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Abstract In this paper we introduce a novel approach for modeling planetary magnetospheres that
involves a combination of the hybrid model and the paraboloid magnetosphere model (PMM); we further
refer to it as the combined hybrid model. While both of these individual models have been successfully
applied in the past, their combination enables us both to overcome the traditional difficulties of hybrid
models to develop a self-consistent magnetic field and to compensate the lack of plasma simulation in

the PMM. We then use this combined model to simulate Mercury’s magnetosphere and investigate the
geometry and configuration of Mercury’s magnetosheath controlled by various conditions in the
interplanetary medium. The developed approach provides a unique comprehensive view of Mercury's
magnetospheric environment for the first time. Using this setup, we compare the locations of the bow
shock and the magnetopause as determined by simulations with the locations predicted by stand-alone
PMM runs and also verify the magnetic and dynamic pressure balance at the magnetopause. We also
compare the results produced by these simulations with observational data obtained by the
magnetometer on board the MErcury Surface, Space ENvironment, GEochemistry, and Ranging
(MESSENGER) spacecraft along a dusk-dawn orbit and discuss the signatures of the magnetospheric features
that appear in these simulations. Overall, our analysis suggests that combining the semiempirical PMM with
a self-consistent global kinetic model creates new modeling possibilities which individual models cannot
provide on their own.

1. Introduction

Generally, semiempirical magnetosphere models represent the total magnetospheric field as a sum of current
system field contributions. Input parameters for this class of models are usually estimated by executing least
squares minimization to fit the model field along a spacecraft trajectory to experimental data. This approach
was pioneered by Mead and Fairfield [1975], who used over 12,000 vector field averages based on 451 orbits
of four IMP satellites. An important feature of many semiempirical models is modularity, i.e., the possibility
to fine tune parameters for any chosen current system independently. Some of the early models have had a
modular structure from the outset [Alekseev and Shabansky, 1972], while others [Tsyganenko, 2002] developed
this capability as they matured.

Tsyganenko and Usmanov [1982] proposed an analytical model that incorporated a mathematical descrip-
tion of contributions by magnetopause currents, ring current, and magnetotail current sheet. This model
required 21 linear coefficients and seven nonlinear parameters for operation. It was later improved by dou-
bling the number of vector averages used for the initial fitting and extending the modeling region far into
the magnetotail [Tsyganenko, 1987]. The full version of this model required 26 parameters and was valid tail-
ward to distances of —70 R, while a simplified version only required 20 parameters but was valid to —30 R.
Further enhancements of this model include better description of magnetotail current sheet geometry and
thickness [Tsyganenko, 1989], fully controlled shielding of magnetospheric current system contributions, an
improved shape of the magnetopause [Tsyganenko, 1995], heavily revised representations for major field
sources [Tsyganenko, 2002], and adoption of the approximation of the magnetopause surface introduced
in Shue et al. [1997].

PARUNAKIAN ET AL.

SIMULATION OF MERCURY'S MAGNETOSHEATH 8310


http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2169-9402
http://orcid.org/0000-0002-5468-4060
http://orcid.org/0000-0003-2057-5365
http://orcid.org/0000-0002-9791-804X
http://dx.doi.org/10.1002/2017JA024105
http://creativecommons.org/licenses/by/4.0/

@AG U Journal of Geophysical Research: Space Physics 10.1002/2017JA024105

The present work is based on the dynamical paraboloid model first introduced in Alexeev et al. [1996]. In this
case the magnetospheric field is represented as a linear sum of the contributions of distinct magnetic field
sources. An improvement to this model introduced by Alexeev et al. [1998] describes locations of merging
on the magnetopause as a function of interplanetary magnetic field (IMF) orientation. The extended version
of the model can be applied to space both inside and outside the magnetopause. The magnetic field in the
region between the magnetopause and the bow shock, each approximated by a paraboloid of revolution, is
represented as a sum of two components— namely, the uniform field penetrating the magnetopause which
is independent of both time and spatial coordinates and the residual field whose normal component is equal
to zero at any point of the magnetopause. Although the paraboloid model offers an unrealistic divergent
magnetopause shape toward the nightside, it should be noted that in the nightside region magnetopause
currents are weak, and the errors introduced are not substantial.

This model is similar to the model introduced by Kobel and Fliickiger [1994], who also represent the shape
of the magnetopause and the bow shock by a rotational paraboloid with a sunward axis. It uses the scalar
potential approach to derive an analytical representation of a stationary magnetic field in the magnetosheath
that depends on IMF components and the stand-off distances of the magnetopause and the bow shock.

Mercury’s magnetopause was first described by the paraboloid model in Alexeev et al. [2008]. In this work
measurements during two Mariner 10 spacecraft flybys were used to fit the magnetospheric parameters. The
magnetic dipole moment was determined to be equal to By = 192 nT X R},, and the dipole center was found
to be offset by 0.18 R,, along the Z axis toward the north pole. These results were slightly revised in Alexeev
etal.[2010], which used magnetic field measurements taken during two MErcury Surface, Space ENvironment,
GEochemistry, and Ranging (MESSENGER) flybys. Various erosion mechanisms partially responsible for reduc-
tion of the magnetopause stand-off distance and the changes in the external field were later investigated in
more detail by Heyner et al. [2016]. In Johnson et al. [2012], the paraboloid model was used to fit MESSENGER
magnetometer data from March to December 2011 and made it possible to realize an RMS misfit of less than
20 nT. In Korth et al. [2015] the modular model of Mercury’s magnetospheric field KT14 is proposed, based
on ideas presented in Tsyganenko [2013] and confined by the magnetopause shape described in Shue et al.
[1997] for the terrestrial magnetopause.

Plasma and magnetic field in Mercury’s magnetosphere have been investigated by several different numerical
simulation methods. Test particle simulations have provided insight into the acceleration of charged particles
in given electric and magnetic fields [e.g., Ip, 1987; Delcourt et al., 2002]. Magnetohydrodynamic (MHD) mod-
els treat plasma as a charged fluid and have enabled studying the self-consistent properties of plasma and
fields [e.g., Kabin et al., 2000; Jia et al., 2015]. Hybrid models treat ions as particles and electrons as a mass-
less neutralizing fluid and provide a self-consistent approach which includes ion kinetic effects. Such models
can have a non-Maxwellian velocity distribution function [e.g., Kallio and Janhunen, 2003a, 2003b; Trdvniéek
et al., 2007; Miiller et al., 2012]. Full kinetic particle-in-cell (PIC) models contain electron kinetics and charge
separation effects [e.g., Nakamura et al., 2010].

All of these numerical simulation approaches have their advantages and weaknesses. The change of the
model approach from test particle simulations to MHD, to a hybrid, and to a PIC model increases the
self-consistency of the approach and reduces the number of necessary assumptions at the expense of perfor-
mance. Computational costs must then be compensated, for example, by making a local simulation, using a
coarse spatial resolution, or by using different modeling approaches in different space regions, such as using
alocal PIC simulation within a global MHD simulation [e.g., Téth et al., 2016]. Therefore, the choice of the most
useful modeling approach or a combination of different modeling approaches depends on the purpose of
the simulation run and the specific application.

The goal of this paper is to combine a numerical model and a semiempirical model in order (1) to decrease
computational costs of numerical kinetic simulations for a relatively large grid size and (2) to introduce the
bow shock the and magnetopause current sheets into the initial magnetic field condition; improving the
accuracy of determining positions of the bow shock and the magnetopause (which are by definition mag-
netosheath boundaries) allows us to better understand the dependence of magnetosheath geometry on
external parameters. This methodology enables us to determine the region in the magnetosheath where non-
linear IMF effects are realized and to study the magnetosheath velocity and density distributions as well as the
effects of the magnetic field draping and of IMF and planetary magnetic field reconnection. Also, this combi-
nation results in amodel which includes both kinetic effects and an empirical high-resolution magnetospheric
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magnetic field. Moreover, in the model the electric field is connected self-consistently to the properties of
plasma and the magnetic field. This results in a new 3-D modeling approach which provides new possibilities
to study not only Mercury's magnetosphere but also other planetary and exoplanetary magnetospheres.

In section 2, we describe the mathematical foundations of both the semiempirical model and the hybrid
model applied in this work and define used parameters and grid structure. We describe the results produced
by the modeling efforts in section 3 and discuss them in detail in section 4.

2. Model Information

2.1. Overview

Traditionally, a planetary dipole field is used as the initial magnetic field condition for hybrid simulations.
While this approach has proved fruitful, evidently, it leaves much room for improvement [see, e.g., Kallio and
Janhunen, 2003a]. By adding all the paraboloid magnetosphere model (PMM) current systems to the initial
conditions we start the model from a state closer to the final solution. The magnetopause currents and mag-
netotail current system are most certainly present in a stationary solution despite being generated by the
plasma flow. Additionally, there is a permanent influence exerted by a portion of the interplanetary magnetic
field penetrating the magnetosphere.

We first note that since —V x E(r,t) = %, we can safely add to the PMM an arbitrary constant uniform
externally induced magnetic field while maintaining the integrity of the MHD solution. We can take advantage
of this by utilizing the property of the paraboloid magnetosphere model [Alexeev, 1986] that the magnetic
field terms are linearly independent in parabolic coordinates. We also note that modeling a very thin current
sheet would require a higher grid resolution; this can make the simulation computationally expensive and
may cause numerical instabilities that can destroy the solution. On the other hand, inclusion of numerical
diffusion for stability reasons would smooth out sharp electric current sheets.

2.2. Hybrid Model

While the hybrid simulation [Kallio and Janhunen, 2003a] used enables modeling of multiple ion species, in
this work we have limited its scope to only include solar wind protons; studying the influence of addition of
planetary ions such as Na* and K* ions on the combined model is one of the planned future studies.

In this model, batches of protons are represented as cubic clouds of uniform charge density and of the same
dimensions as MHD grid cells. Such clouds are referred to as macroparticles. A macroparticle contributes to
all grid cells it overlaps with, weighted proportionally to the volume overlapping with each cell:

dw;(r,) = w(dVj(r,)/dV)

Here dV is the volume of grid cells where the center of macroparticle is, dV/(r, ) is the volume of the intersection
of a given macroparticle j with the grid cell at ry, w; is the resulting weighting parameter determining the
contribution of the macroparticle j to the grid cell, and w is the total number of real particles in a macroparticle.
Multiple macroparticles can overlap with any one cell; the resulting particle density n and the proton bulk
velocity U are therefore calculated as

2 w(ry)
n(rk) = +
2w,
U = e—
(rk) EJ- H{;(rk)

where v; is the velocity of macroparticle j.

2.3. Paraboloid Magnetosphere Model

As follows from its name, the key concept of the PMM is the assumption that the magnetopause can be
represented by a paraboloid of revolution around the sunward axis in the solar-magnetospheric coordinate
system centered on the planetary dipole position. The PMM represents the total magnetospheric field as a
linear superposition of magnetic fields from various sources, including fields created by magnetopause cur-
rents and the tail current system. We propose to represent the total IMF vector as a sum of two magnetic field
components, based on the assumptions made in Alexeev and Kalegaev [1995]:

B = By + b (m
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Figure 1. Comparison of MESSENGER data (black line) and paraboloid model forecast (red line) (Orbit 418). (top left) |B|
and (top right) By. (bottom left) By and (bottom right) B field components. PMM parameters used: Bp = —196 nT,
BT =61 nT, R'l =1.45 Rm, R2 = 170RM' and BlMF = [4.0, -1 0.0, 100] nl.

Here By is the IMF component fully shielded by the magnetopause currents. This magnetic field is mostly
undisturbed upstream of the bow shock aside from the contribution of reflected ions. The influence of B,
deforms the draping around the magnetopause and creates a magnetic barrier. The By, component is
strongly controlled by plasma currents in the simulation box [Heyner et al., 2016]. The b, component is the
residual uniform field penetrating the magnetosphere; it is determined by the reconnection efficiency. If the
reconnection efficiency grows to 1, b, grows to the total IMF value (20 nT in our case); if the reconnection
efficiency falls to 0, b, also falls to 0. The uniformity of b, is a consequence of the fact that both the magnetic
diffusion velocity and the radius of the paraboloid are proportional to \/)_( [Alexeev, 1986] in the Mercury
Solar Orbital (MSO) coordinate system; in this system, the X axis points from Mercury’s center toward the
Sun, Z points northward normally to the orbit plane, and Y completes the right-hand system nominally
directed opposite Mercury’s orbital velocity around the Sun. Thus, we observe the same penetrating field
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independent of the tailward distance X. The uniform field b, cannot be created by currents inside the simu-
lation box; rather, it is generated by currents or constant magnets located at infinite Z outside the simulation
box. Thus, this field must be defined as some b, which is not included in the induction equation, while By,
determines boundary conditions on the left side of the box and induction equations.

The general solution for the IMF-induced perturbation field b, is a uniform field collinear to the undisturbed
IMF field, b, = kB¢, where x denotes the factor of reconnection efficiency. For instance, a value of magnetic
Reynolds number R, = 10* [Alexeev, 1986] corresponds to ¥ = 0.07. Generally, we can verify this value by
running the simulated flow past some nonconductive paraboloid-shaped body while maintaining the condi-
tion of V,, = 0 at the paraboloid surface (the magnetopause). We can then use the strength of the magnetic

field inside the paraboloid to compute the reconnection efficiency. An independent way to estimate the
Va

Vou
[Heyner et al., 2016]; e.g., in case of V, = 40 km/s and V,, = 400 km/s, only x = 0.1 of the total B penetrates

into magnetosphere.

reconnection efficiency (which is used in this work) would rely on using the Mach number ¥ = M;' =

The precise value of magnetic field to be added can be determined by fitting the PMM magnetic field along
the MESSENGER orbit to magnetometer data by running the Levenberg-Marquardt algorithm [Marquardt,
1963] to solve the least squares curve fitting problem of optimizing the PMM parameters to match magnetic
field measurements along individual MESSENGER orbits for follow-up research.

We find that the paraboloid magnetosphere model is in good agreement with Mercury’s magnetospheric
field per MESSENGER magnetometer observations, with a global RMS misfit of less than 20 nT [Alexeev et al.,
2010] (Figure 1). The PMM has also been validated by examining the accuracy of its description of individual
contributions of the magnetopause, magnetotail, and internal magnetic fields [Johnson et al., 2012].

We then proceed to calculate the magnetic field produced by the PMM seeded with parameter values found
during the fitting process for an individual orbit in the nodes of a parallelepipedal grid and assimilate these
values into the hybrid model.

2.4. Combined Hybrid Model

2.4.1. Magnetic and Electric Fields

The magnetic field in the new combined hybrid model (CHM), B(r, t), is a combination of three magnetic field
terms:

B(r, t) = By (r. t) + by + By (r) @
The terms in this equation are the following:

1. b, is constant penetrating interplanetary magnetic field (IMF).

2.Bpum(r) = By (") lrcsyor Bomm(r) = 0|, . is a time-independent paraboloid magnetospheric model
(PMM) magnetic field.

3. By, (r, t) is hybrid model (HM) magnetic field associated with the electric current of ions and electrons.

The PMM magnetic field Bpyy, (F) is zero outside the magnetopause (MP), i.e., at r > ryp. It can be defined inside
the simulation box as a sum of three terms:

Boym(r) = Bpp(r) + B (r) + By(r), (3)

where Bpp(r) is the field of the planetary dipole, Bi(r) is the field of the tail current, and B (r) is the
Chapman-Ferraro current magnetic field, which confines the dipole field inside the magnetopause. Therefore,
the magnetopause divides the magnetic field into two regions (Figure 2):

B(r,t) = Bym(r,t) + bg |, e (4a)

B(r,t) = Bpym(r) + by |r<{MP (4b)

At the beginning of simulation at t = 0 s the magnetic field within the whole simulation box is initialized with
a constant IMF field and the PMM magnetic field:

B(r,0) = Bpy(r) + by (5)

PARUNAKIAN ET AL.

SIMULATION OF MERCURY'S MAGNETOSHEATH 8314



@AG U Journal of Geophysical Research: Space Physics 10.1002/2017JA024105

B(r,t) = Bgu(r,t) + by

B(r) = Bpum(r) + by
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Figure 2. Magnetic field regions in the combined hybrid model (CHM). Cells marked by blue color form a region above
the magnetopause of the PMM where the time-dependent magnetic field is a superposition of the magnetic field of the
hybrid model (By,) and a constant IMF (by). Cells marked by red color form a time-independent magnetic field region
where the magnetic field is a combination of the PMM magnetic field of (Bpy) and a constant IMF. Cell size is 0.33 Ry,
(805 km), and the sphere shows the size of Mercury.

Technically, the IMF and the PMM magnetic fields are included in the simulation by deriving their values in
the centers of simulation cells. In the hybrid model the magnetic field is propagated by Faraday’s law from
the electric field E [Kallio and Janhunen, 2003al:

6B(r,t)
ot

The electric field is derived from the electron momentum equation from proton bulk velocity U,,., density n,
and the associated magnetic field [Kallio and Janhunen, 2003al:

j < B VxB)xB
E=—UH+><B+J—=—UH;><B+&
en enuy,

where e is the positive unit charge and g, is the vacuum magnetic permeability.

= -VxEr1) (6)

@)

Here we assume that plasma is quasi-neutral, i.e,, that the density of protons is equal to the density of
electrons. The magnetic field is therefore propagated as

6B{r,t)__ _(VxB)xB
BED v (u,# xp- (BB ) ®)

It is informative to observe how this equation looks outside and inside of the magnetopause, i.e., at r>ry,,
and r < ryp, respectively:

8B(r, 1) V x B,
——=Vx [(—UHJ, + enﬂ:" X [Buw + bo] | | r> e (9a)
6B(r, 1)
_(St =0 I r<ryp (gb)
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Equation (9a) implies that outside of the PMM magnetopause the magnetic field is propagated as typically
done in the hybrid model and that the resulting magnetic field is propagated in time self-consistently by
using plasma properties. Equation (9b) shows that the magnetic field is assumed to be unchanged within
the magnetosphere. Our approach is valid as long as the IMF in Mercury’s environment does not change
during the orbit duration. Conditions such that the IMF vector is the same during the inbound and outbound
sections of a MESSENGER orbit are actually a common occurrence. It would be also natural to constrain
the selection of orbits to those that display identical solar wind plasma parameters; however, since the
MESSENGER mission lacked a suitable instrument for low-energy plasma measurements, creating such a filter
appears to be infeasible at this time.

2.4.2, Particles

The two macroscopic plasma parameters needed in the magnetic field propagation, n and U,,., are derived
by accumulating the mass and momentum of protons within cells (see Kallio and Janhunen [2003b] for details
of the used particle accumulation schema). Protons are accelerated by the Lorentz force

m‘;_‘;:e(swxs) (10

where v and m are the velocity and the mass of a proton, respectively. The magnetic and electric fields in
equation (10) are given by equations (2) and (7), respectively.

2.4.3. Simulation

The coordinate system we use is as follows. The X axis points from the origin (dipole position) toward the Sun.
The dipole magnetic moment is oriented along the Z axis, which is perpendicular to the X axis, and the Y axis
completes the right-hand coordinate system. Mercury is represented as a sphere of an R,; = 2440 km radius.
The planet’s center is shifted southward by 0.2 R, along the Z axis. The dimensions of the simulation box span
[-4 R, 4 R,;] along the X axis and [-5 R,;, 5 R,,] in all other directions, cell size is dx = dy = dz = 0.33R,, =
488 km, the average number of macroparticles per cell is 30, and the simulation time step is dt = 0.00125 s.
Bulk velocity U,,, particle density n,,,, and temperature T, of the solar wind protons are 430 km/s, 76 cm3,
and 2.24 x 10° K, respectively. The IMF X and Y components are equal to 0, but the value of the Z component
varies in order to study how the solution differs in the "closed” and “open” magnetosphere cases, i.e.,, when
the IMF Z component is positive and negative, respectively.

2.5. Model Restrictions and Simplifications

To improve the accuracy of the seed field, we need to take into account the aberration of magnetosphere
by Mercury’s relative motion. Since the orbit of the planet is highly eccentric (¢ ~ 0.66), Mercury’s orbital
velocity varies from 40 km/s to 50 km/s. As this value is in the range of 5% to 10% of solar wind flow veloc-
ity, it is to be expected that Mercury’s magnetosphere will not be exactly sunward oriented but will rather
experience aberration reflecting the actual direction of solar wind arrival. While we have successfully applied
this correction in other work [Parunakian et al., 2016], we are yet to introduce it to our combined hybrid
modeling efforts.

We also assume that the magnetic dipole axis and the planet’s rotation axis coincide and are aligned normally
to the orbital plane. This is not strictly true but is acceptable as a first approximation.

3. Results

3.1. Model Run Parameters and Variables

For the purpose of sanity check the model was initially run in a synthetic environment. We used the fol-
lowing parameter values to compute the PMM seed field: (1) Mercury radius R,, = 2440 km; (2) magnetic
dipole field at the magnetic equator on Mercury’s surface B, = —196 nT and the magnetic field at the inner
edge of the tail current B, = 131 nT (which corresponds to open field line magnetic flux of ® = 4 MWb) as
found by fitting the PMM to MESSENGER flyby data [Alexeev et al., 2010]; the dipole is assumed to be oriented
along the Z axis; (3) subsolar distance to the magnetopause R, = 1.4R,,; (4) distance to the inner edge of
the tail current system R, = 1.25R,;; and (5) northward dipole displacement in the MSO coordinate system
dz =0.2R,,.

In the Mercury Solar Orbital coordinates the X axis is directed from Mercury center to the Sun, the Y axis
is directed parallel to Mercury’s orbital velocity and is located in Mercury’s orbital plane, and the Z axis is
perpendicular to the XY plane and parallel to Mercury’s axis. Since the MESSENGER mission was not equipped
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to measure solar wind parameters, they must be determined based on our knowledge of the magnetopause
location, as it is determined by the balance of magnetospheric magnetic pressure and solar wind pressure:

2

Psw = kpsuV2, = kmyng, V2, = ﬁ (1)

Here m, = 1.6726219 x 107’ kg is the mass of the proton, y; = 4z107"T - m/A is the vacuum perme-
ability constant, k ~ 0.88 is a constant for the high Mach number flow of monatomic gas, and B is the

magnetospheric magnetic field in the subsolar point at the surface of magnetopause.

For instance, if we assume mean solar wind dynamic pressure at 1 AU to be equal to P, 5, = 2.15 nPa [Vulpetti,

2012], and V,,, = 390 km/s [King and Papitashvili, 2005], then P,, = 10.62 nPa and n;, = ﬁ =475cm3,
-]

- =

asPy = ﬁ;—;'“, where Ay, is the distance from Mercury to the Sun expressed in AU for Mercury located closely
M

in aphelion (0.45 AU). Subsequently, the magnetospheric magnetic field at the magnetopause subsolar point

equals to

B
B, =C, R—‘3‘=152nr (12)

1

p

Here the C,, = 2.44 coefficient is required to take into account that the magnetic field of dipole and mag-
netopause currents is 2.44 times the dipole field at the subsolar point [Mead and Beard, 1964] to achieve a
self-consistent solution of the Chapman-Ferraro problem. From equation (12) we find R, = 1.46 R,.

Our estimates of the tail current system parameters closely match those made by Poh et al. [2017]. In that work,
the magnetic field at the inner edge of the tail current B, = uydj = 110 nT, where d = 0.39R,,, j = 92 nA/m?,
and the distance to the inner edge of the tail current system is 1.22 Ry,. In that work, these parameters were
computed taking into account the contribution of planetary ions to the stress balance in the central plasma
sheet. This important factor lies outside of the immediate scope of the present work; however, we believe
that the similarity of the parameters we use to those computed by Poh et al. [2017] is a reasonably good
sanity check.

The actual solar wind parameters used are somewhat different: n,, = 23.26 cm=32 and V,,, = 400 km/s in order
to achieve R, = 1.4R,, (value computed by fitting the PMM to magnetic field measurements during the first
magnetospheric transit in orbit #418 on 12 October 2011). We then proceed with executing the modeling
runs, setting IMF B,, = B, = 0 nT and initializing B, with either of two configurations:

1. B, = —4 nT as the constant penetrating field and B, = —16 nT as the left boundary condition.
2. B, = 4 nT as the constant penetrating field and B, = 16 nT as the left boundary condition.

These b, configurations correspond to IMF B, with 20 nT magnitude and a strictly southward or a strictly
northward orientation and a x coefficient of 0.2.

3.2, Difference in the IMF Flow Past Magnetosphere in Cases of Open and Closed Magnetosphere

We now turn to the results of hybrid simulation initialized with magnetic field conditions. Figure 3 presents
plasma density in logarithmic scale indicated by false color. Figure 3 (left) displays results for a positive B, and
Figure 3 (right) displays results for a negative B,. The average lobe density is lower in case of northward IMF. Tail
lobe diameter, judging by the plasma population, is smaller in case of northward IMF, which is in agreement
with other plots. Both IMF orientations lead to growth of plasma density in magnetopause flanks, tail current
sheet, and the nose cone of the magnetopause relative to IMF B; = 0, but the effect is more pronounced in
case of southward IMF. While with northward IMF the density regime changes match the boundaries of the
magnetosheath well, with southward IMF we observe that plasma density in the subsolar region of the mag-
netosheath is depleted by a factor of 5. This can probably be attributed to the pileup of magnetic flux in the
equatorial region.

A similar plot of particle velocity distribution cannot be easily built at this time. In some areas of the plot the
number of simultaneously present macroparticles is low, so the contribution weight of each one is very high.
Despite utilization of techniques like particle splitting inside the PMM region, the resulting number of particles
is still insufficient to allow for a realistic picture of velocity distribution.

Let us now examine the superpositions of the magnetic field Z components in northward (B;,) and south-
ward IMF (B,) cases, i.e,, Eﬁ_?%'- (Figure 4) and Eﬁ%%'- (Figure 5) fields. These figures show two cross sections:
equatorial (left) and noon-midnight (right).
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Figure 3. The XZ cross section of plasma density logarithm (log;q n[m3], false color) for (left) northward and (right)
southward IMF in the CHM. The black lines denote magnetopause and bow shock surfaces.

The first case (Figure 4) allows us to discard the PMM contribution, as its sign is identical for both runs (in the
red area of Figure 2), while retaining the IMF contribution, as By ; has opposite signs during the two runs
(in the blue area of Figure 2). This allows us to observe the effect of northward IMF draping generated as
the solar wind plasma flows past the planet’s magnetosphere. The contributions of the dipole field and the
infinitely thin magnetopause current which confines the dipole field inside the magnetopause are canceled
out in this case, and inside the magnetosphere we only have the penetrating b, field. Upstream of the bow
shock the draped B,y is uniform and equal to —20 nT. Downstream of the bow shock we see that electric
currents connected with ions reflected by the magnetopause form a magnetic barrier. It appears as a jump in
IMF after bow shock crossing.

Similarly, the second case (Figure 5) allows us to discard the IMF contribution while retaining the PMM
contribution. Here the external boundary of the disturbed region corresponds to the bow shock position.

To further improve our understanding of reconnection properties for northward and southward IMF, we run
the combined hybrid model in double-resolution mode and with V x B = 0 condition imposed. On the

1.0e-07 1.0e-07
N... V...
0o oo
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-1.0e07 -1.0e-07

Figure 4. The magnitude of 2&=22% in the CHM in Teslas: (left) the XY plane and (right) the XZ plane. The PMM
contributions, By, have the same sign for closed and open magnetosphere inside the magnetopause and cancel each
otherin 25282 Here Bz and By, are the Z components of the total magnetic field in cases of northward and
southward IMF.
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Figure 5. The magnitude of @ in the CHM in Teslas: (left) the XY plane and (right) the XZ plane. The IMF
contributions, By, have opposite signs for closed and open magnetosphere outside the magnetopause and cancel

each other in 2224 Here Bzs and Bz, are the Z components of the total magnetic field in cases of northward and
southward IMF.

resulting Figure 6 red denotes the negative X component field up to B, = —10 nT, and blue denotes the pos-
itive X component field up to By = 10 nT. B, at the left boundary of the simulation box is set to +16 nT or
—16 nT accordingly to maintain the total B; in the undisturbed flow equal to 20 nT. The magnetic field recon-
nection efficiency factor is chosen equal to ¥ = 0.2 [Alexeev, 1986]; we will address this issue later in more
detail. Our results demonstrate that ¥ < 1.0, but for a more precise calculation of x we need a detailed esti-
mation of the numerical conductivity and to take into account the modeling time scaling ratio to real plasma
instability increments. These points lie beyond the scope of the present paper.

We have used the following method to determine magnetopause and bow shock positions in Figures 6
and 3, which describe magnetic field and plasma density for the two modeling runs under discussion.

. 5.0e-08

2.5e-08

00

-2.5e-08

. -6.0e-08

X ¥

Figure 6. High-resolution plot of magnetosphere-solar wind interaction for reconnection efficiency value of x = 0.2 in
case of (left) northward and (right) southward IMF in the CHM. Color denotes the X component of the magnetic field
in Teslas, and yellow arrows indicate the direction of magnetic field lines. The position of the bow shock and the
magnetopause are shown with black lines. The parameters for northward IMF used in the PMM are R; = 1.7 Ry, and
Rps = 2.4 Ry;. Parameters for southward IMF are Ry = 1.42 Ry, and Ry, = 2.4 Ry,.
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The magnetopause position has been chosen for northward IMF so that it lies on the surface dividing the
modeled space into two regions, one occupied by IMF field lines and the other one occupied by magnetic
field lines connected to Mercury's surface. This boundary surface can be easily determined at the dayside
magnetopause. For southward IMF the magnetopause has been chosen so that it passes through the day-
side equatorial X point separating the area where the magnetic field is dominated by the planetary dipole
from the area where the magnetic field is dominated by the IMF. The bow shock position was chosen
empirically (similarly to Kallio and Janhunen [2003a]) to fit the observed density jump with a paraboloid sur-
face for both IMF directions. It shall be noted that although the subsolar area of the bow shock is poorly
described by a paraboloid for southward IMF (likely due to erosion), it describes the flanks of the bow shock
well enough.

For southward IMF dayside reconnection occurs in the magnetic field’s 2-D neutral point located at the
noon magnetopause and coincides with the plasma velocity stagnation point [Sonnerup, 1970]. For north-
ward IMF there are two 3-D magnetic field neutral points in the cusp regions, located approximately at the
planet’s terminator. Generally, the 3-D neutral points of magnetic field’s do not necessarily coincide with
velocity stagnation points [Hesse et al., 2014]; however, Nickeler and Karlicky [2008] investigated both 2-D
and 3-D reconnection sites and found that in the paradigm of ideal MHD, magnetic neutral points indeed
should coincide with plasma flow null points. Also, according to Bulanov et al. [2000], the identity of plasma
velocity and magnetic field neutral points inevitably follows from the self-consistent dynamics of highly
electroconductive plasma.

Enhancement of the B, component upstream of the magnetopause may be connected to a plasma depletion
layer (PDL) if the relation % + p = const holds. While Figure 6 does not show clearly whether a plasma
0

depletion layer is created at the magnetopause, it allows us to observe clear differences between closed (left)
and open (right) magnetosphere states.

In the case of a closed magnetosphere, closed field lines intersecting the planet’s surface can be seen span-
ning to higher latitudes in case of a closed magnetosphere; we also observe two additional current surfaces
with B, = 0 between layers with strong B, components of opposing signs. This suggests that in the case of
northward IMF, the magnetopause shall be defined as the section at y = 0 of a paraboloid surface focused
on the planet’s center such that it passes over the last sunward closed field line in the polar region, and in the
case of southward IMF, the magnetopause shall be defined as a similar section that passes through the sub-
solar neutral X point. The expression for the magnetopause is given by equation (13), where all distances are
expressed in planetary radii:
2
Xy =Ry = 30
In equation (13) we have used parabolic coordinates, where p2 = Y2 + 72 and p is the distance from the X axis
and R, is the subsolar distance from the dipole to the magnetopause. The more generic form of this equation
that can be used to describe other surfaces is given by equation (14):

(13)

R, p’
Xp)=—=(1+p"-=— 14
?) 2( - (14)
/ 2
Here p2 = RL - % + (Ri - 15) + ;2—2, equation (14) is reduced to equation (13) by assuming f = 1, and the
1 1 1

surface f# = 1 approaches the magnetopause. To find the correct § value corresponding to the bow shock,
we set p = 0 and express f# from ﬂgs = 2:—*“ — 1. The subsolar distance to the bow shock Ry is determined by
simulation results. !

We draw the following conclusions from the resulting Figure 6:

1. The magnetopause is located closer to the planet in case of southward IMF. This may be considered as
evidence of magnetopause erosion.

2. Tail lobe diameter is reduced in case of northward IMF; however, a wide layer of reversed magnetic field
polarity arises at the magnetopause flanks.

3. Bow shock position relative to the dipole is identical in both cases (open and closed magnetosphere) and
does not depend on the IMF orientation or direction and is equal to Ry, = 2.4 Ry. This is in agreement with
ideas discussed earlier by Winslow et al. [2013] that bow shock subsolar distance only depends on the Mach
number. Thus, magnetosheath thickness varies noticeably between these cases.
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Figure 7. Comparison of magnetic field components along MESSENGER orbit no. 418 trajectory as computed by the pure hybrid model (black line), the combined
hybrid model (blue line), and experimental observations (red line). The CHM predicts most of the experimentally observed features well; the discrepancy
in magnetopause position is explained by the suboptimal manually selected parameters of the PMM.

4. For southward IMF there are two equatorial neutral points: one on the dayside magnetopause and the other
one in the magnetotail at approximately X = —3.7 R,,.

5. For northward IMF there are two neutral points located tailward of the cusps inside the magnetosphere.
There are no neutral points at the equatorial plane, and no reconnection is occurring in the subsolar point
at the magnetopause.

6. Magnetosphere flaring is indeed lower for northward IMF than for southward IMF.

7. Neutral lines are located at equatorial latitudes in an open magnetosphere, and cusps (neutral points) are
placed at high latitudes in a closed magnetosphere.

8. In the terminator plane we observe three areas of decreased velocity for northward IMF: one in the subsolar
point and two in the cusp regions where the flow is separated into streams that impact Mercury and pass it.

3.3. MESSENGER Orbit 418 Simulation Run

While the presented hybrid model plots allow us to draw a number of interesting conclusions, their reso-
lution is insufficient to clearly establish the possibility of magnetic barrier formation or absence thereof. To
investigate this matter further, we used another simulation run with a different set of parameters. We now set
n = 5.87 cm~2 and V = 400 km/s. IMF components are B, = 4.0 nT in the whole simulation box; B, = —2.31nT
inside the magnetopause, and B, = —7.69 nT in the solar wind; B, = 2.31 nT inside the magnetopause, and
B, = 7.69 nT in the solar wind. We use 30 macroparticles per cell; total simulation time t = 320 s unless noted
otherwise, and simulation time step t = 0.00125 s. The parameters of the interplanetary medium were chosen
based on the position of the planet and the general knowledge of solar wind properties at that distance from
the Sun; PMM parameters were chosen by running a fitting procedure against magnetometer data collected
in process of transit of MESSENGER through Mercury’s magnetosphere during that orbit.
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In other words, the magnetic field vector is directed to the top left in the YZ plane and to the top right in
the XZ plane. With such an IMF vector orientation we observe a shell of higher plasma density around the
magnetosphere with a notable hollow region diametrically opposed to the region where the IMF impacts
the magnetospheric obstacle normally. This result is only obtained when using the CHM; the original hybrid
model does not produce a similar effect.

We use these values to build profiles of magnetic field components computed by the combined hybrid model
along MESSENGER's orbit (Figure 7). On this series of plots, the CHM resulting field is denoted by a blue line;
original MESSENGER data (wherever available) are denoted by a red line, and pure hybrid simulation results
are denoted by a black line. We can see that in this scenario it is possible to clearly observe small regions of
enhanced magnetic field at the magnetopause on the 4 h mark and the 5.7 h mark. The exact size of these
regions is hard to determine as the resolution of the simulation run was limited to 0.1 R,. However, we observe
signs of a reduced plasma density region positioned in the immediate vicinity of the inbound magnetopause
crossing, where the number density is decreased by over 25%. We believe that the signature of this region
matches the one of a magnetic barrier and an associated plasma depletion layer. We observe no similar PDL
signature corresponding to the outbound magnetic barrier; this fact may or may not be explained by the
insufficient resolution of our simulation.

We shall also note that in the region with extraordinarily high velocity values inside the magnetosphere the
number density is very low; i.e,, only a small number of particles actually participated in the simulation. Due
to this fact, we cannot consider our simulation results of flux kinetic properties in this region reliable.

Finally, let us compare similar profile plots of magnetic field produced by the original hybrid model, the
CHM, and MESSENGER measurements (Figure 7). We observe that the new CHM demonstrates a marked
improvement in accuracy when describing magnetic field behavior in the magnetosheath and inside the
magnetosphere. There are certain discrepancies in the position of the outbound magnetopause crossing
which are most likely connected to the fact that these particular simulation runs were executed with solar
wind density of about a quarter of the theoretically estimated value. It is worth noting that MESSENGER
observations do not confirm the existence of a magnetic barrier and a plasma depletion layer in the pre-
dicted locations. Thus, the question of their existence in Mercury’s magnetosphere and the reason for such
a substantial difference between a number of analytical predictions and numeric simulation is, for now, left
unanswered.

4. Discussion

Let us discuss our choice of the IMF penetration coefficient x. According to Alexeev et al. [1993] and Heyner
et al. [2016], the penetration coefficient depends on the magnetic Reynolds number R, = y,0oV,,, R, where
Hp is vacuum permeability, & is electric conductivity, and R, is the subsolar distance to the magnetopause.
For Mercury’s environmelnt, R,, = 574. We are only interested in the IMF component normal to the solar wind

flow velocity, x = 1.8R,,* = 0.26, as the parallel component is not used in the induction equation. To further
investigate this issue, we offer Figure 8, where we present results of simulation with x assuming values of 1.0,
0.5,0.1, and 0.0 (left to right). In Figure 8 (first row) we can observe for northward IMF that the IMF disturbance
outside the bow shock is virtually nonexistent and that the magnetotail appears to be quite short, with no
neutral point in the simulation box. For southward IMF we observe that the nightside neutral point is located
very close to the surface of Mercury and that dayside closed field lines exist although they are limited almost
exclusively to subequatorial latitudes. Figure 8 (bottom row) presents the opposite extreme case, where the
IMF does not penetrate the magnetosheath at all. Here the subsolar foreshock bulge is more pronounced for
northward IMF, while being less pronounced for southward IMF. Field lines originating at the nightside of the
terminator behave nearly identically in both cases.

We draw the following conclusions from Figure 8:

1. We observe magnetopause erosion for southward IMF. Higher IMF penetration coefficients result into
somewhat stronger erosion, but this effect is not as pronounced as for other planets.

2. The layer of reversed polarity is much more extensive for northward IMF for all x values.

3. We observe a magnetic barrier upstream of the magnetopause; its magnetic field pileup appears to be more
intensive for northward IMF.
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Figure 8. High-resolution plot of magnetosphere-solar wind interaction for different reconnection efficiency values (x = 1.0, 0.5, 0.1, and 0.0 from left to right)
and different magnetospheric states: (top row) closed and (bottom row) open. Color denotes the X component of the magnetic field in teslas, and vectors
indicate the direction of magnetic field lines.

4. For southward IMF magnetopause flaring is higher. Magnetopause is located closer to the planet in the
subsolar point, but in the terminator plane its size is larger.

5. Both IMF orientations lead to creation of a plasma sheet; however, with B, < 0 its density appears to be
higher.

We must also pay special attention to the inevitable discrepancies introduced by the approach used by both
the original and combined hybrid models. As we use massive macroparticles instead of protons to reduce
computation time necessary while preserving pressure balance, our kinetic solutions become unreliable in
cells visited only by a few macroparticles. We provide relevant notices whenever necessary and discard plots
that we consider affected too significantly to discuss them.

4.1. Comparison With Earlier Research

Gershman et al. [2013] state that their observations show reconnection in cusps and resulting flux transfer
event showers [Slavin et al., 2012] transporting more flux at Mercury than at the Earth. This might be connected
with the domination of the By component in the IMF at Mercury's orbit, which leads to intensification of the
cusp reconnection [e.g., Belenkaya et al., 2013].

Summarizing previous findings supporting our simulation results, we can conclude that as a consequence of
magnetic tension during plasma flow past the magnetosphere, two layers are formed: a depletion layer close
to the magnetopause and an accelerated plasma flow at the flanks of the magnetosphere.

Some of the most widely accepted models by Erkaev et al. [2011] ignore plasma conductivity and use
frozen-in magnetic field conditions; as a consequence, they ignore magnetic reconnection effects. In our cal-
culation the magnetic field component normal to magnetopause does exist, and we take violations of the
frozen-in condition and magnetic reconnection into account. We can also detect plasma acceleration along
magnetospheric flanks.

According to Erkaev et al. [2011], the physical mechanism behind PDL formation under northward IMF
conditions relies on magnetic tension and total pressure gradient forces acting on the flow associated
with magnetic field lines draping around the magnetosphere. For lower M, plasma depletion is stronger,
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and thus, the acceleration produced by the pressure gradient is higher. An additional acceleration is produced
by magnetic tension; this acceleration is stronger for lower M, values.

At the dayside the pressure gradient and magnetic tension forces act in the same direction but tailward of
the terminator magnetic tension starts to act in the direction opposite to that of the pressure gradient. The
highest plasma speeds are attained whenever the total acting force turns to zero. However, a plasma deple-
tion layer forms at Mercury as a result of magnetic flux pileup draped around the magnetosphere. The low
average upstream Alfvénic Mach number (M, ~ 3 —5)in the solar wind at Mercury often results in large-scale
plasma depletion in the magnetosheath between the subsolar magnetopause and the bow shock. Flux pileup
is observed to occur downstream under both quasi-perpendicular and quasi-parallel shock geometries for all
orientations of the interplanetary magnetic field. Furthermore, little to no plasma depletion is seen during
some periods with stable northward IMF. The consistently low ratio of plasma pressure to magnetic pres-
sure at the magnetopause associated with low average upstream M, is believed to be the cause for a high
average reconnection rate at Mercury, reported to be nearly triple of that observed at the Earth. Finally,
the characteristic depletion length, D, outward from the subsolar magnetopause is found to be D ~ 300 km
at Mercury.

Compared to the depletion layer, plasma in the accelerated flow layer at the magnetosheath side of the mag-
netopause is characterized by an increased flux of energetic electrons and involvement of magnetosheath
ions reflected off the magnetopause. Density, temperature, and magnetic field changes, as well as the pres-
ence of leaked magnetospheric protons in the plasma depletion layer, are consistent with draping and pileup
of the magnetic field in the sunward vicinity of the dayside magnetopause. Changes in ion distributions in
the accelerated flow layer are consistent with dayside magnetic reconnection. There are also other important
effects that require consideration, such as Kelvin-Helmholtz instability at Mercury’s magnetopause discussed,
for example, in Liljeblad et al. [2016]. However, they are out of scope of the present paper because such a study
would require us to model fine structure of the magnetosheath flow, and the numerical step of our grid is too
coarse for that purpose.

5. Summary and Conclusions

The analysis shown in this paper implies that a new combined hybrid simulation allows us to study magne-
tosheath structure, in particular, to identify the location and shape of both the magnetopause and the bow
shock. As follows from our results, Mercury’s magnetosheath geometry has the following properties:

1. The magnetopause is located closer to the planet in case of southward IMF. This may be considered as
evidence of magnetopause erosion.

2. Bow shock offset is identical in both cases and does not depend on magnetic field orientation and is equal
toR,, = 24R,,.

3. Magnetosphere flaring is lower for southward IMF than for northward IMF.

4. In the terminator plane we observe three areas of decreased velocity for northward IMF: one in the subsolar
point and two in the cusp regions where the flow is separated into streams that impact Mercury and pass
it. For southward IMF these cusp areas are less pronounced, plasma flow is somewhat closer to a uniform
one, and there is no significant velocity decrease in cusp regions.

We also have come to the following conclusions regarding general magnetospheric features:

1. Cusps are located at lower latitudes in an open magnetosphere than in a closed magnetosphere.

2. For southward IMF there are two equatorial neutral points: one on the dayside magnetopause and the other
one in the magnetotail at approximately X = —3.7 Ry,.

3. For northward IMF there are two neutral points located in cusps inside the magnetopause, i.e,, inside the
magnetosphere. There are no neutral points in the dayside or the nightside.

We observe that although numerical simulations successfully confirm the theoretically predicted existence
of a thin magnetic barrier with an associated plasma depletion layer, in situ measurements by MESSENGER
do not confirm this prediction, showing a strong change in magnetic field near the magnetopause to val-
ues that fluctuate only slightly for most of the trajectory through the magnetosheath. The cause behind this
discrepancy calls for further modeling and data analysis.
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