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Abstract—Channel charting (CC) is an unsupervised machine
learning framework for learning a lower-dimensional represen-
tation of Channel State Information (CSI), while preserving
spatial relations between CSI samples. In this paper, we consider
super-resolution features in the angle-delay domain in massive
Multiple-Input Multiple-Output (MIMO) systems. We i) treat the
angle and delay separately, ii) present the so-called ”Normalized
Polar Feature” utilizing the channel statistics of the CSI samples,
iii) use the Euclidean distance to compute the dissimilarity matrix,
and create the channel chart. Simulation results based on the
DeepMIMO data-set show that the proposed super-resolution
representation with the Euclidean distance leads to the state-
of-the-art quality CC as compared to other CSI features and
distances from the literature such as angle-delay-power features
with earth mover distance.

Index Terms—Channel charting, channel state information,
multi-path components, super-resolution feature, feature distance.

I. INTRODUCTION

Beyond fifth-Generation mobile communication systems have
several enablers such as massive Multiple-Input Multiple-Output
(MIMO) techonology, beamforming, huge amounts of available
spectrum, small cell networks to achieve sub-meter positioning
accuracy, and embedded sensing capabilities [1], [2].

Radio resource managements increasingly rely on knowledge
about the geographical location of the User Equipments (UEs) to
support high-level network functions, such as handover between
base stations and beam management. Existing positioning
approaches require a significant amount of dedicated resources
to obtain feedback from the UE. They are also not universally
applicable: UEs may not have Global Navigation Satellite
System (GNSS) positioning capabilities, they may be indoors
or without satellite coverage [1], [3]. For many radio resource
management applications, absolute position information is
not required: a pseudo-location that accurately represents
neighborhood relationships may be sufficient.

Channel Charting (CC) has recently emerged as a framework
for relative localization [4]. CC consists of learning a mapping
between Channel Sate Information (CSI) samples and points
in a so-called channel chart. This mapping is constructed such
that nearness between two points on the channel chart indi-
cates similarity between the corresponding CSI samples, their
propagation conditions. Conventional dimensionallity reduction
techniques such as Laplacian Eigenmaps, Sammon’s mapping,

Isomap and t-Distributed Stochastic Neighbor Embedding (t-
SNE) can be used to construct the chart [5]. These techniques
rely on a matrix of pair-wise distances between any two CSI
features. Several linear algebraic distances, such as Euclidean,
cosine similarity, correlation matrix distance, and log-Euclidean
distance, are used to measure the distance between CSI features
[4], [6], [7]. CC can be also constructed from the CSI features
directly without invoking a feature distance using auto-encoder
or from triplet Nural Networks with some side information [4],
[8].

Channel modeling studies have demonstrated that the wireless
channel can be characterized by a set of few parameters, such
as angle of arrival, angle of departures and delays of multipath
components [9], [10]. Capitalizing on this, the super-resolution
angle-delay-power profile is considered for CC in [11]. The
super-resolution feature is represented as a point in the 2D
Cartesian coordinate system. The Earth-Mover Distance (EMD)
is used to measure the feature distance. Simulation results show
that the super-resolution features with EMD outperform other
features and distances in terms of local topology preservation
and global geometry preservation performance measures [11].

In this paper, we consider super resolution features as in [11].
However, we i) treat the angle and delay separately (not as
2D Cartesian coordinates), ii) present the Normalized Polar
Feature utilizing delay and angle of arrival statistics of multi-
path components, iii) use the Euclidean distance to measure
the distance between normalized polar features, which is of
much reduced computational complexity compared to EMD,
iv) investigate several CSI feature representations with the
Euclidean distance, v) combine the distances of several feature
representations, vi) evaluate different features performance
in terms of local topology preservation and global geometry
preservation measures, and vii) create the channel chart.

The remainder of this paper is organized as follows: In
Section II, the system model is presented. In Section III,
CSI features and distances from literature are presented. In
Section IV, the proposed super-resolution CSI features and
distances are introduced. In Section V, channel charting
is discussed. In Section VI, the performance measures are
presented. Simulation results are presented and discussed in
Section VII. Finally, conclusions are drawn in Section VIII.



II. SYSTEM MODEL

We consider a massive MIMO Base Station (BS) with a
Uniform Linear Array (ULA) of M antennas. The wireless
signal transmitted from a UE propagates along K multipaths.
The baseband channel response vector at the BS form multipath
component k arising from an impulse transmitted at time 0 is

ck =
√
αke

−jβka(θk) δ(τk), (1)

where δ(·) is the Dirac delta distribution,
√
αke

−jβk is the
complex attenuation, τk the propagation delay, and θk the
Angle-of-Arrival (AoA) of path k. The array steering vector
corresponding to AoA θ is

a(θ) = [1, e−j2π
r sin θk
λc , . . . , e−j2π

r(M−1) sin θk
λc ]T, (2)

where r is the antenna element spacing, and λc is the carrier
wavelength.

Considering an Orthogonal Frequency-Division Multiplexing
(OFDM) system with N subcarriers, assuming the cyclic prefix
is larger than the maximum delay spread, the channel frequency
response vector at the nth subcarrier becomes

hn =

K−1∑
k=0

√
αke

−jβka(θk) e−j2πn
υk
N , (3)

where υk = b τkT e denotes the temporally resolvable propagation
delay associated with the kth path, T is the sample interval,
and b e is rounding to the next integer.

III. CSI FEATURES AND DISTANCES

For fingerprinting based localization and CC, several CSI
features have been considered such as CSI frequency response,
covariance matrix and super resolution features [4], [12]–[14].
The selection of the CSI feature as well as the feature distance
highly affects the resulting performance.

A. Super Resolution Features

Assume that the channel has K multipath components
(MPCs), represented by angle of arrivals θk, propagation
delays τk and average powers pk with pk = E{αk} for
k = 1, . . . ,K. Here, E{·} denotes expectation. The angle-
delay-power profile {φk, τk, pk} is the super-resolution CSI
feature, which can be estimated from the channel frequency
response using the Mutiple Signal Classification (MUSIC) and
the Space-Alternating Generalized Expectation-Maximization
(SAGE) algorithms [10], [15]. Several super resolution CSI
representations are considered for CC and for multi-path
component clustering [11], [16]–[18]. We summarize the super
resolution representations from the literature as follows:
• The Multi-Path Separation (MPS) feature of multipath

component k of UE i is [17], [18]

f i,kMPS =

 cos (θi,k)
sin (θi,k)
ζ τi,k/τmax

 , (4)

where θi,k, and τi,k are the AoA and delay of MPC k of
UE i, τmax is the maximum delay and ζ is a weight.

Fig. 1. Two nearby UEs; the received signals at the BS are with the same
angle, but with but with large delay difference.

• The Angle-Power Feature (APF) is given as [16]:

f i,kAPF =

[
p
−1/ν
i,k cos (θi,k)

p
−1/ν
i,k sin (θi,k)

]
, (5)

where pi,k is the power of MPC k of UE i and ν is the
path-loss exponent.

• The Super-resolution Rectangular Feature (SRF) is given
as [11]:1

f i,kSRF =

[
τi,k cos (θi,k)
τi,k sin (θi,k)

]
. (6)

B. Super Resolution Distances

It is not straightforward to measure the distance between two
super-resolution CSI features. Different orderings of the MPCs
may result in different distances, and handling two features with
different number of MPCs is not trivial. In [11], the powers of
MPCs are converted to normalized weights and EMD is used
to compute the distance between two sets of MPCs, to obtain
the distance a linear programming is solved.

IV. NORMALIZED POLAR FEATURE AND DISTANCE

The super rectangular feature maps the angle and delay of a
MPC to 2D point in the space. This model couples the delay
and AoA, i.e., a nearby point needs to have a small change in
both the AoA and delay. Figure 1 illustrates a scenario of two
UEs transmitting from nearby physical locations. The received
signal at the BS from each UE has one MPC. The propagation
delay of the green UE is much larger than the propagation
delay of the red UE, as shown by the length of green dashed
line compared to length of red dashed line. There is no angular
difference between the received signals from the two UEs at
the BS. If the super rectangular features of the two UEs are
used with the Euclidean distance, a large distance is obtained.
To handle such challenging scenarios, we treat the angle and
delay separately. We consider the ”Normalized Polar Feature
(NPF)” expressed as:

f i,kNPF =

[
θi,k/aθ
τi,k/aτ

]
, (7)

1Also known as the 2D Cartesian coordinate super resolution feature.



Fig. 2. The problem of determining optimum feature vectors and distance
matrix for CC using machine learning.

where the normalization factors aθ = max
i,k

θi,k, and aτ =

max
i,k

τi,k. The normalization factors are proposed to handle

different scales of the AoA and delay.
To compute the distance between two normalized features

f i,kNPF and f j,lNPF between MPC k of UE i and MPC l of UE j,
we use the Euclidean distance, i.e.,

d
(
f i,kNPF, f

j,l
NPF

)
= ‖f i,kNPF − f j,lNPF‖2.

To compute the CSI distance between UE i having K MPCs
and UE j having L MPCs, we consider the minimum pair-wise
distances, i.e.,

di,jNPF = min
k,l

d
(
f i,kNPF, f

j,l
NPF

)
, (8)

where k = 1, . . . ,K and l = 1, . . . , L.

A. Feature and/or Distance Selection

The optimum feature formation depends on the CSI data
characteristics like Line-of-Sight (LoS), Non-Line-of-Sight
(NLoS), the CSI statistics (angle spread,...), etc.

The normalized polar feature may provide better results in
challenging NLoS scenarios, whereas the rectangular feature
may provide better results when the signals from nearby UEs
propagate through similar paths. The CC quality depends on
the feature representation as well as the distance chosen. There
is not a unique feature vector formation and distance which
gives the best CC performance for any wireless environment.

In this paper, we post the following ”optimum feature and/or
distance selection problem using Machine Learning (ML)” as
a future research direction. We formulate it as follows: Given a
specific CSI dataset representing a unique wireless environment
and a set of feature vectors like the SRF, MPS, APF and
NPF presented on the previous subsections and among others,
how can we find the optimum feature vectors with optimum
weights and optimum distance matrix to yield a good CC or
accurate fingerprint localization? This optimization problem is
depicted in Figure 2. Because solving the ”optimum feature
vector selection problem by ML” is out of the scope of this
paper, in what follows we propose a novel simple method to
combine different distances (dissimilarities) for CC.

B. CDPR: Combining Distances of the Normalized Polar and
Rectangular Features

As illustrated by Figure 1 where there is no angular difference
and the difference between propagation delays is large, it is

Fig. 3. The combining method to calculate the distance (dissimilarity) between
two UEs using two CSI features / distances.

expected that the normalized polar feature performs better since
only its delay component has a large deviation, whereas for
the rectangular feature, both component have large deviation.
On the other hand, when LoS propagation exists between
UE and BS, the rectangular feature is expected to perform
better. Correspondingly, selecting the feature that yields smaller
distance is a natural choice for combining these features. We
summarize our method as ”Combining distances from two
features/distances by minimum operation”. The combining
method can be used with any two features/ distances. Figure 3
explains the combining idea using two features / distances.

We propose the ”Normalized Rectangular Feature (NRF)”
expressed as:

f i,kNRF =

[
τi,k cos (θi,k) /ac
τi,k sin (θi,k) /as

]
, (9)

where ac = max
i,k
|τi,k cos (θi,k)|, and as = max

i,k
|τi,k sin (θi,k)|.

As a result, treating the NRFs and NPFs separately can be used
for tackling difficult scenarios. We call the combination of NRF
and NPF features a Combined Distance of Normalized Polar
Feature and Normalized Rectangular Feature (CDPR). The
reason why both NPF (7) and NRFs (9) are normalized in the
same way is to avoid bias from different scales.

The following steps summarize the computation of feature
distance between UE i and UE j using CDPR:

1) Calculate the distance of the NPF of UE i and UE j
using (8).

2) Calculate the distance of the NRF of UE i and UE j as:

di,jNRF = min
k,l

d
(
f i,kNRF, f

j,l
NRF

)
,

where d
(
f i,kNRF, f

j,l
NRF

)
= ‖f i,kNRF − f j,lNRF‖2.

3) Compute the combined distance between UE i and UE j
as:

di,jCDPR = min
{
di,jNPF, d

i,j
NRF

}
. (10)

V. CHANNEL CHARTING

The underlying assumption of CC is that there exits a
continuous mapping from the spatial location zu of UE u
to the CSI feature yu at the BS [4]:

H : Rρ → CF ; H(zu) = yu. (11)

Here, ρ is the spatial dimension which is either 2 or 3, and F
is the feature dimension. CC starts by measuring the distance



of the CSI features between pairs of UEs as seen at the BS.
Next, based on the distance matrix, low dimensional channel
chart is found in a self-supervised manner, providing chart
locations for the set of UEs, such that UEs that are neighbors
in the physical space will be neighbors in the channel chart.
Several dimensionality techniques have been considered for
CC. We apply t-Distributed Stochastic Neighbor Embedding
(t-SNE) [19] for CC, as it has been shown to perform well
in [16], [20].

VI. PERFORMANCE EVALUATION

To assess feature performance, we assume that the original
space is the physical location space, and the representation space
is the CSI feature space. Note that this differes from direct
CC performance evaluation, where the representation space
woudl be the low-dimensional channel chart. The distance in
the original space is based on Euclidean distance, while the
distance in the representation space is based on CSI feature
distance.

To measure the degree of preserving the local topology, we
consider the continuity (CT) and trustworthiness (TW). For a
data set of U points, these can be computed by considering a
neighborhood of J points, denoted as VJ(zi), around locations
{zi}Ui=1 in the original space, and the J-neighborhood denoted
as V ′J(yi), around the corresponding points {yi}Ui=1 in the
representation space. The equations to compute the average
values are given as [21]:

CT(J) = 1− a
∑
i

∑
j∈VJ (zi)
j /∈V ′J (yi)

(r(i, j)− J) , (12)

TW(J) = 1− a
∑
i

∑
j /∈VJ (zi)
j∈V ′J (yi)

(
r
′
(i, j)− J

)
, (13)

where r(i, j) is the rank of a point zi in terms of its distance
from a point zj in original space, r

′
(i, j) is the rank of a point

yi in terms of its distance from a point yj in the representation
space and a = 2

UJ(2U−3J−1) is a normalization factor.
Global geometry preservation is measured by the Kruskal

Stress (KS). It is computed by comparing pairwise distance
matrix D̄ of the points in original space {zi}Ui=1 with pairwise
distance matrix D of points in the representation space {yi}Ui=1

using a distance scaling factor λ as [22]:

KS = min
λ

√√√√∑i,j

(
di,j − λd̄i,j

)2∑
i,j d

2
i,j

, (14)

where d̄i,j = ‖zi − zj‖2 and di,j = d(yi,yj).
All three metrics are in the range [0, 1] with the optimal

value being 1 for TW and CT and 0 for KS.

VII. SIMULATIONS RESULTS

A. Simulation Settings

We use the DeepMIMO data set to generate the CSI [23].
Channels are constructed based on ray-tracing data obtained
from the Remcom Wireless InSite [24] channel emulator.

TABLE I
SIMULATION PARAMETERS.

Parameter Value Parameter Value

Center Freq. 3.5 GHz Subcarriers 4086
Scenario O1-3p5 BW 100 MHz
BS Location [287.5, 489.5] m UE Locations Vert. str.
BS Height 6 UE Height 2 m
BS Array 32 ULA UE Array 1

Fig. 4. Simulation layout. The selected street segment is in pink colour. Two
BSs are indicated by a red and blue stars.

Figure 4 shows the simulation layout. Two BSs are considered,
marked with red and blue stars in the layout. The UEs are
located in the southern part of the vertical street. The streets
have buildings on both sides. Buildings are 60 m×60 m or
60 m×30 m, with the height written on the layout. A distance
of 1.2 m between adjacent UEs samples is considered. Table I
summarizes the simulation parameters. For the red BS, some
locations in the street are blocked.

The data set consists of 4100 UE locations for the red marked
BS, after filtering out the blocked locations. The set for the
the blue marked BS consists of 4400 UE locations. The super-
resolution features are taken directly from the data set. As seen
from the simulation layout in Figure 4, BS4 (red star) and at
BS6 (blue star) represents NLoS scenario and LoS scenario,
respectively.

B. CSI Feature and Distance Evaluation

We consider the following benchmark features and distances:

• The MPS feature as in (4) with Euclidean distance to
compute the pairwise distance between MPCs of two
UEs [15]. Then the minimum pairwise distance is used to
measure the distance between the two UEs.

• The APF given as in (5) with Euclidean distance to
compute the pairwise distance between MPCs of two UEs.



TABLE II
PERFORMANCE MEASURES FOR DIFFERENT CSI FEATURES AND DISTANCES
IN EXAMPLE 1. ALL MEASURES ARE IN [0, 1]; ↑ LARGE IS BETTER; ↓ SMALL

IS BETTER.

CSI Feature + Dist. CT↑ TW↑ KS↓
MPS + Euc. 0.642 0.855 0.831

APF + Euc. 0.933 0.955 0.952

SRF + EMD 0.995 0.976 0.266

SRF + Euc. 0.999 0.989 0.294

NRF + Euc. 0.999 0.989 0.289

NPF + Euc. 0.997 0.999 0.198

CDPR 0.997 0.999 0.197

Then the minimum pairwise distance is used to measure
the distance between the two UEs.

• The SRF given in (6) with EMD to compute the distance
between two sets of MPCs as in [11].

• The SRF given in (6) with Euclidean distance to compute
the pairwise distance between MPCs of two UEs. Then
the minimum pairwise distance is used to measure the
distance between the two UEs.

We examine the performance of the following proposed features
and distances:
• The NPF given in (7) with the with Euclidean distance to

compute the pairwise distance between MPCs of two UEs.
Then the minimum pairwise distance is used to measure
the distance between the two UEs.

• NRF in (9) with the with Euclidean distance to compute
the pairwise distance between MPCs of two UEs. Then
the minimum pairwise distance is used to measure the
distance between the two UEs.

• CDPR using the NPF and NRF and applying (10) to
compute the distance between two UEs.

C. Example 1: Challenging NLoS Scenario

The CSI of the UEs seen at red marked BS (BS 4 in
DeepMIMO) in the layout in Figure 4 is considered. The
majority of UE locations have NLoS propagation. We evaluate
the performance of several CSI features and distances in terms
of CT, TW and KS. We consider J = 100 neighbours (which
corresponds to 2.4% of the data set) to compute the CT and
TW. The results are presented in Table II.

As seen from Table II, the proposed CDPR gives state-of-the
art feature performance as compared to the CSI features and
distances from the literature in this example.

D. Example 2: LoS Scenario

The CSI of the UEs seen at blue marked BS (BS 6 in
DeepMIMO) in the layout in Figure 4 is considered. The
majority of UE locations have LoS propagation.

The CSI feature and distance performance results of this
scenario are presented in Table III. As seen from the table,
the best performance is obtained by the proposed NRF+Euc,

TABLE III
PERFORMANCE MEASURES FOR DIFFERENT CSI FEATURES AND DISTANCES
IN EXAMPLE 2. ALL MEASURES ARE IN [0, 1]; ↑ LARGE IS BETTER; ↓ SMALL

IS BETTER.

CSI Feat + Dist. CT↑ TW↑ KS↓
MPS + Euc. 0.724 0.844 0.722

APF + Euc. 0.836 0.991 0.233

SRF + EMD 0.996 0.992 0.148

SRF + Euc. 0.999 0.999 0.015

NRF + Euc. 0.999 0.999 0.014
NPF + Euc. 0.999 0.999 0.041

CDPR 0.999 0.999 0.027

which is very close to the performances of the SFR+Euc and
the proposed CDPR.

E. Channel Charting Results

We consider the t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) to create the channel chart. The perplexity
parameters is tuned to give the best results in terms of the
TW, CT and KS performance results. The channel charts for
Example 1 and Example 2 are shown in Figure 5 and Figure 6,
respectively. We create the channel chart for SRF with EMD
and the combined distance CDPR. The figures show that CC
based on CDPR looks much better for both LoS and NLoS
scenarios compared to the SRF with EMD.

VIII. CONCLUSIONS

In this paper we considered angle-delay super resolution
Channel State Information (CSI) feature for Channel charting. In
challenging None-Line-of-Sight (NLoS) propagation conditions,
the received signal at the base station from two nearby locations
may have a small angle difference but a large delay difference.
Considering the Cartesian coordinate (rectangular) CSI feature
representation may lead to a large CSI distance. To tackle
this problem, we treated the angle and delay separately and
formulated the normalized polar CSI feature. We considered
the Euclidean distance to measure the distance between two
multi-path components, each belonging to a different User
Equipment (UE). We consider the minimum pair-wise distance
to measure the distance between two UEs. To handle different
propagation conditions, we combined the distances in the
normalized rectangular feature space and the normalized polar
feature space. Simulation results based on the DeepMIMO data-
set show that the proposed super-resolution representation with
the Euclidean distance provides state-of-the-art CC quality.
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Fig. 5. Example 1: red marked BS: (Left): UE physical location, sampled UE locations marked by colors. (Middle): CC based on EMD. (Right): CC based on
CDPR. CC locations are marked by colors corresponding to the physical locations.
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Fig. 6. Example 2 : (Left): UE physical location, sampled UE locations marked by colors. (Middle): CC based on EMD. (Right) CC based on CDPR. CC
locations are marked by colors corresponding to the physical locations.
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ganathan, G. Masini, Å. Busin, and F. Gunnarsson, “Positioning in 5G
networks,” IEEE Commun. Mag., vol. 59, no. 11, pp. 38–44, 2021.

[2] X. Fang, W. Feng, Y. Chen, N. Ge, and Y. Zhang, “Joint communication
and sensing toward 6G: Models and potential of using MIMO,” IEEE
Internet Things J., vol. 10, no. 5, pp. 4093–4116, 2023.

[3] A. Xhafa, J. A. del Peral-Rosado, J. A. Lopez-Salcedo, and G. Seco-
Granados, “Evaluation of 5G positioning performance based on UTDoA,
AoA and base-station selective exclusion,” Sensors, vol. 22, no. 1, 2022.

[4] C. Studer, S. Medjkouh, E. Gonultas, T. Goldstein, and O. Tirkkonen,
“Channel charting: Locating users within the radio environment using
channel state information,” IEEE Access, vol. 6, pp. 47 682–47 698, 2018.

[5] L. Maaten, E. Postma, and H. Herik, “Dimensionality reduction: A
comparative review,” 2008.

[6] L. L. Magoarou, “Efficient channel charting via phase-insensitive distance
computation,” IEEE Wireless Commun. Lett., vol. 10, no. 12, pp. 2634–
2638, 2021.

[7] P. Kazemi, H. Al-Tous, T. Ponnada, C. Studer, and O. Tirkkonen, “Beam
SNR prediction using channel charting,” IEEE Trans. Veh. Technol., pp.
1–16, 2023.

[8] P. Ferrand, A. Decurninge, L. G. Ordonez, and M. Guillaud, “Triplet-
based wireless channel charting: Architecture and experiments,” IEEE J.
Sel. Areas Commun., vol. 39, no. 8, pp. 2361–2373, 2021.

[9] C.-X. Wang, J. Bian, J. Sun, W. Zhang, and M. Zhang, “A survey of 5g
channel measurements and models,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 4, pp. 3142–3168, 2018.

[10] H. Xu, Y. Zhang, B. Ba, D. Wang, and X. Li, “Fast joint estimation of
time of arrival and angle of arrival in complex multipath environment
using OFDM,” IEEE Access, vol. 6, pp. 60 613–60 621, 2018.

[11] H. AL-Tous, P. Kazemi, C. Studer, and O. Tirkkonen, “Channel charting
with angle-delay-power-profile features and earth-mover distance,” in
Proc. of Asilomar Conference on Signals, Systems, and Computers, 2022,
pp. 1195–1201.

[12] A. Sobehy, E. Renault, and P. Muhlethaler, “CSI-MIMO: K-nearest
neighbor applied to indoor localization,” in Proc. ICC, 2020, pp. 1–6.

[13] X. Sun, X. Gao, G. Y. Li, and W. Han, “Single-site localization based
on a new type of fingerprint for massive MIMO-OFDM systems,” IEEE
Trans. Veh. Technol., vol. 67, no. 7, pp. 6134–6145, 2018.

[14] E. Gonultas, E. Lei, J. Langerman, H. Huang, and C. Studer, “CSI-Based
multi-antenna and multi-point indoor positioning using probability fusion,”
IEEE Trans. Wireless Commun., vol. 21, no. 4, pp. 2162–2176, 2022.

[15] B. Fleury, M. Tschudin, R. Heddergott, D. Dahlhaus, and K. I. Pedersen,
“Channel parameter estimation in mobile radio environments using the
SAGE algorithm,” IEEE J. Sel. Areas Commun., vol. 17, no. 3, pp. 434–
450, 1999.

[16] J. Deng, S. Medjkouh, N. Malm, O. Tirkkonen, and C. Studer, “Multipoint
channel charting for wireless networks,” in Proc. Asilomar Conf. Sign.,
Syst., Comput., Oct. 2018, pp. 286–290.

[17] N. Czink, P. Cera, J. Salo, E. Bonek, J. pekka Nuutinen, and J. Ylitalo,
“A framework for automatic clustering of parametric MIMO channel data
including path powers,” in Proc. of IEEE VTC, 2006, pp. 1–5.

[18] M. Steinbauer et.all, “How to quantify multipath separation,” IEEE Trans.
Electron, vol. E82, pp. 1–5, 1999.

[19] L. van der Maaten and G. Hinton, “Visualizing data using tSNE,” J Mach
Learn Res, vol. 9, pp. 2579–2605, Nov. 2008.

[20] L. van der Maaten, “Learning a parametric embedding by preserving
local structure,” in AISTATS, 2009.

[21] J. Venna and S. Kaski, “Neighborhood preservation in nonlinear projection
methods: An experimental study,” in Proc. ICANN, 2001, pp. 485–491.

[22] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis,” Psychometrika, vol. 29, pp. 1–27, 1964.

[23] A. Alkhateeb, “DeepMIMO: A generic deep learning dataset for millimeter
wave and massive MIMO applications,” in Proc. ITA, Feb. 2019, pp. 1–8.

[24] Remcom, “Wireless InSite,” http://www.remcom.com/wireless-insite.


