-
dimensional (3D) form is needed.1 It cannot be measured with machine
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Nomenclature

Subscripts

m Refers to measured quantities
𝑏 Refers to quantities in the body frame
𝑒 Refers to estimated quantities
𝑘 Refers to front-right (FR), front-left (FL),

rear-right (RR), and rear-left (RL) side
(tire/suspension/strut-mount point) of the
vehicle

𝑡 Refers to quantities in the tire-ground
contact patch frame

Tire/Suspension/Strut

𝛼𝑘, 𝛿𝑘, 𝛾𝑘 Sideslip angle, steering angle, and path
elevation angle under 𝑘th tire (rad)

𝛿𝑐 Steering angle command (rad)
𝛥𝑘, 𝛥̇𝑘 Vertical deflection (m), and velocity of the

𝑘th spring-damper system (m/s)
𝑘, ̇𝑘 Ground truth (m), and elevation gradient

(m/s)
𝜇eff Effective cornering stiffness coefficient
C𝛼 ,C𝛼,eff initial and effective cornering stiffness

(N/rad)
C𝑟 Coefficient of rolling resistance
𝐵𝑘 Stiffness coefficient of the 𝑘th spring-

damper system (N/m)
𝐶𝑘 Damping coefficient of the 𝑘th spring-

damper system (N s/m)
𝐹𝑥,𝑏, 𝐹𝑦,𝑏, 𝐹𝑧,𝑏 Longitudinal, lateral, and vertical tire

forces in body frame (N)
𝐹𝑥,𝑡, 𝐹𝑦,𝑡, 𝐹𝑧,𝑡 Longitudinal, lateral, and vertical tire

forces at tire-ground contact patch frame
(N)

𝐾,𝐾𝑐 Curvature and curvature command (m−1)
𝐿𝑘,𝑀𝑘, 𝑁𝑘 Rolling, pitching, and yawing moment of

𝑘th strut-mount point about CG in body
frame (N m)

𝑚𝑘 Mass of the 𝑘th side including mass of tire
(kg)

𝑋𝑘, 𝑌𝑘, 𝑍𝑘 Longitudinal, lateral, and vertical position
of 𝑘th strut-mount point in global frame
(m)

Vehicle

𝑋̇, 𝑌̇ , 𝑍̇ Longitudinal, lateral, and vertical velocities
of CG in global frame (m/s)

𝜙, 𝜃, 𝜓 Roll angle, pitch angle, and yaw angle (rad)
𝑎𝑐 Forward acceleration command in body

axes (m/s2)
𝐹𝑥, 𝐹𝑦, 𝐹𝑧 Longitudinal, lateral, and vertical forces in

body axes (N)
𝑔 Acceleration due to gravity (9.8 m/s2)
𝐼𝑥𝑥, 𝐼𝑦𝑦, 𝐼𝑧𝑧 Moments of inertias about CG along longi-

tudinal, lateral, and vertical body frame (kg
m2)

𝐿,𝑀,𝑁 Rolling, pitching, and yawing moment
about CG in body frame (N m)

𝑚 mass of the vehicle (kg)

𝑝, 𝑞, 𝑟 Roll rate, pitch rate, and yaw rate about CG
in body frame (rad/s)

𝑢, 𝑣,𝑤 Longitudinal, lateral, and vertical velocities
of CG in body frame (m/s)

𝑋, 𝑌 ,𝑍 Longitudinal, lateral, and vertical position
of CG in global frame (m)

Fig. 1. A harvester and a forwarder are shown, where both machines constitute the
traditional CLT machine chain.
Source: Ponsse.

perception like LiDAR, because the ground is covered with snow in
winter or vegetation in summer. The RTK-GNSS is inaccurate in a full
forest (Badar, Ouattara, Backman, & Visala, 2024). The differential
Global Positioning System (DGPS) accuracy is typically about 2-3 m,
which is unsuitable even for 2D positioning. We have developed height
odometry, reported shortly in Badar et al. (2023) and in detail in Badar
et al. (2024), in which the 3D form of the solid driving path can be
measured with wheel height measurements and attitude of the first
going machine, for example, the harvester. The safe automatic driving
along the shown paths can be implemented with Nonlinear Model
Predictive Control (NMPC) of the velocity and steering. With NMPC,
the 3D form of the path can be taken into account.

In this paper, the first objective is to identify a detailed nonlinear dy-
namic model needed in the vehicle simulators, which are then used in
the initial phase development of the state estimation (Imine, Fridman,
& Madani, 2012) and NMPC (Choi & Choi, 2014) in terrain. Classically,
a six-degrees-of-freedom (6-DOF) dynamic model has all the forces and
moments necessary to investigate the vehicle’s lateral and longitudinal
dynamics in detail (see, for example, Etkin and Reid (1995) and the
references within). Segel (1956) introduced the famous bicycle model
for automobiles by adopting a 6-DOF aerial vehicle model. His seminal
work concerns analyzing the effects of a steering control mechanism
on an automobile’s lateral dynamics. Subsequent research has been
conducted on ground vehicles that depend on incorporating or deleting
elements from the 6-DOF vehicle model. Thus, each application con-
sidered in Antonov, Fehn, and Kugi (2011), Berntorp and Di Cairano
(2019), Best, Gordon, and Dixon (2000), Han et al. (2018), Shim and
Ghike (2007), Sun, Huang, Rudolph, and Lolenko (2015), van Aalst,
Naets., Boulkroune, Nijs, and Desmet (2018), Wang and Wang (2013)
and Wenzel, Burnham, Blundell, and Williams (2006) can be visualized
as an extension or simplification of the 6-DOF vehicle model. Based on
the results demonstrated in Berntorp (2013) and Schofield (2006), we
select a 6-DOF vehicle dynamic model in this study.

In Badar, Backman and Visala (2022), a nonlinear 6-DOF dynamic
model simulator for vehicles with Ackermann-type steering, Polaris
electric all-terrain vehicle (e-ATV), was developed. Correspondingly,
in Badar, Backman, Tariq and Visala (2022), a 6-DOF dynamic vehicle
model for a center-articulated vehicle, Rakkatec, was developed using
a combined center of gravity (CG) approach. A higher-order 14-DOF
model from Shim and Ghike (2007) seems appealing in rollover preven-
tion studies because it includes the dynamics of tire heights installed
at each corner of the car. However, including additional dynamics
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comes at a price of higher computational requirements. The vertical
stiffness of bias-ply tires is very high (see, e.g., the discussion about
ride comfort in Wong (2008)). Since the natural frequency of the tire
modeled as an additional mass–spring system is directly proportional to
the square root of the spring’s coefficient of stiffness, the corresponding
frequency would be very high compared to that of the suspension
system. Moreover, the forest machines do not have suspension systems
as in cars rather they control the instantaneous heights of the wheel
using hydraulics (Badar, Backman, Tariq et al., 2022).

For the above reasons, we utilize Polaris as the case vehicle to
validate vehicle modeling and state estimation.

Segel refers to CAR as a black box in his work (Segel, 1956,
Figure 4). This is mainly due to a lack of precise knowledge about the
tire-vehicle and tire-ground characteristics. Since then, tire modeling
has become a topic of great significance for the automobile industry.
In Pacejka (2012), Pacejka introduced a magic formula to model tire
behavior. The formula is called magic as it suggests modeling tire forces
through extensive experimentation under various loads and pressures.
It does not involve first principles for its derivation. The formula depicts
a linear relationship between the tire’s lateral force 𝐹𝑦 and the sideslip
angle 𝛼 near the origin. The constant of proportionality – in 𝐹𝑦 versus 𝛼
curve near 𝛼 = 0 – is called cornering stiffness C𝛼 . Finding an estimate
of C𝛼 is challenging as it needs thorough experimentation, which is ex-
pensive and time-consuming (see, e.g., Georgieva and Kunchev (2015)
and Vorotović, Rakicevic, Mitić, and Stamenković (2013)).

The variation of the C𝛼 is a concern as the lateral tire forces
change with tire temperature, load, and inflation pressure (Singh &
Sivaramakrishnan, 2015). There exists literature that models off-road
tire dynamics using semiempirical methods, e.g., Senatore and Sandu
(2011). In Liang, Allen, Rosenthal, Chrstos, and Nunez (2004), for
example, a tire-terrain model for vehicle simulations is considered.
However, such tire-terrain interaction models are needed when it is
desired to include (internal) tire parameters extensively. Such extensive
off-road tire modeling was avoided in Badar, Backman, Visala (2022),
where we employed Hewson’s model (Hewson, 2005) to estimate C𝛼
value using basic tire properties given in the datasheet. In this study,
we extend (Badar, Backman, Visala, 2022) using an adaptation of the
tire’s cornering stiffness C𝛼 through a time-varying parameter based on
previous studies (Berntorp & Di Cairano, 2019; Berntorp, Quirynen, &
Vaskov, 2021; Han et al., 2018; van Aalst et al., 2018). The scope of
these and other lateral dynamics identification studies, such as Bascetta
and Ferretti (2022), is limited to bicycle models ignoring ground el-
evation, roll, and pitch dynamics. A contribution here is to integrate
the lateral dynamics through an effective cornering stiffness (C𝛼,eff)
to experimentally validate the 6-DOF vehicle model for autonomous
driving in terrain.

The second objective is to implement the state estimation using
the developed 6-DOF model and the 3D path information. The main
assumption in the published results of vehicle state estimation, such
as Antonov et al. (2011), Shim and Ghike (2007) and Segel (1956),
has been the level terrain or homogeneous road surfaces. The vehicle
state estimation can be based on inertial measurements (Berntorp &
Di Cairano, 2019; van Aalst et al., 2018) to be utilized in predictive
control (Berntorp et al., 2021). The focus of the automobile industry has
been on road roughness classification via state estimation (González,
O’brien, Li, & Cashell, 2008; Han et al., 2018). In this paper, the main
distinction from Berntorp and Di Cairano (2019), Berntorp et al. (2021),
Best et al. (2000), van Aalst et al. (2018) and Han et al. (2018) is that,
instead of level terrain assumption, the 3D path information is utilized
in the state estimation. We augment the (velocity and steering) actuator
dynamics to the 6-DOF dynamic model. Both are needed to obtain state
estimates to predict future states over a fixed prediction horizon.

The structure of the paper is as follows. The mathematical frame-
work to describe the 6-DOF modeling considering a 3D path is pre-
sented in Section 2. The details about the test platforms, 3D terrain
models, and state estimation methods used in this study are mentioned

Fig. 2. Schematic of the 6-DOF car-like vehicle model is shown with a suspension at
front-right (FR), front-left (FL), rear-right (RR), and rear-left (RL) corners, body-fixed
(𝑥, 𝑦, 𝑧)-frame, and FR wheel’s tire-ground contact patch (𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡)-frame. The rolling,
pitching, and yawing axes with positive linear velocities (𝑢, 𝑣,𝑤) and angular rates
(𝑝, 𝑞, 𝑟) concerning CG are also shown.

in Section 3. The results from calibration procedures, actuator model-
ing, state estimation, and model validation are provided in Section 4.
The important findings of this study are discussed in Section 5. Finally,
the conclusions are made in Section 6.

2. Models

The objective is to express the ground vehicle dynamics in the
general state-space form

𝐱̇(𝜏) = 𝐟 (𝐱(𝜏),𝐮(𝜏), 𝐬(𝜏), 𝛩, 𝜏) (1)

with the (ideal) measurements described in terms of state vector as

𝐲(𝜏) = 𝐠 (𝐱(𝜏), 𝐬(𝜏), 𝛩, 𝜏) (2)

where 𝐟 and 𝐠 are the nonlinear functions that describe the dynamic and
measurement models respectively, 𝐱 is the state vector, 𝐮 is the control
input vector, 𝐬 is the ground profile input vector and 𝛩 constitutes
internal and external 6-DOF model parameters. The state vector 𝐱
constitutes the 3D position (𝑋, 𝑌 , and 𝑍) of the center of gravity (CG)
in the global (or inertial) frame of reference, body velocities (𝑢, 𝑣, and
𝑤), angular rates about CG (𝑝, 𝑞, and 𝑟), roll angle 𝜙, pitch angle 𝜃, yaw
angle 𝜓 , and curvature 𝐾. The control input vector 𝐮 contains curvature
command 𝐾𝑐 and forward acceleration command 𝑎𝑐 .

The ordinary differential equations (ODEs) specifying the vehicle
dynamics in terms of the state vector (𝐱), control input (𝐮), and un-
controlled ground input vector (𝐬) will be presented in the following
sections and subsections.

2.1. Nonlinear 6-DOF vehicle model

The 6-DOF dynamical model for ground vehicles is a roll-plane
model that is based on the rigid body assumption. Fig. 2 shows a
3D schematic of a car-like vehicle following the sign and coordinate
transformation convention mentioned in Shim and Ghike (2007). The
nomenclature of Etkin and Reid (1995) is used to describe quantities
associated with the linear and angular motion of CG. The vehicle has a
lumped mass 𝑚 and the inertia matrix 𝐈𝐵 . It has a wheelbase of 𝑙, track
width of 𝑡, and a total height ℎ above the center of the rear axle (CRA).
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The CG location remains fixed to the origin of (𝑥, 𝑦, 𝑧)-frame. The
system is represented by three forces – longitudinal force 𝐹𝑥, lateral
force 𝐹𝑦, and vertical force 𝐹𝑧 – along each of the body’s 𝑥, 𝑦, 𝑧 axes,
and three moments – rolling moment 𝐿, pitching moment 𝑀 , and
yawing moment 𝑁 – about each of the body’s 𝑥, 𝑦, 𝑧 axes. The linear
velocities 𝑢, 𝑣, and 𝑤 in Fig. 2 are the respective forward, sideways
(left-side positive), and upside velocities of CG. The quantities 𝑝, 𝑞, and
𝑟 represent the body angular rates about the body’s 𝑥, 𝑦, and 𝑧-axes
respectively. Their sign conventions concerning CG are shown by red
arrows in Fig. 2.

The quantities 𝐹𝑧𝑡,𝑘 , 𝐹𝑦𝑡,𝑘 , and 𝐹𝑥𝑡,𝑘 represent normal, lateral and
longitudinal forces experienced by 𝑘th tire in the (𝑥𝑡, 𝑦𝑡, 𝑧𝑡)-frame as
shown for the FL wheel in Fig. 2. These forces are transmitted to
the 𝑘th strut-mount point attached to the vehicle’s body via the 𝑘th
suspension system. Fig. 2 further depicts 𝑢𝑘,𝑡, 𝑣𝑘,𝑡, and 𝑤𝑘,𝑡 for RL
wheel representing the longitudinal, lateral, and vertical tire velocities
respectively.

The navigation frame for the ground vehicle is the east-north-up
(ENU)-frame with its 𝑋, 𝑌 , and 𝑍-axes pointing to the east, north, and
up directions respectively (Bar-Shalom, Li, & Thiagalingham, 2001).
The transformation of quantities from the body-fixed coordinate frame
to the global (𝑋, 𝑌 ,𝑍)-frame follows roll-pitch-yaw rotations. The
(𝑥𝑡, 𝑦𝑡, 𝑧𝑡)-frame is obtained from (𝑥, 𝑦, 𝑧)-frame through successive roll-
pitch rotations. The equations of motion (EOMs) concerning the 6-DOF
vehicle are provided in the following subsections.

2.1.1. Position dynamics
The relation between inertial velocities and body velocities is given

by

⎡

⎢

⎢

⎣

𝑋̇
𝑌̇
𝑍̇

⎤

⎥

⎥

⎦

= 𝐓1

⎡

⎢

⎢

⎣

𝑢
𝑣
𝑤

⎤

⎥

⎥

⎦

(3)

such that, we define

𝐓1 =
⎡

⎢

⎢

⎣

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐑𝑧(𝜓)

⎡

⎢

⎢

⎣

cos 𝜃 0 sin 𝜃
0 1 0

− sin 𝜃 0 cos 𝜃

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐑𝑦(𝜃)

⎡

⎢

⎢

⎣

1 0 0
0 cos𝜙 − sin𝜙
0 sin𝜙 cos𝜙

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐑𝑥(𝜙)

.

(4)

to convert quantities in the body frame to the inertial frame. Given the
inertial position of CG is known, the instantaneous 3D inertial position
of the center of 𝑘th wheel is given as

𝐏𝑘 = 𝐏CG + 𝐓1𝐩𝑘,𝑏 (5)

where

𝐏𝑘 =
⎡

⎢

⎢

⎣

𝑋𝑘
𝑌𝑘
𝑍𝑘

⎤

⎥

⎥

⎦

; 𝐏CG =
⎡

⎢

⎢

⎣

𝑋
𝑌
𝑍

⎤

⎥

⎥

⎦

; 𝐩𝑘,𝑏 =
⎡

⎢

⎢

⎣

𝑙𝑘∕2
𝑡𝑘∕2
ℎ𝑘∕2

⎤

⎥

⎥

⎦

. (6)

The subscript 𝑏 represents the quantities concerning (𝑥, 𝑦, 𝑧)-frame. We
use the subscript 𝑘 to represent the quantity associated with 𝑘th tire,
strut-mount point, or corner of the vehicle. In turn, the vector 𝐩𝑘,𝑏 is the
moment arm to compute body moments about CG concerning 𝑘th side
of the vehicle. Each moment arm vector (𝐩𝑘,𝑏) is defined such that after
directional sign adjustments we have, e.g., 𝐩FR,𝑏 = {𝑙∕2,−𝑡∕2,−ℎ∕2},
whereas 𝐩RL,𝑏 = {−𝑙∕2, 𝑡∕2,−ℎ∕2}.

2.1.2. Linear velocity dynamics
The EOMs describing the forward, sideways, and upward accelera-

tions are represented as follows:

⎡

⎢

⎢

⎣

𝑢̇
𝑣̇
𝑤̇

⎤

⎥

⎥

⎦

= 1
𝑚

⎡

⎢

⎢

⎣

𝐹𝑥
𝐹𝑦
𝐹𝑧

⎤

⎥

⎥

⎦

+ 𝐓−1
1

⎡

⎢

⎢

⎣

0
0
−𝑔

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝑢
𝑣
𝑤

⎤

⎥

⎥

⎦

⊗
⎡

⎢

⎢

⎣

𝑝
𝑞
𝑟

⎤

⎥

⎥

⎦

(7)

where 𝑔 is the acceleration due to gravity. The operator (⊗) in Eq. (7)
represents a cross product between the velocities and the rates (vec-
tor). The forces in Eq. (7) are obtained by adding all the tire forces
experienced by the vehicle such that

𝐹𝑥 =
∑

𝑘
𝐹𝑥𝑏,𝑘 , 𝐹𝑦 =

∑

𝑘
𝐹𝑦𝑏,𝑘 , and 𝐹𝑧 =

∑

𝑘
𝐹𝑧𝑏,𝑘 . (8)

2.1.3. Angular velocity dynamics
The expression of the rate of change of body rates (or the angular

accelerations) is written as

⎡

⎢

⎢

⎣

𝑝̇
𝑞̇
𝑟̇

⎤

⎥

⎥

⎦

= 𝐈−1𝐵
⎡

⎢

⎢

⎣

𝐿 − 𝐼𝑥𝑦𝑟𝑝 + (𝐼𝑦𝑦 − 𝐼𝑧𝑧)𝑞𝑟
𝑀 + 𝐼𝑥𝑦𝑞𝑟 + (𝐼𝑧𝑧 − 𝐼𝑥𝑥)𝑟𝑝

𝑁 + 𝐼𝑥𝑦(𝑝2 − 𝑞2) + (𝐼𝑥𝑥 − 𝐼𝑦𝑦)𝑝𝑞

⎤

⎥

⎥

⎦

(9)

Etkin and Reid (1995). The total rolling, pitching, and yawing torques
or moments about CG are obtained by

𝐿 =
∑

𝑘
𝐿𝑘, 𝑀 =

∑

𝑘
𝑀𝑘, and𝑁 =

∑

𝑘
𝑁𝑘. (10)

The moments 𝐿𝑘, 𝑀𝑘, and 𝑁𝑘 at the 𝑘th strut-mount point are given
as

⎡

⎢

⎢

⎣

𝐿𝑘
𝑀𝑘
𝑁𝑘

⎤

⎥

⎥

⎦

=
⎛

⎜

⎜

⎝

𝐩𝑘,𝑏 +
(

𝐑𝑧(−𝜓)𝐓1
)−1

⎡

⎢

⎢

⎣

0
0

−𝛥𝑘 − ℎ𝑇

⎤

⎥

⎥

⎦

⎞

⎟

⎟

⎠

⊗

⎡

⎢

⎢

⎢

⎣

𝐹𝑥𝑘,𝑏
𝐹𝑦𝑘,𝑏
𝐹𝑧𝑘,𝑏

⎤

⎥

⎥

⎥

⎦

(11)

where ℎ𝑇 is the tire’s radius and 𝛥𝑘 depicts the instantaneous vertical
deflection of the 𝑘th spring of the vehicle during tire-terrain interac-
tions. In turn, 𝛥𝑘 depicts the change in length of the moment arm during
compression or elongation in both car-like and articulated vehicles.
It is expressed in the (𝑥𝑡, 𝑦𝑡, 𝑧𝑡)-frame as highlighted in Fig. 2. Thus,
(𝐑𝑧(−𝜓)𝐓1)−1, which equates to 𝐑𝑥(−𝜙)𝐑𝑦(−𝜃), aligns vertical wheel
displacements 𝛥𝑘 to the body vector 𝐩𝑘,𝑏.

Finally, the relationship between the rate of change of roll, pitch,
and yaw angles to the body rates is given by

⎡

⎢

⎢

⎣

𝜙̇
𝜃̇
𝜓̇

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1 sin𝜙 tan 𝜃 cos𝜙 tan 𝜃
0 cos𝜙 − sin𝜙
0 sin𝜙 sec 𝜃 cos𝜙 sec 𝜃

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

𝑝
𝑞
𝑟

⎤

⎥

⎥

⎦

. (12)

2.2. Modeling tire forces

In this section, we present the models describing normal, lateral,
and longitudinal tire forces considering a 3D form of the path.

2.2.1. Normal force model
The purpose is to model normal tire forces when the planar (2D)

ground has an instantaneous height profile. Thus, we define the load
acting on the 𝑘th side as

𝐹𝑧𝑡,𝑘 = −𝐵𝑘(𝑍𝑘 −𝑘) − 𝐶𝑘(𝑍̇𝑘 − ̇𝑘) (13)

where 𝐵𝑘 is the stiffness coefficient, 𝐶𝑘 is the damping coefficient, 𝑍𝑘 is
the inertial height of the 𝑘th wheel center, and 𝑘 is the instantaneous
height of the terrain in (𝑋, 𝑌 ,𝑍)-frame. Similarly, the 𝑍̇𝑘 is the vertical
velocity of the center of 𝑘th wheel and ̇𝑘 is the rate of change of
ground height. The height 𝑘 is the ground truth as we assume that
the a priori knowledge about the 3D form of the path is available
utilizing (Badar et al., 2024). In turn, we specify the deterministic
(though uncontrolled) input vector 𝐬(𝜏) = (𝑘, ̇𝑘) ∈ R8 in Eq. (1).

The 3D map information is given as

𝐦𝐚𝐩PRI = 𝐉
([

X̃PRI, ỸPRI, Z̃PRI
])

(14)

where the multivariate interpolation function 𝐉(⋅) incorporates all the
3D location points of the region of interest (ROI). In Eq. (14), X̃PRI, ỸPRI,
and Z̃PRI are the column vectors. Thus, the ground truth (𝑘) and the
elevation gradient (̇𝑘) are obtained from 𝐦𝐚𝐩PRI as

𝑘 = 𝐦𝐚𝐩PRI
(

𝑋𝑘, 𝑌𝑘
)

(15)
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whereas, by applying the chain rule, we get

̇𝑘 =
𝜕𝑘
𝜕𝑋𝑘

𝑋̇ +
𝜕𝑘
𝜕𝑌𝑘

𝑌̇ = ∇𝑇
𝑘 ⊙ 𝐕ENU. (16)

The expression for ̇𝑘 thus indicates a dot product between the (trans-
pose of) spatial gradient of the reference height (∇𝑘) and the 3D
inertial velocity vector (𝐕ENU).

2.2.2. Lateral force model
The lateral tire force model is defined as

𝐹𝑦𝑘,𝑡 = − 𝜇effC𝛼
⏟⏟⏟

C𝛼,eff

𝛼𝑘 (17)

where C𝛼 is tire cornering stiffness, 𝜇eff(𝜏) ∈ R is a time-varying
parameter, and 𝛼𝑘 is lateral sideslip angle at the 𝑘th (𝑥𝑡𝑦𝑡𝑧𝑡)-frame.
Thus, we have

𝛼𝑘 = tan−1
(𝑣𝑘,𝑡
𝑢𝑘,𝑡

)

− 𝛿𝑘. (18)

For the car-like vehicles, 𝛿RR = 𝛿RL = 0, where 𝛿𝑘 is the Ackermann’s
steering angle applied to front wheels.

The tire velocities can be obtained from CG velocities by using

⎡

⎢

⎢

⎣

𝑢𝑘,𝑡
𝑣𝑘,𝑡
𝑤𝑘,𝑡

⎤

⎥

⎥

⎦

= 𝐑𝑦(𝜃)𝐑𝑥(𝜙)
⎡

⎢

⎢

⎣

𝑢𝑘,𝑏
𝑣𝑘,𝑏
𝑤𝑘,𝑏

⎤

⎥

⎥

⎦

(19)

with

⎡

⎢

⎢

⎣

𝑢𝑘,𝑏
𝑣𝑘,𝑏
𝑤𝑘,𝑏

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝑢
𝑣
𝑤

⎤

⎥

⎥

⎦

+
(

𝐑̇𝑥(0, 𝑝) + 𝐑̇𝑦(0, 𝑞) + 𝐑̇𝑧(0, 𝑟)
)

𝐩𝑘,𝑏 (20)

where 𝐑̇𝑥, 𝐑̇𝑦, and 𝐑̇𝑧 are the derivatives of the rotation matrices
(Badar, Backman, Tariq et al., 2022, Appendix A).

We assume that the initial estimate of C𝛼 is available from Badar,
Backman, Visala (2022). Thus, 𝜇eff translates to what percentage of the
tire’s initially estimated C𝛼(> 0) value is effectively employed during
cornering on uneven terrains. In turn, the product 𝜇effC𝛼 illustrates the
effective cornering stiffness (C𝛼,eff) experienced by all the tires at each
time instant. Following Ahsun, Badar, Tahir, and Aldosari (2015), van
Aalst et al. (2018) and Särkkä and Svensson (2023), a simple model
describing parameter dynamics is given as

𝜇̇eff = 0. (21)

2.2.3. Longitudinal force model
The tire’s longitudinal force model is given as

𝐹𝑥𝑘,𝑡 = 𝐹T𝑘,𝑡 − 𝐹R𝑘,𝑡 (22)

where 𝐹T𝑘,𝑡 is the traction force and 𝐹R𝑘,𝑡 is the rolling resistance
force (Åström & Murray, 2020). Here, we assume that the applied
traction and rolling resistance forces are in the tire-ground contact
patch frame (Heubaum, Münch, Costantini, Peschke, & Görges, 2022).
The traction force experienced in this frame is given as

𝐹T𝑘,𝑡 =
𝑎𝑐
𝑔
𝐹𝑧𝑘,𝑡 (23)

where 𝑎𝑐 is the forward acceleration command applied to the vehicle.
The expression of the rolling resistance force is defined as

𝐹R𝑘,𝑡 = C𝑟sgn(𝑢)𝐹𝑧𝑘,𝑡 (24)

where C𝑟 is the coefficient of rolling friction at the tire-ground contact
patch and

sgn(𝑢) =
⎧

⎪

⎨

⎪

⎩

−1, if 𝑢 < 0,
0, if 𝑢 = 0,
1, if 𝑢 > 0.

(25)

Fig. 3. Schematic displays the body forces 𝐹𝑥 and 𝐹𝑧 acting on the Polaris e-ATV while
traveling on a path with elevation 𝛾 > 0 and pitch angle 𝜃 < 0. The traction force (𝐹𝑇𝑘,𝑡 ),
rolling resistance force (𝐹𝑅𝑘,𝑡 ), and normal force (𝐹𝑧𝑘,𝑡 ) experienced by the FL tire are
also shown. The inertial (𝑋, 𝑌 ,𝑍)-frame is also shown where the 𝑌 -axis points into the
paper.

Åström and Murray (2020). In turn, the longitudinal force experienced
at the 𝑘th tire-ground contact patch becomes

𝐹𝑥𝑘,𝑡 =
(

𝑎𝑐
𝑔

− C𝑟sgn(𝑢)
)

𝐹𝑧𝑘,𝑡 . (26)

2.3. Transformation of tire forces to body forces

The tire forces expressed in the tire-ground contact patch frame are
transformed into the body frame by using

⎡

⎢

⎢

⎢

⎣

𝐹𝑥𝑘,𝑏
𝐹𝑦𝑘,𝑏
𝐹𝑧𝑘,𝑏

⎤

⎥

⎥

⎥

⎦

= 𝐑𝑥(−𝜙)𝐑𝑦(−𝜃)𝐑𝑧(𝛿𝑘)𝐑𝑦(−𝛾𝑘)
⎡

⎢

⎢

⎢

⎣

𝐹𝑥𝑘,𝑡
𝐹𝑦𝑘,𝑡
𝐹𝑧𝑘,𝑡

⎤

⎥

⎥

⎥

⎦

(27)

where the path elevation angle 𝛾𝑘 is computed as

𝛾𝑘 = tan−1
(

𝜕𝑘
𝜕𝑋

cos𝜓 +
𝜕𝑘
𝜕𝑌

sin𝜓
)

. (28)

for 𝑘th wheel. The partial derivative terms are obtained from Eq. (16),
which signify the directional gradient of ground height (∇𝑘) along
global 𝑋 and 𝑌 directions respectively. Using the cosine and sine of
heading angle 𝜓 , we align the directional gradients to the direction of
wheel travel in the inertial frame of reference. Eq. (27), in turn, depicts
that we first resolve the tire forces at the tire-ground contact patch for
𝛾𝑘 while considering a 3D path. It is followed by 𝐑𝑧(𝛿𝑘) to transform tire
forces to the motion-aligned forces (Dixon, 1996). Finally, these forces
are transformed into body forces via 𝐑𝑥(−𝜙)𝐑𝑦(−𝜃) rotations.

Fig. 3 further elaborates the effect of path elevation 𝛾𝑘 on the 𝑘th
tire forces. The forces experienced by the 𝑘th tire are resolved by the
path elevation angle 𝛾𝑘, whereas the body forces are resolved by 𝛾𝑘 + 𝜃
for each 𝑘th tire. In turn, it points out that the 𝛾𝑘 generally differs from
the pitch angle 𝜃 due to suspension. In other words, the instantaneous
𝛾𝑘 experienced by the front tires may not equal those experienced by
rear tires considering a 3D terrain.

For further analysis, we use an intermediate frame aligned with the
direction of wheel travel at the tire-ground contact patch frame. In turn,
the resolved tire forces are obtained as
⎡

⎢

⎢

⎢

⎣

𝐹𝑥𝑘,𝑡′
𝐹𝑦𝑘,𝑡′
𝐹𝑧𝑘,𝑡′

⎤

⎥

⎥

⎥

⎦

= 𝐑𝑧(𝛿𝑘)𝐑𝑦(−𝛾𝑘)
⎡

⎢

⎢

⎢

⎣

𝐹𝑥𝑘,𝑡
𝐹𝑦𝑘,𝑡
𝐹𝑧𝑘,𝑡

⎤

⎥

⎥

⎥

⎦

. (29)

Here, the first 𝐑𝑦(−𝛾𝑘) rotation aligns the 𝑧𝑡-axis of the tire-ground con-
tact patch frame to the 𝑍-axis of the global frame. The second 𝐑𝑧(𝛿𝑘)
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rotation resolves the tire-aligned forces to the wheel motion-aligned
forces. By expanding Eq. (29), we get

𝐹𝑥𝑘,𝑡′ = 𝐹𝑧𝑘,𝑡 cos 𝛿𝑘

(

𝑎𝑐
𝑔

cos 𝛾𝑘 − C𝑟sgn(𝑢) cos 𝛾𝑘 − sin 𝛾𝑘

)

− 𝐹𝑦𝑘,𝑡 sin 𝛿𝑘 (30)

where the first term is the tire traction force and the second component
is the tire drag against the direction of motion due to cumulative rolling
resistance force (Dixon, 1996, Chapter 2). Similarly, we have

𝐹𝑦𝑘,𝑡′ = 𝐹𝑦𝑘,𝑡 cos 𝛿𝑘 − 𝐹𝑧𝑘,𝑡 sin 𝛿𝑘

(

𝑎𝑐
𝑔

cos 𝛾𝑘 − C𝑟sgn(𝑢) cos 𝛾𝑘 − sin 𝛾𝑘

)

(31)

where the first term is the central force component perpendicular to
the direction of motion and the second term introduces a lateral force
component towards the center of rotation due to forward acceleration.
Moreover, we have

𝐹𝑧𝑘,𝑡′ = 𝐹𝑧𝑘,𝑡 cos 𝛾𝑘 + 𝐹𝑧𝑘,𝑡 sin 𝛾𝑘

(

𝑎𝑐
𝑔

− C𝑟sgn(𝑢)
)

(32)

such that the first term keeps the body above ground whereas the
second term is the added normal force component on 𝑘th tire in the
presence of forward acceleration.

Next, we present the models for forward acceleration and steering
(or curvature) inputs to the 6-DOF vehicle dynamics.

2.4. Modeling actuator dynamics

In Eq. (1), we need a model to describe the relationship between
forward acceleration command 𝑎𝑐 in Eq. (26) and the 6-DOF vehicle’s
forward velocity 𝑢. Similarly, a separate model must describe the
relation between the steering angle 𝛿𝑘 in the lateral force model and
the curvature input 𝐾𝑐 applied to the (6-DOF) vehicle model. It is
significant as previous studies (see, Antonov et al. (2011) and Shim
and Ghike (2007)) are limited to either commercial software or manual
driving of automobiles in their model validation experiments.

Fig. 3 further illustrates that given 𝛿𝑘 = 0 and 𝜙 = 0, we obtain the
following expression of total longitudinal force in the body axes:

𝐹𝑥 =
∑

𝑘
𝐹𝑧𝑘,𝑡

(

𝑎𝑐
𝑔

cos (𝛾𝑘 + 𝜃) − C𝑟sgn(𝑢) cos (𝛾𝑘 + 𝜃) − sin (𝛾𝑘 + 𝜃)

)

, (33)

by first computing 𝐹𝑥,𝑏 from Eq. (27) followed by utilizing 𝐹𝑥 =
∑

𝑘 𝐹𝑥,𝑏
from Eq. (8). During the steady climb of the vehicle, we assume 𝛾𝑘 ≈ −𝜃.
By using 𝛾𝑘 ≈ −𝜃 in Eq. (33) and substituting the resultant value of 𝐹𝑥
in Eq. (7), we extract the following expression:

𝑢̇ = 𝑎𝑐 − 𝑔C𝑟sgn(𝑢) + 𝑔 sin 𝜃. (34)

It is equivalent to the classical cruise control model discussed in Åström
and Murray (2020, Chapter 4) ignoring the aerodynamic drag consid-
ering the low-speed requirements of a forwarder. Hence, from Eq. (33),
we use the following model:

𝑎𝑐 = C1𝑢 + C2𝑢𝑐 + 𝑔C𝑟sgn(𝑢) (35)

where C1 and C2 are the time constants of the first order filter to
approximate 𝑎𝑐 → 𝑢 response.

Further, using a first-order ODE, we augment curvature dynamics
to the 6-DOF model to describe the relation between 𝛿𝑘 and 𝐾𝑐 . Hence,
we write

𝐾̇ = C3𝐾 + C4𝐾𝑐 (36)

with

𝐾𝑐 =
tan 𝛿𝑐
𝑙

; 𝐾 =
tan 𝛿𝑘
𝑙

(37)

such that coefficients C3 and C4 are the first-order filter coefficients.
In turn, the actuator models described by Eqs. (35) and (36) are aug-
mented to the 6-DOF vehicle dynamics to complete the continuous-time
state-space representation of the system.

2.5. Modeling system for state estimation

The EOMs defined so far may still have parametric uncertainties
and modeling inaccuracies. Furthermore, the sensor measurements are
noisy, delayed, and received at discrete time instants. In practice,
NMPC requires the current state to accurately predict the future states
in an open-loop manner (see, Backman, Oksanen, and Visala (2012)).
This requires fixed-lag smoothing to remove sensor and actuator delays
during state estimation (Bar-Shalom et al., 2001).

Therefore, Eqs. (1)–(2) are rewritten as a stochastic continuous-
discrete state-space model (see, e.g., Särkkä and Svensson (2023))
considering a fixed-lag of 𝑁 intervals and modeling uncertainties to get
the following augmented model (Moore & Tam, 1973):

𝐱̂(𝜏) =
⎡

⎢

⎢

⎣

̇̃𝐱(𝜏)
⋮

̇̃𝐱𝑁 (𝜏)

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

𝐟 (𝐱̃(𝜏),𝐮(𝜏), 𝐬(𝜏), 𝜏)
⋮
𝟎

⎤

⎥

⎥

⎦

+
⎡

⎢

⎢

⎣

𝛤 (𝜏)
⋮
𝟎

⎤

⎥

⎥

⎦

𝐰(𝜏) (38)

with

𝐱̃(𝜏) = (𝑋, 𝑌 ,𝑍, 𝜙, 𝜃, 𝜓, 𝑢, 𝑣,𝑤, 𝑝, 𝑞, 𝑟, 𝐾, 𝜇eff) (39)

defined as the joint state vector at continuous time 𝜏, 𝐱̂(𝜏) is the
augmented state vector, 𝛤 (𝜏) is the dispersion matrix, and 𝐰(𝜏) is the
Brownian motion with diffusion matrix 𝐐𝑐 (𝜏). Thus, the shifted state
vector is given as

⎡

⎢

⎢

⎢

⎢

⎣

𝐱̃(𝜏𝜅+1)
𝐱̃1(𝜏𝜅+1)

⋮
𝐱̃𝑁 (𝜏𝜅+1)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎣

𝐈 𝟎 ⋯ ⋯ 𝟎
𝐈 ⋮
⋮ ⋱ ⋮
𝟎 𝐈 𝟎

⎤

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎣

𝐱̃(𝜏𝜅+1 − 𝜖)
𝐱̃1(𝜏𝜅+1 − 𝜖)

⋮
𝐱̃𝑁 (𝜏𝜅+1 − 𝜖)

⎤

⎥

⎥

⎥

⎥

⎦

(40)

considering discrete measurements at 𝜏𝜅+1 for arbitrarily small 𝜖 > 0.
In turn, the augmented measurement model is given as

𝐲𝜅 =

⎡

⎢

⎢

⎢

⎣

𝐠1
(

𝐱̃𝑁1
(𝜏𝜅 ), 𝐬(𝜏𝜅 ), 𝜏𝜅

)

⋮

𝐠𝑖
(

𝐱̃𝑁𝑖 (𝜏𝜅 ), 𝐬(𝜏𝜅 ), 𝜏𝜅
)

⎤

⎥

⎥

⎥

⎦

+Λ(𝜏𝜅 )𝐫(𝜏𝜅 ) (41)

such that 𝐠𝑖 determines (set of) the measurement equations correspond-
ing to 𝑖th measurements, where 𝑁𝑖 is the delay of the 𝑖th measurements
at discrete time instant 𝜏𝜅 , and

𝐱̃𝑁𝑖 (𝜏𝜅 ) =
[

𝟎 … 𝐈 … 𝟎
]

𝐱̂(𝜏𝜅 ) (42)

where 𝑁𝑖 specifies the number of zeros before the identity matrix
in Eq. (42), 𝐫𝜅 ∼  (𝟎,𝐑𝜅 ) is the Gaussian measurement noise, and
Λ(𝜏𝜅 ) is the noise gain matrix.

3. Research platforms, terrains and methods

The 6-DOF model and state estimation algorithm are experimentally
validated using Polaris e-ATV. This section presents important details
about Polaris and the reference 3D path models. Two 3D terrain models
are utilized: (1) a sparse open-source 3D map, which is used for real-
time state estimation algorithm, and (2) a dense UAV-based map for
validation of the height estimation. We selected the continuous-discrete
extended Kalman filter (CDEKF) for state estimation. We used the
continuous-discrete unscented Kalman filter (CDUKF) to evaluate the
performance of CDEKF.

3.1. Research platform

Fig. 4 shows the Polaris Ranger. It is 143.5 cm wide, 274.3 cm
long, and 185.4 cm high above the ground. The front suspensions are
MacPherson struts, while the dual A-arm suspension system is installed
at the rear axle. Each of Carlisle’s bias-ply tires has a rating of 25 × 9–
12 with a rated tire pressure of 137.9 kPa. The (unconventional) tire
sidewall’s rating means that the maximum tire’s (sidewall-to-sidewall)
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Fig. 4. Polaris e-ATV used in this study is shown.

Fig. 5. Test tracks utilized in model validation experiments are highlighted by red
markers.
Source: Google Earth.

width is around 25 cm, and the wheel diameter is 12 inches (a wheel
radius of about 15 cm) (Badar, Backman, Visala, 2022, Table 1).

The details of the important sensors and electronic control units
(ECUs) installed in Polaris are presented in Badar et al. (2024). To
summarize, two EPEC 5050 ECUs are used for (low-level) power steer-
ing and automatic speed control. The main computer with the Robot
Operating System (ROS) receives data from each sensor and the ECUs.
The main positioning sensor is the synchronous position, attitude,
and navigation (SPAN) unit that combines real-time kinematic (RTK)
corrections with Pinwheel’s GNSS antenna and (internal) IMU data for
centimetre-level positioning. The SPAN unit receives RTK corrections
through a 4G data link. Four Hall-effect rotary sensors are also installed
at each shaft to measure the wheels’ height.

3.2. Test setup

The concrete and asphalt test tracks at Vakola, Vihti (Finland), and
a gravel track in a nearby forest were selected to test state estimation.
Fig. 5 depicts a satellite view of the Vakola test facility in the lower
right corner, and the gravel track in the forest highlighted by a red
path. The test facility at Vakola has two circular test tracks made of
concrete with different elevation profiles. The concrete tracks have
high elevation variations. The asphalt track encircles these concrete
tracks. The asphalt track has almost a planar profile. The forest was
sparse because thinning-cutting harvesting was carried out recently.
Therefore, the (2D) spatial position data from the SPAN unit could be
utilized in all three test scenarios as (𝑋, 𝑌 )-positions were obtained with
sufficient accuracy.

The research objectives for each test track are the following:

1. The asphalt track compares state estimation using 3D map in-
formation versus when RTK-GNSS (the exteroceptive sensor) is
only used for 3D positioning.

Fig. 6. The concrete tracks are semi-elliptical paths in the middle. The asphalt tracks
surround these.

Fig. 7. The interpolated 3D point cloud data corresponding to the ground labels are
used to generate 𝐦𝐚𝐩PRI for the forest test scenario.

2. The concrete tracks are used to test the vehicle modeling and
state estimation when the terrain variation is high. By utilizing a
dense 3D elevation map of these tracks obtained by a UAV-based
system (see, Badar et al. (2023)), the online height estimation us-
ing the augmented vehicle model and sparse 3D map information
is validated.

3. The forest track is used to validate state estimation using the
3D map in the presence of discontinuities in the RTK-GNSS
position data. The track validates the model utilizing the 3D path
information through (open-loop) state predictions over a fixed
period.

3.3. A priori sparse open-source reference map

To obtain 𝐦𝐚𝐩PRI of the regions of interest (ROIs), we use open-
source 3D point cloud data provided by the National Land Survey (NLS)
of Finland Maps and spatial data (2024). The 3D position data of the
ROIs, as shown in Fig. 5, is in map sheet number L4124G3 of the
NLS database. On average, the data has a resolution of 1.77 points/m2

with an elevation precision of 0.15 m. The area was scanned using an
airborne LiDAR system from an altitude of 2044 m in 2015. Only, the
data points classified as ground labels are used to create 𝐦𝐚𝐩PRI.

Fig. 6 shows the interpolated ground points of Vakola test tracks.
This dataset contains around 3000 3D location points covering a
70 × 70 m2 grid. Fig. 7 shows the 3D data of the gravel road in the
forest area. It consists of about 100,000 ground data points covering
an area of 500 × 500 m2.

The interpolation function 𝐉(⋅) described in Eq. (14) can either be
implemented by using the scatteredInterpolant function in MATLAB® or
utilizing a multilevel B-spline interpolation method, such as proposed
in Lee, Wolberg, and Shin (1997), for C++ implementation in ROS.
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Fig. 8. The DJI M100 drone with a machine vision camera was used to create the
dense 3D map of the Vakola test tracks.

The numerical derivation of spatial gradients in Eq. (16) is obtained
using the central difference method such that we define

𝜕𝑘
𝜕𝑋

=
𝐦𝐚𝐩PRI

(

𝑋𝑘 + D𝑥, 𝑌𝑘
)

−𝐦𝐚𝐩PRI
(

𝑋𝑘 − D𝑥, 𝑌𝑘
)

2(D𝑥) (43)

with
𝜕𝑘
𝜕𝑌

=
𝐦𝐚𝐩PRI

(

𝑋𝑘, 𝑌𝑘 + D𝑦
)

−𝐦𝐚𝐩PRI
(

𝑋𝑘, 𝑌𝑘 − D𝑦
)

2(D𝑦) (44)

where D𝑥 and D𝑦 are the user-dependent quantities. These must be
small enough to detect bumps or pits in terrain.

3.4. Dense reference map measured with UAV system

To produce the dense reference 3D model of the Vakola test tracks,
a UAV equipped with a camera was used to capture overlapping
images as shown in Fig. 8 (see, Badar et al. (2024) and the references
within for details). These camera images are tagged with GNSS position
from the onboard positioning unit. The GNSS positions are used as
the initial pose of the camera by a structure from motion (SfM) and
multi-view stereo matching (MVS) process which further refines the
camera poses using the common features detected in different images
(see Iglhaut et al. (2019) for a general presentation of the SfM-MVS
photogrammetry process).

First, a sparse point cloud is built during the camera pose estima-
tion, and then a denser point cloud is built. From the dense point cloud,
a depth map is built which can be used to generate a digital elevation
model of the terrain. The MetaShape software (Agisoft LLC, 2019) is
used to produce the reference 3D model as shown in Fig. 8(b).

3.5. State estimation methods

A recursive Bayesian inference framework is used to compute the fil-
tering distribution 𝑝(𝐱̂(𝜏𝜅 )|𝐲1∶𝜅 ) in an optimal manner (Särkkä & Svens-
son, 2023). The recursive computations are classically done in a stan-
dard predict and update fashion (Bar-Shalom et al., 2001). We utilize

Taylor’s series approximation and unscented transformation in the
numerical implementation of the state estimators (Särkkä & Svensson,
2023).

3.5.1. Continuous-discrete extended Kalman filter
From an initial estimate 𝐱̂(𝜏0) ∼ N(𝐦0,𝐏0) where 𝐦0 is the initial

mean and 𝐏0 is the initial covariance, the CDEKF approximates the
filtering distribution using Taylor’s series expansions of the nonlinear
functions 𝐟 and 𝐠 with respect to prior and predicted state estimates
(means) respectively (see, e.g., Särkkä and Solin (2019, Algorithm
10.24)).

In the prediction step, the CDEKF propagates the mean and covari-
ance at 𝜏𝜅−1 to 𝜏𝜅 by integrating the following ODEs:

𝐦̇(𝜏) = 𝐟 (𝐦(𝜏),𝐮(𝜏), 𝐬(𝜏), 𝜏) (45)
𝑣𝐏̇(𝜏) = 𝐏(𝜏)𝐅T

𝐱̂(𝜏)(𝐦(𝜏), 𝜏) + 𝐅𝐱̂(𝜏)(𝐦(𝜏), 𝜏)𝐏(𝜏)

+ 𝐋(𝜏)𝐐𝑐 (𝜏)𝐋T(𝜏) (46)

where 𝐅𝐱̂ is the Jacobian of 𝐟 , and 𝐋(𝜏) = (𝛤 (𝜏),… , 𝟎) is the augmented
noise gain matrix in Eq. (38). For the detailed equations of update step
equations in CDEKF, we refer the reader to Särkkä and Svensson (2023,
Equation (10.79)).

3.5.2. Continuous-discrete unscented Kalman filter
The CDUKF has the same filtering mechanism as CDEKF. How-

ever, it uses the unscented transformations to approximate the mean
and covariance as weighted combinations of sigma points. This accu-
rately produces estimates (of mean and covariance of Gaussian random
variable) to the third-order Taylor’s series expansion (Wan & Van
Der Merwe, 2000).

In the state prediction step, CDUKF uses the following ODEs for the
mean and covariance:

𝐦̇(𝜏) = 𝐟
(

𝐗̂(𝜏),𝐮(𝜏), 𝐬(𝜏), 𝜏
)

𝐰𝐦 (47)

𝐏̇(𝜏) = 𝐟
(

𝐗̂(𝜏),𝐮(𝜏), 𝐬(𝜏), 𝜏
)

𝐖𝐗̂T(𝜏)

+ 𝐗̂(𝜏)𝐖𝐟T
(

𝐗̂(𝜏),𝐮(𝜏), 𝐬(𝜏), 𝜏
)

+ 𝐋(𝜏)𝐐𝑐 (𝜏)𝐋T(𝜏) (48)

with the sigma point matrix given as

𝐗̂(𝜏) =
[

𝐦(𝜏) ⋯ 𝐦(𝜏)
]

+
√

𝑛 + 𝜆
[

𝟎
√

𝐏(𝜏) −
√

𝐏(𝜏)
]

(49)

where 𝑛 is the dimension of 𝐱̂(𝜏), 𝜆 is a scaling parameter, and vector 𝐰𝐦
and matrix 𝐖 defines weights (see, e.g., Särkkä (2007, Algorithm 3.1)).
For the detailed set of equations at the update step in CDUKF, we refer
to Särkkä (2007, Algorithm 4.6). The scaling parameter 𝜆 = 𝜂2(𝑛+𝛽)−𝑛,
where 𝜂 and 𝛽 are the positive parameters determining the spread of
sigma points (Särkkä, 2007).

3.5.3. ODE solver for state predictions
The CDEKF is implemented using the fourth-order (explicit) Runge–

Kutta (RK4) method (Frogerais, Bellanger, & Senhadji, 2012; LaViola,
2003). The same numerical method is used for implementing CDUKF
using (LaViola, 2003). The implementation of CDEKF using RK4 is
important due to the following practical reasons:

1. Each sensor provides data to the ROS computer at 𝑓𝑠 = 20
Hz. The low-level control loops operate at the same system
frequency. Thus, we need state estimation at step size ℎ = 𝜏𝜅 −
𝜏𝜅−1 = 50 ms.

2. Given 𝐱̃(𝜏) ∈ R14, the dimension of 𝐱̂(𝜏) is (𝑁 + 1)×14. The
maximum observed lag in sensor data was about 200 ms. At
𝑓𝑠 = 20 Hz, we have 𝑁 = 4. A higher 𝑓𝑠 would result in increased
computational load.
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Table 1
Filter settings when 3D map is used.

States 𝐐-values Measurements 𝐑-values

(𝜙, 𝜃, 𝜓) ≈10−20 (𝜙m , 𝜃m , 𝜓m) ≈10−12

(𝑋, 𝑌 ) ≈10−12 (𝑋m , 𝑌m) ≈10−12

𝑍 ≈10−16 𝛥𝑘m
≈10−10

(𝑢, 𝑣,𝑤) ≈10−12 (𝐕ENU , 𝑢m) ≈10−10

𝐾 ≈10−12 𝐾m ≈10−12

(𝑝, 𝑞, 𝑟) ≈10−20 – −

Table 2
Filter settings when RTK-GNSS height is used.

States 𝐐-values Measurements 𝐑-values

(𝜙, 𝜃, 𝜓) ≈10−16 (𝜙m , 𝜃m , 𝜓m) ≈10−16

(𝑋, 𝑌 ) ≈10−12 (𝑋m , 𝑌m) ≈10−12

𝑍 ≈10−12 𝑍m ≈10−12

(𝑢, 𝑣,𝑤) ≈10−12 (𝐕ENU , 𝑢m) ≈10−12

𝐾 ≈10−12 𝐾m ≈10−12

(𝑝, 𝑞, 𝑟) ≈10−20 – −

3. The explicit Euler’s method requires a small ℎ to maintain its
numerical stability. The local truncation error (LTE) of the ex-
plicit Euler’s method is (ℎ2) (Ljung & Glad, 1994). A low step
size is needed for state estimation as high system frequencies
are expected due to high variations in wheel displacements in
terrain. This naturally requires an advanced numerical approxi-
mation method. We selected RK4 as it has the LTE of (ℎ5) based
on Frogerais et al. (2012).

3.5.4. Configurations of the state estimators
We study two different configurations of the filters. The important

details of these two filter configurations are given as follows:

1. In the case of 3D map, the measurement (vector) has the follow-
ing form:

𝐲𝜅 = (𝑋m, 𝑌m, 𝜙m, 𝜃m, 𝜓m, 𝑉E, 𝑉N, 𝑉U, 𝐾m, 𝑢m, 𝛥𝑘m ) (50)

where the inertial 2D position in inertial frame (𝑋m, 𝑌m), roll
angle 𝜙m, pitch angle 𝜃m, yaw (heading) angle 𝜓m, east velocity
𝑉E, north velocity 𝑉N, and up velocity 𝑉U are provided by the
SPAN unit at 20 Hz. Moreover, curvature 𝐾m, wheel speed 𝑢m,
and spring deflection 𝛥𝑘m measurements are sent by (respective)
ECUs to the main (ROS) computer at 20 Hz. For this case, the
covariances 𝐐 and 𝐑 are shown in Table 1.

2. In the case of RTK-GNSS height, the measurement vector has the
following form:

𝐲𝜅 = (𝑋m, 𝑌m, 𝑍m, 𝜙m, 𝜃m, 𝜓m, 𝑉E, 𝑉N, 𝑉U, 𝐾m, 𝑢m) (51)

where 𝑍m is the measured RTK-GNSS antenna height. We obtain
the height of each wheel (𝑍𝑘) from antenna height using (Badar
et al., 2023, Equation 1). For this case, the covariances 𝐐 and 𝐑
are shown in Table 2.

The measurements acquired are related to the vehicle states according
to the following relations:

𝑋𝑚 = 𝑋; 𝑌𝑚 = 𝑌 ; 𝑍𝑚 = 𝑍;

𝑉E = 𝑋̇; 𝑉N = 𝑌̇ ; 𝑉U = 𝑍̇;

𝜙𝑚 = 𝜙; 𝜃𝑚 = 𝜃; 𝜓𝑚 = 𝜓 ;

𝐾𝑚 = 𝐾; 𝑢𝑚 = 𝑢; 𝛥𝑘𝑚 = 𝑍𝑘 −𝑘,

(52)

where the 𝛥𝑘𝑚 measurements in Table 1 are used to correct the height
of CG when 3D map information is used.

Table 3
Vehicle body parameters.

Parameters Values Units

total mass (𝑚) 1080 kg
wheelbase (𝑙) 1.83 m
track-width (𝑡) 1.160 m
antenna height above ground 1.9985 m
longitudinal antenna-to-VC offset (𝑥off) −0.4476 m
lateral antenna-to-VC offset (𝑦off) 0.2800 m
vertical antenna-to-VC offset (ℎ, ℎoff) 0.8767 m
tire radius (ℎ𝑇 ) 0.3175 m
tire width (𝑤𝑇 ) 0.2286 m
wheel radius 0.15 m
body inertia about 𝑥-axis (𝐼𝑥𝑥) 494.6 kg m2

body inertia about 𝑦-axis (𝐼𝑦𝑦) 983.7 kg m2

body inertia about 𝑧-axis (𝐼𝑧𝑧) 862.30 kg m2

4. Results

Prior studies (see, Särkkä and Svensson (2023) and the references
within) suggest the risk of divergence of the nonlinear Kalman filters
if used for (joint) state and parameter estimation. For the test vehicle,
i.e., Polaris, we therefore use system calibration to determine vector
𝛩. After system calibration, the C𝛼,eff and vehicle states in all three test
scenarios are estimated. The model validation using state predictions is
presented for the forest track case. It is important to show the accuracy
of the predictions with the dynamic model for the NMPC.

4.1. System calibration

This section is subdivided into three parts to show the calibration
of the vehicle body, force models, and actuator models.

4.1.1. Estimation of vehicle body parameters
Polaris-specific parameters are shown in Table 3. The optimal es-

timates of these parameters were obtained in Badar et al. (2023).
After these parameters are estimated, we get the inertial positions 𝐏𝑘
from the (reported) GNSS antenna’s position using (Badar et al., 2023,
Equation 1). The 𝑋𝑘 and 𝑌𝑘 coordinates in 𝐏𝑘 are then used in Eqs. (43)
and (44), respectively, for numerical computation of spatial gradients,
where we select D𝑥 = 0.15 (wheel radius), and D𝑦 = 0.25 (tire width)
for the case study.

The 𝑥𝑧-plane is usually assumed to be the plane of symmetry for the
aerial vehicles (Ahsun et al., 2015). We extend the same assumptions
to the ground vehicles. Then, the off-diagonal terms in 𝐈𝐵 can be
eliminated if the direction of body axes coincides with the principle
axes (direction of motion) of the vehicle, as discussed in Shim and
Ghike (2007). With these assumptions, 𝐈𝐵 becomes a diagonal matrix.
This is true for Polaris for which we have approximated that mass is
equally distributed to each of the four sides including two passengers.
The total mass (𝑚) in Table 3 indeed shows the vehicle’s mass with two
passengers. The diagonal inertia matrix terms are therefore computed
using the total length, width, and height of Polaris (mentioned in
Section 3.1) assuming a rectangular box.

4.1.2. Estimation of force model parameters
Fig. 9 shows the data collected from the loading/unloading experi-

ment carried out on (FR and RL sides) of Polaris. The data suggests a
linear relationship between the vertical displacement 𝛥𝑘 and the normal
force 𝐹𝑧𝑘 for the 𝑘th corner of the vehicle. Fig. 9 further describes
this relationship, where the blue curve is obtained using least squares.
Hence, the slope of this curve is the value of the spring stiffness
coefficient (𝐵𝑘). These values are reported in Table 4 for each side.
The 𝐶𝑘 values were computed from 𝐶𝑘 = 2𝜁

√

𝑚𝑘𝐾𝑘 using 𝜁 = 1 value,
where 𝜁 is the damping ratio associated with the mass–spring-damper
system’s second-order ODE and 𝑚𝑘 is the mass of 𝑘th side of the vehicle.
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Fig. 9. The experimental data illustrating the estimation of the spring stiffness
coefficient for the front right (FR) and rear left (RL) sides.

Table 4
Suspension system parameters.

Suspension 𝐵𝑘 values 𝐶𝑘 values

Front Right (FR) 13.099 kN/m 3.762 kN/(m/s)
Front Left (FL) 15.791 kN/m 4.129 kN/(m/s)
Rear Right (RR) 16.467 kN/m 4.217 kN/(m/s)
Rear Left (RL) 17.327 kN/m 4.325 kN/(m/s)

An experiment with Polaris was carried out to estimate the rolling
resistance coefficient (C𝑟) on an uneven (dry asphalt) road. The vehicle
was driving at a constant forward velocity, about 𝑢𝑐 = 2.5 m∕s. Then, we
set the speed command 𝑢𝑐 = 0. This accounts for a velocity change of D𝑢
(of 2.5 m∕s). The rolling resistance force will eventually stop the vehicle
in time D𝜏. Inserting 𝐹𝑇𝑘,𝑡 = 0 in Eq. (22) implies 𝑎𝑐 = 0 in Eq. (26).
Therefore, with 𝑎𝑐 = 0 and 𝐹𝑧𝑘,𝑡 = 𝑚𝑘𝑔 in Eq. (26), we get

𝑚𝑘
D𝑢
D𝜏 = −C𝑟𝑚𝑘𝑔. (53)

From this, the magnitude of the rolling resistance coefficient is obtained
as:

|C𝑟| =
1
𝑔

D𝑢
D𝜏 . (54)

This resulted in C𝑟 = 0.0397 from experimental data.
Using Hewson’s model (Hewson, 2005), we find an initial estimate

of cornering stiffness C𝛼 = 10.419 kN/rad for the tires installed in
Polaris. We restrict |𝛼𝑘| ≤ 10◦ considering Polaris’s turn radius (𝑟𝑡)
does not exceed 10 m. It shows that in the primary handling regime,
the Ackermann’s steering angle is given by tan−1(𝑙∕𝑟𝑡) is −10◦ ≤ 𝛿𝑐 ≤
10◦ (Dixon, 1988).

4.1.3. Identifying actuator models
The measured forward velocity of Polaris over the full range of

throttle was first obtained from the ECU in an open-loop manner. It
is shown in the upper part of Fig. 10. A feed-forward proportional–
integral–derivative (FF-PID) was implemented for the (low-level) ve-
locity controller. The resulting closed-loop 𝑢𝑐 → 𝑢𝑚 response is shown
in the lower part of Fig. 10, where 𝑢m are the speed measurements from
wheel encoders sent by the ECU to ROS computer over CAN-bus.

Using another set of (closed-loop) 𝑢𝑐 → 𝑢𝑚 data over a velocity
range of 0 to 2 m/s, the following transfer function was identified using
MATLAB’s tfest command:
𝑢𝑚(𝑠)
𝑢𝑐 (𝑠)

= 𝑒(−0.2𝑠) 1.017
𝑠 + 1.011

. (55)

By comparing the coefficient with those mentioned in Eq. (35), we get
C1 = −1.011 and C2 = 1.017. For another dataset, the 𝑎𝑐 commands
were obtained from Eq. (35) using the estimated parameter values via
emulation. The computed 𝑎𝑐 values were applied to the 6-DOF dynamic

Fig. 10. The measured forward velocity (𝑢m) vs. throttle curve is identified first. The
graph is used to tune the low-level velocity FF-PID controller gains.

Fig. 11. The forward acceleration model identification results are shown.

Fig. 12. Curvature model identification results are shown.

model simulator. Fig. 11 shows 𝑎𝑐 → 𝑢 model identification results such
that 𝑢 is the vehicle dynamic model simulator’s output. However, we
did not utilize the 3D path information (ground elevation, etc.) or the
recorded vehicle attitude information to acquire these results.

Similarly, a set of closed-loop steering (input–output) data was used
to identify the coefficients of first-order steering dynamics with delay,
given as
𝛿𝑚(𝑠)
𝛿𝑐 (𝑠)

= 𝑒(−0.2 s) 2.165
𝑠 + 2.128

(56)

which depicts that the (transport) delay in the steering control is about
200 ms. Thus, by comparing the coefficients of Eqs. (56) to (36), we
get C3 = −2.128 and C4 = 2.165. Further using Eq. (37), the results
of the curvature model identification using a separate set of steering
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input–output data are depicted in Fig. 12. From the transfer function
identified in Eqs. (55) and (56), we obtain the actuation delay of
200 ms. It corresponds to 𝑁 = 4 for fixed-lag smoothing.

4.2. Online state estimation

Figs. 13, 14, and 15 summarize the state estimation results. The
estimated spatial positions in Figs. 13(a), 14(a), and 15(a) are shown in
the local ENU frame, however, the height data is shown in the above
mean-sea-level (MSL). For brevity, only data concerning the position
and height measurements from SPAN (red), the estimated position and
height of the vehicle’s CG (blue), and the FR wheel (dotted black) in the
inertial frame of reference are shown. The FR wheel height is obtained
from Eq. (5). For the forest track case, the estimated RL wheel height
and inertial positions are also shown. The SPAN’s height corresponds
to that of the GNSS antenna height installed in Polaris e-ATV.

The flatness of the asphalt track can be noticed in Fig. 13(a),
whereas high variations in the height profile of the concrete track
can be seen in Fig. 14(a). Fig. 15(a) further illustrates that the height
profile of the path significantly changes inside the forest, and shows
the instances where height measurements had (jump) discontinuities.

Figs. 13(b), 14(b), and 15(b) show the estimation of roll (𝜙), pitch
angle (𝜃), and yaw angle (𝜓) along with body rates (𝑝, 𝑞, and 𝑟). The
estimated quantities are shown in blue whereas the measured quantities
are in red.

Figs. 13(c), 14(c), and 15(c) describe the forward velocity dynamics
for each experiment. The acceleration command 𝑎𝑐 (shown in green)
in each case is computed from Eq. (35) using the coefficients found in
Section 4.1.3. The speed command 𝑢𝑐 (black) in each experiment was
applied via the main computer and sent to the ECU. The ECU sends the
measured speed from the wheel encoders 𝑢𝑚 (shown in red) to the main
computer. CDEKF computes the estimated velocity 𝑢 (shown in blue).

Figs. 13(d), 14(d), and 15(d) illustrate the estimation of the lateral
force model parameters. The commanded (𝛿FR𝑐 ) and estimated (𝛿FR)
steering angles for the front-right (FR) wheel are also shown in red
and blue respectively. The predicted sideslip angle (𝛼FR) computed
from Eq. (18) are also shown. To get 𝛼FR, we used the estimated
quantities in Eq. (18).

Fig. 16 shows the CDEKF results when RTK-GNSS height, i.e., when
the measurement vector given by Eq. (51) and filter configuration
mentioned in Table 2 are used. In this filter configuration, CDEKF
produces smoother body rates (𝑝, 𝑞, 𝑟) as the height profile of the path is
neglected in this case. The body rates reported by SPAN remain noisier
in comparison to the estimated rates (in blue) in each test. Fig. 16(b)
also shows the lateral acceleration computed as 𝑎𝑠 = 𝑢𝑟.

CDEKF with RTK-GNSS height measurements for the forest track
case, however, did not result in stable estimation. It is mainly due to
discontinuities in height measurements illustrated in Fig. 15(a).

4.3. Model validation

The augmented system model described by Eq. (1) was simulated for
fixed speed and curvature commands. This simulated a scenario where
states were propagated in time using the augmented 6-DOF dynamic
model without filtering. This was carried out for the period during
which the 𝑢𝑚 followed 𝑢𝑐 closely. Thus, starting from the state estimates
at 𝜏 = 80 s, the system model was numerically computed using RK4
using 𝑢𝑐 = 1.5 m/s for time 80 ≤ 𝜏 < 90 s. The corresponding results
are shown in Fig. 17.

In Fig. 18, the state prediction results are shown for time 200
≤ 𝜏 < 210 s. During this period, 𝑢𝑐 = 0.5 m/s was set for Polaris.
The predictions were computed for this time to validate the 6-DOF
model utilizing 3D path information when the RTK-GNSS position
measurements had jump discontinuities.

The CDUKF algorithm is a suitable alternative to CDEKF for model
validation as it does not involve linearizations and Jacobian compu-
tations (Särkkä, 2007; Särkkä & Solin, 2019). Moreover, CDUKF is a

Fig. 13. Asphalt track: State estimation results using 3D map. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 14. Concrete track: State estimation results using 3D map. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. 15. Forest track: State estimation results using the 3D map. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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Fig. 16. Asphalt track: CDEKF results obtained using RTK-GNSS 3D positioning.

preferable choice in the initial model validation phase as it is less
affected by historical evidence and relies more on current observa-
tions (Yang, Shi, & Chen, 2017). Fig. 19 summarizes the important
results for the forest track case when CDUKF is employed with 𝜂 = 0.05
and 𝛽 = 0.

5. Discussion

The important points to discuss are mentioned as follows:

1. Fig. 20 shows a zoomed-in perspective of the estimated angles
and rates shown in Fig. 14(b) for the concrete track case. The
CDEKF produces (𝜙, 𝜃, 𝜓) estimates removing the lag. The head-
ing (𝜓) angle measured from SPAN has more delays than the roll
and pitch measurements. The estimated quantities are in blue
whereas the measured are in (dashed) red.

2. Fig. 21 shows the auto-correlation of measurement residuals cor-
responding to the (online) CDEKF and (offline) CDUKF position
and velocity estimates for the forest track case. The magnitudes
at non-zero lags in the auto-correlation graphs for both cases
are substantially lower thus validating the CDEKF performance.
Fig. 19 shows that CDEKF performance is comparable to CDUKF.

3. Fig. 22 shows the variations in the measured normal forces of
the front wheels (left graph) and the right side of the vehicle
(right graph). Each load value is obtained such that the change
𝛥𝐹𝑧𝑘,m = −𝐵𝑘(𝛥𝑧𝑘,m − 𝛥𝑧𝑘,m,0 ) is computed using 𝐵𝑘 from Table 4,
whereas 𝛥𝑧𝑘,m is measured spring deflection and 𝛥𝑧𝑘,m,0 is initial
deflection at the start of test. Thus, the large fluctuations in
estimated 𝜙 and 𝜃 on the forest track are due to high tire load
variations. Such high load variations are the main cause of filter
instability if a standard (discrete-discrete) EKF is used given
ℎ = 50 ms.

Fig. 17. Forest track: Open-loop state prediction results (shown in blue and black) are
compared when SPAN measurements (shown in red) are accurate. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

4. For validation of height estimation, we use the reference 3D
map described in Section 3.4. First, we import each wheel’s 2D
paths into the MetaShape software. For each of the estimated
2D paths, the MetaShape exports the ground truth, i.e., the
reference height of the path. Fig. 23 shows the comparison
of height estimation (𝑍𝑘,EKF) with the ground truth (𝑍𝑘,UAV)
obtained for the front wheels using UAV-based 3D mapping. The
root-mean-squared errors between estimated and ground truth
corresponding to the RL, FR, FL, and RR wheels are 4.4961 cm,
4.4377 cm, 4.6936 cm, and 4.3256 cm, respectively.

5. Fig. 17(a) shows that the SPAN positioning was fairly precise
from 80 to 90 s. However, from 200 to 210 s, the (3D) position
data provided by SPAN had several jumps as shown in Fig. 18(a).
The jump in the spatial distance at around 204 s was about
0.45 m. The discontinuity in height data was about 2.5 m, which
is the main cause of instability when the filter configuration
mentioned in Table 2 is used. Fig. 18, thus, shows that the open-
loop state predictions would not be affected by the jumps in the
RTK-GNSS height data.

6. On the concrete tracks, the oscillations in 𝑢 and 𝑎𝑐 at around 55 s
were due to low speed command 𝑢𝑐 = 0.5 m∕s. It was insufficient
to accelerate Polaris forward on that part of the track. Fig. 15(c)
depicts another case when Polaris experienced a loss of speed
control inside the forest. However, these are problems specific
to Polaris (low-level) velocity control. Moreover, tuning the FF-
PID, provided the (open-loop) throttle response in Fig. 10, is
not straightforward. Figs. 13(c), 14(c), and 15(c) show that state
estimation was carried out despite such shortcomings specific to
the test vehicle.
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Fig. 18. Forest track: Open-loop state prediction results are compared when RTK-GNSS
position data contained jump discontinuities.

A higher-order velocity control model may be used in Eq. (35).
Here, a higher number of states to represent 𝑎𝑐 → 𝑢 model
was avoided for computational reasons. Nevertheless, it does not
affect the modeling aspects of this study. A contribution rather
is to show that the vehicle cruise model discussed in Åström and
Murray (2020) is embedded within the mathematical framework
of the 6-DOF vehicle model when a 3D path is considered for
describing tire forces.

7. The results in the current literature e.g., Han et al. (2018, Sec-
tion II), Berntorp and Di Cairano (2019, Section VII), and Bern-
torp et al. (2021, Section V) show that C𝛼,eff converges only when
the vehicle is driven at a constant velocity assuming single-track
model and level terrain (homogeneous road) conditions.
Fig. 13(d) shows C𝛼,eff convergence on the circular asphalt track
when Polaris is driven at 𝑢𝑐 = 0.75 m∕s between 100 to 200 s.
On the concrete track, C𝛼,eff continuously adapts to the changing
terrain and vehicle speeds as shown in Fig. 14(d). In the forest,
Fig. 15(d) also indicates a steady C𝛼,eff = 0.9 kN/rad at 𝑢𝑐 = 1.5
m/s during 60 ≤ 𝜏 ≤ 100 s and a mean value of 1.2 kN/rad
during 200 ≤ 𝜏 ≤ 275 s.
For the forest track experiment, Fig. 19(b) shows that C𝛼,eff = 1.5
kN/rad for 200 ≤ 𝜏 ≤ 275 s. Both, the velocity and the terrain
change during 200 ≤ 𝜏 ≤ 275 s, the C𝛼,eff however remains
steady due to low steering angle (−4◦ ≤ 𝛿𝑐 ≤ 2◦) applied during
this period.
On the circular asphalt and concrete test tracks, instantaneous
height variations resulted in large sideslip angles (over ±10◦) as
the instantaneous 𝛿FR𝑒 were about 11◦ and 13.5◦ respectively.
This is shown, respectively, in Figs. 13(d) and 14(d). Fig. 15(d)

Fig. 19. Forest track: Main results when CDUKF is used.

also shows large 𝛼FR values in the forest at the start of the test
when high 𝛿FR𝑐 was sent while the Polaris lost speed control.
These instances depict a nonlinear tire behavior. With further
analysis using Fig. 16(b), we noticed that CDEKF also depends on
the forward velocity (𝑢), and yaw rate (𝑟) to adapt lateral vehicle
dynamics.
The contribution of the study is to show that the estimation of
vehicle dynamics considering 3D paths can be achieved by utiliz-
ing a (simple) linear lateral tire force model at the desired system
frequency. The inclusion of a complex nonlinear tire model,
such as Fiala or Pacejka (see, Bascetta and Ferretti (2022) and
references within), in the 6-DOF vehicle dynamic model would
be straightforward provided extensive tire parameterization is
needed.

6. Conclusions and future work

This article has demonstrated the utilization of 3D path information
in 6-DOF vehicle modeling for off-road vehicles. This contributed to
the design of a nonlinear model-based state estimator in a continuous-
discrete configuration considering 3D map information and fixed-lag
smoothing. An adaptive lateral tire force model was used to validate
the state estimator performance, where an initial estimate of C𝛼 was
obtained from Hewson’s method. The numerical approximation of state
predictions in CDEKF was implemented using the RK4 method. In turn,
the CDEKF results were obtained in three very distinct test scenarios at
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Fig. 20. Concrete track: A zoomed-in perspective of angle and body rate estimation is
shown to highlight fixed-lag smoothing.

Fig. 21. Forest track: The auto-correlation of measurement residuals (innovations)
obtained from CDEKF are compared with those from CDUKF.

20 Hz. Evaluation of the vehicle states and effective C𝛼 estimation for
each experiment show that the applied state estimator is reasonably
robust in terms of coping with variations in tire-terrain interactions.

The main limitation of autonomous driving in terrain is addressed
by estimating height using 3D path information. Utilizing a UAV-based
dense 3D reference map, the accuracy of the height estimation using a
sparse 3D map was demonstrated. The applicability of an augmented
6-DOF dynamic model utilizing 3D map data for the NMPC was shown
via state predictions across a fixed horizon. Particularly, inside the
forest, where height data from exteroceptive sensors is unreliable,
predictions of 3D positions, angles, and rates were obtained. Thus, in-
formation about the 3D form of the path is needed for stable estimation
and automatic vehicle operations in terrain. The data analysis further

Fig. 22. Forest track: The normal force measurements with initial weight and sign
adjustments. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 23. Concrete track: The validation of estimated height data is done using the
reference 3D model obtained by employing a UAV system.

pointed out that a higher-order (e.g., 14-DOF) vehicle dynamic model
would be computationally expensive in the online rollover prevention
methods. On the other hand, simpler (dual or single-track) models
designed assuming flat terrain (homogeneous road conditions) would
be insufficient in estimating the rolling (and pitching) dynamics of the
vehicle in terrain. Overall, we demonstrated that the augmented 6-DOF
vehicle model and the CDEKF utilizing (sparse) 3D map information are
viable solutions to the autonomous forwarder problem.

The real-time NMPC of steering and speed further requires careful
tuning of the parameters considering a realistic forest terrain. A dual-
(CD)EKF setup seems a suitable choice for the joint estimation of crucial
parameters and vehicle states. However, these will be discussed in our
future work.
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