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Abstract—This paper deals with the optimal state reference
calculation for synchronous motors with a magnetically salient
rotor. A look-up table computation method for the maximum
torque-per-ampere (MTPA), maximum torque-per-volt (MTPV),
and field-weakening operation is presented. The proposed method
can be used during the drive start-up, after the magnetic
model identification. It is computationally efficient enough to be
implemented directly in the embedded processor of the drive.
For experimental validation, a 6.7-kW synchronous reluctance
motor drive is used.

Index Terms—Field-weakening, look-up table, magnetically
salient rotor, maximum torque-per-ampere, maximum torque-
per-volt, optimal references, synchronous reluctance motor.

I. INTRODUCTION

Synchronous motors with a magnetically salient rotor—such
as the interior permanent-magnet synchronous motor (IPM),
the synchronous reluctance motor (SyRM), and the permanent-
magnet (PM) assisted SyRM—are well suited for hybrid or
electric vehicles, heavy-duty working machines, and industrial
applications [1]–[6]. Depending on the operating speed and
the torque reference, these drives are typically controlled to
operate either at the maximum torque-per-ampere (MTPA) lo-
cus, in the field-weakening region, or at the maximum torque-
per-volt (MTPV) limit. For this purpose, optimal current (or
flux linkage) references should be determined as a function
of the reference torque and operating speed. This calculation
is typically done off-line and the resulting look-up tables are
then used in the on-line control method.

The MTPA trajectory can be stored in a look-up table, which
is either directly measured with a suitable test bench [7] or
pre-computed based on the known saturation characteristics
[1]. Alternatively, the MTPA locus can be tracked using
signal injection [8]. The field-weakening methods can be
broadly divided into feedback methods [9]–[12] and feed-
forward methods [13]–[17]. The feedback methods apply the
difference between the reference voltage and the maximum
available voltage. These methods lead to maximum torque
generation during the field-weakening operation, but they do
not guarantee minimum losses. An additional voltage control
loop is used, which has to be tuned and should have much
lower bandwidth than the innermost current controller [11],
[18]. Furthermore, a separate MTPV limit is needed also in
the feedback methods.

Some feedforward field-weakening methods are based on
analytical solutions of the intersection of the voltage ellipse
and torque hyperbolas [13]. The disadvantage of these methods
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Fig. 1. Plug-and-play start-up method consists of two stages, magnetic
model identification and look-up table computation, which can be run in the
embedded processor of the drive. Look-up tables are then used in reference
calculation. If needed, the current controller can be used instead of the flux-
linkage controller.

is that they do not take the magnetic saturation into account
(and the saturation effects cannot be properly taken into
account afterwards, since the saturation deforms the shape of
the voltage ellipses and torque hyperbolas). Other feedforward
field-weakening methods are based on off-line calculated look-
up tables [14]–[16], [19]. The magnetic saturation can properly
be included in these methods, but the off-line data process-
ing can be difficult and time-consuming, even though some
open-source post-processing algorithms have recently become
available [20].

Instead of current or flux linkage control, direct flux vector
control can be used [17], [21]–[23]. In this method, the optimal
references in the field-weakening region are easier to solve,
but still the MTPA trajectory and the MTPV limit have to
be implemented. A disadvantage of the direct flux vector
control is that the inner control loops become nonlinear, which
complicates their design.

In this paper, a plug-and-play method for the optimal
torque control of synchronous motor is presented. The overall
structure of the proposed approach is shown in Fig. 1. If
needed, the proposed approach can be easily modified to use
the current controller instead of the flux-linkage controller. The
reference calculation block will need to be changed in such a
way that the current references are generated instead of the flux
references; the drawback is that two two-dimensional look-up
tables are needed, one for the direct axis and the other for the
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quadrature axis current component, as in [14], [15].
The proposed look-up table computation method can run

in the embedded processor of the drive during the start-up,
after the magnetic model of the motor has been identified.
Alternatively, if the drive is connected to a cloud server or to a
mobile phone, the look-up tables could be computed remotely
and then uploaded to the drive. No additional user inputs or
tunings are required and the drive is ready to be started.

The fundamental motor equations and magnetic model used
are presented in Section II. Then, the main contributions of the
paper are presented in Sections III and IV:

1) A systematic method for computing look-up tables for
optimal current and flux linkage references is proposed.
The look-up table computation method is combined with
the magnetic model identification, making it a plug-and-
play method as shown in Fig. 1.

2) A modified reference calculation scheme is proposed,
using just one two-dimensional look-up table for the
d-axis flux component. The q-axis flux component is
obtained using the combination of the Pythagorean the-
orem and the bilinear interpolation.

In Section V, the proposed method is evaluated by means of
the optimal characteristics, simulations, and experiments using
a 6.7-kW SyRM drive.

II. MOTOR MODEL

The magnitude of the stator current is

is =
√
i2d + i2q (1)

where id and iq are the current components. The magnitudes
ψs and us of the stator flux and stator voltage, respectively,
are obtained similarly.

A. Fundamental Equations

The motor model in rotor coordinates is considered. The
stator voltage equations are

dψd

dt
= ud −Rsid + ωmψq (2a)

dψq

dt
= uq −Rsiq − ωmψd (2b)

where id and iq are the current components, ψd and ψq

are the flux linkage components, ud and uq are the voltage
components, ωm is the electrical angular speed of the rotor,
and Rs is the stator resistance. The current components

id = id(ψd, ψq) iq = iq(ψd, ψq) (3)

are generally nonlinear functions of the flux components. They
are the inverse of the flux maps, often represented by two-
dimensional look-up tables. Here, the modelling approach (3)
is chosen, because it is more favourable towards representation
in the algebraic form. Since the nonlinear inductor should
not generate or dissipate electrical energy, the reciprocity
condition [24]

∂id
∂ψq

=
∂iq
∂ψd

(4)
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Fig. 2. Reference calculation: (a) stator flux magnitude ψs,ref and limited
torque reference T e,ref ; (b) stator flux components ψd,ref and ψq,ref . All
three look-up tables can be computed during the start-up in the embedded
processor of the drive using the identified algebraic magnetic model (6).
The torque limit is Tmax = min(Tmtpv, Tlim), where Tlim is the limit
corresponding to the maximum current magnitude.

should hold. Typically, the core losses are either omitted or
modelled separately using a core-loss resistor in the model.
The produced torque is

Te =
3p

2
(ψdiq − ψqid) (5)

where p is the number of pole pairs. If the functions (3) and the
stator resistance are known, the machine is fully characterized
both in the steady and transient states. For example, the MTPA
trajectory can be resolved from (3) and (5).

B. Algebraic Magnetic Model

To model the current components in (3), algebraic functions
are used [25]

id =

(
ad0 + add|ψd|S+

adq
V +2

|ψd|U |ψq|V+2
)
ψd − if (6a)

iq =

(
aq0 + aqq|ψq|T +

adq
U+2

|ψd|U+2|ψq|V
)
ψq (6b)

where ad0, add, aq0, aqq, and adq are nonnegative coefficients
and S, T , U , and V are nonnegative exponents. The constant
if models the magnetomotive force due to the permanent
magnets. In both functions given in (6), the first two terms
in parenthesis correspond to the self-axis characteristics and
the last term models the cross-saturation. The form of the last
term originates from the reciprocity condition (4), which is
satisfied. The model is invertible: for any given values of id
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TABLE I
FITTED PARAMETERS FOR A 6.7-KW SYRM GIVEN IN SI UNITS

S T U V ad0 add aq0 aqq adq if

1 5 0 1 52.0 658.6 17.3 369.5 1121.7 0

TABLE II
FITTED PARAMETERS FOR A 7.7-KW PM-SYRM GIVEN IN SI UNITS

S T U V ad0 add aq0 aqq adq if

0 5 0 0 304.0 0 32.1 2084.3 0 35.4

and iq, the corresponding values of ψd and ψq can be obtained
by numerically solving (6).

The parameters of the magnetic model for a 6.7-kW SyRM
are given in Table I and for a 7.7-kW PM-SyRM in Table II.
The d-axis is selected along the minimum inductance axis. For
SyRMs, a self-identification method for the magnetic model
in (6) is available [25].

III. CONTROL SCHEME

Fig. 1 depicts the overall structure of the control system.
Fig. 2 shows the reference calculation scheme. As shown in
Fig. 2(a), the optimal MTPA flux magnitude ψs,mtpa is read
from a look-up table, whose input is the torque reference. The
MTPA flux is limited based on the maximum available voltage
us,max, yielding the optimal flux magnitude ψs,ref under the
voltage constraint. The maximum voltage us,max is calculated
from the measured DC-link voltage udc. Hence, any sudden
variations in udc are directly translated into the references.

The torque reference is limited by the torque Tmax corre-
sponding to the combined MTPV and current limit, yielding
the limited torque reference T e,ref . The limit Tmax is read from
the look-up table, whose input is the optimal flux magnitude
ψs,ref . The benefit of the scheme in Fig. 2(a) is that whatever
the input torque reference Te,ref and the speed ωm are, the
optimal values ψs,ref and T e,ref are obtained without any
delays. It should be noted that the scheme shown in Fig. 2(a)
can also be used directly in combination with the direct flux
vector control.

As shown in Fig. 2(b), a two-dimensional look-up table is
used to determine ψd,ref based on the optimal references ψs,ref

and T e,ref . Bilinear interpolation is used to get the value of
ψd,ref from the two-dimensional look-up table. Generally, four
points are needed for the bilinear interpolation. The data is not
available for the two-dimensional look-up table beyond the
MTPV limit. So, when operating along the MTPV limit, there
are only three points available for the interpolation algorithm.
The procedure to calculate the value of ψd,ref using both the
three and four points is given in the Appendix.

The value of the q-axis flux component ψq,ref can be
calculated from the final interpolated result ψd,ref using the
Pythagorean theorem, but it will create chattering close to
zero torque in the calculated references. Instead, the q-axis flux
component is first calculated using the Pythagorean theorem at
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Fig. 3. Look-up table computation procedure. The parameters of the magnetic
model (6) are also needed in each stage.

all the (three or four) points used in the interpolation algorithm
for ψd,ref and then ψq,ref is obtained using the bilinear inter-
polation. Further details about the used interpolation method
are given in the Appendix.

Finally, if needed, the flux references can be transformed
into the current references using the algebraic magnetic model
(6). If the current references are calculated directly from
the optimal references ψs,ref and T e,ref , two two-dimensional
look-up tables are needed [14]–[16].

IV. LOOK-UP TABLE COMPUTATION

Fig. 3 shows an overall diagram of the look-up table
computation method, which is divided into four stages. In the
following equations, the d-axis of the coordinate system is
fixed to the direction of the permanent magnets (or along the
minimum inductance axis), without loss of generality. After
the look-up table computation, the d- and q-axes of the SyRM
are flipped to the standard SyRM representation, i.e., the d-
axis along the maximum inductance axis.
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(a)

(b)

Fig. 4. Look-up tables for a 6.7-kW SyRM: (a) MTPA locus, MTPV limit,
and current limit; (b) ψd. The feasible operating region in ψd plot is limited
by the MTPA locus, MTPV limit, and current limit, which are also plotted.
These look-up tables are applied in the controller according to Fig. 2. TN is
the rated torque of the motor. For illustration purposes, L = 20 and M = 50
is used in these plots.

It is to be noted that the method is not limited to the
saturation model (6). Different magnetic models or even look-
up tables could be used instead, if they are physically feasible
and invertible in the relevant operation range. Furthermore,
the reference calculation scheme shown in Fig. 2 is used
as an example in this paper, but the proposed look-up table
computation method can be easily modified for other reference
calculation schemes and control structures as well.

A. MTPA

For creating a look-up table, a list of L equally-spaced
current magnitudes is defined

{is(l)} = (l − 1)∆i, l = 1, 2, . . . L (7)

where ∆i = is,max/(L−1) and is,max is the maximum current.
For each current magnitude is, the maximum torque Tmtpa and
the corresponding argument id,mtpa are obtained by solving
the optimization problem

Tmtpa = max
id∈[−is,0]

Te(id) (8a)

where the torque is expressed as a function of id

Te(id) =
3p

2
[ψd(id, iq) · iq(id)− ψq(id, iq) · id] (8b)

iq(id) =
√
i2s − i2d (8c)

(a)

(b)

Fig. 5. Look-up tables for a 7.7-kW PM-SyRM: (a) MTPA locus, MTPV
limit, current limit, and id = 0 line; (b) ψd. Look-up tables are not calculated
beyond id = 0 line.

and the search interval is −is ≤ id ≤ 0. The flux components
ψd and ψq corresponding to id and iq are calculated by
numerically inverting the algebraic magnetic model (6), i.e.,

(ψd, ψq) = solve
ψd,ψq

{
id(ψd, ψq) = id
iq(ψd, ψq) = iq

}
(9)

After solving (8), the optimal q-component iq,mtpa is obtained
from (8c).

The optimal flux magnitude is

ψs,mtpa =
√
ψ2
d,mtpa + ψ2

q,mtpa (10)

where ψd,mtpa and ψq,mtpa corresponding to id,mtpa and
iq,mtpa are obtained using (9). The Brent algorithm [26] is
used for solving (8) without using derivatives. The Powell
dogleg algorithm [27] is used for inverting the magnetic model
in (9).

As shown in Fig. 3, the procedure (8)–(10) is repeated in a
for loop for each element is(l) of the list (7). Then, a look-
up table for the control system, cf. Fig. 2, is created from
the resulting lists {ψs,mtpa(l)} and {Tmtpa(l)}. As illustrated
in Fig. 3, the inputs to the MTPA computation stage are the
number of points L to be computed, the maximum current
is,max, and the parameters of the magnetic model (6). The
maximum current is,max is selected based on the motor and
converter ratings. Typically, L around 10 suffices.

Fig. 4(a) shows the computed MTPA look-up table for the
6.7-kW SyRM and Fig. 5(a) for the 7.7-kW PM-SyRM. In the
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control algorithm, the optimal flux reference magnitude ψs,ref

is obtained based on this look-up table, as shown in Fig. 2(a).

B. MTPV

For creating the look-up table, a list of M equally-spaced
stator flux magnitudes is defined

{ψs(m)} = (m− 1)∆ψ, m = 1, 2, . . .M (11)

where ∆ψ = ψs,max/(M − 1) and the maximum flux mag-
nitude ψs,max = ψs,mtpa(L) is the result from the last step
of the MTPA computation. For each flux magnitude ψs, the
maximum torque Tmtpv is obtained by solving

Tmtpv = max
ψd∈[−ψs,0]

Te(ψd) (12a)

where the torque is expressed as

Te(ψd) =
3p

2
[ψd · iq(ψd, ψq)− ψq(ψd) · id(ψd, ψq)] (12b)

ψq(ψd) =
√
ψ2
s − ψ2

d (12c)

The magnetic model (6) is directly used in (12b), i.e., no
magnetic model inversion is needed in this stage. The Brent
algorithm is used for solving the optimization problem (12).

As shown in Fig. 3, the problem (12) is solved for each
element ψs(m) of the list (11). Then, a look-up table for
the control system is created using the resulting output list
{Tmtpv(m)}. Figs. 4(a) and 5(a) show the computed MTPV
look-up tables for the two machines.

C. Maximum Current Limit

The already defined input list (11) of the flux magnitudes is
considered. For each flux magnitude ψs(m), the d-component
ψd,lim of the flux corresponding to the maximum current
is,max is solved

ψd,lim = solve
ψd∈[ψd,mtpv,ψd,max]

{
i2s (ψd) = i2s,max

}
(13a)

where the square of the current magnitude is expressed as

i2s (ψd) = i2d(ψd, ψq) + i2q(ψd, ψq) (13b)

ψq(ψd) =
√
ψ2
s − ψ2

d (13c)

The lower bound ψd,mtpv in (13) is the d-component of the
MTPV flux at each ψs and the upper bound ψd,max is the d-
component of the MTPA flux at the maximum current. After
(13) has been solved, the corresponding torque Tlim is obtained
from (12b). The Brent algorithm is used to solve this bounded
nonlinear problem.

As shown in Fig. 3, the problem (13) is solved for each
element ψs(m). The lower bounds {ψd,mtpv(m)} needed in
(13) have already been computed during the MTPV stage. The
upper bound ψd,max = ψd,mtpa(L) is the d-component of the
MTPA flux at the maximum current is,max and it has also
been computed. From the resulting output list {Tlim(m)}, a
look-up table for the control system is created. Figs. 4(a) and
5(a) show the computed current limits of two times the rated

current for the SyRM and PM-SyRM. The MTPV and current
limits can be easily merged into one limit

Tmax = min (Tmtpv, Tlim) . (14)

D. Two-Dimensional Reference Look-Up Table

For given flux magnitude ψs and torque reference Te,ref , the
d-component ψd,ref is solved

ψd,ref = solve
ψd∈[ψd,mtpv,ψs]

{Te,ref = Te(ψd)} (15)

where the torque Te(ψd) is given by (12b). The lower bound
ψd,mtpv is the d-component of the MTPV flux at ψs. The Brent
algorithm is used to solve (15).

For creating the look-up table, (15) can be solved in two
nested for loops. As an input to one loop, the list (11) of the
flux magnitudes {ψs(m)} is used. In the other loop, the already
calculated MTPV torque values {Tmtpv(m)} can be used as an
input, i.e. {Te,ref(n)} = {Tmtpv(m)}. This selection not only
defines the maximum torque which can be generated (under
the MTPV limit) but also explicitly gives the lower bound
ψd,mtpv for each ψd,ref . If the maximum current is fixed,
{Te,ref(n)} = {Tmax(m)} can be used instead. The look-up
table for the control system is created from the resulting table
{ψd,ref(m,n)}. Figs. 4(b) and 5(b) show the two-dimensional
look-up tables for the two machines. The id = 0 line shown
in Fig. 5 does not need to be computed, but it is shown just
for illustration purposes.

V. RESULTS

The computed look-up tables and the reference calculation
scheme shown in Fig. 2 were evaluated by means of the
optimal characteristics, simulations, and experiments. The pa-
rameters used for the look-up table computation are: L = 10;
M = 150; and is,max = 2 p.u. The parameters of the magnetic
model (6) given in Tables I and II are also needed. The
computation time for the proposed method is less than 35 s
in an Android phone. We expect the computation time to be
slightly longer in typical digital-signal processors applied in
frequency converters.

The rated values of the 6.7-kW four-pole SyRM are: speed
3175 r/min; frequency 105.8 Hz; line-to-line rms voltage 370
V; rms current 15.5 A; and torque 20.1 Nm. The rated values
of the 7.7-kW four-pole PM-SyRM are: speed 3000 r/min;
frequency 100 Hz; line-to-line rms voltage 147 V; rms current
17.7 A; and torque 24 Nm.

A. Optimal Characteristics

The effect of the magnetic saturation on the optimal current
references in the id-iq plane and on the optimal flux references
in the ψd-ψq plane for the two motors is illustrated in Figs. 6
and 7. The solid curves correspond to the calculated optimal
values, while the magnetic saturation is omitted in the case of
the dashed curves. The effects of saturation are clearly visible;
using constant inductances would result in a selection of non-
optimal operating points.
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(a) (b)

Fig. 6. MTPA, MTPV, and current limit control tranjectories for the 6.7-
kW SyRM: (a) id-iq plane; (b) ψd-ψq plane. The dashed lines show the
results, when the magnetic saturation is not taken into account (inductances
correspond to the rated operating point). The black dashed curve corresponds
to the constant current circle.

(a) (b)

Fig. 7. MTPA, MTPV, and current limit control tranjectories for the 7.7-kW
PM-SyRM: (a) id-iq plane; (b) ψd-ψq plane.

The effect of the magnetic saturation on the torque gen-
eration is illustrated in Fig. 8. The torque generated in the
case when the magnetic saturation is included in the reference
calculation is compared to the case when the magnetic satu-
ration is omitted. It can be seen that the torque generated in
the saturated case is much higher than the unsaturated case.

Fig. 9 shows the torque versus speed curve for different
current limits. If needed, the reference calculation scheme in
Fig. 2(a) can be modified easily to use multiple current limits
or even a dynamic current limit, as needed in some industrial
applications. The only difference will be using multiple one-
dimensional current limit look-up tables. Three to four one-
dimensional look-up tables could be used for different current
limits and then the results between these limits could be
interpolated as required.

B. Simulations

Simulations and experiments were performed on a 6.7-kW
SyRM drive. The magnetic saturation in the motor model and
the controller is modelled using the magnetic model in (6).
The load torque coming from the viscous friction acting on
the system is modelled as TL = bωm, where b = 0.0014 Nms

Fig. 8. Torque vs speed curve for the SyRM generated from the reference
calculation block with and without taking magnetic saturation into account.
Rated inductance values are used for the unsaturated case. The current limit
was set to 2 p.u.

Fig. 9. Torque vs speed curve for the SyRM generated from the reference
calculation block for different current limits, where is,max is the maximum
current magnitude. The onset of the field-weakening in each case is depicted
by a circle and the MTPV limit by a cross.

is the coefficient of the viscous friction. The total moment of
inertia is 0.03 kgm2.

Fig. 10 shows the acceleration test for the 6.7-kW SyRM.
The motor is accelerated from zero to 2-p.u. speed. The current
limit was set to 2 p.u. in the calculated look-up tables. From
the last subplot in Fig. 10, it can be seen that the measured
current is slightly higher than the 2-p.u. limit at t ≈ 0.9 s. This
error could be reduced by decreasing the mesh size of the two-
dimensional look-up table ψd(ψs, Te), i.e., by increasing the
value of M in look-up table computation.

C. Experiments

The reference calculation scheme shown in Fig. 2 was
experimentally evaluated together with the calculated look-
up tables. The controller was implemented in an OPAL-RT
OP5600 rapid-prototyping system. The rotor speed ωm is
measured using an incremental encoder. The stator currents
and the DC-link voltage are measured. A discrete-time flux-
linkage controller was used [19].

As an example, Fig. 11 shows the results for a speed
reference step of 2 p.u. It can be seen that the measurement
results follow the simulation results in Fig. 10, apart from
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Fig. 10. Simulation results for the 6.7-kW SyRM: speed reference is stepped
from zero to 2 p.u. The first subplot shows the reference speed ωm,ref and
the actual speed ωm. The second subplot shows the flux components ψd and
ψq. The last subplot shows the measured current components id and iq.

the noise in current waveforms. The noise in the current
waveforms is generated from the highly nonlinear saturation
characteristics and spatial inductance harmonics of the SyRM.

VI. CONCLUSIONS

The optimal state reference calculation and the look-up
table computation method for the MTPA, MTPV, and field-
weakening operation is presented. The developed method
could be used during the commissioning stage of the drive and
it only needs to run once during the lifetime of the drive. The
importance of including the magnetic saturation when calculat-
ing the state references is highlighted. The magnetic saturation
cannot be included after the references have been calculated.
Using constant inductances would result in a selection of
non-optimal operating points, as the saturation deforms the
voltage ellipses and torque hyperbolas. The proposed method
properly takes the magnetic saturation into account, when
calculating the state references. The computed look-up tables
and the reference calculation scheme were evaluated using
experiments on a 6.7-kW SyRM drive.

APPENDIX
INTERPOLATION

If the value of the flux ψd is available at four points (coming
from the two-dimensional look-up table) as shown in Fig. 12,
then the value of ψd,ref = fd(x, y) is given by

fd(x, y) =
1

(x2 − x1)(y2 − y1)

[
x2 − x x− x1

]
·
[
fd(x1, y1) fd(x1, y2)
fd(x2, y1) fd(x2, y2)

] [
y2 − y y − y1

]
(16)

Fig. 11. Experimental results for the 6.7-kW SyRM: speed reference is
stepped from zero to 2 p.u.

x1 x x2

y1

y

fd(x1, y2)y2

fd(x1, y1) fd(x2, y1)

fd(x2, y2)

fd(x, y)

Fig. 12. Interpolation when the values of the function fd are available on
four points. The x-axis represents the flux reference ψs,ref and y-axis the
torque reference Te,ref .

There is no data available for the two-dimensional look-up
table ψd(ψs, Te) beyond the MTPV limit. When operating
along the MTPV limit, there are only three points where the
data is available. So, (16) cannot be used to interpolate the
value of ψd,ref .

If one of the points, e.g., fd(x2, y1) is not available, then
the remaining three points can be used to interpolate the value
of the function fd(x, y) by a plane equation

fd(x, y) = ax+ by + c (17)

where ab
c

 =

x1 y1 1
x1 y2 1
x2 y2 1

−1 fd(x1, y1)
fd(x1, y2)
fd(x2, y2)


To get the value of ψq,ref , first the value of ψq is calculated

using the Pythagorean theorem at all the given points shown

7



in Fig. 12. Depending on whether four or three points are
available, ψq,ref = fq(x, y) can be calculated using (16) or
(17).
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