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1.  INTRODUCTION

Reliable individual-level measures of neural activity are 
essential to characterize interindividual variability in brain 
activity patterns, link such patterns with observed behav-
iors, and use them to support clinical decision making. In 
response to tasks or stimuli, magnetoencephalography 
(MEG) provides millisecond-precise measures of brain 
activation that display high consistency within an individ-
ual (e.g., Ala-Salomäki et al., 2021; Schaefer et al., 2004; 
Virtanen et  al., 1998). These capabilities make MEG a 
valuable tool for understanding individual differences in 
brain function. However, to fully leverage its potential to 
quantify individual variability in brain activity, new analy-
sis approaches are needed, capable of systematically 

extracting reproducible, subject-specific brain activation 
patterns while retaining the accuracy of the measure.

Currently, in MEG studies, response consistency is 
generally assessed across a group of participants, which 
allows to gain statistical power at the cost of sacrificing 
individual specificity. These processes often largely dis-
card the temporal and spatial resolution of the MEG sig-
nals where much of the individual variability would show. 
It is not easy to define a comparison method between 
different measures that retains the data’s temporal and 
spatial information without significant simplifications. 
Thus, features that may be highly consistent across mea-
surements within an individual, but variable across the 
whole group, may remain unidentified.
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Independent component analysis (ICA) (Jutten and 
Herault, 1991) has proven to be an efficient tool for ana-
lyzing electrophysiological data, and is currently widely 
used, e.g., in isolating physiologically distinct signals 
(e.g., Delorme et al., 2012; Vigário et al., 2000), especially 
in the case of artifacts, from MEG recordings (Jung et al., 
1998; Vigário et al., 1997). ICA decomposes the multivar-
iate MEG signals into two distinct mathematical objects: 
one representing the temporal information and the other 
the spatial information. When these two objects are com-
bined, they reconstruct the original data. Such a decom-
position can greatly aid in comparing different signals by 
addressing the spatial and temporal information sepa-
rately. Different ICA approaches have been proposed for 
analyzing multiple datasets simultaneously, as summa-
rized, for instance, by Hyvärinen (2013). These approaches 
tend to focus either on extracting a collective decompo-
sition of the datasets based on assumptions on how sim-
ilarly the spatial (Brookes et al., 2011; Hyvärinen, 2011) or 
the temporal information (Eichele et  al., 2011; Richard 
et al., 2020) is shared among them, or on applying ICA 
independently to the different datasets and then compar-
ing the decompositions. A limiting factor in all these 
methods is the lack of a comprehensive criterion for 
comparing the extracted decompositions. Approaches 
that address this problem typically focus either only on 
spatial or only on temporal information (e.g., Himberg 
et al., 2004; Hyvärinen, 2011; Meinecke et al., 2002) and 
leave unanswered the question of how the other variable, 
whether temporal or spatial, behaves.

Here, we introduce a combined ICA method (comICA) 
for analyzing different MEG recordings simultaneously. 
ComICA combines temporal and spatial information 
comparisons to extract only those parts of the signal that 
are present in all recordings. We restrict our scope to dif-
ferent recordings of the activity evoked in response to the 
same stimuli and in the same subject. The underlying 
premise is that the time courses of evoked brain 
responses are highly reproducible within an individual. 
Here, the reproducibility of the time courses captured by 
MEG is interpreted as the brain responses being tempo-
rally identical up to independent additive noise. We pro-
pose that using this constraint and statistical analysis of 
the corresponding spatial information yields a principled 
method for extracting reproducible responses in different 
MEG recordings, accounting for similarities in both the 
spatial and temporal behaviors.

This paper describes the proposed algorithm and 
explores its effectiveness and limits first using simulated 
MEG data. We then demonstrate the ability of this 
method to extract reproducible responses in real MEG 
data recorded during a high-level cognitive task, picture 
naming, performed by the same participants on two 

different days. We show that this approach isolates 
common task-related activation at the sensor level in 
individual participants and eliminates noncondition-
specific brain activation.

2.  METHODS: MATHEMATICAL FRAMEWORK

We assume the following general underlying model for 
the MEG data: Task- or stimulus-related brain responses 
can be represented as a set of spatially stable features 
associated with feature-specific time courses (Delorme 
et al., 2012; Vigário et al., 2000). Moreover, the same spa-
tial and temporal features can model the responses to 
the same task and stimuli in any other recording of the 
same participant. We extract this shared representation 
using ICA.

We characterize the extracted components in terms of 
temporal and spatial information, applying constraints 
separately to both coordinates. A set of components is 
defined as shared when their temporal projections are 
identical and their spatial projections are statistically sim-
ilar. Figure 1 illustrates the comICA workflow in the case 
of two recordings.

The data decomposition is performed by first concat-
enating the recordings across the spatial dimension and 
applying ICA to the concatenated recordings. This first 
step involves extracting features from the data that are 
temporally shared between the different recordings. Let 
our data be x = x1,x2,…,xM{ }T , a set of M recordings. In 
the case of MEG, each x i is a matrix where each row 
corresponds to a measurement channel, i.e., spatial loca-
tion, and each column to a time point tk. Each x i should 
have the same dimensionality: nsens ⋅T, where nsens is the 
number of sensors, and T  is the number of time points in 
the recording. The data structure x comprises the single 
recordings along the spatial axis, resulting in a matrix of 
dimensions (M ⋅nsens) ×T . Step 1 in Figure  1 illustrates 
this concatenation in the case of M = 2 recordings.

We then decompose x via temporal ICA as

	 x = A ⋅s, 	 (1)

where A is the mixing matrix of dimensions (M ⋅nsens) × 
N, and s is the array of N independent components (ICs), 
or ICA sources, which has dimensionality N ×T . Concat-
enating the data before the ICA decomposition results in 
a single set of sources shared across all recordings. This 
implies that the temporal information for all components 
is enforced to be identical in each recording, and the 
respective linear coefficients in A solely account for any 
recording-specific spatial deviations.

The i th column of matrix A represents the con
catenated M sets of spatial patterns relative to the i th 



3

S.F. Cotroneo, H. Ala-Salomäki, L. Parkkonen et al.	 Imaging Neuroscience, Volume 2, 2024

temporal source, as shown in Step 2 of Figure 1. These 
spatial patterns can be interpreted as magnetic field 
patterns at the sensorlevel and do not depend on time.

To evaluate the similarity between spatial patterns 
across recordings, we extract all the recording-specific 
spatial patterns from the mixing matrix A, as illustrated in 
Step 3 of Figure 1. The ith column of A has dimension 
M ⋅nsens and can be separated into M contiguous subsets 
of length nsens to obtain the recording-specific spatial pat-

terns. For the i th column of A, this process defines the 

set a i,k{ }k=1
M

= a i,1,a i,2,…a i,M{ }. Here, each a i,k represents 

the spatial coefficients relative to the kth recording for the 
ith independent component. By iterating over each col-
umn, we construct the set {a i,k}, where i designates the 
column (or the independent component), ranging from 1 to 

Fig. 1.  The comICA workflow illustrated in the case of two recordings (R1 and R2). (1) Concatenation of the data along 
the spatial axis; (2) the resulting object is decomposed via ICA; (3) the recording-specific spatial coefficients {a i,k} are 
analyzed in the distance matrix D; (4) discarding those pairs of spatial coefficients that are not similar enough across 
the two recordings — i.e., those for which the block diagonal elements are not all above the threshold; (5) the data are 
reconstructed on the retained components; (6) the processed data for the two recordings are then obtained by splitting the 
resulting dataset into R!1 and R!2.

N, and k designates the recording, spanning from 1 to M. 
For the sake of notation, we can reindex this set to be {a j} 
where j now spans from 1 to M × N.

We quantify the similarity between any pair h, j of spa-
tial patterns as

	
dh, j =

ah
TC+a j

ah
TC+ah a j

TC+a j

,
	

(2)

which is the Euclidian cosine similarity between any pair 
of centered elements a i  and a j , and the metric tensor C+ 
is the pseudoinverse of the covariance matrix C of the 
space of the centered coefficients {a j}:

	
C = 1

2 ⋅N
i,k
∑ a i,k− a( ) a i,k− a( ) = 1

2 ⋅N
i,k
∑a i,k ⋅a i,k .

�
(3)
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It is important to note that the empirical estimation of 
the covariance matrix is sensitive to the number of sam-
ples, i.e., how many independent components and how 
many recordings we are analyzing.

The values of di, j  obtained according to Equation 2 are 
limited to the interval −1,1[ ], where di, j = 1 indicates a i is 
parallel to a j, i.e., the two spatial patterns are the same 
except for a positive scaling factor, di, j = −1 indicates 
they are antiparallel, and di, j = 0 indicates that the two 
spatial patterns are uncorrelated.

We order the set {a i,k} so that the spatial patterns rela-
tive to the same component i  for the different recordings 
are contiguous, as portrayed in Step 3 of Figure 1. The 
similarity measure expressed in Equation 2 is computed 
for each possible pair of elements in {a i,k}, and the results 
are arranged in a distance matrix D, where the N block-
diagonal elements Bi of dimension M ×M  contain the 
distances of the spatial maps relative to the same inde-
pendent component across the different recordings. The 
ith component is considered reproducible across the M  
recordings if all the entries in the corresponding block Bi 
are above a certain threshold. This positive threshold can 
be chosen according to the desired significance level, as 
illustrated in Figure 1, Step 4. Ultimately, the ith compo-
nent is deemed reliable if all the corresponding block Bi 
entries are significantly close to 1.

A projected version of the concatenated data can be 
reconstructed from the components deemed reliable; 
Step 5 of Figure 1 for the case of M = 2 recordings. Spe-
cifically, the ICA decomposition is inverted to reconstruct 
a new concatenated object x! from the reliable compo-
nents. The reconstructed object is then split into M sep-

arate datasets x! i{ }i=1
M

 representing the reliable features 

in the original recordings; Step 6 of Figure 1 for M = 2.
The comICA pipeline has been implemented in Python, 

and it provides a workflow compatible with the MNE-
Python software package (Gramfort et  al., 2013). The 
implementation of comICA studied in this paper utilizes 
the FastICA version of ICA (Hyvärinen, 1999), which is 
readily available in the MNE-Python software package.

3.  METHODS: DATA

3.1.  Simulated MEG data

A dataset was generated to explore the algorithm’s ability 
to separate neural sources with distinct activation time 
courses. To this end, MEG data were simulated for the 
306-channel Vectorview system (MEGIN Oy, Espoo, Fin-
land), which comprises 102 sensor triplets (two planar 
gradiometers and one magnetometer) arranged in a 
helmet-shaped array. The forward model was constructed 
based on the anatomical information of one subject from a 

Fig. 2.  Sources constructed for the simulated data. Two 
neural sources were simulated for the two runs (R1 and R2) 
of each iteration. The evoked activity was modeled for each 
neural source as a Morlet wavelet. Each run contained one 
unique source (blue in R1 and green in R2) and one source 
that was shared between the two runs (red in both R1 and 
R2), for a total of three source activations per iteration.

previously published study (Ala-Salomäki et al., 2021). The 
cortical surface was reconstructed from the subject’s 
T1-weighted structural MRI using the FreeSurfer software 
package (Dale et al., 1999; Fischl et al., 1999) and deci-
mated for a cortical source space with an average spacing 
of 9.9 mm between the source points. Neural activation 
at each source point was modeled by a current dipole 
normal to the local cortical surface. A single-compartment 
boundary-element model (BEM) based on the inner skull 
surface was employed to estimate the volume-current 
contribution to MEG (Gramfort et al., 2013).

In each iteration of the simulations, three randomly 
selected sources in the left hemisphere were activated, 
producing evoked responses. Two MEG recordings, or 
runs, were generated per iteration. Each run contained 
one source shared across the runs and one unique, as 
pictured in the lower part of Figure 2. Altogether Ntrials = 60 
trials were simulated for each run, and multivariate 
Gaussian noise was added to each trial independently. 
The source activations were generated as Morlet wave-
lets and parametrized with respect to three features: 
amplitude (α), latency (t0), and duration (T ), as illustrated 
in the upper half of Figure 2. The amplitude was defined 
as the peak-to-baseline distance of the signal, the latency 
as the time between the stimulus trigger and the peak of 
the source timecourse, and the duration was defined as 
the time span from the signal onset until the end of the 
simulated evoked response.

The shape of the simulated signal was defined as

	
s t( ) = α ⋅cos ω t − t0( ) + φ( ) ⋅exp −

t − t0( )2
2 ⋅ σ2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
,
�

(4)

where σ = 0.375 ⋅T  and ω = 3
4
⋅2π /T, and φ is a phase 

shift used to construct the shape of the source activation 
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function. A constant value of φ =1/3 ⋅ π was used through-
out the simulations, and all other parameters were uni-
formly randomized within the ranges indicated in Table 1.

The analysis was restricted to the gradiometer signals. 
The signals were sampled at fs = 200 Hz. Time windows 
of −0.2,1.2 s were extracted around the activation onsets 
and averaged across trials. The time window was chosen 
to contain all the possible activation functions in the sim-
ulations fully. The simulations and preprocessing of the 
data were performed with MNE-Python version 0.23.4 
(Gramfort et al., 2013).

Reproducible activation patterns were then extracted 
from the two runs. The data simulated in each run were 
concatenated along the spatial axis, resulting in one set 
of 2 ⋅nsens time series of length 1.2 ⋅ fs ⋅Ntrials( ) time points. 
The concatenated dataset was centered to have zero 
mean before applying the ICA decomposition.

Temporal ICA was performed with the FastICA imple-
mentation on the concatenated dataset, and three compo-
nents were extracted for each iteration. The covariance 
matrix weighting was not applied in Equation 2 because 
this low number of independent components, only 3, was 
insufficient to calculate a reliable estimate for the covari-
ance matrix. The components were instead selected using 
an unweighted cosine distance and a fixed threshold of 
0.9. To assess the accuracy of the reconstruction, we com-
puted the goodness of fit (GoF), as implemented in MNE-
Python, by comparing the extracted shared source with the 
simulated ground truth at the time of the peak activation of 
the simulated source. The simulation comprised 10,000 
iterations, resulting in a total of 20,000 GoF values.

3.2.  Real MEG data

3.2.1.  Data description

The ability of the algorithm to extract common activations 
was further tested on MEG data recorded on two separate 
days from participants performing a picture-naming and 
visual processing task (Ala-Salomäki et al., 2021).

The data were measured at the MEG Core of Aalto Neu-
roImaging Infrastructure (Aalto University, Espoo, Finland) 
using a Vectorview whole-head MEG device (MEGIN Oy, 
Espoo, Finland) comprising 306 sensors (204 gradiome-
ters and 102 magnetometers) arranged in a helmet-shaped 
array. Only gradiometer data were used in the analysis. 

Table 1.  Ranges of the simulation parameters.

Variable Min. Max.

α 40 nAm 70 nAm

T 95 ms 500 ms
t0

T
2
+ 50 ms 1150 ms −T/2

Individual MRIs were acquired at the Aalto NeuroImaging 
Advanced Magnetic Imaging (AMI) Centre with a Magne-
tom Skyra 3.0T MRI scanner (Siemens GmbH, Erlangen, 
Germany) using a standard T1-weighted gradient-echo 
sequence. The dataset included 20 healthy human partic-
ipants (10 females, 10 males; mean age 25 years; SD 3.9; 
age range 21–35  years) for whom the MEG evoked 
responses and oscillatory activity have been analyzed pre-
viously (Ala-Salomäki et  al., 2021). The original authors 
collected the data after obtaining a written informed con-
sent from all participants, in agreement with the prior 
approval of the Aalto University Research Ethics Commit-
tee. As in the original paper, one participant’s data were 
not used for our analysis due to noncompliance with the 
task instructions.

In the present study, we focused on a subset of two 
tasks from the original study: a picture-naming task, where 
the participants were presented with pictures and asked to 
name the depicted object overtly after a short delay, and a 
visual task, where the participants were shown pictures 
and were asked to respond occasionally to a target stimu-
lus. MEG data were recorded from each participant, pre-
senting 100 stimuli per condition, in two separate 
measurement sessions (1–13  days apart, mean 4.2, SD 
3.9 days, total of 200 stimuli per condition per subject). 
The tasks and measurements details are described in full 
in the original paper (Ala-Salomäki et al., 2021).

3.2.2.  Preprocessing

Initial interference suppression was performed using the 
signal space separation method (Taulu and Simola, 2006) 
with a 16-s temporal window, a subspace correlation limit 
of 0.98, an inside expansion order of 8, and an outside 
expansion order of 3. According to the preprocessing 
steps by the original authors, the individual MEG data 
were transformed to a common head position within 
each recording and each subject (MEGIN Maxfilter soft-
ware package; version 2.2.12).

The data were band-pass filtered to 0.1− 45  Hz and 
resampled at 200 Hz. Artifacts related to eye movements 
and heartbeat were repaired by applying ICA to the MEG 
data and manually selecting the components that most 
resembled the artifact waveforms. Epochs from −0.2 s to 
1  s around the stimulus onsets were extracted. All the 
data processing was performed using the MNE-Python 
package version 0.23.4 (Gramfort et al., 2013).

3.2.3.  Analysis of evoked responses from  
the two recordings

After rejecting data segments with the peak-to-peak sig-
nal amplitude exceeding 3 ⋅10−16T/m, indicating the 
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presence of artifactual signals, the number of epochs per 
condition in each subject was equalized over the two 
recordings. The number of epochs for the two conditions 
was similarly distributed across the subjects and record-
ings (median for picture naming: 93; median for visual 
task: 95).

The epochs were averaged for each subject, record-
ing, and condition separately. The evoked responses 
from the two recordings were then concatenated along 
the spatial dimension to obtain the concatenated data-
sets xsbj,cond for each condition and subject. The ICA 
decomposition was performed with the FastICA algo-
rithm on xsbj,cond without performing any dimensionality 
reduction.

Independent components with a shared behavior 
between the two recordings that exceeded the chosen 
significance level (α = 0.05) were selected for further 
analysis. A new concatenated dataset was constructed 
using the retained components and separated into two 
recordings. Hereafter, the data from the reconstructed 
datasets are referred to as the comICA-reconstructed 
evoked responses.

3.2.4.  Reconstructed evoked responses

The cortical sources corresponding to the reconstructed 
and original evoked responses were computed using the 
dSPM variant (dynamic statistical parametric mapping; 
Dale et al., 2000) of cortically-constrained L2 minimum-
norm estimation (MNE), as in the original publication 
(Ala-Salomäki et  al., 2021). The comICA-reconstructed 
evoked responses were corrected with respect to the 
baseline before source reconstruction.

The forward model was constructed in the same man-
ner as in the simulations. In addition, a loose orientation 
constraint of 0.3 and a depth weighting exponent of 0.8 
were applied. The noise covariance matrix utilized in the 
source estimation was calculated from the unprocessed, 
unaveraged 200-ms prestimulus baseline intervals of both 
tasks, separately for each measurement session. The 
dSPM MNEs of the individual subjects were then morphed 
onto a standard template brain (“fsaverage” of FreeSurfer; 
Dale et al., 1999; Fischl et al., 1999) with spatial smoothing 
and subsequently averaged at the group level.

Following the analysis pipeline by Ala-Salomäki and 
colleagues, the source-level amplitudes of the group aver-
ages were averaged across four successive time windows 
(0 − 200, 200 − 400, 400 − 600, and 600 − 800  ms) with 
respect to the stimulus onset. As in the original study, a 
custom-made cortical parcellation based on the Destrieux 
template (Destrieux et al., 2010; Fischl et al., 2004) was 
used for spatial averaging. Analogously to the original 
work (Ala-Salomäki et  al., 2021), the group-averaged 

visual and picture-naming tasks were contrasted, and 
p-values were extracted against the null hypothesis of the 
two tasks inducing the same activations to determine sig-
nificant brain activation in the different cortical parcels and 
time windows.

4.  RESULTS

4.1.  Simulations

We were able to efficiently isolate shared sources in the 
simulated data, as presented in Figure 3(a). The median 
goodness-of-fit (GoF) across all simulated iterations was 
93.95%. The overall distribution of the GoF in the simu-
lated data was skewed toward high success values but 
presented a fat tail toward lower values of the success 
measure. This behavior indicates that even though the 
median GoF is good, failures in the reconstruction are 
possible.

Figure 3(b)-(e) shows the effect of different run-specific 
variables on the ability to extract the shared source. Fig-
ure 3(b) presents the effect of the amplitude ratio of the 
shared vs. nonshared source at the sensor level, demon-
strating that the shared source can be reconstructed 
more accurately when the amplitude of the signals gener-
ated by the shared source is higher than that of the 
unique source. Conversely, when the unique source pro-
duces stronger signals, the ability to reconstruct the 
shared source decreases monotonically.

The distance between the simulated sources — calcu-
lated as the shortest-path distance along the surface — 
did not significantly impact the ability to separate the 
brain sources, as depicted in Figure 3(c).

Figure  3(d) illustrates the effect of the temporal cor-
relation between the time courses of the shared and non-
shared sources when reconstructing the shared source. 
The temporal correlation between the time courses did 
not clearly affect the ability to isolate the single-source 
signal, as quantified by the median GoF. However, a 
higher temporal correlation between the source time 
courses resulted in a small increase in the variance of the 
ability to reconstruct the correct brain source accurately.

When the signals generated by the shared source 
explained a higher percentage of the overall variance of 
the run, the reconstruction of the shared source recon-
struction improved (see Fig. 3(e)). Conversely, when the 
signals generated by the shared source explained a 
smaller percentage of the overall variance of the data, 
the ability to isolate and reconstruct the shared source 
decreased. Lower percentages of variance explained in 
the sensor-level signal by the source we aim to separate 
further led to an increase of the variance in the separa-
tion efficiency.
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Overall, these findings indicate that source separation 
using comICA is achievable with good success for sig-
nals that simulate brain activation. However, the algo-
rithm’s performance may be sensitive to variations in the 
contribution of shared vs. nonshared sources to the over-
all variance. It is important to note that the results pre-
sented here pertain to an ideal condition where the same 
signal was present identically in both recordings, exactly 
at the same location.

4.2.  Real MEG data

After assessing the applicability of comICA on simulated 
data, we tested the method on a MEG test–retest dataset 
that had been previously analyzed for estimating repro-
ducibility using intraclass correlation analysis (ICC) at the 
group level (Ala-Salomäki et al., 2021). As detailed in the 
Methods section, the comICA algorithm was applied 
independently on each subject.

Figure 4 illustrates the intermediate outcomes for two 
individual subjects (Subject 1 and Subject 2). The inde-
pendent components were extracted from the concate-
nated data of the two recordings for each subject and 
then ordered based on the percentage of variance they 
explained in the concatenated dataset. The first six 

components are shown here as an example. Notably, 
although the extraction process is done independently 
for each individual, in the leftmost column of Figure  4, 
one can observe the salient pairwise correspondence 
between the IC time courses of the two subjects (e.g., 
C1–C1, C2–C2, C4–C3).

In each subject, the field patterns are highly similar 
across the two recordings for most of the components 
(similarity above 0.75, as quantified in the distance matri-
ces). The red block-diagonal structure, depicted in the 
right-most column of Figure 4, further illustrates the sim-
ilarity of the spatial maps across the two recordings of 
each subject.

However, Figure 4 also demonstrates some notable 
individual variability. For Subject 1, the first four compo-
nents met the selection criteria for replicability, as indi-
cated by the solid red diagonal blocks in the distance 
matrix. The fifth component could be selected at lower 
thresholds. In contrast, the sixth component had close-
to-zero similarity between the spatial representations, 
as indicated by the gray off-diagonal elements. For 
Subject 2, all six components had a high degree of sim-
ilarity. These degrees of similarity agree with the visual 
inspection of the corresponding spatial maps in the 
middle column.

Fig. 3.  ComICA results for the simulated MEG data. (a) Probability distribution of the success in separating the shared 
sources in the simulated data. The distribution of the goodness of fit (GoF, expressed in percent) reveals the effective 
isolation of common sources. (b) to (e): Factors that may influence comICA identification of the shared source.  
(b) Amplitude ratio at the sensor level between the extra source and the common one, (c) distance between the sources, 
(d) temporal correlation of the sources, and (e) the ratio between the variance at the sensor-level data due to the common 
source only vs. both sources. In panels (b) to (e), the metric (y-axis) is the median GoF for the interval, reported with 95% 
confidence limits.
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Even though the time courses of the independent 
components display similarity between the two subjects, 
the field patterns corresponding to these similar time 
courses show apparent differences between the two 
subjects. This behavior points to possible interindividual 
variation in cortical processing, especially in the spatial 
aspect of the signals.

The reproducible part of the MEG signals for the con-
trast picture naming vs. visual task had been previously 
estimated using group-level ICC (Ala-Salomäki et  al., 
2021). To verify that the present comICA-derived results 
generally agree with the earlier ICC-based results, we first 
extracted shared field patterns from the test–retest data 
for each individual and each experimental condition (see 
Fig.  4). Source activity present in only one recording — 
likely irrelevant to the shared task between recordings — 
was discarded. Subsequently, the group-level source- 
space patterns of reproducible brain activity were calcu-
lated by averaging over the comICA-processed single-
subject data and contrasting the picture-naming vs. 
visual-task conditions.

The group-level ICC analysis performed by the orig
inal authors highlighted significant similarities across  
the recordings in the left hemisphere. The comICA-
reconstructed activation aligned with this result, as shown 
in Figure 5, outlining consistent left-lateralized activation 
patterns, especially in the early time window (200–400 ms). 
With the comICA approach, also notable right-hemisphere 
activation remained in the later time windows.

5.  DISCUSSION

In the present study, we introduced the comICA algo-
rithm for extracting shared activations across two (or 
more) MEG recordings of evoked responses. The algo-
rithm is based on ICA paired with selection rules consid-
ering temporal and spatial information. Specifically, 
comICA extracts temporally identical independent 
sources and applies a principled spatial criterion for their 
selection. To evaluate the performance of this method, 
we conducted tests using simulated data, which pro-
vided metrics to quantify its precision. Additionally, the 

Fig. 4.  Visualization of comICA processing of the real MEG data. Left panel: The first six independent temporal 
components, ordered by the variance they explain, are presented for two subjects. Middle panel: Field patterns of the 
temporal components on the two recordings (R1 and R2) grouped by component (C). Right panel: Cosine similarity 
matrices for the spatial patterns. The block-diagonal elements in the matrices represent the similarity between the spatial 
representations of each component on the two different recordings, with higher similarity values (red) indicating more 
similar topographic activation maps.
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application of comICA on real MEG data yielded results 
compatible with previous reports, further showcasing the 
potential applications of our method to single-subject 
brain recordings.

5.1.  Simulations

When evaluating the ability of comICA to separate the 
signals originating from simulated sources that were 
shared between two MEG recordings vs. unique to a 
single recording, high levels of separability were 
achieved, as indicated by the algorithm’s high median 
goodness of fit of 93.95%. Upon further investigation, 

some of the characteristic parameters of the simulated 
signals were found to influence the success rate of such 
separability.

A typical concern in ICA is that temporally correlated 
time courses violate the model assumption (Hyvärinen 
and Oja, 2000), and we, therefore, expected correlated 
sources to be hard to separate. Indeed, we found that 
sources with maximally uncorrelated time courses 
resulted in better separation overall. In cases where two 
sources were more correlated, a wider variability in the 
success rate of comICA was observed. However, a high 
median success rate was still reached even with this 
broader spread of the success rate. This suggests that 

Fig. 5.  Group-level results on the real MEG data with and without comICA processing. Left: Group-level maps of 
activation for the contrast picture naming vs. visual task on day 1 and day 2 (R1, R2) on the original data (without comICA), 
as analyzed earlier by Ala-Salomäki et al. (2021). The color scale represents the p-values against the null hypothesis 
(no difference between picture naming and visual task) in different parcels, averaged over the specified time windows. 
Middle: ICC values for the original data (no comICA applied). Darker color indicates higher consistency. Gray parcels 
were excluded from the ICC analysis as they did not meet the significance criteria (p-value < 0.005 for both recordings). 
Right: Group-level activation maps for the contrast picture naming vs. visual task on day 1 and day 2 on the comICA-
reconstructed data. The color scale represents the p-values against the null hypothesis (no activation) in different parcels, 
averaged over the same time windows as the original data.
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breaking the assumption of temporal independence 
behind ICA — by focusing on temporally correlated time 
courses — does not imply a clear decline in the perfor-
mance of comICA in separating two time courses.

The amplitude ratio at the sensor level, i.e., how 
much of the variance of the combined dataset could be 
attributed to each source, was a predictor of high GoF. 
Sources contributing little to the dataset’s overall vari-
ance were not generally successfully separated. These 
sources generally generate lower signal amplitude at 
the sensor level when compared with the other source 
in the data. This result suggests that brain responses 
with significant amplitude differences at the sensor 
level, or those generally contributing little to the data 
variance, can be harder to separate than two compara-
ble signals with temporally correlated time courses. This 
is possibly due to the PCA preprocessing behind the 
applied ICA algorithms, but no tests have been made 
with implementations of ICA that did not rely on this 
step. Future work should investigate this aspect further. 
However, one possible implication of this result is that 
comICA is better able to isolate consistent high-SNR 
signals than sources characterized by weaker signals 
compared with the noise. This, in particular, would apply 
to the case where comICA is used to separate signals 
from high-amplitude sources of noise. For example, this 
seems to be a pressing issue in removing artifacts such 
as those induced by TMS, where ICA applications are 
common (e.g., Atti et al., 2024; Rogasch et al., 2017; Wu 
et al., 2018).

Although MEG has limitations in separating nearby 
sources (Hari et al., 1988), especially when their activa-
tion time-courses overlap, the spatial proximity of the 
simulated sources had minimal impact on source separa-
bility. This finding underlines the primary importance of 
the temporal information of the signals in algorithms that 
heavily rely on temporal ICA.

Thus, even though ICA has many limitations 
(Hyvärinen and Oja, 2000), both dependent and inde-
pendent of the algorithm utilized (as summarized, for 
instance, by Sariya and Anand (2018)), the performances 
of comICA in separating the shared sources in two 
recordings of evoked responses showed consistent 
success on the simulated data. It is worth noting that 
the use of ICA is typically discouraged on evoked 
responses due to their nonstationary nature (e.g., 
Metsomaa et al., 2017). In our work, we did not directly 
address this issue. Instead, we tested the reliability of 
the results regardless of it and sought to quantify the 
primary controllable sources of error. The overall suc-
cess of the algorithm in this scenario seems to hint that 
the general nonstationarity issue of ICA does not signifi-
cantly affect the performance of comICA.

5.2.  Real MEG data

In the picture-naming dataset, the brain activity that 
comICA isolated is interpreted as the one that is shared 
across the two recordings performed on different days. 
The comparison of the group-level results obtained on 
data with vs. without the application of comICA shows 
that the comICA processing and potential dimensional-
ity reduction do not affect the overall behavior of the 
signals of interest. Notably, the experimental contrast of 
interest was preserved for the comICA-reconstructed 
vs. original data.

Importantly, owing to the ability of ICA to factorize 
temporal and spatial information by observing the differ-
ent components selected in each subject by comICA, 
individual differences can be exposed and understood 
separately in terms of space or time. For instance, in Fig-
ure  4, temporal components from different subjects 
showed similar time courses. However, the field patterns 
corresponding to these comparable temporal compo-
nents exhibited notable differences across the subjects. 
This behavior suggests that shared temporal behaviors 
in evoked responses could be extracted, at least to an 
extent, via comICA even across subjects, similarly to 
previous approaches (Eichele et al., 2011; Richard et al., 
2020). Still the time courses across subjects were simi-
lar, but not identical, especially for the ones with sus-
tained temporal activation. This would imply that 
methods that work at the group level may discard a good 
part of the components if trying to extract them as 
shared for a group. Moreover, these extracted compo-
nents at the group level would be excluded during the 
component selection process outlined here due to their 
spatial differences. Intuitively, our results support the 
idea that different subjects, when presented with the 
same stimulus, are more likely to share a high degree of 
similarity in the shape of their temporal responses than 
in their field patterns. Anatomical differences only may 
not be enough to account for such high variability, and 
future work may be needed to investigate this individual 
variation in more depth.

5.3.  Methodological considerations

By applying ICA to the concatenated datasets, the tem-
poral information of the shared sources was constrained 
to be identical for both recordings. This approach ensures 
that the selected sources share the same temporal 
behavior. It is important to note that imposing this tempo-
ral constraint makes comICA only suitable for time-
locked activation, hence repeating identically across the 
different recordings. Moreover, the salient individual dif-
ferences revealed by comICA, especially in the spatial 
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domain, emphasize that comICA primarily applies to one 
subject at a time.

The metric chosen to select the similar spatial patterns 
was designed to behave like a cosine similarity, enabling 
our algorithm to overlook differences in the intensity of 
the same temporal source in the two recordings. The field 
patterns intuitively indicate the location of the temporal 
signal in the sensor space. Therefore, choosing a cosine-
similarity measure aims to retain signals with the same 
spatial activation patterns while not discriminating on 
intensity differences. Because these intensity differences 
in the spatial coefficients can be different for different 
independent components, after applying comICA, the 
reconstructed signals need not be identical for the two 
(or more) recordings.

Importantly, the selection criteria applied to the field 
patterns rely on selecting components based on the 
overall distribution of the spatial distance measure. The 
threshold in the selection process was determined by 
analyzing the pairwise distances across all extracted 
components. Setting a limit based on this distribution is 
only reasonable when the independent component anal-
ysis generates enough components to estimate their 
overall distribution. Investigating other thresholding 
methods compatible with this case was out of the scope 
of the present analysis.

The simulation results demonstrated the promising 
performance of comICA, showcasing its ability to meet 
our desired levels of accuracy for brain-like signals. How-
ever, it is essential to note that the simulated data only 
tested specific waveforms and, therefore, are not neces-
sarily representative of more general cases. However, we 
consider our selection of waveforms to be meaningful 
within the context of MEG evoked responses. Addition-
ally, a good alignment of the findings obtained from real 
MEG data with the previous literature further supports 
our interpretation of the results.

The main limiting factor in separating shared compo-
nents from different recordings appears to be the similar-
ity in the variances of the different components in the 
signal. This allows comICA to still perform optimally, for 
instance, when isolating meaningful brain activity from a 
recording that contains stimulus-locked artifacts, pro-
vided the intensity of the artifact is comparable with that 
of the signals of interest. In such cases, comparing the 
contaminated recording with a similar reference which 
does not contain the same artifact could aid in extracting 
shared brain signals while excluding artifacts, or, more 
generally, noninteresting components.

Although the analysis presented in this paper relies 
solely on the FastICA implementation of ICA, the perfor-
mances of the other algorithms implemented in MNE-
python, i.e., Infomax (Bell and Sejnowski, 1995) and 

Picard (Ablin et  al., 2018), were also compared on the 
simulated data, but no significant difference was 
observed in the results.

5.4.  Conclusions

In this work, we showed that we can identify shared brain 
responses in MEG datasets at the sensor level when we 
define such common activation as a combination of the 
same time courses and statistically indistinguishable spa-
tial coefficients across the sensors. We claim this result 
can be used to isolate task-specific brain activation in two 
recordings from the same subject. In real recordings of 
complex brain activity, such as that of picture naming, 
comICA performed well in extracting the activations 
shared between the two recording sessions. Given comI-
CA’s assumptions, we expect it to perform equally well for 
EEG data or any other electrophysiological recordings 
characterized by signals of high temporal accuracy.

DATA AND CODE AVAILABILITY
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