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We introduce a generalized Dicke-like model to describe two-level systems coupled with

a single bosonic mode. In addition, the two-level systems mutually interact via direct

dipole–dipole interaction. We apply the model to an ensemble of dye molecules coupled
to a plasmonic excitation in a metallic nanoparticle and study how the dipole–dipole

interaction and configurational randomness introduced to the system affect the energy

spectra. Comparing the system eigenenergies obtained by our model with the light spec-
tra from a multiple-scattering simulation, we suggest a way to identify dark modes in

our model. Finally, we perform a parameter sweep in order to determine the scaling

properties of the system and to classify the regions of the parameter space where the
dipole–dipole interactions can have significant effects.

Keywords: Quantum emitters; dipole–dipole interactions; nanoplasmics; nano-optics;

Dicke model.

PACS numbers: 42.50.Ct, 42.50.Nn, 33.50.-j, 73.20.Mf

1. Introduction

Surface plasmon polaritons (SPPs) are hybrid modes of electron plasma oscillations

inside metals and the electromagnetic field inside and outside of the metallic struc-

ture. At resonant frequencies, which are determined by the plasma frequency of

the bulk metal and the nanostructure geometry, the intensity of the SPP modes in

the near field is significantly magnified. This field enhancement can lead to strong

coupling between the SPP and quantum emitters (QEs) located in the vicinity of

∗Corresponding author.
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the metal surface, creating a hybrid mode consisting of the SPP and the QE ex-

citations. The strong coupling manifests itself as an avoided crossing between the

original SPP and QE energy levels, as has been experimentally realized in vari-

ous nanoplasmonic structures; see the review22 and works1,2,18,24 that appeared

afterwards, and references therein; for theory, see Refs. 5 and 9 and the review.22

Here we address the question whether the dipole–dipole interactions between the

QEs can play a role in such systems. To our knowledge, there has not been any

experimental evidence of this, but theoretical works exist that allow for such a

possibility. A study by Salomon et al.16 using the finite-difference time-domain

(FDTD) solution of Maxwell–Liouville equations for a silver slit array covered by

a thin layer of molecules presented a possibility for an additional mode in the

transmission spectra between the avoided strong coupling modes, provided that

either molecules concentration or their transition dipole moment is large enough.

A multiple-scattering method based on macroscopic quantum electrodynamics was

used by Delga et al.4,5 to show similar results for a system of single spherical

nanoparticle with adjacent fluorescent molecules. Here we answer this question by

a different approach, namely a modified Dicke model.

Interactions between electromagnetic fields and a collection of QEs such as

atoms or fluorescent molecules are of interest in many areas of physics. The simplest

quantum model of such a system is the original Dicke model,6 where identical two-

level systems (TLS) are coupled to a single-harmonic oscillator-like field mode, all

with the same coupling strength, and without direct mutual coupling. Dicke model

can be solved exactly using the algebraic Bethe ansatz.8 There also exists an exact

solution for an extended Dicke model which includes direct coupling term between

the QEs,13 but the coupling strengths between each pair of QEs must all be equal,

as well as the QE–field mode couplings, which is unrealistic for real systems with

many QEs. In this paper, we study a model in which all the coupling strengths

of both types of couplings can vary, which is expected to happen in real systems

where the QEs can have various positions and orientations. The price of relaxing

these constraints is the impossibility to diagonalize the Hamiltonian with the Bethe

ansatz, so we use the numerical exact diagonalization instead.

The original Dicke model describes well a system of atoms in a high-Q optical

nanocavity, as long as the atoms are separated well enough so that their mutual

dipole–dipole interactions are negligible and the cavity supports single radiation

mode near the resonant frequency of the atoms, and the other modes are well

separated. However, our motivation stems from the study of nanoplasmonic systems

where QEs interact with SPP modes supported by a metallic nanostructure. In

the nanoplasmonic systems, the coupling strengths between the QEs and the SPP

vary considerably depending on the configuration of the QEs. In particular, we are

interested whether the dipole–dipole couplings between the QEs can have significant

effect on the system.

Approaches different from ours have been developed to model the behavior of

the nanoplasmonic systems in question. Among the notable ones are the methods
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based on FDTD solution of Maxwell–Liouville equations19 and quantum multiple-

scattering methods based on macroscopic quantum electrodynamics,23 which have

their advantages and disadvantages. Most notably, they account for the Ohmic

losses inside the metal and the consequent line broadening which are significant

in plasmonic systems. On the other hand, our modified Dicke model is much less

computationally expensive and gives intuitive understanding of the problem. An-

other approach aims to solve the system dynamics using Lindblad equations.21 We

compare our model with the multiple-scattering approach (which includes all mul-

tipoles) in Sec. 4 of this paper for a system of quantum emitters in the vicinity of

a single nanoparticle. We make the comparison both in the dipole approximation

and also by including higher-order multipole modes of the nanoparticle.

This paper is organized as follows. In Sec. 2, we generalize the extended Dicke

model13 by relaxing its equal-coupling symmetries. In Sec. 3, we briefly sketch the

principles of the multiple-scattering method, which is used as a benchmark for our

model in Sec. 4, where for some example configurations, we compare the resulting

energy levels with the far-field light spectra obtained by multiple-scattering method

as shown by Delga et al.,4 observing a clear correspondence between them. Although

our model does not by itself include any information about the visibility of its

eigenenergies, we find an observable which identifies the dark modes. Finally, in

Sec. 5 we use our relaxed Dicke model to perform a parameter sweep in the single

excitation subspace with the goal of identifying the effects of varying dipole–dipole

interactions in the model and their relevance for the parameters typical in the

experiments with quantum emitters near plasmonic nanostructures. In Sec. 6, we

discuss what conditions would the system have to satisfy in order to make the

effects of the dipole–dipole interactions observable.

2. The Relaxed Dicke Model

We consider an ensemble of K identical quantum emitters — modeled as two-level

systems — interacting with a single-field mode. Our model Hamiltonian of the

system (utilizing the rotating wave approximation) is

H = ~ωb̂†b̂+
∑
i

~ε
(
Ŝzi +

1

2

)
+
∑
i

Vi(b̂
†Ŝ−i + Ŝ+

i b̂)

+
∑
i<j

gij(Ŝ
+
i Ŝ
−
j + Ŝ+

j S
−
i ), (1)

where ω is the frequency of the field mode, ε is the resonant frequency of the atoms,

Vi is the coupling coefficient between the ith atom and the field mode and gij are

the coefficients of the direct interaction between the ith and the jth atoms. Here

Ŝ+
i , Ŝ−i and Ŝzi are spin-1/2 operators given by

Ŝ+
i = |gi〉〈ei|, Ŝ−i = |ei〉〈gi|, Ŝzi =

1

2
(|ei〉〈ei| − |gi〉〈gi|),
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where |gi〉 and |ei〉 are the ground and excited states of the ith atom; b̂†, b̂ are the

creation and annihilation operators of the field mode, satisfying the usual bosonic

commutation relation [b̂, b̂†] = 1.

The extended Dicke model solved by Pan et al.13 has the same form as (1) but

it assumes that the dipole–dipole and dipole–field couplings are constant, gij = g

and Vi = V (in addition, gij = 0 in the original Dicke model). In contrast, in

our model the coupling constants in the atom–atom and atom–field interactions

may vary, relaxing the symmetries which enable the Dicke model to be exactly

solvable by the Bethe ansatz. On the other hand, our model provides much more

realistic description of the physical systems in which we are interested. A typical

realization of our model would consist of quantum emitters (e.g., dye molecules

embedded into polymer matrix) in a cavity or in the vicinity of a waveguide or a

nanoparticle supporting a single dominant EM field mode — meaning that for at

least a certain time scale, the remainder of the electromagnetic spectrum as well

as the nonradiative losses can be neglected. The quantum emitters are deposited

randomly both in positions and dipole orientations, which leads to some random

distribution of the dipole–dipole coupling strengths gij .

We assume that the system does not reach ultrastrong coupling regime, which

would invalidate the rotating wave approximation.17 Thanks to the approximation,

the total excitation number operator N̂ = b̂†b̂ +
∑
i(Ŝ

z
i + 1

2 ) commutes with the

Hamiltonian; the total excitation number thus remains conserved and the Hamil-

tonian can be diagonalized for each excitation number subspace separately, which

allows us to reduce the computational requirements of diagonalization. In the follow-

ing, we deal mainly with the single excitation subspace (N = 1) which is generated

by the states b̂†|g〉, Ŝ+
i |g〉 where |g〉 = (|0〉 ⊗

∏
j |gj〉) is the ground state of the

whole system and |0〉 is the vacuum of the bosonic part.

Let us describe how the Hamiltonian (1) and its parameters can be derived for

a subwavelength-sized system of a plasmonic resonator and adjacent emitters. The

resonator mode alone is obtained by solving macroscopic Maxwell’s equations with

the respective constitutive relations. If the system is not limited to a finite volume,

this usually yields a continuum of mutually orthogonal solutions with infinite mode

volumes (and thus energies). This can be worked around7 by using, for example, a

quasistatic approximation (i.e., assuming infinite speed of light) where the problem

is reduced to Gauss law,

∇ · (ε(ω, r)E(r)) = 0, (2)

with appropriate boundary conditions. The electric field of the quasistatic modes

is a Coulombic field from bound charges in the resonator, and therefore fully lon-

gitudinal. The quasistatic approximation eliminates the losses due to the radiation

and leads to discrete spectrum in ω. In order to make the spectrum real, we further

neglect the imaginary part of ε(ω, r) for real ω, thus eliminating the internal losses

of the material and making the plasmonic resonator a closed system. At this point,

we get from (2) a discrete set of quasistatic modes with the dynamics of a harmonic
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oscillator, which — after the usual quantization procedure and dropping the zero

point energy — yields the resonator part of the Hamiltonian,

Hres = ~
∑
λ

ωλb̂
†
λb̂λ,

and the electric field operator has the form

Ê(r) =
∑
λ

√
~ωλ

2Uλε0
(Eλ(r)b̂λ +E∗λ (r) b̂†λ), (3)

where ωλ,Eλ(r) are the solutions of the classical equation (2). The operator is nor-

malized by the quasistatic mode energies Uλ = ε0
∫
d3r |Eλ(r)|2/2. In Appendix A,

we show how to derive the expression for Ê(r) for the quasistatic modes of a spher-

ical nanoparticle.

As for the quantum emitters, we assume that they are characterized by two

parameters — the resonant frequency ε and magnitude |µi| of their transition

dipole moment — and that they have fixed positions Ri and directions of their

dipoles µi/|µi|. Hamiltonian for the QEs before introducing interactions is HQE =∑
i ~ε(Ŝzi + 1

2 ) and its dipole moment operator

µ̂i = µi(Ŝ
+
i + Ŝ−i ). (4)

Their dipoles interact with the resonator’s electric field via the term

Hres–QE = −
∑
i

µ̂i · Ê(Ri) (5)

and with each other via the quasistatic dipole–dipole interaction

HQE–QE =
1

4πε0

∑
i<j

(
µ̂i · µ̂j
|Ri −Rj |3

− 3
[µ̂i · (Ri −Rj)][µ̂j · (Ri −Rj)]

|Ri −Rj |5

)
.

Finally, we take H = Hres+HQE+HQE–QE+Hres–QE and perform the rotating wave

approximation, dropping all the terms containing b̂λŜ
−
i , b̂†λŜ

+
i , Ŝ−i Ŝ

−
j or Ŝ+

i Ŝ
+
j ,

obtaining

H =
∑
λ

~ωλb̂†λb̂λ +
∑
i

~ε
(
Ŝzi +

1

2

)
+
∑
i,λ

Viλ(b̂†λŜ
−
i + Ŝ+

i b̂λ)

+
∑
i<j

gij(Ŝ
+
i Ŝ
−
j + Ŝ+

j Ŝ
−
i ), (6)

with the coupling coefficients

Viλ =

√
~ωλ

2Uλε0
µi ·Eλ(Ri)

and

gij =
1

4πε0

(
µ̂i · µ̂j
|Ri −Rj |3

− 3
[µ̂i · (Ri −Rj)][µ̂j · (Ri −Rj)]

|Ri −Rj |5

)
.
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For practical calculations, it is usually not necessary to take into account all

the resonator modes: only the modes with frequencies near enough to the resonant

frequency of the QEs will significantly affect the system. Assuming there is only

one such significant mode (which is also the assumption of the Dicke model), we

arrive at the Hamiltonian (1).

The RWA allows for a decomposition of the Hilbert space into subspaces defined

by their excitation number N and the Hamiltonian (6) can then be easily defined

only on those subspaces. The dimensionality D(K,B,N) of such a subspace for a

general case of B bosonic modes and K two-level systems is

D(K,B,N) =

N∑
ν=0

(
K

N − ν

)(
ν +B − 1

ν

)
,

as can be found using elementary combinatorics. Comparing this with the binomial

identity gives an upper estimate D(K,B,N) ≤ (K + B + N − 1)N/N !, therefore

for low excitation numbers, this makes it feasible to perform exact diagonalization

of the Hamiltonian in this subspace even for quite large number of emitters and

bosonic modes [the memory required for representing a nonsparse operator in such

a subspace is proportional to D(K,B,N)2 and the usual matrix diagonalization

algorithms will have time complexity of about O(D(K,B,N)3); for N = 1, this

allows for having hundreds of emitters on a workstation with a gigabyte of RAM].

3. The Scattering Approach

In the following, we compare the results of our model explained above to a multiple-

scattering model described in Refs. 4 and 23. For details, we refer the reader to the

supplement of Ref. 4, but we outline the main properties of the model here.

The approach is based on macroscopic quantum electrodynamics, where medium

(including the plasmonic resonator in our case) is modeled by a continuum of har-

monic oscillators coupled to the microscopic electromagnetic fields in a manner

that (before quantization) reproduces the phenomenological constitutive relations;

the electromagnetic field operators can be then expressed in terms of the classi-

cal dyadic Green’s functions.10 Adding the microscopic QEs and coupling them to

these quantized fields gives rise to a Lippmann–Schwinger equation which is hard to

solve if the QEs are two-level systems. Therefore, the two-level systems are approx-

imated by harmonic oscillators, at the cost of reliability of the model for problems

that involve multiple excitations. For a given initial state, e.g., some of the emitters

excited, we can derive a light spectrum that can be detected in an arbitrary point

of space.

In contrast to our model described in the previous section, this approach has

some advantages: it gives the light spectrum — a quantity of direct experimental

relevance, it accounts for the absorption in the media, and it includes the field retar-

dation effects, keeping its validity at longer-than-wavelength scales. These features

make it a good benchmark for our model. On the other hand, the multiple-scattering
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approach will fail to describe the effects of higher level of excitation and it is sig-

nificantly slower computationally, as it requires solving a separate matrix inversion

problem for each sample frequency of the outgoing light spectrum, each inversion

having the same time complexity as one exact diagonalization.

The multiple-scattering approach relies on the knowledge of the classical Green’s

function of the system in which the quantum emitters are located. In the following,

we consider a medium consisting of a spherical nanoparticle in a homogeneous

background. The classical dyadic Green’s function for such system can be (for

points outside the sphere) expressed as a sum of a free propagation part (equal

to the Green’s function of a homogeneous medium with wavenumber kω) and a

part due to the scattering on the sphere, accounting for the field enhancement and

Ohmic losses:

G(ω, r, r′) = G0(ω, r, r′) +Gscat(ω, r, r
′),

where the latter can be expanded into a Mie series:

Gscat(ω, r, r
′) =

ikω
4π

∑
lm

clm

[
ρmg.
l M

(1)
lm(kωr) �M (1)∗

lm (kωr
′)

× ρel.l N
(1)
lm(kωr) �N (1)∗

lm (kωr
′)
]
, (7)

where M
(1)
lm ,N

(1)
lm are the regular transverse vector spherical wavefunctions, ρmg.

l ,

ρel.l are the Mie reflection coefficients and clm is a normalization factor depending

on the convention used for the spherical wavefunctions. Detailed expressions for

calculating Gscat can be found in Ref. 20.

4. Comparison

Let us take a simple physical system in order to compare our modified Dicke model

and the multiple-scattering approach. The system consists of a metal nanosphere,

and several molecular dipoles modeled as two-level systems nearby, as in Fig. 1.

The relative permittivity of the nanosphere is approximated by the Drude model,

ε(ω) = ε∞−
ω2

p

ω(ω+iγp)
with parameters ε∞ = 4.6 and ~γp = 0.001 eV (this parameter

is chosen arbitrarily low in order to create peaks comparable to the modified Dicke

model spectrum), its radius is r = 7 nm, and we vary its plasma frequency ωp. In the

quasistatic approximation,15 lth-order electric multipole resonances of a nanosphere

are determined by the equation: 0 = ε(ωl) + εb(l+ 1)/l where εb is the environment

relative permittivity, which we set to one for the comparison. In our case, the dipole

resonance is thus located at ω1 = 3.02 eV/~ — we use this value as the mode

frequency ω in the Hamiltonian (1), whereas for the multiple-scattering method,

we use Mie theory with the aforementioned parameters to calculate the nanosphere

response.

The molecules have transition dipole moments of |µ| = 0.19 eV · nm, they are

aligned in the z-direction and positioned in a plane 8 nm from the center of the

1740006-7

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
7.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

A
L

T
O

 U
N

IV
E

R
SI

T
Y

 o
n 

10
/1

6/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



September 8, 2017 15:26 IJMPB S0217979217400069 page 8
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(a) (b) (c)

Fig. 1. (Color online) (a) Configuration of the system with six QEs and the corresponding spectra,

varying the plasma frequency of the metal: (b) far-field light spectra obtained by the multiple-
scattering method and (c) eigenvalues of the Hamiltonian (1). Both in (b) and (c) only the electric

z-dipole part of the nanoparticle response is considered.

nanosphere. These values were chosen in order to make the molecular interactions

significant. For simplicity and clarity of the figures, we include only the electric

dipole response ρel.1 of the nanosphere, neglecting all the higher multipole terms in

the calculation of the Green’s functions used in the multiple-scattering model (7). In

our modified Dicke model, we assume that the field has the same shape as it would

have in the electrostatic case of a polarized sphere, i.e., we neglect the outward

radiation. Moreover, here we place the molecules near the equatorial plane perpen-

dicular to the z-axis in order to keep the interactions of the x and y dipoles of the

nanoparticle negligible. Therefore, we can model the system with the Hamiltonian

(1) [otherwise the more general Hamiltonian (6) would be needed].

In Fig. 1 we show the light spectra obtained by the multiple-scattering method

at a point located 10 µm away from the center of the nanoparticle together with

the eigenenergies obtained from our model. There is a clear correspondence between

the peaks of the light spectra and the eigenenergies from the respective approaches.

However, not every energy level has its corresponding peak in the light spectra; we

discuss these dark states in the next section.

The presented approach can be generalized to multiple bosonic modes in a

straightforward manner. In Fig. 2 we show the spectra for the same configuration

as in Fig. 1, but now with higher multipole modes of the nanoparticle included

for both models — they appear as additional terms in the Green’s function ex-

pansion (7) of the multiple-scattering model, and as additional quasistatic electric

multipole modes included into the bosonic part of the Hamiltonian in the modi-

fied Dicke model (see Appendix A). The higher multipoles significantly affect the

part of the spectra that is above the nanoparticle dipole resonance if the QEs are

placed close enough to the nanoparticle, as they provide additional channels through

which the QEs can indirectly interact, and many new states appear near the pla-

nar surface plasmon–polariton frequency. This nanoparticle-mediated interaction is

present in both models, determined either by the interaction coefficients Viλ or by
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Quantum emitter dipole–dipole interactions in nanoplasmonic systems

(a) (b)

Fig. 2. (Color online) Spectra corresponding to the configuration from Fig. 1, here with higher

multipole effects of the nanoparticle included (up to l = 20), varying the plasma frequency of the

metal: (a) far-field light spectra obtained by the multiple-scattering method and (b) eigenvalues
of the Hamiltonian (6).

the scattering part of the Green’s function Gscat, and as Fig. 1 demonstrates, has

very similar effects on the shape of the spectra. As the focus of our current study

are the dipole–dipole interactions between the QEs rather than a detailed analysis

of the QE–nanoparticle couplings and nanoparticle mode structure, we neglect the

higher multipoles in the rest of this section, keeping only the nanoparticle’s dipole

modes in both models.

4.1. Characterization of the dark modes

Hamiltonian (1) describes a closed quantum system of electric dipoles with Coulom-

bic interaction and certain internal dynamics, and by itself does not carry any in-

formation about interaction with radiation, hence nor about the visibility of its

eigenstates. Therefore, we extend the system to include radiation modes and assess

their visibility using perturbation theory. Let the new Hamiltonian be

H ′ ≡ H0 + V = H +
∑
k

~ωka
†
kak + Vext, (8)

where k ≡ (k, ι) labels the transversal (radiation) modes with mutually orthogonal

wave and polarization vectors k and εk,ι (here ι = 1, 2 labels the polarization basis

vectors), ωk = c|k| is the corresponding mode frequency and Vext is the interaction

between the transversal modes and all the dipoles (including the nanoparticle):

Vext = −Ê
⊥

(r = 0) · µ̂tot. (9)

=
∑
k

i

√
~ωk

2ε0L3
(εkak − εka†k) ·

(
µNP(b+ b†) +

∑
i

µi(S
+
i + S−i )

)
. (10)

Here we use the usual way to quantize transversal EM modes.3 We note that the

transversal modes are orthogonal to the electric field of the resonator quasistatic
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modes, as these are fully longitudinal. Furthermore, we assume a cutoff in the fre-

quencies such that k · rsys � 1 where rsys is the radius of the volume in which

the dipoles are placed, so all the dipole positions can be replaced with r = 0

(dipole approximation for the whole original system) and ultraviolet divergences

are avoided. Finally, we assume that all the conditions to apply the Fermi’s golden

rule are fulfilled. Decay rate of an initial state |α〉 from the eigenspace of the orig-

inal Hamiltonian H into the continuum of final transversal photonic states |f〉 is

proportional to the sum of squares of the corresponding transition amplitudes3:

Γα ∝
∑
f

|〈f |Vext|α〉|2. (11)

To keep the length of the formulae reasonable, in the following we denote µ0 ≡
µNP and S+

0 ≡ b† and S−0 ≡ b. In the single excitation subspace (using RWA), both

initial and final subspaces are spanned by the states obtained by applying a single

corresponding creation operator onto the vacuum state of H0, |f〉 = |k〉 ≡ a†k|0〉
and |α〉 =

∑K
i=0 ciS

+
i |0〉. Substituting this to (11) gives

Γα ∝
∑
k

〈α|µ̂tot. ·
∑
k′

i

√
~ωk′

2ε0L3
(εk′ak′ − εk′a†k′)a

†
k

× |0〉〈0|ak
∑
k′′

−i
√

~ωk′′

2ε0L3

(
εk′′ak′′ − εk′′a†k′′

)
· µ̂tot.|α〉

= −
∑
k

~ωk

2ε0L3
〈α|µ̂tot. · εkaka

†
k|0〉〈0|aka

†
kεk · µ̂tot.|α〉.

Here we used the commutativity of the photonic operators ak, a
†
k with the S±i oper-

ators contained in µ̂tot. together with the fact that akak′′ |α〉 = 0 and 〈0|aka†k′′ |0〉 is

nonzero only if k′′ = k. We assume that the space supporting the radiation modes

is spherically symmetric, hence for the sum over k we get∑
k

ωkεkaka
†
k|0〉〈0|aka

†
kεk =

∑
k

ωkεk|0〉〈0|εk

= |0〉〈0|
∑
k

ωk
∑
ι=1,2

∫
dΩ εk,ιεk,ι

=
8

3
πI|0〉〈0|

∑
k

ωk,

i.e., a multiple of the unit tensor I (one way to calculate the angular integral∫
dΩεk,ιεk,ι in the last step is to choose the unit vectors tangential to the circles of

latitude and longitude for the polarization vectors: εk,1 = θ̂, εk,2 = φ̂). Therefore,

1740006-10

In
t. 

J.
 M

od
. P

hy
s.

 B
 2

01
7.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 A

A
L

T
O

 U
N

IV
E

R
SI

T
Y

 o
n 

10
/1

6/
17

. F
or

 p
er

so
na

l u
se

 o
nl

y.



September 8, 2017 15:26 IJMPB S0217979217400069 page 11
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Γα ∝ 〈0|

(
K∑
i=0

c∗iS
−
i

)
K∑
j=0

µj(S
+
j + S−j )|0〉

× 〈0|
K∑
m=0

µm(S+
m + S−m)

K∑
n=0

cnS
+
n |0〉

= 〈0|
K∑
i=0

c∗iS
−
i

K∑
j=0

µjS
+
j |0〉 · 〈0|

K∑
m=0

µmS
−
m

K∑
n=0

cnS
+
n |0〉. (12)

All the nonzero terms of expressions on the sides of the projector |0〉〈0| are just

multiples of the vacuum state, so the projector can be put away,

Γα ∝ 〈α|
K∑
j=0

S+
j µj ·

K∑
m=0

S−mµm|α〉 ≡ 〈α|P̂ |α〉.

The radiative decay rates are thus up to a constant factor given by the expectation

value of an observable P̂ . The operator

P̂ =

K∑
j=0

S+
j µj ·

K∑
m=0

S−mµm (13)

resembles the total dipole moment squared, but it is not equal to the operator

µ̂2
tot. = µ̂tot. · µ̂tot. which contains a positive offset caused by the presence of terms

like S−j S
+
j , causing an overall positive shift and therefore its expectation value

being always positive. On the other hand, 〈α|P̂ |α〉 can be zero, which means that

the state |α〉 does not radiate (in the given approximation), i.e., it is a dark state.

Directly evaluating the operators acting on the vacuum states in (12), it can also

be seen that 〈α|P̂ |α〉 = |
∑K
i=0 ciµi|2, so in fact the operator P̂ is analogous to the

classical sense of the square of total dipole moment rather than the square of the

total dipole moment quantum operator.

Figures 3(c)–3(e) and 3(f) show the expectation values 〈α|P̂ |α〉 for the eigen-

states of H in the example configurations depicted in Fig. 3(a) for two different

values of the QE transition dipole moment. Those states for which the expecta-

tion value is very low are indeed dark also in the results of the multiple-scattering

method. Moreover, the relative intensities of the brighter states correspond well to

each other, S(α)/S(β) ≈ 〈α|P̂ |α〉/〈β|P̂ |β〉, if the compared eigenstates |α〉, |β〉 are

well separated from others (otherwise their contributions in the total light spectrum

cannot be distinguished) and if they do not contain significant contribution from

the nanoparticle dipole (the emission properties of the two types of dipoles differ

because of the different internal loss channels, which are however not considered in

our model). This is demonstrated in Fig. 3(i) where the QEs are further away from

the nanoparticle than in the other examples and they are all very close to each

other, so their mutual dipole–dipole couplings gij are stronger than their couplings

with the nanoparticle Vi.
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(i) (ii) (iii) (iv)

(a )

(b )

(c )

(d )

(e )

(f )

(g )

Fig. 3. (Color online) (a) Example configurations of quantum emitters in the equatorial plane of
a spherical nanoparticle (with dipoles oriented perpendicular to the plane), (b) the corresponding

energy spectra obtained from the modified Dicke model for varying nanoparticle resonance and
light spectra from the multiple-scattering model (blue lines, arbitrary units) together with the

expectation values of the observable P̂ for the energy eigenstates (red dots, arbitrary units) for

the nanoparticle dipole resonance set at (c) 2.8 eV, (d) 3.0 eV and (e) 3.2 eV. The single QEs
have transition energy ~ε = 3.0 eV and dipole moment [panels (c)–(e)] µ = 0.19 eV · nm = 9.1 D;

the Drude damping is set to ~γP = 1 meV. Rows (f) and (g) are analogous to rows (b) and (d)
but for a lower dipole moment µ = 0.04 eV · nm = 1.9 D.

5. Exact Diagonalization Results

In this section, we vary the parameters of the model Hamiltonian (1) in a systematic

way and compute the energy spectrum by exact diagonalization. Again, we focus

only on the single excitation subspace, i.e., the energy eigenstates satisfying N = 1.
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Such states can be expressed in the form |ψ〉 = (Cb̂† +
∑
i ciŜ

+
i )|g〉 where ci, C are

still complex coefficients.

Here we use a different way of determining Vi than in the benchmark calculation

above. We assume that the mode field is homogeneous in the volume of interest

(where the QEs are), with the intensityE being one of the parameters. The coupling

constants are again determined as Vi = −µi ·E and are therefore dependent mainly

on the orientation of a given dipole.

In the following, we study the energy spectra for varying energy ω of the bosonic

field, keeping the free TLS energy difference ε fixed. This captures the possibility

to tune the field mode, whereas the spectral properties of a molecule are given. A

sample spectrum is shown in Fig. 4. Regardless of the specific configuration, in the

single excitation subspace there will generally be a bounded “band” of K − 2 eigen-

values (where K is the number of QEs) nearby the original ε, and two “polariton

branches” below and above the band asymptotically approaching ω for ω � ε and

ω � ε, respectively. The exact positions of the eigenvalues inside the band depend

nontrivially on the configuration of the dipoles, but there are several quantitative

attributes of the shape of the spectra — e.g., the position and the width of the

band or the separation of the polariton branches — whose dependence on some

basic parameters can be studied statistically.

Some observations about the spectra follow directly from the structure of the

Hamiltonian (1). For small values of Vi, the width of the central band in the spectra

is directly proportional to the dipole–dipole couplings gij . Therefore the width

scales with the dipole moment as µ2 and with the length scale l (proportional to the

interparticle distances) as l−3, and hence it grows linearly with the concentration of

the molecules if the other parameters stay fixed. When the dipole–dipole couplings

(a) (b)

Fig. 4. (Color online) (a) Sample configuration of the dipoles and (b) the corresponding energy

spectrum of the single excitation subspace of the modified Dicke model, with varying energy of
the bosonic mode. The parameters used here are E = Ez = 2.4 · 108 V · m−1, ε = 2.6 eV/~
and µ = 20 D. Here the dipoles are located in a regular 4 × 4 square lattice but are randomly

oriented. Two main polariton branches appear together with a central band of energies around

the original transition frequency of a single molecule. The width of the central band grows with
the dipole–dipole couplings gij .
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gij are large enough, the lower polariton branch might cross some of the central

band energies for ω > ε, as can be seen in Fig. 4.

The magnitude of the dipole–field couplings Vi then affects mainly the mutual

separation of the polariton branches. For small enough dipole–dipole couplings gij
(so that the band stays well between the polariton branches) the lower polariton

branch approaches ε for large ω, whereas there is a certain gap between the upper

branch and ε for small ω. We observe that the computed polariton branches fit

quite well onto the formula

ω̃2
± =

1

2

[
ω2 + ω0

2 + Ω2 ±
√

(ω2 + ω0
2 + Ω2)

2 − 4ω2ω2
0

]
. (14)

Such a dependence is found in the dispersion relations derived from several models

of propagating waves (e.g., surface plasmon polaritons22 or usual electromagnetic

plane waves11) interacting with emitters distributed homogeneously in the direction

of wave propagation and without dipole–dipole interactions. In that context, ω

from (14) is the frequency of the wave of a particular wavelength in the absence

of the emitters, ω0 is the transition frequency of the uncoupled emitters and Ω2

is a quantity linearly proportional to the polarizability of the emitters and also to

their concentration; Ω is the Rabi splitting, equal to the difference between the

polariton branches ω̃+ − ω̃− at resonance (ω = ω0), and
√
ω2
0 + Ω2 corresponds to

the low-energy asymptote of the upper polariton branch.

For larger gij , the lower polariton branch starts to cross some of the band

levels and therefore fitting the lowest eigenvalue onto ω̃− is no longer reliable.

Nevertheless, using only the upper branch for the fit yields still reliable results

even for ω0. As could be seen in Figs. 3(i), 3(iii) and 3(iv), the shape of the lower

polariton branch may still be apparent in the spectrum of the Hamiltonian even if

it penetrates the central band.

In the following, we will see that neither of the parameters ω0,Ω depend signif-

icantly on the dipole–dipole couplings gij (cf. Sec. 5.2 and Fig. 7). The polariton

splitting Ω does, however, scale with the single emitter dipole moment magnitude

µ and the number of dipoles N as Ω ∝
√
µ2N . Therefore, the width of the central

band will grow faster than the polariton splitting when the dipole concentration is

increased.

5.1. Effects due to randomness

As mentioned in Sec. 1, the QEs in the nanoplasmonic system are usually dis-

tributed randomly near the metallic structures, having also random directions. In

order to capture the effects of the randomness, we performed statistical simulations

with varying degree of randomness in angular and positional configurations of the

QEs. In both cases, we start with a rectangular array of dipoles aligned in a single

direction (which corresponds to the direction of the field intensity).

We choose several statistics calculated from the resulting spectra. The width

of the band can be described in multiple ways, one of them is the difference ∆f
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between the second highest and the second lowest eigenvalues at ω = ε. The average

εm of these two eigenvalues characterizes the position of the band. For each sample,

we perform a least-square fit of the spectra onto the dispersion function (14) in

order to obtain the parameters ω0 and Ω, which show the asymptotic behavior of

the polariton branches and their splitting.

As for the directions, the randomness is parameterized by the maximum devia-

tion polar angle Θ. Each dipole is rotated from its aligned direction by a random

polar angle θ chosen between 0 and Θ such that cos θ has uniform distribution be-

tween cos Θ and 1 and the azimuth angle of the rotation is always chosen uniformly

from all directions; therefore the dipole moment vector is uniformly distributed on

the spherical surface delimited by the maximum polar angle Θ. The resulting dis-

tributions of ∆f and Ω are illustrated in Fig. 5 for a 4× 4 square array with 2 nm

space separation with two different magnitudes of dipole moment, 2 D and 15 D.

(a) (b)

(c) (d)

Fig. 5. (Color online) Effects of angular randomness on the spectrum in a 4 × 4 dipole array

(16 nm×16 nm): (a), (c) widths of the dipole band ∆f taken as the difference between the second
highest and the second lowest eigenvalue at ω = ε = 2.6 eV; (b), (d) polariton splittings Ω from

fitting the relation (14). The parameters are (a), (c) µ = 2 D, E = Ez = 2.4 ·109 V · m−1 and (b),

(d) µ = 15 D, E = Ez = 3.2 · 108 V · m−1 (in both cases µEz = 0.1 eV). The lines correspond to
the quantiles 0.01, 0.05, 0.25, 0.5, 0.75, 0.95 and 0.99, i.e., the areas delimited by light, medium

and dark shades delimit 98%, 90% and 50% of the values, respectively.
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(a) (b) (c)

Fig. 6. (Color online) Effects of the position randomness on the spectrum in a 4× 4 dipole array

(16 nm × 16 nm) for µ = 2 D and E = Ez = 2.4 · 109 V · m−1. The dipoles are displaced along

each axis up to 1 nm. (a) Center of the dipole band taken as the mean of the second highest
and the second lowest eigenvalues at ω = ε = 2.6 eV; (b) width of the dipole band ∆f ; and

(c) polariton splitting Ω from fitting the relation (14). The lines correspond to the quantiles 0.01,

0.05, 0.25, 0.5, 0.75, 0.95 and 0.99, i.e., the areas delimited by light, medium and dark shades
delimit 98%, 90% and 50% of the values, respectively.

The dipole–field couplings were however kept in the same range of ±0.26 eV. In all

cases, the band center εm was equal to the QE natural frequency ε with a relative

error less than 2 · 10−4. The fitted value of ω0 was equal to ε with 1% accuracy

(although always below the prescribed ε).

The bandwidth depends mainly on the magnitude of the dipole moment, ∆f ∝
µ2. The directional randomness causes variation in the bandwidth, which in extreme

cases can differ by about a factor of two for different samples.

Next, we added some noise into the dipoles’ positions. The initial configuration

was a 4 × 4 square array of randomly oriented dipoles, with a = 2 nm distance

between dipoles. However, a random offset from the interval (−σa/2, σa/2) was

then added to each Cartesian coordinate of each dipole, where σ is a randomness

parameter. The resulting distributions of selected statistics (for µ = 2 D) are shown

in Fig. 6.

The effect of the dipole configuration on the band position is again negligible

as it stays within a 1 meV range around the original ε in 90% of the cases for

the maximally random case. However, the bandwidth might increase substantially

for some fraction of samples in the maximally random case. This is caused by the

fact that the distance between two neighboring dipoles can approach zero and thus

their mutual coupling gij might become very large. As will be discussed later, this

situation is mostly unphysical because of the nonzero size of the QEs. The value of

Ω is apparently unaffected by the positions except for a very small fraction of cases,

which again correspond to unrealistically small distances between the dipoles.

5.2. Scaling effects

In order to explore the effects of the direct dipole–dipole coupling of the QEs, we

scaled the transition dipole moment relevant for the direct coupling while keeping
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(a) (b) (c)

Fig. 7. (Color online) Scaling of the observed statistics with the transition dipole moment µ,

keeping the maximum field–dipole couplings fixed at Vi ≤ µEz = 0.1 eV. Randomized are both

dipole orientations and positions. The lines correspond to the quantiles 0.01, 0.05, 0.25, 0.5, 0.75,
0.95 and 0.99, i.e., the areas delimited by light, medium and dark shades delimit 98%, 90% and

50% of the values, respectively. Varying the molecular density n has the same effect as varying µ2.

the magnitude of Vi coupling terms. As stated before, increasing µ by the factor of

α is equivalent to reducing the intermolecular distance by the factor of α−2/3. The

results for the scenario with the 4 × 4 array of QEs with fixed positions at 2 nm

interparticle distance and fully random directions is shown in Fig. 7. As expected,

the bandwidth ∆f shows clear quadratic dependence on µ (thus linear dependence

on gij). The band position remains well at the QE transition frequency ε. (Only the

random fluctuations of the outermost energies of the band scale linearly with the

bandwidth, which leads to the quadratic broadening of the ∆f distribution with

µ.) The polariton splitting Ω was found to be almost independent of dipole–dipole

interactions. Hence µ influences the polariton splitting only via the Vi ∝ µi ·E(ri)

terms.

Because of the aforementioned equivalence of scaling dipole moments and in-

termolecular distances (thus concentrations), the results can be interpreted accord-

ingly — for example in Fig. 6(b), we would get a linear dependence on QE concen-

trations instead of quadratic dependence of QE dipole moments.

6. Conclusions

Using a modified Dicke model, we have shown that significant direct couplings

between two-level quantum emitter dipoles — which may result from their high

concentration and high individual transition dipole moments — lead to new col-

lective states with eigenenergies being split and shifted away from the original

transition frequency of individual dipoles. Moreover, some of these states could

be seen as significant peaks in the light spectrum radiated from the system; this

can be attributed to the significant effective dipole moment that these states

exhibit.

A question naturally follows as to whether the effects of the dipole–dipole inter-

action described above can be probed experimentally in the nanoplasmonic systems.
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The Hamiltonian (1), due to all the simplifications made, describes a closed system

without any coupling to a probing field. We have shown, however, that the dark

states are characterized by very low expectation value of the observable P defined

by Eq. (13).

The experiments showing the strong coupling between the plasmonic excitations

and QEs are characterized by the observable polariton splitting. While increasing

the number of QEs and their couplings to a plasmonic nanoparticle increases the

polariton splitting, this does not require any direct dipole–dipole interactions be-

tween the QEs. We showed that if the dipole–dipole couplings between the QEs are

present, the previously degenerate QE transition energies split into a broader band

and some of the resulting states might radiate much more intensively than others.

However, this requires really significant dipole–dipole coupling strengths. Larger

dipole–dipole couplings can be attained by increasing the QE concentration and/or

transition dipole moment. With a transition dipole moment µ ≈ 10 D and separa-

tions between the emitters of≈ 1 nm, there should be an observable band containing

highly radiant states, cf. Fig. 3(d), but such values might not be easy to attain. One

of the most popular QEs used in active nanoplasmonic systems is the rhodamine

6G (R6G) dye. The number density of solid R6G is about26 1.6 · 1021 cm−3, corre-

sponding to the intermolecular distance of 0.86 nm. The transition dipole moment

of a separate R6G molecule is about14 2 D. These values correspond approximately

to the parameters of Fig. 3(f), where we might still expect some of the effects to

be observable. However, R6G is diluted or embedded into a polymer in the experi-

ments. The number density of 2.5 ·1019 cm−3 and typical intermolecular separation

of 3.5 nm, corresponding to the saturated water solution of R6G,25 thus provide

a more realistic estimate. For such parameters, the dipole–dipole couplings are so

small that no observable effects can be expected.

Based on these arguments, we can speculate that it would be challenging but

not impossible to observe effects of the direct quantum emitter dipole–dipole cou-

plings in the nanoplasmonic systems: it demands a high value of the dipole moment

concentration. Also in the paper of Salomon et al.,16 the new mode (analog of our

bright modes but in a totally different geometry) appears in the absorption spectra

for a high dipole moment value of 25 D and concentration of 1019 cm−3. Note that

here we studied only the single excitation subspace. It is possible that other impor-

tant effects of the dipole–dipole interactions could take place for higher excitation

numbers.

Appendix A. Electric Field of Spherical Quasistatic Modes

The quasistatic modes in a system consisting of parts, each of which is filled with

a different homogeneous and isotropic medium, are obtained by solving Laplace’s

equation for the electrostatic potential, −∆φ = 0, subjected to the corresponding

interface conditions and constitutive relations. The electric field corresponding to

this potential is given by E = −∇φ and at the interface between media i and j,
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Faraday’s law leads to the condition nij × (Ej − Ei) = 0 where nij is the unit

vector normal to the interface and Ej ,Ei are the respective limits of the electric

field when approaching the given point on the boundary. If we treat all the charges

as bounded, Gauss law yields the second condition nji · (εiEi − εjEj) = 0. In the

quasistatic approximation, it is assumed that the speed of light is infinite, c→∞,

hence there is no magnetic field and all dynamics comes from the local internal

response of the medium, given (in the linear regime) by the dielectric function

ε = ε(r, ω).

In the case of a spherical particle with radius R, solutions φlm of the Laplace’s

equation are most conveniently found as products of radial functions and spherical

harmonics12:

φinlm(r, θ, ϕ) = ξlmr
lY ml (θ, ϕ),

φoutlm (r, θ, ϕ) = ηlmr
−n−1Y ml (θ, ϕ),

where the finite-energy solutions consist of φinlm inside the particle (r ≤ R) and

φoutlm outside (r ≥ R). Continuity of the potential on the boundary sets the relation

between the coefficients ξlm = ηlmR
−2n−1. Moreover, calculating Elm = −∇φlm,

Ein
lm = −

∑
lm

ξlmr
l−1
[
lY ml r̂ +

∂Y ml
∂θ

θ̂ +
1

sin θ

∂Y ml
∂ϕ

ϕ̂

]
,

Eout
lm = −

∑
lm

ηlmr
−l−2

[
(l + 1)Y ml r̂ +

∂Y ml
∂θ

θ̂ +
1

sin θ

∂Y ml
∂ϕ

ϕ̂

]
,

(A.1)

and applying the aforementioned interface relations at r = R yields the condition

on the internal and external dielectric functions,

εin(ωl) = −
(
l + 1

l

)
εout(ωl),

which also determines the frequency of the lth-degree quasistatic multipole mode.

For the nonlossy Drude model εin(ω) = ε∞ − ω2
p/ω

2 with constant background

permittivity εout, the frequencies are

ωl =

√
ω2
p

ε∞ + l+1
l εout

.

In order to plug the field modes into the quantum model, the classical elec-

tric intensities have to be related to the energy U stored in the electric field

(in the quasistatic approximation, the magnetic part does not contribute) U =

ε0
∫
d3r |E(r)|2/2. (Note that here we do not include polarization.) If we use a con-

vention in which the spherical harmonics are orthonormal (but they might complex

as well as real), ∫
dΩY m∗l Y m

′

l′ = δll′δmm′ ,
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then for a particular pair of indices l,m the result for the energy is, using the

relations above,

Ulm =
ε0
2

∫
dΩ

(∫ R

0

drr2|Ein
lm|+

∫ ∞
R

drr2|Eout
lm |

)

=
ε0
2

[lR2l+1|ξlm|2 + (l + 1)R−2l−1|ηlm|2]

=
ε0
2

(2l + 1)R−2l−1|ηlm|2.

Due to the orthogonality of the spherical harmonics, the modes are orthogonal in

the sense that the total electric field energy U of a linear combination of solutions

φlm is given by summing their respective contributions Ulm.

Due to the assumed linearity, the quasistatic modes can be treated as indepen-

dent harmonic oscillators and the instantaneous values of ηlm(t) as their “displace-

ments.” In such case, Ulm play the role of the oscillators’ “potential energies,” which

are equal to the total oscillators’ energies when ηlm reach their maxima. Using the

expression for Ulm as the potential energy part of the quantized harmonic oscillator,

setting ωl as the frequency of the quantized harmonic oscillator and performing the

usual canonical transformation to the creation and annihilation operators b̂†lm, b̂lm,

we get the expression for the quantized displacement:

η̂lm =

√
R2l+1ωl~
ε0(2l + 1)

(b̂†lm + b̂lm).

Substituting this to (A.1) gives the quantum operator for the electric field of the

quasistatic mode which is needed to obtain the nanoparticle–QE couplings.

For the dipole modes, it is often more convenient to use the corresponding

components of electric dipole moment µd (where d labels one of the Cartesian axes

x, y and z) instead of η1m. In that case we find

µ̂d =
√

2πε0R3ω1~(b̂†d + b̂d).
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